Leviathan Research: Application Security

Generalization of the TLS Renegotiation Flaw

Using HTTP 300 Redirection to Effect
Cryptographic Downgrade Attacks

By Mikhail Davidov

Mikhail.Davidov@LeviathanSecurity.com

Mikhail is a Security
Consultant at Leviathan
Security Group

The recent disclosure of a flaw in the TLS protocol specification and the
majority of its implementations has spawned wide ranging debate on the
seriousness of the vulnerability. Experts weighing in on all sides have
deemed this flaw either earthshaking or inconsequential, that it poses
either little risk to enterprises or is potentially devastating. This report
presents the current state of our research as well as our understanding of
the risks posed by the TLS Renegotiation Flaw, its ramifications for
enterprise users, and steps that can be taken to mitigate its risk during the
current window of vulnerability.

leviathan

Summary

Security researchers with the authentication technology
company PhoneFactor® uncovered the TLS renegotiation flaw
in August of 2009. They contacted Leviathan shortly thereafter
to assist reproducing their results, validating the flaw’s
exploitability, and to help shape the disclosure process.

Leviathan Security has never previously published detailed
information on vulnerabilities, nor have we ever provided
explicate reproduction steps for exploiting existing security
flaws. We have revisited this policy in light of the following
conditions.

First, our research findings are serious enough that a detailed
release was deemed appropriate to clearly illustrate the scope,
and severity of the TLS flaw. We have also seen a proliferation
of proof-of-concept and exploit code on the Internet, along
with weaponized tool-kits that exploit a particular web-
application design flaw discovered by Leviathan during our
research with PhoneFactor. Additionally, the pace of patching
and remediation by enterprises worldwide has not kept pace
with the actual threat posed by the flaw. (See sidebar at right
for Netcraft’s analysis of vulnerable hosts)

Finally and most importantly, TLS is the single most widely
deployed security protocol on the Internet. TLS protects web
traffic, e-mail, and VPN’s as well other more esoteric, though
no less critical, Internet glue protocols. (The sidebar to the
right lists some of Net Craft’s latest data on TLS Penetration.)

With very few exceptions, nearly every bank, e-commerce site,
social networking environment, and email system relies on TLS
to provide the confidence that our financial transactions are
safe, our purchases secure, and our private information and
confidential messages remain so. For a significant number of
web sites today, those fundamental tenets no longer apply.

By exploiting a common design pattern found in many web
applications, (a design pattern that is also flawed and
misguided), our paper illustrates a general method to use the
TLS Authentication Gap flaw to circumvent TLS protections and
downgrade the communications channel between a client and
a web application to plain text.

Many of the concepts and descriptions that follow are due to
the hard work and dedication of researchers like Marsh Ray &
Steve Dispensa of PhoneFactor and pseudonymous
researchers like Moxie Marlinspike. It is entirely appropriate
that we call out their hard work first.

SSL Statistics

Netcraft's first SSL Survey this year has seen an average growth of
more than 18,000 SSL/TLS certificates per month.

SSL Certificateson the Web Hlercrasr

1,000,000 |
900,000
800,000 +
700,000
500,000
500,000
400,000
300,000

200,000

100,000

Netcraft's published analysis of the Alexa top 100 Web Sites as of
11/28/2009 *.

Top 100 Websites Vulnerable TLS Renegotiation
Attacks

B No Response

H Not Vulnerable

B Vulnerable

“Nanos gigantum humeris insidentes”

! "24 of the 100 top HTTPS sites now safe from TLS renegotiation attacks". NetCraft. 11/29/09
<http://news.netcraft.com/archives/2009/11/25/24_of the_100_top_https_sites_now_safe_from_tls_rene

gotiation_attacks.html>.

2
M. Ray & S. Dispensa, "SSL/TLS Authentication Gap (SSL Gap)". PhoneFactor. 11/23/09 <http://www.phonefactor.com/sslgap>.

LEVIATHAN INC - WWW.LEVIATHANSECURITY.COM - EMAIL INFO@LEVIATHANSECURITY.COM SEATTLE, WASHINGTON © 2009 2

ALL RIGHTS RESERVED

TLS Renegotiation Flaw Explained

To understand the Authentication gap and the role
renegotiation plays in it, one should have a firm grasp on how
TLS sessions are begun (RFC 5246 § 7.3) and how TLS interacts
with HTTPS. To quote the TLS RFC:

“When a client first connects to a server, it is
required to send the ClientHello as its first message.
The client can also send a ClientHello in response to
a HelloRequest or on its own initiative in order to
renegotiate the security parameters in an existing
connection.” (Emphasis added)

At the most basic level, TLS negotiation begins with a

ClientHello® message sent by the client to the server. A
ClientHello is a simple data structure containing, among other
things, a list of supported ciphers, the version of the protocol,
and a session identification tag.

The server responds with a ServerHeIIo4, selecting an
appropriate TLS version and cipher suite to use during session
setup. The only appreciable difference between the two
structures is that the ServerHello contains, as one would
expect, a server ProtocolVersion number. The server also
responds with its certificate, and finishes with a
ServerHelloDone.

An encryption key is then established for the client, and each
side sends a ChangeCipherSpec message to activate
encryption. Upon completion, each participant sends a
Finished request to its peer.

The salient point to consider at this stage is this: the TLS
standard requires that either the client or the server can
request session renegotiation at will.

Put succinctly, a client can initiate session renegotiation by
simply sending a new ClientHello message onto the channel.
According to the RFC, upon receipt of a ClientHello the server
must send ° a ServerHello message in reply and negotiation
goes on exactly as previously stated, even if the client and the
server are in an active, secure session.

The server may also initiate a renegotiation by sending the

SSL

client hello >

server hello

-
< certificate

4——=edificalerequest
4——=enverhelodone

cerificate -
clienl key exchange 4,

cedificate venfy >
change cipherspec o,

AR [1141

.‘Jannmnﬂﬁpec
1.,__.,.._,__[]l"jil'*ﬁ.q_..___.._._._

eeenn GRUSEcure HLTPA L.

€ ———. HOPH1OK__ . __ |

client a HelloRequest of its own, though in this paper we will not explore the implications and risks generally associated with

Server Initiated Session Renegotiation.

*T. Dierks & E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2". IETF. 11/23/09 <http://tools.ietf.org/html/rfc5246#section-

7.4.1.2>.

*7. Ibid. http://tools.ietf.org/html/rfc5246#section-7.4.1.3

> Ibid §7.4.1.2: “After sending the ClientHello message, the client waits for a ServerHello message. Any handshake message returned by the

server, except for a HelloRequest, is treated as a fatal error.”

Client-initiated renegotiation

Vulnerabilities exist in most web-server implementations of

Secure HTTP (HTTPS), both with client certificate and non-client Channel Downgrade Attack
certificate based use cases. The manner in which TLS and HTTP
interact and handle cryptographic renegotiation allows a classic c M s
man-in-the-middle (MITM) attack to insert arbitrary requests at Client hello
the beginning of the TLS session.]
Client hello N

To be clear, exploiting the TLS renegotiation flaw is not a Server hello
cryptographic break of TLS: key material is not compromised, nor Certificate
does this attack reveal encrypted continent or HTTPS responses. .
However, as the attacks below demonstrate, the security of . Server hello done
protected applications and resources can still be compromised. Client key exchange

Change cipher spec i
For the sake of brevity, we will not be exploring the Client o »
Certificate aspects of the Authorization Gap flaw. (For those >
interested, Marsh Ray has published a detailed explanation the Change cipher spec
affect of the Authentication Gap Flaw on client certificates). finished
Instead, we concentrate upon the most general cases of TLS; that GET /Some302Resource HTTPM.4 |~
of a protected session between a client browser and a web Replay | 9™ Cionthelo
server. >

Server hello

When discussing secure communications and cryptography in
general, MITM attacks are considered as a special case of active
eavesdropping. The attack is active in the sense that the MITM
must intercept and relay messages between the two victims, and

Certificate request

Server hello done

it is an eavesdropping attack in the sense that the messages are Client key exchange 5
intercepted and relayed with complete fidelity. Change cipher spec N

N __ finished ___ _______________| \
In order for a MITM attack to succeed, the attacker must L Change cipher spec

convince both parties (in the attack we will describe, the two
parties are the client’s browser and the target web serverG.) that
each endpoint is valid and that the messages sent are legitimate

\
\
o ___________ finished ‘
302 HTTP:/BANK. COMINSECURE \

and unmodified. Most cryptographic protocols, TLS included, TRADITIONAL HTTP MITM
contain some form of endpoint authentication specifically to OLIESICONIEN]
prevent MITM attacks. The insidious nature of the GET /INSECURE >
Authentication Gap Flaw renders these protections ineffective. 302 HTTP://BANK.COM

GET HTTP://BANK.COM

GET HTTPS://BANK.COM _,
200 OK HTTPS://BANK.COM

As part of the suite of tools and utilities Leviathan created to
validate PhoneFactor’s research, we created an SSL proxy MITM
attack tool. Our tool, initiates renegotiation on behalf of the
client: The vulnerable server processes it as if it was the client's
initial TLS handshake and treats it as a renegotiation. Thus, the > >
. . . HTTP HTTPS
server is led to believe that the data transmitted by the attacker «
is from the same entity as the subsequent client data. v

200 OK HTTP://BANK.COM

6 Ray, Marsh. "Authentication Gap in TLS Renegotiation". Extended Subset. 11/23/09 <http://extendedsubset.com/?p=8>.

HTTP 300 Status Codes

300 status codes are used by web servers to indicate that some further action needs to be taken by a browser in order to fulfill
a client’s request. The majority of web applications use these status codes to redirect users to ephemeral content or temporary
results —such as the results of searches to fabricate short URLs for ads; to link to a specific project or promotion; or to maintain
bookmark compatibility across a site redesign. There are four major 300 status codes used to perform these redirect actions:
301, 302, 303, and 307.

301 through 303 are (by implementation and not specification) functionally equivalent in all browsers that have been tested.
All three of them, regardless of the HTTP verb used (GET or POST), will perform a GET on the resource to be delivered via the
redirect. The difference between the 301 through 303 status codes and the 307 status code is that the 307 code also allows a
POST to the redirected resource. Once POST is deployed, the browser will forward whatever content (e.g. a form a user has
filled out with username and password) to the new resource.

One of the major problems with 300 status codes is the way they can be used to redirect users from a secure to insecure
webpage. Depending on how web-based applications use the 300 redirect codes, a user can be on an page protected by TLS
(what appears to the user as an HTTPS page), input information, send that information, and then the redirection performed by
the 300 code returns an HTTP page. See below for more detail

Browser 301 302 303 307 307 POST
Interactive
IE 8.0.5001.18702 GET Only GET Only GET Only GET & POST OK / Cancel
FF 3.5.30729 GET Only GET Only GET Only GET & POST OK / Cancel
CHROME 3.0.195.33 GET Only GET Only GET Only GET & POST NO!
SAFARI 4.0.4 (531.21.10) GET Only GET Only GET Only GET & POST NO!

Channel Downgrade 302 Redirection Attacks Explained

The vulnerabilities associated with client-initiated renegotiation also
potentially expose users to another flaw, the Channel Downgrade
Attack. The Channel Downgrade Attack allows for the removal of
encryption from an HTTPS stream: users can be moved from an
encrypted to unencrypted session. While encryption indicators such as
the lock icon and the browser’s Extended Validation Indicator ’ do
reflect the change from HTTPS to HTTP status, the most conservative,
vendor sponsored study we could locate concludes that users rarely
notice such indicators and fully 41% of users actually click through

detailed SSL security alerts (see chart)®.

7 VeriSign. (2008, March 15). Extended Validation SSL. http://www.verisign.com/ssl/ssl-information-center/
extended-validation-ssl-certificates/index.html

8 Tech-Ed. “Tec-Ed Whitepaper Extended Validation and VeriSign Brand Oct. 2007

< http://www.verisign.com/static/040655.pdf>

LEVIATHAN INC - WWW.LEVIATHANSECURITY.COM - EMAIL INFO@LEVIATHANSECURITY.COM SEATTLE, WASHINGTON © 2009
ALL RIGHTS RESERVED 5

If a given web server is vulnerable to client initiated
renegotiation, and there is a resource that returns one of
the four 300 status codes that point to an HTTP resource
from an HTTPS channel, then a channel downgrade can be
performed allowing a traditional, non-SSL Man-In-The-
Middle (MITM) attack to take place. Once successful, an
attacker has complete control of a victims interactions
with a web application.

Channel Downgrade Attack Basic Example

GET /Some300Resource HTTP/1.1
X-lgnore: GET /clientsoriginalrequest HTTP/1.1
Host: bank.com

Using the Renegotiation flaw Man-In-The-Middle attack described above, the attacker injects a request to a resource that
returns one of the HTTP 300 codes pointing to a resource on an HTTP channel and adds an extension header (X-Ignore in this
case) before performing the client initiated renegotiation and bringing the client’s TLS session online. At that point, the

attacker can capture the TCP connection to the HTTP resource and perform a non-SSL based MITM attack allowing you do

many things to the client ranging from proxying secure content back to the user through functionality similar to Moxie

Marlinspike’s ssistrip %and logging credentials to launching
a javascript based router rootkit 10

Note that this attack is for a web-server or TLS-
termination point and not a specific web application.
Since the attacker can gain full control of the request
being made by a user, they have the ability to specify any
arbitrary Host HTTP parameter when attempting to locate
a resource that returns an HTTP 300 code.

POST-Jacking Attack

Channel Downgrade Application Agnostic Example

GET /Some300Resource HTTP/1.1
Connection: close

Host: virtualhost2.com

\r\ n\r\n

GET /clientsoriginalrequest HTTP/1.1
Host: bank.com

If a resource can be found on the target that returns a 307 to an HTTP address from HTTPS then it is possible to intercept any

POST’d data being sent by a browser in clear text. Each browser treats this event somewhat differently. Internet Explorer and
Mozilla Firefox alert the user with a dialog box, while Chrome and Safari perform the action with no user intervention. The

only constraint to this attack is that it requires a new TLS session to be executed at the time of the POST. This can be

accomplished by either the user timing out the session’s HTTP Keep-Alive or by redirectijng the user immediately to the login

or landing page on the first request and specifying a ”“Connection: close” HTTP header and using version 1.0 of the HTTP

protocol.

The requirement of using HTTP 1.0 stems from the HTTP 1.1
protocol (RFC 2616):

“A system receiving an HTTP/1.0 (or lower-version) message
that includes a Connection header MUST, for each
connection-token in this field, remove and ignore any
header field(s) from the message with the same name as the
connection-token. This protects against mistaken
forwarding of such header fields by pre-HTTP/1.1 proxies.
See section 19.6.2.”

Post Jacking — Forcing Connection: Close Example

GET /login HTTP/1.0
Connection: close
X-lgnore: GET /HTTP/1.1
Connection: Keep-Alive
Host: bank.com

\r\n\r\n

9 Marlinspike, Moxie. "sslstrip". 11/23/2009 <http://www.thoughtcrime.org/software/sslstrip/>.

10 For example, an attackers creates a web page that includes malicious JavaScript code. When the page is viewed, this code uses a technique
known as ‘Cross Site Request Forgery’ and logs into your local home broadband router. Upon successful login, the JavaScript code changes the
router’s settings. One simple, but devastating, change is to the user’s DNS server settings.

Post Jacking — MITM -> Bank.com:443

POST /Some307Resource HTTP/1.1

X-lgnore: POST /ProcessLogin HTTP/1.1

Host: Bank.com

Content-Length: 100
username=joebanker&password=secretpasswOrd

\r\n\r\n

Post Jacking — Client <- Bank.com:443

307 OK HTTP/1.1
Location: http://www.bobsblog.com/PostComment

\r\n\r\n

Post Jacking — Client -> MITM:80 -> BobsBlog.com:80

POST /PostComment HTTP/1.1

Host: bobsblog.com

Content-Length: 100
username=joebanker&password=secretpasswOrd

\r\n\r\n

Post Jacking — Client <- MITM:80

307 OK HTTP/1.1
Location: https://www.bank.com/ProcessLogin

\r\n\r\n

Post Jacking — Client -> Bank.com:443

POST /ProcessLogin HTTP/1.1

Host: Bank.com

Content-Length: 100
username=joebanker&password=secretpasswOrd

\r\n\r\n

Implications for Web Applications

This implies that upon response completion, the server will
tear down the current connection and force the client to
reconnect. Of particular note, this will happen even if
“Connection: Keep-Alive” is specified later on in the request
body, thus guaranteeing that a new TLS session will be made
at the next request. The attacker will intercept the following
POST to the resource that produces an HTTP 307 status
code.

At this point, the attacker has captured the user’s
credentials transmitted in plain text over the wire and
returns a 307 once again back to the user to the original
login resource, for which the browser then POSTs the
credentials to a site.

This occurs without even the slightest change in the
rendering of the secure-bar or lock icon due to the fact this
all happens in the HTTP status codes and not via processing
of the content by the rendering engine.

The level of interaction that is required from a user is
dependent on how the browser handles 307 responses. The
following table outlines the capabilities and user actions
required of the four most popular browsers.

Sophisticated attackers have already proven to be utterly resourceful in exploiting even the most minor software defects.

Mitigation Strategies

The response to a vulnerability must be measured and should follow standard incident response and patch management

process. Remediation requires a new revision of the SSL and TLS protocols which are not yet available. As such,mitigation

should be implemented in a multiphase approach.

Organizations should first understand their exposure to the vulnerability by relying on application inventories, input from
security partners, and their vendors. Technology solutions deemed critical to the business and at high risk should implement
the available patches to remove client renegotiation support or force client certificates during the initial connection. Systems
that do not fall into this category should wait until the new version of TLS and SSL are available that address the flaw.

Special attention should be paid to internal development efforts that use SSL and TLS. Affected libraries should be updated or
should include additional guidance on how to work around the flaw.

Further mitigation to reduce the impact of the vulnerability aligns with secure design patterns. Dedicating sub-domains for
protected content reduces your exposure to the 300 redirect attacks. Implementing the secure and httpOnly 11flags eliminates
the ability to intercept cookies in transit over unsecure connections or via cross-site scripting vulnerabilities.

Long term strategies should address any process and knowledge gaps that were exposed as part of this vulnerability release.
Application portfolios should be implemented that contain detailed information about the solutions dependencies and reliance
on external libraries.

Design patterns that rely solely on a protocol implementation or a single security feature should be evaluated. Defense in-depth
strategies for securing applications and data must be employed to minimize the consequences of a security control failing.

Preparations should be made to rollout new versions of the protocol and include an understanding of the potential impact to
current solutions. Additional workarounds may be required if the remediation affects the operation of the application or is not
supported by customer platforms.

Acknowledgments

Phone Factor Google

Steve Dispensa Ben Laurie
March Ray Eric Gross
Juniper Networks David Barksdale
Barry Greene Steve Manzuik

Peer Review

Levithan would like to thank preofessor Beth Kolko of the University of Washington’s School for Human
Centered Design and Engineering for valuable feedback and assistance in the review of this paper.

1 Knell, R. "HTTPOnly." OWASP. 07 Nov 2007. OWASP, Web. 01 Dec 2009. <http://www.owasp.org/index.php/HTTPOnly>.

Systems Affected

Vendor Status Date Notified Date Updated
3com Inc Unknown 2009-11-05 2009-11-05
ACCESS Unknown 2009-11-05 2009-11-05
Alcatel-Lucent Unknown 2009-11-05 2009-11-05
Apache-SSL Unknown 2009-11-05 2009-11-05
Apache HTTP Server Project Unknown 2009-11-05 2009-11-05
Apple Inc. Unknown 2009-11-05 2009-11-05
Aruba Networks, Inc. Unknown 2009-11-05 2009-11-05
Attachmate Unknown 2009-11-05 2009-11-05
AT&T Unknown 2009-11-05 2009-11-05
Avaya, Inc. Unknown 2009-11-05 2009-11-05
Barracuda Networks Vulnerable 2009-11-05 2009-12-17
Belkin, Inc. Unknown 2009-11-05 2009-11-05
Borderware Technologies Unknown 2009-11-05 2009-11-05
Certicom Unknown 2009-11-05 2009-11-05
Charlotte's Web Networks Unknown 2009-11-05 2009-11-05
Check Point Software Technologies Unknown 2009-11-05 2009-11-05
Cisco Systems, Inc. Unknown 2009-11-05 2009-11-05
Clavister Unknown 2009-11-05 2009-11-05
Computer Associates Unknown 2009-11-05 2009-11-05
Conectiva Inc. Unknown 2009-11-05 2009-11-05
Cray Inc. Unknown 2009-11-05 2009-11-05
Cryptlib Not Vulnerable 2009-11-05 2009-11-11
Crypto++ Library Unknown 2009-11-05 2009-11-05
D-Link Systems, Inc. Unknown 2009-11-05 2009-11-05
Debian GNU/Linux Vulnerable 2009-11-05 2009-11-11
DragonFly BSD Project Unknown 2009-11-05 2009-11-05
LEVIATHAN INC — WWW.LEVIATHANSECURITY.COM — EMAIL INFO@LEVIATHANSECURITY.COM SEATTLE, WASHINGTON © 2000

ALL RIGHTS RESERVED

Vendor Status Date Notified Date Updated

EMC Corporation Unknown 2009-11-05 2009-11-05
Engarde Secure Linux Unknown 2009-11-05 2009-11-05
Enterasys Networks Unknown 2009-11-05 2009-11-05
Ericsson Unknown 2009-11-05 2009-11-05
eSoft, Inc. Unknown 2009-11-05 2009-11-05
Extreme Networks Unknown 2009-11-05 2009-11-05
E5 Networks, Inc. Unknown 2009-11-05 2009-11-05
Fedora Project Unknown 2009-11-05 2009-11-05
Force10 Networks, Inc. Unknown 2009-11-05 2009-11-05
Fortinet, Inc. Unknown 2009-11-05 2009-11-05
Foundry Networks, Inc. Unknown 2009-11-05 2009-11-05
FreeBSD Project Unknown 2009-11-05 2009-11-05
Fujitsu Unknown 2009-11-05 2009-11-05
Gentoo Linux Unknown 2009-11-05 2009-11-05
Global Technology Associates, Inc. Unknown 2009-11-05 2009-11-05
GnuTLS Vulnerable 2009-11-05 2009-11-11
Hewlett-Packard Company Vulnerable 2009-11-05 2009-12-17
Hitachi Unknown 2009-11-05 2009-11-05
IBM Corporation Vulnerable 2009-11-05 2009-11-11
IBM eServer Unknown 2009-11-05 2009-11-05
Infoblox Unknown 2009-11-05 2009-11-05
Intel Corporation Unknown 2009-11-05 2009-11-05
Internet Security Systems, Inc. Unknown 2009-11-05 2009-11-05
Intoto Unknown 2009-11-05 2009-11-05
IP Filter Unknown 2009-11-05 2009-11-05
IP Infusion, Inc. Unknown 2009-11-05 2009-11-05
Juniper Networks, Inc. Unknown 2009-11-05 2009-11-05
‘E\LWR\TCHH/TH‘R(E} \R/\/E[; LEVIATHANSECURITY.COM — EMAIL INFO@LEVIATHANSECURITY.COM SEATTLE, WASHINGTON © 2009 10

Vendor Status Date Notified Date Updated

libgcrypt Not Vulnerable 2009-11-05 2009-11-11
Lotus Software Unknown 2009-11-05 2009-11-05
Luminous Networks Unknown 2009-11-05 2009-11-05
mOnOwall Unknown 2009-11-05 2009-11-05
Mandriva S. A. Unknown 2009-11-05 2009-11-05
McAfee Vulnerable 2009-11-05 2009-11-11
Microsoft Corporation Unknown 2009-11-05 2009-11-05
Microsoft Internet Explorer Unknown 2009-11-05 2009-11-05
Mirapoint, Inc. Unknown 2009-11-05 2009-11-05
mod ssl Unknown 2009-11-05 2009-11-05
MontaVista Software, Inc. Unknown 2009-11-05 2009-11-05
Mozilla - Network Security Services Unknown 2009-11-05 2009-11-05
Multitech, Inc. Unknown 2009-11-05 2009-11-05
National Center for Supercomputing Applications Unknown 2009-11-05 2009-11-05
NEC Corporation Unknown 2009-11-05 2009-11-05
NetApp Unknown 2009-11-05 2009-11-05
NetBSD Unknown 2009-11-05 2009-11-05
netfilter Unknown 2009-11-05 2009-11-05
Netscape NSS Unknown 2009-11-05 2009-11-05
Nokia Unknown 2009-11-05 2009-11-05
Nortel Networks, Inc. Unknown 2009-11-05 2009-11-05
Novell, Inc. Unknown 2009-11-05 2009-11-05
OpenBSD Unknown 2009-11-05 2009-11-05
OpensSSL Unknown 2009-11-05 2009-11-05
Openwall GNU/*/Linux Unknown 2009-11-05 2009-11-05
PePLink Unknown 2009-11-05 2009-11-05
Process Software Unknown 2009-11-05 2009-11-05
‘E\LWR\TCHH/TH‘R(E} \R/\/E[; LEVIATHANSECURITY.COM — EMAIL INFO@LEVIATHANSECURITY.COM SEATTLE, WASHINGTON © 2009 11

Vendor Status Date Notified Date Updated

Q1 Labs Unknown 2009-11-05 2009-11-05
QNX Software Systems Inc. Unknown 2009-11-05 2009-11-05
Quagga Unknown 2009-11-05 2009-11-05
RadWare, Inc. Unknown 2009-11-05 2009-11-05
Red Hat, Inc. Not Vulnerable 2009-11-05 2010-01-19
Redback Networks, Inc. Not Vulnerable 2009-11-05 2009-11-11
SafeNet Not Vulnerable 2009-11-05 2009-11-19
Securewory, Inc. Unknown 2009-11-05 2009-11-05
Silicon Graphics, Inc. Unknown 2009-11-05 2009-11-05
Slackware Linux Inc. Unknown 2009-11-05 2009-11-05
SmoothWall Unknown 2009-11-05 2009-11-05
Snort Unknown 2009-11-05 2009-11-05
Soapstone Networks Unknown 2009-11-05 2009-11-05
Sony Corporation Unknown 2009-11-05 2009-11-05
Sourcefire Unknown 2009-11-05 2009-11-05
Spyrus Unknown 2009-11-05 2009-11-05
Stonesoft Unknown 2009-11-05 2009-11-05
Stunnel Unknown 2009-11-05 2009-11-05
Sun Microsystems, Inc. Vulnerable 2009-11-05 2009-11-06
SUSE Linux Unknown 2009-11-05 2009-11-05
Symantec Unknown 2009-11-05 2009-11-05
The SCO Group Unknown 2009-11-05 2009-11-05
TippingPoint Technologies Inc. Unknown 2009-11-05 2009-11-05
Turbolinux Unknown 2009-11-05 2009-11-05
Ubuntu Unknown 2009-11-05 2009-11-05
Unisys Unknown 2009-11-05 2009-11-05
VMware Unknown 2009-11-05 2009-11-05
‘\E\LWRLHHATL"R(EjE\R/\\//E\[; LEVIATHANSECURITY.COM - EMAIL INFO@LEVIATHANSECURITY.COM SEATTLE, WASHINGTON © 2009 12

Vendor Status Date Notified Date Updated

Vyatta Unknown 2009-11-05 2009-11-05
Watchguard Technologies, Inc. Unknown 2009-11-05 2009-11-05
Wind River Systems, Inc. Unknown 2009-11-05 2009-11-05
ZyXEL Unknown 2009-11-05 2009-11-05

LEVIATHAN INC - WWW.LEVIATHANSECURITY.COM - EMAIL INFO@LEVIATHANSECURITY.COM SEATTLE, WASHINGTON © 2009
ALL RIGHTS RESERVED 13

