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Abstract. We propose a class of hierarchical graphs equipped with a
simple algebraic syntax as a convenient way to describe configurations in
languages equipped with inherently hierarchical features such as sessions,
fault-handling scopes, transactions or locations. The graph syntax can
be seen as an intermediate representation language, that facilitates the
encoding of algebraic specifications and, in particular, of process calculi,
since it provides primitives for nesting, name restriction and parallel com-
position. The syntax is based on an algebraic presentation of graphs that
faithfully characterises families of hierarchical graphs, meaning that each
term of the language identifies uniquely an equivalence class of graphs
(modulo graph isomorphism). Proving soundness and correctness of an
encoding (i.e. proving that structurally congruent processes are mapped
to isomorphic graphs) is then facilitated and can be done by structural
induction. Summing up, the graph syntax facilitates the definition of
faithful encodings, yet allowing a precise visual representation. We in-
stantiate our proposal by offering the graphical encoding of a workflow
language and of a service-oriented calculus.

1 Introduction

As exemplified by a large literature, graphs offer a convenient ground for the
specification and analysis of modern software systems with features such as dis-
tribution, concurrency and mobility. Among the graph-based formalisms used for
such purposes, we recall those based on traditional Graph Transformation [1],
Bigraphical Reactive Systems [2] and Synchronized Hyperedge Replacement [3].
Using any of such approaches to build a graphical representation of an existing
language involves two major challenges: encoding states and encoding the oper-
ational semantics. A correct state encoding should map structurally equivalent
states into equivalent (typically isomorphic) graphs. In addition, the state en-
coding should also facilitate the encoding of the operational semantics, which
typically means mimicking term rewrites via suitable graph rewrites.

The use of isomorphism as graph equivalence has several advantages. Among
others, it offers an intuitive normal form representation for systems, it allows
to reuse results or techniques from graph theory for solving specific problems
(system equivalence via graph isomorphism), and it enables traditional graph
transformations, which have (sub)graph isomorphism at the base of the matching
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mechanism used for the application of rules. Of course, capturing equivalence
of configurations via graph isomorphism is not always possible or convenient.
In such cases additional axioms must be added to isomorphism. The reuse of
standard graph transformation techniques in such situations is not new. For
instance one typical solution is to consider (equivalence classes of) normal forms
for graphs and a set of confluent and terminating rewrite rules that reduce graphs
into the normal form of their equivalence class.

When the language is a process calculus, the encoding of a state is facilitated
by its algebraic structure (since processes are terms) and it is typically defined
inductively on such structure. However, the syntax of graph formalisms is often
not provided with suitable features for names, name restrictions or hierarchical
aspects. Typical solutions consist in developing ad-hoc algebraic syntaxes that
are often significantly different from the syntax of process calculi. They require
advanced skills and are based on sophisticated techniques involving set-theoretic
definition of graphs with interfaces (e.g. [1, 4]), enriched type systems (e.g. [5,
6]) or representing hierarchies as trees (e.g. [2, 4]) and may result in layered
representations and complex correctness proofs.

Our goal is to develop a technique for simplifying the definition of state
encodings into graphical structures and the proof of their correctness and such
that the associated graph rewriting rules are automatically determined from the
state encoding and the original operational semantics.

In a companion paper [7] we present some results that help in overcoming
some of the drawbacks mentioned above. The proposal described there fills the
gap between the different levels of abstraction at which process calculi and graph-
ical structures reside by introducing a specification formalism made of an algebra
of hierarchical graphs, equipped with a sound and complete set of axioms equat-
ing two terms whenever they represent essentially the same hierarchical graph.
The graph algebra is equipped with primitives and mechanisms for dealing with
names, name restriction, parallel composition and, most importantly, nesting
in the same way as they are used in process calculi. In particular, the nesting
mechanism allows for easily defining graphical presentations for process calculi
with inherently hierarchical aspects such as sessions, transactions or locations:
features of fundamental relevance, e.g. in the area of service-oriented comput-
ing. Besides facilitating the visual specification of processes, the graph algebra
simplifies the proofs of correctness: the algebraic structure of both states and
graphs enables proofs by structural induction.

In this paper we validate our ideas by using our graph algebra (presented in
Section 2) to encode the configurations of (process) calculi with service-inherent
features that have a certain hierarchical nature such as sessions, transactions or
locations. In particular, we provide novel, correct graphical encodings for two
languages. The first one (Section 3) is a simple workflow language, vaguely rem-
iniscent of BPEL: it is used for showing the basic features of the graph syntax
and getting the reader acquainted with the approach. The second example (Sec-
tion 4) regards a sophisticated calculus for the description of service-oriented
applications, namely, CaSPiS [8], whose features pose further challenges to visu-



alisation, due to the interplay of name handling, nested sessions and a pipeline
operator. We remark that the technique we propose can be transferred to other
calculi as well, as witnessed by other available encodings mentioned in Section 5.

2 An algebra of hierarchical graphs

We offer an overview of our algebra of typed, hierarchical (hyper)graphs1 that
we call designs, referring to [7] for a detailed presentation.

Definition 1 (design). A design is a term of sort D generated by the grammar

D ::= L(x)[G] G ::= 0 | x | l(x) | G | G | (νx)G | D〈x〉

where l and L are respectively drawn from vocabularies T and NT of edge and
design labels, N is the set of nodes, x ∈ N and x ∈ N ∗.

The algebraic reading is as usual, where each syntactical category and vocab-
ulary is considered as a sort and productions are read as functions. This allows
us, for instance, to consider open terms (i.e. terms with typed variables), useful
for defining encodings by means of derived operators.

Terms generated by G are (possibly hierarchical) graphs: 0 represents the
empty graph, x is a discrete graph containing node x only, l(x) is a flat graph
formed by an l-labelled edge attached to nodes x (the i-th tentacle to the i-th
node in x), G | H is the graph resulting from the parallel composition of graphs
G and H (their disjoint union up to common nodes), (νx)G is graph G after
restricting node x, and D〈x〉 is a graph formed by attaching design D to nodes
x (the i-th node in the interface of D to the i-th node in x). A term L(x)[G]
represents a design of type L, with body graph G and exposing nodes x in its
interface. We use the notation L〈y〉[G{y/x}] as a shorthand for L(x)[G]〈y〉, where
{y/x} denotes name substitution.

Example 1. Let a ∈ T , A ∈ NT , u, v, w, x, y ∈ N . We depict in Fig. 1 some
terms of our algebra: u (top-left), a(u, v) (top-second), a(u, w) | a(w, v) (top-
third), (νw)(a(u, w) | a(w, v)) (top-right), and A(u,v)[(νw)(a(u, w) | a(w, v))]〈x, y〉
(bottom-left), also abbreviated as A〈x,y〉[(νw)(a(x, w) | a(w, y))] Nodes are repre-
sented by circles, edges by boxes, and designs by dotted boxes. The first tentacle
of an edge is represented by a plain arrow with no head, while the second one is
denoted by a normal arrow. The rest are restricted or interface nodes.

Note that this representation is informal and aims at offering an intuitive
visualisation. In [7] we offer the formal representation of the same terms. Figure 1
also includes term A〈x,y〉[a(x, w) | a(w, y)] | A〈y,x〉[a(y, w) | a(w, x)] (bottom-
right), where two designs are composed in circle by attaching them symmetrically
to x and y, and where they share (as a common name) node w.

1 Hypergraphs extend graphs with (hyper)edges of arbitrary cardinality (not just 2).
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Fig. 1. Some terms of the graph algebra

Sort D is partitioned over the set NT = {L1, . . . , Ln}, i.e., we consider
sorts L1, . . . , Ln and a membership predicate D : L that holds whenever D =
L(x)[G] for some x and G. Thus, design labels play the role of design (sub-)types.
Likewise, we consider the set of nodes V to be partitioned over different sorts.

Interface and restricted nodes lead us to the usual concept of free nodes.

Definition 2 (free nodes). The free nodes of a design or graph are denoted
by the function fn, defined as follows

fn(0) = ∅ fn(x) = x fn(l(x)) = |x| fn(G | H) = fn(G) ∪ fn(H)
fn((νx)G) = fn(G) \ {x} fn(D〈x〉) = fn(D) ∪ |x| fn(L(x)[G]) = fn(G) \ |x|

where |x| denotes the set of elements of a vector x.

Each label of T and NT has a fixed arity and for each rank a fixed node type.
Intuitively, the typed arity of a label denotes the ordered and typed tentacles of
edges with that label. We say that a design (or a graph) is well-typed if for each
occurrence of a typed operator L(x)[G] we have the (vectors of) types of x and
L coincide, and similarly for typed operators D〈x〉 and l(x). In the following we
assume all substitutions respect typing (and thus preserve well-formedness).

Definition 3 (well-formedness). A design or graph is well-formed if (1) it is
well-typed; (2) for each occurrence of design L(x)[G] we have |x| ⊆ fn(G); and
(3) for each occurrence of graph L(x)[G]〈y〉 the mapping y/x is a bijection.

Intuitively, the restriction on the mapping y/x forbids two distinct nodes at
the higher level to be mapped to the same node in G. This is needed for avoiding
implicit name fusions (equivalently, node coalescing) as the result of applying
a flattening axiom, as shown below.2 From now on we restrict our attention
to well-formed designs: all axioms will preserve well-formedness and all derived
operators used for the encodings will be well-formed.

In order to have a notion of syntactically equivalent designs (i.e., to consider
designs up to isomorphism) the algebra includes the structural graph axioms
of [9] such as AC1 for | (with identity 0) and name extrusion (respectively,

2 The restriction can be dropped, but this requires an algebra with explicit fusion
operators (of no use in this paper).



axioms DA1–DA3 and DA4–DA6). In addition, it includes axioms to α-rename
bound nodes (DA7–DA8), node extrusion for designs (DA9), and an axiom for
avoiding the addition of a node to a graph where that same node is already free
(DA10).

Definition 4 (design axioms). The structural congruence ≡d over well-formed
designs and graphs is the least congruence satisfying

G | H ≡ H | G (DA1) G | (νx)H ≡ (νx)(G | H) if x 6∈ fn(G) (DA6)
G | (H | I) ≡ (G | H) | I (DA2) L(x)[G] ≡ L(y)[G{y/x}] if |y| ∩ fn(G) = ∅ (DA7)

G | 0 ≡ G (DA3) (νx)G ≡ (νy)G{y/x} if y 6∈ fn(G) (DA8)
(νx)(νy)G ≡ (νy)(νx)G (DA4) L〈x〉[(νy)G] ≡ (νy)L〈x〉[G] if y 6∈ |x| (DA9)

(νx)0 ≡ 0 (DA5) x | G ≡ G if x ∈ fn(G) (DA10)

where in the axiom (DA7) the involved substitution is required to be abijection,
in order to avoid node coalescing.

We call a graph flat whenever there is no design in its body. Flattening a
design is done by a kind of hyper-edge replacement [10] in the form of axioms
that are sometimes useful to be included in the structural congruence.

Definition 5 (flattening axiom). A flattening axiom flatL for some design
label L is of the form L〈y〉[G] ≡ G (i.e. L(x)[G]〈y〉 ≡ G{y/x}).

Example 2. Suppose that we want to characterise the set of a-labelled, acyclic,
and connected sequences. We can define an algebra with an element α in the
sequence, and a binary sequential composition ; . Both are derived operators
defined by α def= A(u,v)[a(u, v)] and X ; Y def= A(u,v)[(νw)(X〈u, w〉 | Y 〈w, v〉)],
where X and Y have type A. Clearly, the algebra as such constructs hierarchical
sequences, where e.g. (α; (α; α))〈x, y〉 and ((α; α); α)〈x, y〉 are not equivalent
graphs due to different nestings. Introducing flatA in the algebra, instead, we
have that the two former terms are identified, and intuitively correspond to the
normal form (νw1, w2)(a(x, w1) | a(w1, w2) | a(w2, y)).

This example illustrates the two roles of the nesting operator: as a means
to enclose a graph and as sort of typed interface to enable disciplined graph
compositions. The presence of flattening axioms makes the first role implicit.

3 Graphical interpretation of workflows

This section presents the use of our graph-based language for algebraic workflow
specifications. We consider a minimal language that includes, nonetheless, typical
workflow ingredients and offers an attractive presentation of our technique.
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Fig. 2. A simple workflow

A simple language for workflows. Our simple workflow language considers work-
flows of activities that can be composed in sequence, parallel or by branching.
The control flow is restricted to one entry point and two exit points: one for the
successful completion and one for error raising. Error-handling activities and er-
ror scopes are also considered. In addition, we consider synchronisation links as
present in some workflow languages like BPEL.

Figure 2 depicts a very simple example including all the ingredients: we see a
main composed flow with an event handler f . The main flow starts with activity
a, it performs activity d in parallel with a choice between activities b and c
(depending on e). A dependency is imposed between b and d.

More precisely, the syntax of the workflow language is formally defined below.

Definition 6 (workflow). Let A be a set of activity names, E be a set of
expressions, and U be a set of synchronisation points. A workflow F is a term
generated by the following syntax (where a ∈ A, e ∈ E and u ∈ U):

F ::= A | F ; F | if e then F else F | F |F | try F catch F
A ::= a | a(u) | a[u]

More precisely, a is an asynchronous activity, a(u) is an activity of type
a with source link u, a[u] is an activity of type a with target link u, G; H is
the sequential composition of structured flows G and H , if e then G else H
introduces a binary branch, i.e. a choice between flows G and H depending on
the evaluation of e, G | H is the parallel composition of structured flows G and
H , and try G catch H inserts a new error scope for flow G with fault handler
H . As an example, the workflow of Fig. 2 corresponds to the following workflow
term try d[u] | a; (if e then b(u) else c) catch f .

We consider a structural congruence that basically models the fact that se-
quential composition is associative and parallel composition is associative and
commutative. This is formally defined as follows.



Definition 7 (structural congruence). The structural congruence for work-
flows is the relation ≡w⊆ W ×W, closed under workflow construction and in-
ductively generated by the following set of axioms

G; (H ; I) ≡ (G; H); I (wA1) G | (H | I) ≡ (G | H) | I (wA2) G | H ≡ H | G (wA3)

Workflow encoding. The encoding of our workflow language is depicted in Fig. 3.
We explain our graphical notation of design operations in detail here. An edge is
represented by a rounded box with its label inside. We see that the types of nodes
we use are • and ◦ which respectively represent control flow and synchronisation
links. We use an encircled circle � to denote an argument of type ◦ in the
encoding of activities. In case of encodings with more than one argument for
a type we denote the argument order explicitly by subscripting (e.g. the two
arguments of type F in the encoding of failure handling, sequence, branching and
parallel composition). Terminal edge types include a ∈ A, e ∈ E and ⊕ which
are respectively used to represent activities, expressions and to denote branch
closing (xor join). To improve visualization impact, we use different kinds of
arrows to denote tentacles. A plain tentacle represents an entry point, while a
simple arrow indicates an ordinary exit point. A double arrow indicates the fault
exit point. In a conditional choice, the then branch is denoted with an ordinary
arrow, while the else branch is denoted with an arrow with a small circle on
its tail. A bar-ended tentacle denotes the synchronisation link of an activity.
Link sources and targets are respectively represented by concave and bar-ended
tentacles. Finally, we consider the non-terminal type F to stand for workflows.
Dotted arrows denote node exposure and an enclosing dotted box represents a
design with its type on the upper-left corner. All nodes are bound except for
the argument names (as in the case of synchronisation points in the encoding of
activities). Most of these ingredients can be found in Fig. 3.

The formal definition by means of our graph algebra is as simple as follows.

Definition 8 (workflow interpretation). The interpretation of the operators
of the workflow language over the design algebra is given by:

a def= F(in ,out,fail)[a(in, out , fail )]

a(u) def= F(in ,out,fail)[a(in, out , fail , u)]

a[u] def= F(in ,out,fail)[a(in, out , fail , u)]

G; H def= F(in ,out,fail)[(ν mid)(G〈in ,mid , fail 〉 | H〈mid , out , fail 〉)]
if e then G else H def= (ν th1 , th2 , el1 , el2 )F(in ,out,fail)[e(in, th1 , el1 )

| G〈th1 , th2 , fail 〉 | H〈el1 , el2 , fail 〉 | ⊕(th2 , el2 , out)]

G | H def= F(in ,out,fail)[G〈in , out , fail 〉 | H〈in, out , fail 〉]
try G catch H def= F(in ,out,fail)[(νmid)FS〈in,out,fail〉[G〈in , out ,mid〉

| H〈mid , out , fail 〉]]

together with axiom flatF.

It is easy to prove that structural congruence amounts to design equivalence,
i.e., equivalent workflows amount to equivalent graphs. Note that thanks to
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Fig. 3. Graphical encoding of a simple workflow language



axiom DA9 node restriction can be equivalently placed in the innermost design
(see G; H), at the topmost level (see if e then G else H) or at any intermediate
level of nesting (see try G catch H).

Proposition 1. For any two workflows G and H we have G ≡w H iff G ≡d H.

4 Graphical interpretation of CaSPiS

This section presents the graphical representation of CaSPiS by defining each
CaSPiS syntactic constructor as a derived operator of our graph algebra. We offer
a minimal presentation of CaSPiS and refer to [8] for a more detailed description.

Definition 9 (CaSPiS syntax). Let R be a set of session names, S a set
of service names and V a set of value names. A CaSPiS process P is a term
generated by the syntax

P ::= 0 | r ⊲ P | P > Q | (νw)P | P | P | A.P
A ::= s | s | (?x) | 〈u〉 | 〈u〉↑

where s ∈ S, r ∈ R, u ∈ V, w ∈ V ∪R and x is a value variable.

Service definitions and invocations are written like input and output prefixes
in CCS. Thus s.P defines a service s that can be invoked by s.Q.

Synchronisation of s.P and s.Q leads to the creation of a new session, iden-
tified by a fresh name r that can be viewed as a private, synchronous channel
binding caller and callee. Since client and service may be far apart, a session
naturally comes with two sides, written r ⊲ P , with r bound somewhere above
them by (νr). Rules governing creation and scoping of sessions are based on
those of the restriction operator in the π-calculus. Note that nested invocations
to services will yield separate sessions and thus hierarchies of nested sessions.

When two partner sides r ⊲ P and r ⊲ Q are deployed, intra-session communi-
cation is done via input and output actions 〈u〉 and (?x): values produced by P
can be consumed by Q, and vice-versa. This permits interaction patterns more
complex than the typical one-way and request-response of web services.

Values can be returned outside a session to the enclosing environment using
the return operator 〈 · 〉↑. Return values can be consumed by other sessions, or
used to invoke other services, to start new activities. This is achieved using the
pipeline operator P > Q . Here, a new instance of process Q is activated each
time P emits a value that Q can consume. Notably, the new instance of Q will
run within the same session as P > Q, not in a fresh one.

CaSPiS processes can be considered up to the structural congruence ≡c.

Definition 10 (CaSPiS congruence). The structural congruence ≡c is the
least congruence induced by the following laws

P | (Q | R) ≡ (P | Q) | R) (CA1) P | (νn)Q ≡ (νn)(P | Q) if n 6∈ fn(P ) (CA6)
P | Q ≡ Q | P (CA2) ((νn)Q) > P ≡ (νn)(Q > P ) if n 6∈ fn(P ) (CA7)
P | 0 ≡ P (CA3) A.(νn)P ≡ (νn)A.P if n 6∈ A (CA8)

(νn)(νm)P ≡ (νm)(νn)P (CA4) r ⊲ (νn)P ≡ (νn)r ⊲ P if n 6= r (CA9)
(νn)0 ≡ 0 (CA5) (νn)P ≡ (νm)P{m/n} if m 6∈ fn(P ) (CA10)

(?x).P ≡ (?y).P{y/x} if y 6∈ fn(P ) (CA11)



CaSPiS encoding. We first define the alphabets of edge labels and nodes. The set
NT of design labels is composed by P , S, D, I, F and T which respectively stand
for Parallel processes, Sessions, service Definitions, service Invocations and pipes
(From and To). Sort T is further partitioned over 2V∪R (denoting each subsort
as T N) to deal with a common problem when encoding replicated processes (the
target process of a pipe is implicitly replicated for each value generated by the
source). The set T of edge labels contains def (service definition), inv (service
invocation), in (input), out (output) and ret (return). The node sorts considered
are ◦ (channels), • (control points), ∗ (service names, i.e. S) and � (values, i.e.
V). We assume that for each session name r there is a channel node.

The graphical representation of each design and edge label and their respec-
tive types can be found in Fig. 4. For instance, designs of type P are all of the
form P(p,t,o,i)[G] where p is the control point representing the process start of
execution, t is the returning channel, i is the input channel and o is the output
channel. Designs of type D and I only expose the starting point of execution.

Definition 11 (CaSPiS interpretation). The interpretation of CaSPiS con-
structors as derived operators of the design algebra is given by

s.Q def= P(p,t,o,i)[ t|o|i|D〈p〉[ (νq, t′, o′, i′)(def(p, s, q)|Q〈q, t′, o′, i′〉) ] ]

s.Q def= P(p,t,o,i)[ t|o|i| I〈p〉[ (νq, t′, o′, i′)(inv(p, s, q)|Q〈q, t′, o′, i′〉) ] ]

r ⊲ Q def= P(p,t,o,i)[ t|i|S〈p,o〉[ Q〈p, o, r, r〉 ] ]

Q > R def= P(p,t,o,i)[ (νq, m)(F〈p,t,m,i〉[ Q〈p, t, m, i〉 ]

|T
fn(R)
〈m〉 [ (νq, t′, o′)R〈q, t′, o′, m〉 ] ) ]

Q|R def= P(p,t,o,i)[ Q〈p, t, o, i〉|R〈p, t, o, i〉 ]

(νw)Q def= P(p,t,o,i)[(νw)Q〈p, t, o, i〉]

0 def= P(p,t,o,i)[ p|t|o|i ]

〈u〉.Q def= P(p,t,o,i)[ (νq)(out(p, q, u, o)|Q〈q, t, o, i〉) ]

〈u〉↑.P def= P(p,t,o,i)[ (νq)(ret(p, q, u, t)|Q〈q, t, o, i〉) ]

(u).P def= P(p,t,o,i)[ (νq)(in(p, q, u, i)|Q〈q, t, o, i〉) ]

Part of the above definition is graphically represented in Fig. 4. As in Sec-
tion 3 we use different arrow types to denote the different (ordered, typed) ten-
tacles of each edge. For example, for a design representing a process, a double
arrow represents its returning channel, an outgoing arrow its output channel,
an incoming arrow its input channel and a plain arrow its control point. Again,
arguments of an operation are denoted by encircling the corresponding symbol.
For instance, double boxes correspond to design variables, while node arguments
of type ◦, ⋆ and � are represented by �, � and �, respectively.

We introduce flattening axioms flatP into ≡d, but not flatS, flatD, flatI, flatF
and flatN

T
. Hence, edges of type P are immaterial (they can be considered as type

annotations) and the only explicit hierarchies are given by session nesting (S),
service definition (D), service invocation (I) and pipelining (F and T ). Flatten-
ing processes allows for getting rid of the axioms for parallel composition (see [1]).
The explicit embedding of sessions provides an intuitive visual representation.
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Fig. 4. Graphical representation of some CaSPiS interpreted operators.

We explain just a few representative operations in detail. The session opera-
tions are interpreted as graph operations that wrap a process into a hierarchical
S-typed graph which exposes the control point and a return channel. The first is
associated to the control point of the resulting P -typed design, while the second is
connected to its output channel. Note how session embedding hides the input and
output channels of the embedded process: they are connected directly to the ded-
icated inter-communication node of the session. Another interesting operation is
the pipeline. Here, the source and target process of the pipeline are embedded in
F - and T -typed designs. It is worth noting how the input and output channels
of each process are connected in a complementary way. The target process hides
its control point and communication channels to denote that it is a non-active
process. When the source of the pipe is ready to send a value, a copy of the target
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Fig. 5. Example of session nesting.

process will be created and the control and channel nodes will be connected as
expected. Moreover, we note that the actual type for the target of the pipe is
T fn(R): in words, the type is indexed with the free names of R. This is necessary
to avoid node extrusion in a case in which we have no corresponding name extru-
sion (CaSPiS congruence does not allow to extrude restricted names of the target
process of a type). In particular when w ∈ fn(R) the CaSPiS processes (νw)(Q >
R) and Q > (νw)R are not congruent, but neither are their corresponding
graphs P(p,t,i,o)[(νq, m, w)(F〈p,t,m,i〉[Q〈p, t,m, i〉]|T fn(R)

〈m〉 [(νq, t′, i′)R〈q, t′, o′, m〉])] and

P(p,t,i,o)[(νq, m)(F〈p,t,m,i〉[Q〈p, t, m, i〉]|T fn(R)\{w}
〈m〉 [(νq, t′, i′, w)R〈q, t′, o′, m〉])], because

they carry different T subtypes.

Example 3. Let us illustrate our encoding with a simple example of session nest-
ing. Consider process (νa)(νb)(a ⊲ (P1|b ⊲P2)|a ⊲P3|b ⊲P4). Two sessions a and b
have been created (as the result of two service invocations). Agent a ⊲ (P1|b ⊲P2)
participates to sessions a and b (assume P1 is the protocol for a and P2 the
one for b), with the b side nested in a. The counter-party protocols for a and
b are P3 and P4, respectively. Figure 5 depicts the graphical representation of
our example, where the graph has been simplified3 (e.g. fusing nodes, removing
isolated nodes and irrelevant tentacles) to focus on the main issues.

Example 4. As another illustrative example consider processes P1 > (P2 > P3)
whose (simplified) graphical representation is in Fig. 6. The graphical represen-
tation highlights various aspects of interest: the flow of the information via the
input and output channels, the fact that P2 and P3 are inactive protocols, and
the pipe nesting; since > is not associative P1 > (P2 > P3) and (P1 > P2) > P3

are not structurally equivalent and this is faithfully reflected in the graphs.

Full-detailed examples can be obtained via our prototypical implementation.
A main result of our work is that structural congruence amounts to design

equivalence, i.e. equivalent processes amount to equivalent graphs.

Proposition 2. For any two processes P and Q we have P ≡c Q iff P ≡d Q.

3 A feature that a sophisticated visualisation tool would offer.
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Fig. 6. Example of pipelining.

5 Conclusion

We have presented a first step towards a general technique for the graphical
presentation of (possibly service-oriented) process calculi.

More precisely, we have used our novel specification formalism based on a
convenient algebra of hierarchical graphs [7] to define encodings of process calculi
with inherently hierarchical aspects such as sessions, transactions or locations:
features which are of fundamental relevance, e.g. in the area of service-oriented
computing. In particular, together with the encoding of a simple language for
structured workflow with nest scope, we have presented a novel graphical encod-
ing of CaSPiS, a recently proposed session-centered calculus. Our document also
included an encoding of a simple workflow language.

The chosen encodings highlight the virtues of our graph algebra. First, its
syntax resembles the standard syntax of a process calculus, thus offering the
possibility of providing intuitive and simple encoding definitions. Second, we
can exploit the algebraic structure of both processes and graphs to show en-
coding properties by structural induction. Indeed the main result of [7] already
guarantees that equivalent graph terms correspond to isomorphic graphs.

As explained in [7], the particular model of hierarchical graphs puts on a
common ground other approaches that have been issued for modelling purposes
like the algebra of graphs of Corradini et al. [9], the interface graphs of the
second author [1] (a flat model for encoding process calculi with names), the
hierarchical graphs of Plump et al. [11] (a suitable extension of traditional graph
transformation) and the Bigraphs of Milner et al. [2]. We refer to [7] for a more
accurate comparison and we only remark here that one of the advantages of
our model of graphs regards the use of hierarchical edges over trees to model
structured processes. In unstructured cases both approaches are basically equiv-
alent, with hierarchies possibly offering a more attractive visualisation. However,
when it comes to structured process calculus where one has recursive processes
(either in the form of process definitions, replication, pipes, etc.), we observe a
major advantage in the use of hierarchical graphs, where the replication of the
structured process is easier.



Our final goal is to completely mimick the operational semantics of encoded
processes and in this line we believe that our model enjoys some good properties,
the main being that (though not shown here) the category of hierarchical graphs
is complete (puhshouts are well defined) which puts the basis for a pushout-
based graph rewriting mechanism. While the mimicking of reduction semantics
seems rather straightforward we also point to the more ambitious goal to mimick
labelled transition system semantics, possibly in the form of SOS rules. For that
purpose we expect that recent approaches based on borrowed contexts [12] or
structured graph transformation [13] can be a good start point. The development
of a suitable dynamics for our algebras, and its characterisation in terms of graph
rewriting mechanisms, is subject of current work.

We believe that our approach can serve as an inspiration to equip well-known
graphical models of communication with syntactical notations that facilitate the
definition of intuitive and correct encodings of process calculi. We remark that
we restricted our attention to the finite fragment of the calculi. Nevertheless,
dealing with replication operators is by no means difficult, by exploiting the
hierarchical structure. Of course, the axiom !P ≡!P | P would not hold, since
the two terms would have different graphical encoding. However, it would suffice
to introduce an unfolding operation, possibly parametric in the free names of P ,
as it happens for the encoding of pipe operators in CaSPiS.

Even if not presented here, we have also applied our technique to other calculi.
For instance, in [7] we offer an encoding of the best-known nominal calculus, the
π-calculus. The encoding is roughly equivalent to the one in [1], and interested
readers are invited to compare the two proposals to get a clear idea of the
convenience of using our graph algebra in the definition of the encoding and, most
importatly, on its proof of correctness. We have also focused on service oriented
calculi testing our technique on a calculus of transactions called sagas [14], and
a calculus with locations and multi-party sessions called µse [15].

An implementation of the presented approach and its integration in our pro-
totypical implementation of ADR [16] is currently under development. A prelim-
inary version is already available4 in the form of a visualiser. We remark that
our approach proposes a graphical representation of configurations but it is not
intended to be a visual representation: the graph structures we propose might be
used as the formal and facilitating support of some particular kind of appealing
diagrams. This issue remains to be investigated.
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