
Anonymous Voting by 2-Round Public
Discussion

Feng Hao1 and Peter Ryan2 Piotr Zieliński3

1 Thales E-Security, Cambridge, UK
2 Faculty of Science, University of Luxembourg,

3 Google Inc.
feng.hao@thales-esecurity.com, peter.ryan@uni.lu,

piotrzielinski@google.com

Abstract. In 2006, Hao and Zieĺınski proposed a 2-round anonymous
veto protocol (called AV-net), which provides exceptional efficiency com-
pared to related techniques. In this paper, we add a self-tallying function
to the AV-net, making it a general-purpose voting protocol. The new pro-
tocol works in the same setting as the AV-net - it requires no trusted
third parties or private channels, and participants execute the protocol
by sending 2-round public messages. Compared with related voting pro-
tocols in past work, ours is significantly more efficient in terms of the
number of rounds, computational cost and bandwidth usage.

1 Introduction

Electronic voting is one of the most intriguing cryptographic problems. Depend-
ing on whether trusted third parties are involved, it can be divided into two
classes: 1) decentralized elections where the protocol is essentially run by the vot-
ers themselves; 2) centralized elections where trusted authorities are employed
to administer the process [10].

In general, the first case allows for better voter privacy, and is thus most
suitable for small-scale (boardroom) elections. The second case has the advantage
of being more robust, in the sense of being more resilient in the face of voters
attempting to disrupt the protocols, and hence often finds its applications in
large-scale (countrywide) elections [10,11].

In this paper, we focus on the first class. In particular, we aim to explore, with
strong voter privacy as the primary objective, what is the best efficiency achiev-
able through cryptographic means. First, let us look at the following example of
the boardroom voting.

In a boardroom, corporate directors are discussing who is to become the
new chairman. They decide to hold an election. All communication is
public; any “private” talk between directors can be heard by all. And no
trusted third parties exist. So how to arrange a voting protocol such that
the voters’ privacy will be preserved?

There are two challenges here. First, no trusted third parties exist. Many
security problems could be easily solved if we assume a trusted third party, but
then the “trusted” third party may become the one who breaks the security
policy totally [1]. A standard approach used in many voting protocols is to
distribute trust among several third parties by using a threshold scheme, so that
the protocol does not rely on a single trusted entity [4, 5, 7]. However, our goal
here is to eliminate the use of trusted third parties altogether.

The second challenge is that there are no voter-to-voter private channels.
This is to ensure dispute-freeness – everybody can check whether all voters have
faithfully followed the protocol [10,11]. This also has the advantage of minimizing
the assumptions required for the protocol to be secure. Hence, protocols that
depend on pairwise private channels are not suitable for our purpose [16].

Kiayias and Yung first studied this problem in detail and proposed a concrete
voting protocol that fulfills these challenging requirements [10]. Their protocol
has the following attractive features: it is self-tallying; it provides the maximum
protection of the voters’ privacy; and is dispute-free. The round efficiency is
reasonably good – only 3 rounds. The downside of their protocol, however, is
the heavy computational load for each voter which increases linearly with the
number of voters [11].

Groth investigated the efficiency limitations of the Kiayias-Yung protocol in
[11], and proposed a new protocol with the improved computational complexity.
The computational load for each voter is relatively light and remains constant
even with more voters. Unfortunately, Groth’s protocol design trades off round
efficiency for less computation. As a result, it requires n + 1 rounds, where n
is the total number of voters. This is worse than the constant 3 rounds in the
Kiayias-Yung protocol.

In this paper, we describe a new solution to this problem. Our solution is
inspired by the Anonymous Veto network (AV-net) protocol [12]. In fact, the
protocol in this paper can be seen as a generalization of the AV-net protocol
with the added self-tallying function. We will show that our scheme is as secure
as the Kiayias-Yung and Groth’s [10, 11], but significantly more efficient than
both.

2 The Protocol

We assume an authenticated public channel available for every participant. This
assumption is also made in the Kiayias-Yung and Groth’s protocols [10,11]. (In
fact, an authenticated public channel is a very basic requirement for not only
voting [4] but also general multi-party secure computations [9, 16].) There are
several ways to realize such a public channel: by using physical means or, more
commonly, a public bulletin board where authentication can be achieved by
using, for example, digital signatures [10,11]. Apart from this basic requirement,
we assume no trusted third parties or private channels.

2.1 Two-round Referenda

Let G denote a finite cyclic group of prime order q in which the Decision Diffie-
Hellman (DDH) problem is intractable [3]. Let g be a generator in G. There are n
participants, and they all agree on (G, g). Each participant Pi selects a random
value as the secret: xi ∈R Zq. Let us consider the single-candidate case first.
Suppose a vote is either “yes” or “no”. Then participants execute the following
2-round protocol:

Round 1. Every participant Pi publishes gxi and a zero knowledge proof for
xi. When this round finishes, each participant Pi checks the validity of the
ZK proofs and computes

gyi =
i−1∏
j=1

gxj
/ n∏
j=i+1

gxj

Round 2. Every participant publishes gxiyigvi and a zero knowledge proof
showing that vi is one of {1, 0}.

vi =

{
1 if Pi votes ”yes”
0 if Pi votes ”no”

(1)

To tally the “yes” votes, each participant, or indeed anyone observing the
protocol, can compute

∏
i g
xiyigvi = g

∑
i vi . The term

∑
i vi is the number of

“yes” votes, which we denote γ. All zero knowledge proofs should be checked to
ensure that no badly formed ballots have been cast that could distort the tally.
The equality holds because

∏
i g
xiyi = 1 (Proposition 1, see also [12]). Since γ

is normally a small number, it is not difficult to compute the discrete logarithm
of gγ , for example, by using exhaustive search or Shanks’ baby-step giant-step
algorithm. [17]

Proposition 1 For the xi and yi as defined in the protocol,
∑
i xiyi = 0.

Proof. By definition yi =
∑
j<i xj −

∑
j>i xj , hence∑

i

xiyi =
∑
i

∑
j<i

xixj −
∑
i

∑
j>i

xixj

=
∑∑
j<i

xixj −
∑∑
i<j

xixj

=
∑∑
j<i

xixj −
∑∑
j<i

xjxi

= 0.

Table 1 illustrates this equality in a more intuitive way.

x1 x2 x3 x4 x5

x1 – – – –
x2 + – – –
x3 + + – –
x4 + + + –
x5 + + + +

Table 1. A simple illustration of
∑n

i=1 xiyi = 0 for n = 5. The sum
∑n

i=1 xi (
∑i−1

j=1 xj−∑n
j=i+1 xj) is the addition of all the cells, where +, − represent the sign. They cancel

each other out.

In the protocol, we use Zero Knowledge Proofs to ensure participants fol-
low the protocol faithfully. The same technique is also used in [10, 11]. In the
first round, each participant needs to demonstrate his knowledge of the expo-
nent without revealing it. We can use Schnorr’s signature [15], which is a well-
established technique. Let H be a publicly agreed, secure hash function. To prove
the knowledge of the exponent for gxi , one sends (gv, r = v−xiz) where v ∈R Zq
and z = H(g, gv, gxi , i). This signature can be verified by anyone through check-
ing whether gv and grgxiz are equal.

In the second round, each participant needs to demonstrate that the en-
crypted vote is one of {1, 0} without revealing which one. For this we can adapt
an efficient technique proposed by Cramer, Damg̊ard and Schoenmakers in [6]
(also see [4]). Firstly we need to convert the terms of our protocol into the form
of ElGamal encryptions. This we can readily do, in a universally verifiable fash-
ion, by treating the gyi terms as public keys and using the previously published
terms of the protocol. We thus form:

(gxi , (gyi)xi · gvi)

If participant i is playing by the rules, this will be an ElGamal encryption
of g or 1 with public key gyi and randomisation xi. More generally, given an
ElGamal encryption (x, y) = (gxi , hxim), the CDS protocol demonstrates that
m is either m0 or m1 without revealing which. This is achieved by proving the
following OR statement:

logg x = logh(y/m0) ∨ logg x = logh(y/m1)

Figure 1 shows a 3-move interactive protocol using the CDS technique, with
m0 = g0 and m1 = g1 and h = gyi . Applying the Fiat-Shamir’s heuristics makes
the protocol non-interactive [8], by letting c = H(i, x, y, a1, b1, a2, b2) where H
is a publicly secure hash function. In summary, the 1-out-of-2 Knowledge Proof
produced in Round 2 contains: (w, a1, b1, a2, b2, d1,d2,). More details on the 1-
out-of-n Knowledge Proof can be found in [4, 6].

Note that we form these ElGamal ciphertexts in order to be able to apply the
CDS protocol. We do not need to decrypt these ciphertexts in order to extract
the tally.

Voter Verifier

v = 1 v = 0
w, r1, d1 ∈R Zq w, r2, d2 ∈R Zq

x ← gxj

y ← hxj · g
a1 ← gr1xd1

b1 ← hr1yd1

a2 ← gw

x ← gxj

y ← hxj

a1 ← gw

b1 ← hw

a2 ← gr2xd2

b2 ← hw b2 ← hr2(y/g)d2 x, y, a1, b1,a2, b2−−−−−−−−−−−→
d2 ← c− d1 d1 ← c− d2 c←−−−−−−−−−− c ∈R Zq

r2 ← w − xjd2 r1 ← w − xjd1 d1, d2, r1, r2−−−−−−−−−−−→ c ?
=

d1 + d2

a1
?
=

gr1xd1

b1
?
=

hr1yd1

a2
?
=

gr2xd2

b2
?
=

hr2(y/g)d2

Fig. 1. 1-out-of-2 Proof of Knowledge: the ballot (x, y) is either (gxj , hxj ·g) or (gxj , hxj)
where h = gyj .

2.2 Extension to multiple candidates

We can extend the above single-candidate protocol to cater for multiple candi-
dates4. This is useful as many practical elections involve more than one candi-
date. Depending on how the election is arranged, there can be several methods.
A straightforward way is to run the single-candidate protocol in parallel for k
candidates. Each voter casts a “yes/no” vote to each of the candidates. The
tallying for each candidate is done independently, so the maximum tries for
the exhaustive search is k × n. The voting still executes in 2 rounds, but the
computational load per participant will increase k times.

A more elegant (and more efficient in some aspects) method was described in
[4], and subsequently adopted in [10,11]. In this case, each voter is only permitted
to choose one candidate. The basic idea is to obtain k independent generators
g1, g2, . . . , gk (one for each candidate). The first round remains the same. In the
second round, each participant sends gxiyi · %i with a Zero Knowledge proof
showing that %i is one of {g1, g2, . . . , gk} (using the same CDS technique [6]).
For tallying, one computes

∏
i g
xiyi · %i = gc11 · g

c2
2 · · · g

ck

k where c1 to ck are the
counts of votes for the k candidates correspondingly.

However, one (slight) disadvantage of this approach lies in the complexity of
the exhaustive search. Given n votes, k candidates and that each vote is cast
to one of the k candidates, the number of possible voting results is

(
n+k−1
k−1

)
= O(nk−1) (see the Combinations with Repetitions problem [18]). This is less
scalable than the previous k× n, but should still be within the realm of feasible
4 Obviously, if there are only two candidates, the same protocol can be used – instead

of sending ”Yes/No”, one simply sends ”A/B”. Therefore, by ”multiple”, we really
mean more than two.

computation for most practical elections where the number of candidates k is
normally small [4]. Another disadvantage of this approach is that we need to
show that the gis are appropriately independent, i.e. that distinct values of the
cis do not give rise to the same product. Let N be the number of voters, then
we require:

∀ci, c′i ∈ N,
∏

gci
i =

∏
g
c′i
i , ⇒ ∀i ∈ {1,, k}, ci = c′i

A preferred way to deal with multiple candidates is to use the method due
to Cramer et al [7] (also see [19]): suppose that we have n voters, choose m so
that m is the smallest integer such that 2m > n. Now a vote for candidate 1 is
encoded as 20, for candidate 2 as 2m, for candidate 3 is 22m, and so on. In other
words, redefine Eq. 1 as:

vi =


20 if Pi votes candidate 1
2m if Pi votes candidate 2
· · · · · ·
2(k−1)m if Pi votes candidate k

Tabulation is much as before:
∏
i g
xiyigvi = g

∑
i vi . The votes are summed

and the super-increasing nature of the encoding ensures that the total can un-
ambiguously be resolved into the totals for the candidates. Hence,

∑
i vi =

20 · c1 + 2m · c2 + . . . + 2(k−1)m · ck, where c1 to ck are the counts of votes
for the k candidates correspondingly. As before, this resolution requires search-
ing over possible combinations, but of course pre-computation over (the more
likely) combinations could speed this up.

3 Security Analysis

To analyse the security of the protocol, we consider two types of attackers: a
passive one who merely eavesdrops on the communication, and an active one who
takes part in the voting. Active attackers may collude in an effort to breach other
voters’ privacy or manipulate the voting outcome. The full collusion against
a voter involves all the other voters in the election. Any decentralized voting
protocol, by nature, cannot preserve the voter’s privacy under that circumstance;
attackers simply need to subtract their own votes from the final tally. Therefore,
in this paper we only consider partial collusion, which involves some voters, but
not all.

Under the threat model of partial collusion, an anonymous voting protocol
should fulfill the following requirements (also see [10,11]):

Maximum ballot secrecy: Each cast ballot is a ciphertext that is indistin-
guishable from random, and hence does not reveal anything about the voter’s
choice.

Self-tallying: After all ballots have been cast, anyone can compute the result
without external help. This is a natural requirement for a distributed voting
scheme.

Dispute-freeness: A scheme is dispute-free if everybody can check whether all
voters act according to the protocol. In particular, this means that the result
is publicly verifiable.

Notice that the Maximum ballot secrecy property is necessary but not suffi-
cient to ensure a voter’s privacy against a large collusion. Suppose that all the
voters not in a collusion set all votes the same way then their ballot privacy
will be violated. For example, if the final tally turns out to be 0, it will be clear
to everyone that all voters had voted “no”. This is because the tally – not the
encrypted ballots – reveals information. Therefore, the best that is achievable to
limit each voter to learn nothing more than his own vote and the final tally.

It has been shown in [10, 11] that the Kiayias-Yung and Groth’s protocols
satisfy the above requirements. We now show our protocol fulfills those require-
ments too.

3.1 Maximum Ballot Secrecy

Let us first look at the maximum ballot secrecy. In the protocol, each voter sends
an ephemeral public key gxi in the first round and sends an encrypted ballot
gxiyigvi , vi ∈ {0, 1}, in the second round. (For simplicity of illustration, we omit
the mention of Zero Knowledge Proofs, which will be addressed later.)

In the protocol, the value of yi is determined by the private keys of all par-
ticipants except Pi. The following lemma shows the security property of yi.

Lemma 1 The yi is a secret random value to attackers in partial collusion
against the participant Pi.

Proof. Consider the worst case where only Pk (k 6= i) is not involved in the
collusion. Hence xk is uniformly distributed over Zq and unknown to colluders.
The knowledge proofs required in the protocol show that all participants know
their private keys xi. Since yi is computed from xj (j 6= i, k) known to colluders
plus (or minus) a random number xk, yi must be uniformly distributed over Zq.
Colluders cannot learn yi even in this worst case.

Theorem 1 Under the Decision Diffie-Hellman assumption, attackers in partial
collusion against Pi cannot distinguish the ballot gxiyi · gvi , vi ∈ {0, 1}, from a
random group element.

Proof. Besides the ballot, the data available to attackers concerning Pi include:
gxi and a Zero-Knowledge Proof for the proof of the exponent xi, and a Zero-
Knowledge Proof for the proof of vi ∈ {0, 1}. The first ZKP reveals one bit:
whether the sender knows the discrete logarithm xi of gxi . Also, the second
ZKP only reveals one bit: whether the second round message is well-formed

(that is whether it is the ElGamal encryption of vi ∈ {0, 1}). The ZKPs do not
reveal any more information than what is intended.5

The secret xi is chosen randomly by Pi. Lemma 1 shows that yi is a random
value, unknown to the attacker. Therefore, according to the Decision Diffie-
Hellman assumption, one cannot distinguish between gxiyi (the no-vote) and
a random element in the group [2]. Obviously, one cannot distinguish gxiyi · g
(the yes-vote) from random either. To sum up, one cannot distinguish gxiyi ·gvi ,
vi ∈ {0, 1}, from random.

The above theorem states that the individual ballot does not leak any useful
information about the voter’s choice. It is the multiplication of all ballots that
tells the tally. For each participant, what he learns from the election is strictly
confined to the final tally and his own input.

Informally we can argue as follows: our protocol has the form suited to the
game style definitions of security: the adversary is trying to distinguish with
better than negligible advantage between the two ciphertexts. The ZK proofs of
well-formedness simply serve to ensure that that we are indeed in the context of
such a game. The ZK property of the proofs ensure that they do not help the
adversary in making the distinction. As has been shown earlier, we can transform
the terms of the protocol into ElGamal encryptions of the 0 or 1 votes. Therefore,
an attack on the protocol could be used to violate the semantic security of the
ElGamal encryption.

The above proof relates to the referendum case but is readily extensible to
the multiple candidates case.

3.2 Self Tallying

Our protocol also fulfills self-tallying. In the protocol any interested party can
compute the final tally without external help. This feature is realized by making
use of the vanishing property of the proposition 1 (also see [12]). We let vot-
ers choose random private keys in the first round, and in the second round we
combine the public keys in such a structured way that the random factors imme-
diately vanish after Round 2, thus revealing the tally. The use of zero knowledge
proofs in the protocol is to prevent active attacks, ensuring that voters faithfully
follow the protocol [10,11].

3.3 Dispute Freeness

In addition, our protocol satisfies dispute-freeness. First, we observe that the use
of authenticated public channels ensures that any attempt to try to cast more

5 We refer readers to [3, 6, 15] for security proofs on Schnorr’s signature and Cramer
et al’s 1-out-of-n technique. However, we should note that if these techniques are
chosen to realize ZKPs, then the proof of the protocol implicitly assumes a random
oracle (i.e., a secure one-way hash function), since both techniques are secure under
the random oracle model [6, 15].

than one ballot will be detected by the other participants. Furthermore, the
use of the Cramer, Damg̊ard and Schoenmakers zero-knowledge proofs serves to
ensure that each ballot will encode exactly one candidate. Hence the one-man-
one-vote requirement is enforced. This, along with the fact that the protocol is
effectively self-tallying, ensures the overall accuracy of the count.

3.4 Limitations

There are however some limitations with our protocol. One is the potential
subjection to the Denial of Service (DoS) attack. For a fully decentralized voting
scheme, it naturally requires collaborative efforts from all voters otherwise it
will not work. For example, if some voters refuse to send data in round 2, the
tallying process will fail. This kind of attack is overt; everyone will know who
the attackers are. To rectify this, voters need to expel the disrupters and restart
the protocol; their privacy remains intact. However the voting process would be
delayed, which may prove costly for large-scale (countrywide) elections.

Another limitation is the lack of coercion-resistance. If the voter is coerced
to vote for a particular candidate, he could be forced to reveal his secret values
and so prove how he voted. Normally, the coercion resistance is achieved by
involving election authorities who provide trusted source of entropy [20]. But in
a decentralized environment where no such trusted authorities exist, ensuring
coercion-resistance seems very difficult.

Note that the above limitations also apply to the Kiayias-Yung and Groth’s
schemes [10, 11]. To a large extent, they reflect the decentralized nature of the
protocol rather than any weakness in the protocol itself. A centralized voting
scheme that employs tallying authorities is certainly more robust and scalable
than a decentralized approach, but the trustworthiness of the authorities is often
called into question. (If the people who administer the election receive a sub-
poena, they really have no interest in defying the order and going to jail in order
to protect voters’ privacy.)

So, whether an election should be centralized or decentralized depends on the
application. For small-scale elections where the DoS attack and voter coercion
are usually not of great concern, a decentralized protocol like ours can prove
useful and efficient. For larger elections, the environment will be different and
so will be the requirements. For example, the resistance to Denial of Service
will be not only necessary but essential. In that case, it seems unavoidable that
some form of trusted third parties will be introduced. Obviously, the trust must
be threshold-controlled but still we need to trust the authorities do not collude
altogether.

4 Comparison

In this section, we evaluate the efficiency of the protocol. There are many voting
protocols in the past literature, however most of them involve using tallying
authorities as trusted third parties [10,11]. Therefore, in this section, we mainly

Protocols Year Round Exp KP for

exponent

KP for

equality

KP for

1-of-k

Kiayias-Yung 2002 3 2n+ 2 n+ 1 n 1

Groth 2004 n+ 1 4 2 1 1

— 2009 2 2 1 0 1

Table 2. Comparison with past work

compare with the Kiayias-Yung and Groth’s schemes [10,11]. Table 2 presents a
summary of the comparison results.

The Kiayias-Yung’s voting protocol executes in 3 rounds [10]. In round 1,
each voter i sends out a public key gi = gαi , where αi ∈R Zq. This public
key will be used as the voter’s personal generator. In round 2, each voter defines
additional n ephemeral private keys (s1, . . . , sn) and sends out the corresponding
public keys (gs1 , . . . , gsn). This requires n exponentiations. In addition, he raises
each of the n personal generators gj to the power of sj , leading to another n
exponentiations. In round 3, everyone performs one more exponentiation before
the tally can be universally computed. In total, there are 2n+2 exponentiations;
for each exponentiation, there is a corresponding zero knowledge proof to prevent
cheating (see Table 2). More details can be found in [10].

Groth aims to improve the system complexity in the Kiayias-Yung’s protocol
[11]. His approach is to trade-off round efficiency for less computation. In the first
round, everyone sends out an ephemeral public key. Then, each voter publishes
data sequentially, encrypting the vote based on the previous voter’s publication.
Three exponentiations are need to encrypt the vote. The protocol finishes in
n+ 1 rounds, where n is the total number of voters. Everyone – except the first
voter6 – needs to perform 4 exponentiations in total, and produces 4 knowledge
proofs correspondingly.

Compared with the Kiayias-Yung and Groth’s protocol, ours is a lot more
efficient. The protocol has only two rounds, which is the best round efficiency
for multi-party secure computation protocols [16]. For each voter, it requires one
exponentiation to generate an ephemeral public key in round 1 and another ex-
ponentiation to encrypt the vote in round 2. In addition to each exponentiation,
the voter needs to produce a corresponding Zero Knowledge proof. Overall, this
kind of efficiency compares very favorably to both the Kiayias-Yung and Groth’s
protocols (see Table 2).

5 Conclusion

In this paper, we demonstrated how to arrange a 2-round anonymous election
that requires no trusted third parties nor private voter-to-voter interactions. The
voter’s anonymity is preserved unless all of the other voters have been compro-
mised. In addition, we showed that the protocol is exceptionally efficient. It has
6 The first voter performs one less exponentiation than the rest [11].

only two rounds; in each round, a voter performs constant one exponentiation
and produces one zero knowledge proof accordingly. This kind of efficiency com-
pares very favorably to past decentralized voting protocols, and is close to the
best possible.

References

1. R.J. Anderson, Security Engineering : A Guide to Building Dependable Distributed
Systems, 2nd Edition, New York, Wiley, 2008.

2. D. Boneh, “The decision Diffie-Hellman problem,” Proceedings of the Third In-
ternational Symposium on Algorithmic Number Theory, LNCS 1423, pp. 48–63,
1998.

3. D. Stinson, Cryptography: Theory and Practice, Third Edition, Chapman &
Hall/CRC, 2006.

4. R. Cramer, R. Gennaro, and B. Schoenmakers, “A secure and optimally efficient
multi-authority election scheme,” EUROCRYPT ’97, LNCS, vol. 1233, pp. 103-
118, May 1997.

5. J.C. Benaloh, M. Yung, “Distributing the power of a government to enhance the
privacy of voters,” Proceedings of the fifth annual ACM symposium on Principles
of distributed computing, pp. 52-62, 1986.

6. R. Cramer, I. Damg̊ard, B. Schoenmakers, “Proofs of partial knowledge and sim-
plified design of witness hiding protocols,” Proceedings of the 14th Annual Inter-
national Cryptology Conference on Advances in Cryptology, LNCS, vol. 839, pp.
174-187, 1994.

7. R. Cramer, M. Franklin, B. Schoenmakers and Moti Yung, “Multi-authority secret-
ballot elections with linear work,” EUROCRYPT ’96, LNCS, vol. 1070, pp. 72-83,
1996.

8. A. Fiat, A. Shamir, “How to prove yourself: practical solutions to identification
and signature problems,” Crypto ’86, LNCS, vol. 263, pp. 186-194, 1987.

9. O. Goldreich, S. Micali and A. Wigderson, “How to play any mental game or
a completeness theorem for protocols with honest majority,” Proceedings of the
nineteenth annual ACM Conference on Theory of Computing, pp. 218-229, 1987.

10. A. Kiayias, M. Yung, “Self-tallying elections and perfect ballot secrecy,” Public
Key Cryptography ’02, LNCS, vol. 2274, pp. 141-158, 2002.

11. Jens Groth, “Efficient maximal privacy in boardroom votisng and anonymous
broadcast,” Financial Cryptography ’04, LNCS, vol. 3110, pp. 90-104, 2004.

12. F. Hao, P. Zieĺınski, “A 2-round anonymous veto protocol,” Proceedings of the
14th International Workshop on Security Protocols, Cambridge, UK, 2006.

13. F. Hao, P. Y. A. Ryan, “Password Authenticated Key Exchange by Juggling,”
Proceedings of the 16th International Workshop on Security Protocols, Cambridge,
UK, April 2008.

14. D. Chaum, “The dining cryptographers problem: unconditional sender and recipi-
ent untraceability,” Journal of Cryptology, vol. 1, no. 1, pp. 65-67, 1988.

15. C.P. Schnorr, “Efficient signature generation by smart cards,” Journal of Cryptol-
ogy, vol. 4, no. 3, pp. 161-174, 1991.

16. R. Gennaro, Y. Ishai, E. Kushilevitz and T. Rabin. “On 2-round secure multiparty
computation,” Crypto ’02, LNCS, vol. 2442, pp. 178-193, 2002.

17. A.K. Lenstra and H.W. Lenstra, “Algorithms in number theory,” Handbook of
Theoretical Computer Science, pp. 673-715, 1991.

18. R.P. Stanley, Enumerative Combinatorics, Cambridge University Press, 1997.
19. O. Baudron, P. Fouque, D. Pointcheval, G. Poupard, J. Stern, “ Practical Multi-

Candidate Election System,”, Proceedings of the 20th ACM symposium on Prin-
ciples of distributed computing, pp. 274-283, 2001.

20. A. Juels, D. Catalano, M. Jakobsson, “Coercion-Resistant Electronic Voting,”
WPES ’05, pp. 61-70, 2005.

