Tools and Methods based on Task Models

Fabio Paternò (ISTI-C.N.R.)
f.paterno@isti.cnr.it - http://giove.cnuce.cnr.it/~fabio/
ISTI-CNR
Structure of the Tutorial

- Introduction to task models, ConcurTaskTrees and CTTE
- Break
- Exercise with CTTE
- Lunch
- From the task model to the UI and viceversa
- Break
- Automatic support for usability evaluation using empirical information and task models
Why Model-based approaches?

- Highlight important information
- Help to manage complexity
- Useful to support methods
Models

• What are the properties of a model?

• A model should
 ▶ Focus on one particular aspect of the real world (here, the UI, the Interactive Application) to be represented and emphasized
 ▶ Raise the abstraction level by promoting appropriate abstractions of the real world (multiple and ample possibilities)
 ▶ Be declarative, rather than procedural
Model-Based Interface Design and Development

Goals:

- To provide comprehensive development environments (i.e., design and implementation phases)
- To improve usability and portability of interfaces
- To integrate usability analysis with interface development
- To promote declarative UI knowledge (rather than imperative, procedural)
How can we reach them?

- By using a new paradigm: model-based interface development involving 3 facets:
 - **Models**: explicitly capture knowledge about UI and Interactive Applications with appropriate abstractions
 - **Methods**: structure the definition and use of underlying models and related transformations
 - **Supporting tools**: support the use of the method by providing tools for models and their related transformations.
Significant Models in HCI

- Task models
- Cognitive architectures
- User models
- Domain Models
- Context Models
- Presentation Models
- Dialogue models
Definitions

- **Task** – activity that has to be performed to reach a goal
- **Goal**
 - desired modification of state
 - Attempt to receive state information
- Each task is associated with one goal
- Each goal is associated with one or multiple tasks
- Multiple abstraction levels - Basic task
- Task Analysis
- Task Models

Tools and Methods based on Task Models
Moving from informal to structured representations

Informal Analysis
- Interviews
- Questionnaires
- Existing documentation
- Activity analysis
- Current training

Structured Analysis
- Requirements identification
- Scenarios
- Use cases
- Task analysis

Abstractions
- Domain models
- Task models
- User and System Models
- Dialogue models
- Properties

Tools and Methods based on Task Models
Scenarios

- Informal, compact description of:
 - one (or multiple) specific user
 - Who interacts with a specific interface
 - To reach a specific goal
 - In a specific environment
Example of scenario

Silvia is looking for interesting papers on patterns. She makes a request to the on-line library by giving the name of the topic as one of the parameters of her request, and indicating that she is interested in papers written in English. The order of providing these two parameters is not important. She receives a long list of references. As she is interested in recent contributions she adds a further constraint in the request so that she receives information only on papers published in the last five years. The new list of publications is more manageable. She understands that the works by Gamma are very relevant. She would like to have them grouped so that they are presented together. Thus she makes a new request adding the constraint that the author has to be Gamma. The result is the information that she was looking for. Now she can move to another request for another topic.
Use of Scenarios

- Capture the context where the application is used
- Elicit requirements
- Identify important episodes from the user behaviour
- To provide a context for performing evaluation
- Ability to highlight issues and stimulate discussion while requiring limited effort to develop

Tools and Methods based on Task Models
Claim analysis (Carroll)

- Some design feature
- + causes (desirable consequences)
- - causes (undesirable consequences)

- Video information
- + is a very rich, intrinsically appealing medium
- - is difficult to search, and must be viewed linearly in real time
Use Cases

- Purpose
- Content
- Plurality
- Structure
Use Cases – Example UML

- Purpose – Requirements
- Content – Consistent prose + diagrams
- Plurality – Multiple scenarios
- Structure – Semi-formal

Tools and Methods based on Task Models
Task analysis

Example: Task analysis of tourists visiting a virtual museum application

- Tourists are characterised by a low average knowledge of the topics considered. Usually they prefer to have guided tours through the rooms of the museum and the town with pictures and information about the works of art. However linear pre-defined tours alone would be too restrictive so some degree of navigational freedom is important. Access to the information is provided with the support of spatial representations: the museum and town maps. This allows users to have immediate information about the locations of the works.

- Tourists want general information on the artistic works, and this information has to be presented clearly and in a limited amount because it has to be interpreted easily. Thus a work will be presented by an image, the title, a short description, the name of the author, the material and technique used for its creation, and when it was made. Additional information about the museum and the town can be provided on request, such as the path to get to the museum from the closest railway station or airport, information (title, data, location) on further exhibitions, and historical information on the town and the museum.
Task Analysis (task list)

- Access to guided tours through the museum and the town
- System enable some degree of navigational freedom
- Access to the information through spatial representations.
- Access to general information on the artistic works
- System presents information clearly and in a limited amount
- System presents a work by an image, the title, a short description, the name of the author, the material and technique used for its creation, and when it was made.
- Additional information about the museum and the town can be provided on request.
Norman’s cycle of interaction

Tools and Methods based on Task Models
Detectable problems

- Lack of correspondence between user intentions and actions supported by the interface
- Lack of correspondence between representations provided by the system and those expected by the user
- The best interface is that invisible that does not provide obstacles when users perform their tasks
User-Elicitation Example for a Medical-Domain Interface

Visualization of Time-Oriented Clinical Data

Yuval Shahar

The physician typically looks at one patient record at a time. He then queries it by asking for a particular parameter name (hemoglobin) or class (hematology). If a class is requested he probably wants to see all of its subclasses and their own subclasses, or at least all of the subclasses directly under it; if the selected class has instances he should be able to indicate if he wants to see just the direct instances or all of the subclasses too. He is usually interested in a particular time interval, say the last 5M. He has to define for that the start and stop times of that period. He also needs to specify, in the case of an abstraction [e.g., anemia] what is the type of abstraction [e.g., state, rate] although that might not be necessary [i.e., it could be part of the parameter name]. In any case, he is interested in a particular context [e.g., chemotherapy, protocol, CTV52 therapy, AZT effects].
The environment supporting task identification

Tools and Methods based on Task Models
Tool support to structure the task model

Tools and Methods based on Task Models
Engineering task models

- Flexible and expressive notations with precise semantics
- Systematic methods able to indicate how to use information in the task models
- Availability of automatic tools to use such information efficiently
Advantages of Task-based approaches

- **For the designer**: high-level, structured approaches which allow integration of both functional and interactional aspects
- **For the end user**: support the generation of more understandable systems

Tools and Methods based on Task Models
The many possible task models

- (Describe) Existing System
- (Define) Envisioned System
- User
Use of Task Models

- Improve understanding of the application domain
- Record the result of interdisciplinary discussion
- Support effective design
- Support usability evaluation
- Support the user during a session
- Documentation
Task Models vs Scenarios

- Scenarios are informal descriptions of a specific use in a specific context
- Task models describe the main possible activities and their relationships
- Scenarios can support task model development
- Task models can support scenarios identification
Representations of Task Models

- Hierarchical task analysis
- GOMS family
- UAN
- Different syntax (textual vs graphical)
- Different level of formality
- Different set of operators for task composition
Use of Models in the Life Cycle

Tools and Methods based on Task Models
Approaches to task models

Tools and Methods based on Task Models
Representations of Task Models

- Hierarchical task analysis
- GOMS family
- UAN
- Different syntax (textual vs graphical)
- Different level of formality
- Different set of operators for task composition
GOAL: EDIT-MANUSCRIPT
GOAL: EDIT-UNIT-TASK repeat until no more unit tasks
GOAL: ACQUIRE-UNIT-TASK
 GET-NEXT-PAGE if at end of manuscript
 GET-NEXT-TASK
GOAL: EXECUTE-UNIT-TASK
GOAL: LOCATE-LINE
 [select: USE-QS-METHOD
 USE-LF-METHOD]
GOAL: MODIFY-TEXT
 [select: USE-S-METHOD
 USE-M-METHOD]
GOAL: VERIFY-EDIT
Limitations of GOMS

- It does not consider user errors
- It does not consider the possibility of interruptions
- It considers only sequential tasks
- It can be inadequate for distributed applications (such as web-based applications)
UAN - User Action Notation

- The user interface is represented by a hierarchy of asynchronous tasks.
- User action and system feedback are specified at a low level.
- Textual notation.
Example of UAN specification

Task: BuildRequest:
\[((SelR \mid ClearR \mid IconifyR)^* \rightarrow SpecField+)\]

Task: SelApplication

<table>
<thead>
<tr>
<th>User Action</th>
<th>Interface Feedback</th>
<th>Interface State</th>
</tr>
</thead>
</table>
| ~[x,y in AppICON] ∧∧[t<\text{doubleClick}] ∧∧ | w’: w’-!
Domain model

Definition

A domain model defines the objects that a user can view, access, and manipulate through a user interface.

A domain model represents objects of the domain with their relationships.

Historically, data models have been considered for a while, but they are only a subset of domain models.
Domain Model

- Domain models extend data models
- Relationships among objects are made explicit and declarative
- Data models are useful only for automatic layout generation
- Domain models are can help to identify effective layout and user interface behavior
ConcurTaskTrees

- Focus on Activities
- Hierarchical Structure
- Graphical Syntax
- Rich set of temporal operators
- Task allocation
- Objects and task attributes
Categories of tasks

- interaction
- application
- user
- abstract

Tools and Methods based on Task Models
Temporal operators

<table>
<thead>
<tr>
<th>Type</th>
<th>Representations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabling</td>
<td>$T_1 \gg T_2$ or $T_1 [] \gg T_2$</td>
</tr>
<tr>
<td>Disabling</td>
<td>$T_1 [> T_2$</td>
</tr>
<tr>
<td>** Interruption**</td>
<td>$T_1</td>
</tr>
<tr>
<td>Choice</td>
<td>$T_1 [] T_2$</td>
</tr>
<tr>
<td>Iteration</td>
<td>T_1^* or $T_1^{(n)}$</td>
</tr>
<tr>
<td>Concurrency</td>
<td>$T_1 |$ T_2 $T_1</td>
</tr>
<tr>
<td>Optionality</td>
<td>$[T]$</td>
</tr>
<tr>
<td>Order Independency</td>
<td>$T_1</td>
</tr>
</tbody>
</table>
Hierarchy

- Tasks at same level represent different options or different tasks that have to be performed
 - Read levels as “In order to do T1, I need to do T2 and T3”, or “In order to do T1, I need to do T2 or T3”
Enabling

- Specifies second task cannot begin until first task performed
- I.e., I cannot enroll at university before I’ve chosen which courses to take
Enabling with Information Flow

- Specifies second task cannot be performed until first task is performed, and that information produced in first task is used in second task.

Tools and Methods based on Task Models
Interleaving

- Tasks can be performed in any order, or at same time
- In order to check the load of a set of courses, I need to consider what terms they fall in and to consider how much work each course represents
- I can do this in any order
Tasks can be performed in any order, but when one starts then it has to finish before the other one can start.

When I install new software I can start by either registering or implementing the installation but if I start one task I have to finish it before moving to the other one.
The first task (usually an iterative task) is completely interrupted by the second task.
Suspend-resume

- First task can be interrupted by the second one
- When the second terminates then the first one can be reactivated from the state reached before
Common Errors

* Hierarchy does NOT represent sequence

("In order to check a course doesn’t conflict, I have to enroll in the course")
Task and attributes

Interaction tasks
- Selection
- Edit
- Control
- ...

Application task
- Overview
- Feedback
- Generating alerts
- Grouping
- ...

Tools and Methods based on Task Models
Inheritance of relationships

Tools and Methods based on Task Models
Relationships task/subtasks
Optional tasks

Tools and Methods based on Task Models
Multiple performance / continuous interleaving

Tools and Methods based on Task Models
An Example

Tools and Methods based on Task Models
Representations of Task Models

<table>
<thead>
<tr>
<th></th>
<th>GOMS</th>
<th>UAN</th>
<th>CTT</th>
<th>MAD</th>
<th>GTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Order independence</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Concurrency</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Optionality</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Iteration</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Allocation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Objects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Pre-post conditions</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Tool support

- GTA – Euterpe
- VTMB - TAMOSA
- ICO – PetShop
- Teallach
- QGOMS
Tool Support in CTTE

- Flexible editing of the task model
- Using informal descriptions in modelling
- Checking completeness of the specification
- Saving the specification in various formats
- Simulating the task model
- Comparing task models
- Running scenarios

http://giove.cnuce.cnr.it/ctte.html
CTTE Changes

Tools and Methods based on Task Models
View Priority Tree

Tools and Methods based on Task Models
Tools and Methods based on Task Models

Editing task types
Graphical selection

Tools and Methods based on Task Models
Subtree insertion
Automatic expansion of task patterns
Checking completeness of the specification
Simulating dynamic behaviour

Tools and Methods based on Task Models
Comparison of Task Models
Modelling Multi-User Applications

User1

User2

User3

Cooperative part

Tools and Methods based on Task Models
Cooperative aspects

Customer role

Search product

Ask information

Select product

Salesman role

Provide info product

Provide list products

Provide price

Cooperative part

Product negotiation

Ask information (customer)

Provide list products (salesman)

Exchange info product

Select product (customer)

Provide price (salesman)
CTTE Demo

Tools and Methods based on Task Models