
Last week a rumor about a 0 day exploit on OpenSSH being actively exploited arose. In some

places I found links to Bugtraq's note about the OpenSSH attack published in a paper of the

Royal Holloway University of London back in November 2008.

The paper, Plaintext Recovery Attacks Against SSH, describes an attack which provides

knowledge of 32 bits from an arbitrary ciphertext block from an SSH connection when CBC

mode is used. Personally, I didn't read the paper when it was published, I just took a quick

look at it and I didn't feel like reading it completely.

However, when I saw the generated stir around this issue I thought it was time to take it

again. And this post is the result: an attempt to explain how the attack described in this paper

works.

SSH Binary Packet Protocol

SSH BPP is the protocol in charge of defining the binary packet structure of SSH, which

supports the encrypted packets that conform an SSH connection. A data packet in an SSH

connection is encoded as follows:

BPP Message

The Length field (4 bytes) indicates the size of the remainder of the packet. The Padding

length field (1 byte) encodes the length of the final padding, which makes the packet a multiple

of the block size. After this field, the message is added, and finally the padding, which has to be

between 4 and 255 bytes of random data.

Two cryptographic operations are applied to this message: an encryption and a MAC. The MAC

is computed over a sequence number which is never transmitted (it is kept by the two ends of

the communication) concatenated with the original message depicted above. The encryption is

applied to the original message only.

Therefore, when SSH recieves a packet, the first thing it has to do is decrypting the first

ciphertext block to obtain the message length. Then, it waits to decrypt as many bytes as the

packet indicates, in order to decrypt them and check its integrity with the MAC, which provides

message authentication and protects your SSH sessions against modification while they are

traveling from client to server.

SSH BPP's problem

The problem with SSH BPP described in the paper is a consequence of the combination of

several factors. On one side, we have that OpenSSH returns different error messages for

different situations: when the decrypted length does not pass some sanity checks (e.g. it is not

a multiple of the block size) and when the computed MAC does not match with the valid one.

Therefore, observing the error messages one can obtain information on what caused the

interruption of the connection.

On the other hand, we have that the first block indicates how many bytes the server waits for

before calculating the complete MAC. Therefore, assuming the sanity checks over the message

length are passed, an attacker could inject a data block, and then inject block by block until

the server says "Hey, wait, the MAC does not match!".

At that point, the attacker knows that after decrypting the injected block with the server's key,

the result contains in its right-most 32 bits a value equal to the number of blocks injected in

the connection.

Understanding RHUL’s SSH attack « Limited Entr... http://www.limited-entropy.com/understanding-rhul...

1 of 3 05/11/2011 12:51 PM

the connection.

But now the complicated part starts, because the attacker needs to link these obtained 32 bits

with the 32 bits that the original packet held. If the packet was encrypted with a completely

unrelated key, then knowing that decrypting it under a different key gives a certain value

provides basically no information on the original message.

But here CBC mode comes to play. We already know from our previous block ciphers post that

this mode performs an XOR of the previous encrypted block with the current plaintext block

before encrypting it with a fixed key.

Let's assume we want to obtain data from a previous packet , which is part of the current

SSH connection. After decrypting it we would have:

But when we inject it into the connection, assuming the previous ciphertext block is known,

, then the SSH server will compute this:

So, it will decrypt the injected block, and will XOR it with the previous block. This result will be

regarded as the first block of a packet, and therefore its initial 32 bits will tell the server the

packet length.

Thus, we can start injecting new blocks and observing the reaction of the SSH server. Once it

returns a MAC error, this means that the initial 32 bits of contain the number of

bytes we injected so far.

Further, from the previous two equations we can obtain the following relation:

Where the left-most 32 bits of all values at the right side of the equation are known, and the

value at the left side of the equation is what we wanted to obtain. In this way we can get to

know the left-most 32 bits of the target block.

Implications of this attack

So, we know how the attack works... now it's time for asking ourselves whether we should be

worried about it or not. In principle, the attack is not too complex and allows the retrieval of 32

arbitrary bites of an SSH connection with a probability of . This probability comes from the

conditions that need to be satisfied in order to pass the sanity checks after decrypting the

injected block.

This means that, on average, an attacker would succeed one out of 262.000 times, forcing the

client to reconnect so many times to the server. I'm pretty sure anyone would be tired after 3

consecutive attemps and would think that something is wrong .

Further, the attacker needs to perform a man in the middle to be able to inject data into the

connection. In local area networks it's not a big deal, but over the Internet it gets more

complicated.

And even then, an attacker would have 32 bits of data, 4 ASCII characters of your password...

which I hope has some more than that . Therefore, in my opinion the attack does not have

practical implications, although it's always good to update to a patched version and/or use a

mode different than CBC.

What this attack actually does is contributing as an interesting example of how important

details are in crypto applications and protocols. If the protocol would not depend on a length

field which needs to be decrypted for waiting such a number of bytes, or would not use CBC

mode or simply would not return additional information about errors (simply closing the

Understanding RHUL’s SSH attack « Limited Entr... http://www.limited-entropy.com/understanding-rhul...

2 of 3 05/11/2011 12:51 PM

connection indicating that something was wrong, regardless of what this something is), none

of this would be possible.

Understanding RHUL’s SSH attack « Limited Entr... http://www.limited-entropy.com/understanding-rhul...

3 of 3 05/11/2011 12:51 PM

