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Abstract

We describe an interval logic for reasoning
about space. The logic simplifies an earlier
theory developed by Randell and Cohn, and
that of Clarke upon which the former was
based. The theory supports a simpler on-
tology, has fewer defined functions and rela-
tions, yet does not suffer in terms of its useful
expressiveness. An axiomatisation of the new
theory and a comparison with the two origi-
nal theories is given.

1 Introduction

The use of interval logics for the representation of
time are well known in AI research - see for exam-
ple Allen (1984) and Allen and Hayes (1985) although
their development and history extends back much fur-
ther in philosophical literature, see for example Ham-
blin (1967, 1971). However, despite the intuitive con-
nection that can be drawn between space and time in
terms of such logics, until fairly recently, little work in
AT has centred on the development and use of interval
logics for space.

We describe an interval logic that can be used to reason
about space. The similarity of the title with Clarke’s
(1981) paper ‘A calculus of individuals based on ‘con-
nection’ ’; is not accidental. In Randell and Cohn
(1989, 1992) and in Randell (1991) we used Clarke’s
theory as a foundation to build a theory that sup-
ported some basic intuitions about the nature of space,
time and processes. Although this theory is formally
sound, in use, we found some features of both Clarke’s
theory and our own proved problematic. This led to a
re-evaluation of the original theory which is presented
below.

The structure of the rest of this paper is as follows.
In sections 2 and 3, we give a brief overview of the
original theory, and point out the various problems we
encountered that led to the development of the revised

theory. In section 4 we give the axiomatised theory,
drawing out the contrasts with the original theory. In
section 5 we discuss the implications of introducing
atomic regions into the theory, and in section 6 we
discuss related and further work.

2 Overview of the original spatial
theory

The original theory (see Randell and Cohn 1989, 1992
and Randell 1991) is based upon Clarke’s (1981, 1985)
calculus of individuals based on “connection” and is

expressed in the many sorted logic LLAMA - see Cohn
(1987).

The ontological primitives of the theory include phys-
ical objects, regions and other sets of entities. These
and other specialisations of these primitive sets of en-
tities are all treated as sorts in the theory and are
subsequently embedded in a complete Boolean lattice,
forming a sort hierarchy. However, given the scope of
this paper, we shall limit the overview of the original
theory to that which applies to space, while reminding
the reader that what follows is but a small part of a
much larger theory.

The basic part of the theory assumes a primitive
dyadic relation: C(z,y) read as ‘x connects with y’
which is defined on regions; this is axiomatised to
be reflexive and symmetric. In terms of points inci-
dent in regions, C(z,y) holds when regions z and y
share a common point. Using the relation C(z,y), a
basic set of dyadic relations are defined. These rela-
tions describe differing degrees of connection between
regions from being disconnected, to being externally
connected, allowing partial overlap, one region being
a tangential part of the other, or a nontangential part,
and so on. All degrees of connection from being ex-
ternally connected to sharing mutual parts and thus
being identical are formally defined.

The theory also supports a set of functions that de-
fine the Boolean composition of regions, and a set of
topological functions that allow for the explicit repre-



sentation of the interior, the closure and the exterior
of particular regions. We also extend the basic the-
ory outlined by Clarke by including a further set of
dyadic relations that are used to describe regions be-
ing either inside, partially inside, or outside another.
Several variants are defined.

The spatial part of the theory represents but a part of a
much larger theory, which is now briefly covered. The
theory enables the user to describe states, events and
processes. For this a set of ternary relations are intro-
duced that enable one to relate pairs of bodies using
the dyadic relations mentioned above over time. These
are subsequently used to create a set of envisioning ax-
ioms in the general theory, which impose constraints
upon the manner in which bodies can vary in their
degree of connection over time. These form the basis
of processes described in the theory, where processes
are described in terms of stipulated sequences of direct
topological transitions allowed between sets of objects.
These processes can either be reasoned about using a
direct theorem proving implementation of the theory,
or by using a simulation program - see Cui, Cohn and
Randell (1992) for further details.

3 Problems

There are several problems that have arisen during
our course of research using the original theory. These
can be conveniently classified under three distinct, but
related headings: conceptual, pragmatic and compu-
tational. We shall discuss these in turn.

A common question asked of us concerning the original
theory was why we needed to introduce the topological
distinctions between the types of regions assumed by
the general theory. From the naive point of view, it
seemed odd to have open, semi-open and closed regions
as a model for regions. This point simply reflects a gen-
eral concern made by writers in both philosophy and
science, that a remoteness exists between the facts of
actual observation and the descriptive language used.
In Philosophy, this has resulted in a strong interest
in developing languages with a clear primitive obser-
vational or phenomenal content; languages that can
be directly related to the world around us (Hamblin
1971). For example, in terms of content, it seems odd
that two regions can be distinct, but that each occu-
pies the same amount of space, as in the case where we
take an open region, and its closure.l Moreover, given
the explicit use of different types of topological regions
for describing space, we have the odd result that if a
body maps to a closed region of space (which is a natu-
ral association), its complement is open, and that if we

1A very clear example of this was suggested by Antony
Galton, who pointed out that the northern hemisphere,
with or without the equator includes the same amount of
regional space - the former being a closed region, the latter
a semi-open one

consider a body which is broken into two parts, then
we have a problem how to split the regions so formed,
since any closed interval that is split into two must
have a semi-open part, and which is which?? From the
standpoint of our naive understanding of the world,
this topological structure is arguably too rich for our
purposes, and in any case appearing in this formal the-
ory, it poses some deep conceptual problems.

Given the choice between two possible theories used
for formally representing space, the ease by which a
person can understand and use the theory must be
taken into account. The basic part of the original the-
ory, concerning regions required the user to be famil-
iar with general topology, both in order to understand
the theory, and for any person wishing to extend the
theory. We thought this restriction could be eased,
but this required a change in the ontology of regions
assumed by the original theory, and changes in the
extant axiomatisation.

Clarke’s (1981, 1985) calculus of individuals is sim-
ply presented as an unsorted first order theory, and
as such, questions of implementation are understand-
ably not addressed. However, in our case, we had to
keep implementational and efficiency questions to the
fore. We decided to use a sorted logic, since their effec-
tiveness in reducing the search space for many prob-
lems in automated reasoning is well known. Also we
wanted to keep our syntax as clear as possible, by ab-
sorbing all the monadic predicates in the theory and
pushing these into the sortal part of the logic. We
originally decided to implement our original theory
using Cohn’s (1987) sorted logic LLAMA, but this re-
quired much groundwork first, since the logic requires
the user to first specify the positions of the sorts in
the sort hierarchy®. This required us to first prove
in the sorted theory, for any two potential sorts (be-
ing the monadic predicates of the unsorted theory),
whether they were disjoint or whether one subsumed
the other. This proved to be a particularly difficult and
tedious task, which was made especially difficult given
the spartan nature of the primitives used in the theory,
which meant even basic theorems could prove difficult
to tease out. Part of the problem simply lay in the
number of potential subsorts, of the sort REGION, we
had defined, and again this in part stemmed from the
topological basis of the theory stemming from Clarke’s
theory?.

21t is interesting to note too that the same difficulties
for space also arise in the temporal model, for example,
deciding whether the order of intervals should be either (
], or [ ). See Galton (1990) for further discussion.

SHowever, more recently, LLAMA has been relaxed
and only partial sort information need be specified — see
Cohn(1992).

*By having three kinds of regions (open, closed, semi-
open), the number of sorts was immediately increased

threefold.



Taking all these factors into account we eventually de-
cided to investigate how the theory could be simplified;
this is presented below.

4 The new theory

The new theory, like the original theory, is based
upon Clarke’s calculus of individuals based on “con-
nection” and again is expressed in the many sorted
logic LLAMA. Reasons of space mean that we can-
not give full details of the sorted logic assumed below.
However, for the purposes of reading this paper, all
the reader should bear in mind is that LLAMA allows
arbitrary ad hoc polymorphism, and that the variables
are not explicitly typed, but that their associated sorts
are derived implicitly from their argument positions in
specified formulae. We will occasionally highlight cer-
tain sortal restrictions; in this case sorts in the theory

will be indicated by strings of upper case letters, e.g.
REGION, SPATIAL and NULL.

The ontological primitives of the (extended) new the-
ory include physical objects, regions and other sets
of entities. These and other specialisations of these
primitive sets of entities are all treated as sorts in the
theory and are subsequently embedded in a complete
Boolean lattice, forming a sort hierarchy. However,
here, by restricting ourselves to a theory describing
space, we shall only concern ourselves with those sorts
that specialise the sort SPATIAL.

Regions in the theory support either a spatial or tem-
poral interpretation. Informally, these regions may be
thought to be potentially infinite in number, and any
degree of connection between them is allowed in the
intended model, from external contact to identity in
terms of mutually shared parts.

The basic part of the formalism assumes one primitive
dyadic relation: C(z,y) read as ‘x connects with y’.
For the basic part of the theory, the individuals can
be interpreted as either spatial or temporal regions,
but as we are describing a theory for space, a spatial
interpretation is assumed in the pictorial model we
give in Figure 1. The relation C(z,y) is reflexive and
symmetric. We can give a topological model to inter-
pret the theory, namely that C(z,y) holds when the
topological closures of regions z and y share a common
point.> Two axioms are introduced.

VeC(z, z)
Vay[Clz,y) — C(y, )]

Using C(z,y), a basic set of dyadic relations are de-
fined: ‘DC(z,y)’ (‘z is disconnected from y’), ‘P(z, y)’

®In Clarke’s theory and in our original theory, when two
regions ¢ and y connect, they are said to share a point in
common; thus the interpretation of the connects relation
in the new theory is weaker.

(‘z is a part of ¥’), ‘PP(z,y) (‘z is a proper part of
Y’), ‘@ =y (‘x is identical with y’), ‘O(z, y)’ (‘¢ over-
laps y), ‘DR(z,y)’ (‘z is discrete from y’) ‘PO(z,y)’
(‘z partially overlaps y’), ‘EC(z,y)’ (‘z is externally
connected with y)’, ‘TPP(z,y)’ (‘z is a tangential
proper part of y’) and ‘NTPP(z,y)’ (‘z is a nontan-
gential proper part of y’). The relations: P,PP/TPP
and NTPP being non-symmetrical support inverses.
For the inverses we use the notation ®~!, where &
€ {P,PP,TPP and NTPP}. Of the defined relations,
DC,EC,PO,=,TPPNTPP and the inverses for TPP
and NTPP are provably mutually exhaustive and pair-
wise digjoint. The complete set of relations described
above can be embedded in a relational lattice. This
is given in Figure 1. The symbol T is interpreted as
tautology and the symbol L as contradiction. The
ordering of these relations is one of subsumption with
the weakest (most general) relations connected directly
to top and the strongest (most specific) to bottom.
For example, TPP implies PP, and PP implies ei-
ther TPP or NTPP. A greatest lower bound of bot-
tom indicates that the relations are mutually disjoint,
for example with TPP and NTPP, and P and DR.
This lattice corresponds to a set of theorems (eg.
VeyPP(z,y) — [TPP(z,y) V NTPP(z, y)]]) which we
have verified.

DC(z,y) =gef ~C(z,y)

P(z,y) Zaep V2[C(z,2) — C(z,y)]

PP(z,y) =4es P(z,y) A-P(y, z)

=y =4y P(z,y) ANP(y, 2)

O(z,y) =gey I2[P(2,2) A P(2,y)]

PO(z,y) =4es O(z,y) A-P(z,y) A—=P(y, z)
DR(CL’, y) =def _'O(x; y)

TPP(z,y) =4ef PP(z,y) A J2[EC(z,2) A EC(z,y)]
EC(z,y) =4ey C(z,y) A=O(z,y)

NTPP(z,y) =4.5 PP(z,y) A ~32[EC(2,z) A EC(z, y)]
P_l(x: y) Ed<'~3f P(y) JL‘)

PP~ (z,y) =4y PP(y,2)

TPP~!(2,y) =4e; TPP(y,2)

NTPP~!(z,y) =4ey NTPP(y,z)

In the original theory, several other defined rela-
tions (missing here) were defined. These were the
set of relations: ‘TP(z,y)’ (‘z is a tangential part
of y'), ‘NTP(z,y) (‘z is a nontangential part of
y’),'TPI(z,y)’ (‘z is the identity tangential part of y’),
and, ‘NTPI(z, y)’ (‘x is the identity nontangential part
of y’). We also omit in the new theory the set of topo-
logical functions introduced by Clarke, and adopted
by us in the original theory. In this revised theory,
we make no formal distinction in our model between
open, semi-open and closed regions used to interpret
this part of the formalism (as was done in the original
theory), so for example now the identity relation does
not split into two specialisations here, as it did in the
original theory to account for the differences between
types of regions. A similar rationale applies for the ex-
plicit introduction of the tangential part and nontan-
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Figure 1: A lattice defining the subsumption hierarchy of the dyadic relations defined solely in terms of the

primitive relation C(z, y).

gential part relations mentioned above - see Randell
(1991), Randell and Cohn (1989), Randell and Cohn
(1992) for further details.

Excepting the definition for the complement of a re-
gion, the Boolean part of the new theory follows the
original theory, and Clarke’s. The Boolean functions®
are: ‘sum(z,y)’ which is read as ‘the sum of z and
y’, ‘Us’ as ‘the universal (spatial) region’, ‘compl(z)’
as ‘the complement of z’; ‘prod(z, y)’ as ‘the product
(i.e. the intersection of z and ¥ and ‘diff(z,y)” as
‘the difference of # and y’. The functions: ‘compl(z)’,
‘prod(z,y)’ and ‘diff(z,y)’ are partial but are made
total in the sorted logic by simply specifying sorts re-
strictions and by introducing a new sort called NULL.

The sorts NULL and REGION are disjoint.

6 (T) =aes ty[®la(7)] means Vz[®(a(7)]]; thus, e.g.,
the definition for prod(z,y) is translated out (in the ob-
ject language) as: Vzyz[C(z,prod(z,y)) «— Jw[P(w,z) A
P(w,y) A C(z, w)]].

sum(z, y) =aes y[Vz[C(2,y) — [C(z,2) vV C(z,y)]]]
compl(z) =gy Ly[?é [C(z,y) — “NTPP(z, z)]A
Us =5 ty[V2[C(2,y

prod(z, y) =dey t2[Vu[C(u, 2) —
[P (v, ) AP(v,y) A C(u, v)]]]
diff(z, y) =4ey cw[Vz[C(z, w) —

C(z, prod(z, compl(y)))]]
Vzy[NULL(prod(z, y)) < DR(z, y)]

In Clarke (1981, 1985) (and also in our original theory)
the complement definition is defined so that a region y
connects with the complement of region z if and only
if y is not a part of . This has the formal consequence
that no region is connected with its own complement.”
However, this result is not formally derivable in the
new theory, and moreover must not be so given the new
interpretation. This arises from the new interpretation
for the connects relation, since every region (which is

"Here we are assuming certain restrictions on z. In the
unsorted theory assumed by Clarke, this amounts to z not
being identical to the universal region - our constant Us.



not identical to the universal region) will be connected
with its own complement. In fact this difference is re-
flected in the theorem: VaEC(z, compl(z)) which con-
tradicts the related theorem described above.

An additional axiom is then added to the new theory
which stipulates that every region has a nontangential
proper part:

Vz3y[NTPP(y, z)] (1)

This axiom mirrors a formal property of Clarkes’ the-
ory, where he stipulates that every region has a non-
tangential part, and thus an interior (remembering
that in Clarke’s theory a topological interpretation is
assumed).

4.1 One piece regions

Clarke’s theory supports a model where regions may
topologically connected (i.e. in one piece) or discon-
nected (in more than one piece). A definition for a
connected region is given - which states that a region
is disconnected iff it cannot be split into two disjoint
parts. The same type of model supporting either in-
dividual connected or disconnected regions appears in
the new theory, only here the definition for an indi-
vidual connected region does not need to incorporate
the distinction between topological types of regions,
i.e. being open, semi-open or closed. The definition
simply states that an individual region is connected if
it cannot be split into parts whose union is that re-
gion, and where these parts are not connected to each

other® i.e.

CON(z) =gey Yyz[sum(y, z) = z — C(y, 2)]

4.2 Proper and Improper regions

A proper region is defined to be a region that has a
nontangential proper part, and an improper region, a
region that is not a proper region.

PROP-REGION(z) =4,y 3zNTPP(z, z)

In the basic theory, where we allow space to be contin-
uously decomposed into a set of nontangential proper
parts, every region becomes a proper region, and no
region an improper region. However, in section 5 we
discuss the possibility of adding atoms into the for-
mal theory, and by positing atoms, improper regions
can be defined. Examples of improper regions would
be single atoms, and various clusters of atoms forming
strings, rings, and sheets in 3-space. As the possibility
of defining these objects requires atoms to be posited,
and that the question of whether or not atoms can
be included is a complex one, we refer the reader to
section 5 where this matter is discussed in more detail.

8The original definition in Randell and Cohn (1989) had
to be modified since it referred to the closure of a region.

4.3 Inclusion vs Containment

As with the original theory (but missing in Clarke) a
primitive function ‘conv(z)’ (‘the convex-hull of z’) is
defined and axiomatised. We assume here that conv is
only well sorted when defined on one piece regions.

VzP(z, conv(z))

VaP(conv(conv(z)), conv(z))

VaVyVz[[P(z, conv(y) A P(y, conv(z))] — P(z, conv(z))]

VaVy[[P(z, conv(y)) A P(y, conv(z))] — O(z, y)]

VaVy[[DR(z, conv(y)) A DR(y, conv(z))]
DR(conv(z), conv(y))]

We use this function to define a set of relations
which describe regions being inside, partially in-
side and outside, e.g. ‘INSIDE(z,y)’ (z is inside
y’), ‘P-INSIDE(z,y)’ (‘z is partially inside y’) and
‘OUTSIDE(z, y)’ (‘x is outside y’). This particular set
of relations extends below DR(z, y) in the basic theory.
The developed theory actually supports many speciali-
sations of these particular relations, with, for example,
one region being wholly outside, or just outside, or just
inside, or wholly inside another - see Randell and Cohn
(1989, 1992) and Randell (1991). However, here we re-
strict the set of defined relations to the specialisations
given above, their inverses, and the set of relations
that result from non-empty intersections. The set of
base relations for this particular set are finally gen-
erated by defining a further set of specialisations of
these relations using the EC and DC relations. In the
interest of space, only a subset of the constructible de-
fined relations are given below. However the interested
reader should have no difficulties actually generating
the formal definitions from the schema given below.

Here are the formal definitions for the named relations
introduced above, together with their inverses:

INSIDE(z, y) =45 DR(z,y) A P(z, conv(y))
P-INSIDE(z, y) =4.5 DR(z,y) A PO(z, conv(y))
OUTSIDE(z, y) =45 DR(z, conv(y))
INSIDE™!(z, y) =4.; INSIDE(y, z)
P-INSIDE™!(z,y) =4.; P-INSIDE(y, z)
OUTSIDE! (2, y) =4.; OUTSIDE(y, z)

A new set of base relations (using the relations defined
immediately above) are constructed according to the
following schema:

aB(z,y) Zaep a(z,y) A Bz, y)

where: a € {INSIDE, P-INSIDE, OUTSIDE}, and
3 € {INSIDE~!, P-INSIDE~!, OUTSIDE~!}, except-
ing where o = INSIDE and 3 =INSIDE~! Each of
these ‘composite’ relations then split into two variants,
the case where z and y EC, and the case where they
DC. This finally gives rise to the new set of base re-
lations in the extended theory, which now number 22



instead of 8 in the revised basic theory (cf. 23 and 9
in the original theory).

Two functions capturing the concept of the inside and
the outside of a particular region are also definable
(where ‘inside(z)’ is read as ‘the inside of z’, and
‘outside(z)’ as ‘the outside of z’ respectively:

inside(z) =g4ef Ly([jV(Z[C()z],]]y) — Jw[INSIDE(w, 2)A
outside(z) =g4ef Ly[é.)zl[lé(z, y) — Jw[OUTSIDE(w, z)A
C(z, w)]]

4.4 Geometrically Inside vs Topologically
Inside

In the previous section the DR relation is specialised to
cover relations describing objects being either inside,
partially inside or outside other objects. However this
ignores some useful distinctions that can be drawn be-
tween different cases of bodies being inside another.
In this case we separate out the case where one body
is topologically inside another, and where one body is
inside another but not topologically inside — this we
call being geometrically inside. The important point
of one body being topologically inside another is that
one has to ‘cut’ through the surrounding body in order
to reach and make contact with the contained body.
In the geometrical variant this is not the case.

I
1
1

Figure 2: The distinction between being topologically
and geometrically inside. The dashed lines appearing
here and in Figure 3 indicate the extent of the convex
hull of the surrounding bodies.

TOP-INSIDE(z, y) =Z4.; INSIDE(z, y)A
Vz[[CON(z) A C(z,z) A C(z, outside(y)] — O(z,y)]
GEO-INSIDE(z, ) Z4e INSIDE(z, y)A
~TOP-INSIDE(z, y)

It is also possible to specialise the relation of being ge-
ometrically inside — in this case setting up definitions
to distinguish between the following pictorial represen-
tations — Figure 3:

In order to make this formal distinction we first set
up a stronger case of a connected or one-piece region
to that assumed above. The important part of the fol-
lowing definition is the P(conv(sum(v, w)), ) literal in
the consequent of the definiens. This condition ensures
that the connection between any two parts of a region
whose sum equals that region, is not point or edge
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Figure 3: Two variants of being geometrically inside.
In the right hand figure the two ‘arms’ meet at a point.

connected. That is to say it ensures a ‘channel’ re-
gion exists connecting any two connected parts. This
notion of being connected mirrors and simplifies our
previous definition of a quasi-manifold — in this case
we use the concept of a convex body rather than use
topological and Boolean concepts in the earlier defini-
tion — see Randell and Cohn (1989).

CON'(z) =4e5 CON(z)A
Vyz[[sum(y, z) = z — C(y, 2)] —
Jvw[P(v, y) A P(w, z) A P(conv(sum(v, w)), z)]]

Now we give the formal distinction between the two
cases of being geometrical inside. In the first case a
‘channel’ region exists connecting the outside of the
surrounding body with the contained body, in the sec-
ond case the surrounding body has closed forming (in
this case) a point connection. In both cases we can see
how in contrast with the notion of being topologically
inside, it is possible to construct a line segment that
connects with both the surrounding body and the con-
tained body without cutting through the surrounding
body. Definitions distinguishing between the two cases
are as follows, where the open and closed variants re-
spectively refer to the first and second cases described
above.

GEO-INSIDE-OPEN (2, y) =4.; GEO-INSIDE(z, y)A
CON’(sum(inside(y), outside(y)))
GEO-INSIDE-CLOSED(z, y) =4.¢
GEO-INSIDE(z, y)A
CON(sum(inside(y), outside(y)))A
—CON’(sum(inside(y), outside(y)))

4.5 Theorems in the new theory

As mentioned above, some important differences exist
between both Clarke’s and the original theory, and the
new theory. For brevity we shall subsume our origi-
nal theory under Clarke’s, when making the contrast.
Where a difference arises between some theorem of
Clarke’s and our own original theory, we shall make
this explicit. First we demonstrate how the topolog-
ical distinction drawn between open, semi-open and
closed regions sanctioned in Clarke’s theory cannot be
made in the new theory. For Clarke, two regions z
and y are identical iff any region connecting with z
connects with y and vice-versa, i.e. Vrylz = y «—



Vz[C(z,z) < C(z,y)]]; however in the new theory, an
additional theorem concerning identity becomes prov-
able which is not a theorem in Clarke’s theory. This
is: Veylz = y — Vz[O(z,z) < O(z,y)]]. The topolog-
ical model used in Clarke’s theory, together with the
absence of boundary elements as regions, explains why
this formula is not derivable. For example, given the
closure of region z and its interior, then any region
overlapping the closure of z, overlaps the interior of
z, and vice-versa, (remembering that overlapping re-
gions entail that they share a common interior point)
but from this we cannot allow the interior of z to be
identical with its closure, which would follow if the re-
lated formula were to be a theorem in Clarke’s theory.

The next important difference between Clarke’s and
the new theory is the formula: Vzy[PP(z,y) —
32[P(z,y) A =O(z,x)]] which is provable in the new
theory, but not in Clarke’s. Given Clarke’s theory sup-
ports open, semi-open and closed regions as a model,
it becomes clear why this formula is not provable in
Clarke’s theory, since while the interior of a region is
a proper part of its closure, (and boundaries are not
regions) there is no other part of the closure which
does not overlap the interior. If one adds the con-
dition that the regions in question are closed, then,
the formula is true of Clarke’s theory, but this condi-
tion is waivered in the new theory. Another related
formula is: Yay[PO(z,y) — [3z[P(z,y) A =O(z,z)] A
Jw[P(w, ) A=O(w, y)]]], which is a theorem in the new
theory but not in Clarke’s. A counter example arises
in Clarke’s theory where we have two semi-open spher-
ical regions, # and y (with identical radii), such that
the northern hemisphere of x is open and the south-
ern hemisphere is closed, and the northern hemisphere
of y is closed and the southern hemisphere open. If x
and y are superimposed so that their centres and equa-
tors coincide, then x and y will partially overlap, but
no part of z is discrete from y, and vice-versa. Both
these theorems in the new theory show that a positive
Boolean difference exists between y and # when z is a
proper part of y. Again in Clarke’s theory this result
only follows when both = and y are closed regions.

In the new theory, Vz EC(z, compl(z)) holds; this con-
trasts with the theorem: V& DC(z, compl(z)) in both
the original and in Clarkes’ theories. Also here it is
worth pointing out that in the original theory (which
included Clarke’s set of topological operators) we in-
cluded the axiom: VazEC(cl(z),cl(compl(z))) which
ensured that the closure of x externally connected with
the closure of the complement of z, where z was re-
stricted so that it was not the universal region.®

Other interesting theorems are: Vayz[[C(z,y) A

°It turns out that if we assume the universal region is
topologically connected (which is a definable concept in
Clarkes’ theory) and that z is not the universal region, we
can prove this as a theorem. We are indebted to Laure
Vieu who demonstrated the proof to us.

—C(z,z)] — Juw[P(w,y) A =O(w,z) A C(z,w)]],
and Yzy[[PP(z,y) A Connected(y)] — 3Iz[P(z,y) A
EC(z,z)]]. Note for the latter formula to be a theo-
rem, an additional restriction on variable y is required,
namely that y is a place-holder for a one-piece region.

Readers familiar with either Clarke’s theory, or our
own original theory may be wondering what happens
to the relations TP and NTP which are excluded here.
In the new theory, we find that if we defined these
relations and added them to the extant set, the two
relations would give rise (on the assumption that z is
not identical with the universal spatial region) to the
theorems: VzTP(z, z) and Ya—NTP(z, z) respectively.
The latter indicates that no positive instance of the
relation NTP which is not a case of NTPP can arise
in any model of the new theory. Thus we omit NTP
and TP for reasons of symmetry and neither relation
appears in the relational lattice depicted in Figure 1.

4.6 Transitivity Tables for the new theory

A transitivity table is defined as follows. Given a par-
ticular theory ¥ supporting a set of mutually exhaus-
tive and pairwise disjoint dyadic relations, three indi-
viduals, a, b and ¢ and a pair of dyadic relations R
and Ry selected from ¥ such that R;(a, b) and Ry(b,¢),
the transitive closure R3(a, ¢) represents a disjun ction
of all the possible dyadic relations holding between a
and ¢ in X. Each R3(a,c) result can b e represented
as one entry of a matrix for each Ri(a,b) and Ra(b,¢)
ordered pair. If there are n dyadic relations supported
by X, then there will be n x n entries in the matrix. T
his matrix is called a transitivity table. A well known
example of a transitivity table appears in an imple-
mentation of Allen’s temporal logic (Allen 1983); we
also give a transitivity table for our original theory in
(Randell, Cohn and Cui 1992) and in (Randell and
Cohn 1992).

The new transitivity table is essentially the same as
the original one excepting that the new matrix for the
basic set of base relations has only one relation cover-
ing the identity relation, and not two as before. The
new table is easily constructed by simply eliminating
the row and column labelled NTPI, eliminating every
NTPI entry which appears in each cell, and replacing
TPI with =. The table is an 8 x 8 matrix (64 cells)
averaging = 3 entries per cell. For the basic exten-
sion to this table (including the inside, partially inside
and outside relations) the matrix increases to 22 x 22
(484 cells) averaging = 9 entries per cell. On these
two examples, the increase in the number of base re-
lations does not appear to increase the complexity of
the number of entries in the cells generated. The ex-
tended transitivity table furhter increases to 30 x 30
(900 cells) with the specialisation of the inside relation
covering the distinction between being topologically
inside and being geometrically inside. Note that this
does not exhaust the maximal number of base rela-
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Figure 4: A pictorial representation of the base rela-
tions and their direct topological transitions.
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tions that can be generated from the definitions given
in this paper — for we have not taken into account the
distinction made between the two defined cases of one
region being geometrically inside another.

As each cell in a transitivity table corresponds to a
theorem, computing these large transitivity tables is a
non-trivial task — see Randell, Cohn and Cui (1992).
We have recently simplified this task by using a pro-
gram that uses a bit-string model to generate all pos-
sible transitivity table configurations for a given set of
base relations. The original 9 x 9 table has been for-
mally proved, and the program constructed to generate
the larger 22 x 22 table conforms with the predicted
entries for the 8 x 8 table.!?

4.7 Envisioning axioms in the new theory

As mentioned above, we express different sets of base
relations in the form of a set of envisioning axioms.
These stipulate direct transitions that are allowed be-
tween pairs of objects over time. A pictorial represen-
tation of the basic set of base relations and their direct
topological transitions in the new theory is given in
Figure 4.!!

For the basic set of base relations - the set
DC,EC,PO,=, TPP,NTPP and the inverses for TPP
and NTPP, no practical difference arises from that
used in the original theory (using the set of 9 base
relations). This arises simply because in the domains
we modelled we simply mapped the named individu-
als to closed regions, thus eliminating the base relation
NTPI which is only true for open regions. However,
if we add NTPI into the envisioning axioms, then the
number of paths connecting nodes in the graph for

10The generation of the 22 x 22 table took 2 days CPU
time on a Sun Sparc IPC.

1 Note that here as in the network used in the original
theory, we have assumed that the regions depicted have
nontangential proper parts. This means no direct transi-
tion from e.g. EC to identity is allowed which would arise
if both regions were atomic.

the 9 base relations compared with that for the graph
generated from the new theory (with 8 base relations)
reduces from 17 to 11.12

4.8 Models and structures for the new theory

We have already given one model for the new the-
ory, interpreting the C relation in terms of two regions
whose closures share a common point. However, other
models exist. We could simply state that two regions
connect, when it is not possible to ‘fit’ another distinct
region between the two, or alternatively to say when
the distance between them is zero. Clarke (1981) only
suggests the point based topological interpretation as
one possible interpretation for his axiomatisation.

For the new theory there is an important meta-
theoretic restriction concerning Boolean sums or
unions of regions, namely that infinite unions cannot
be allowed. If infinite unions are allowed, the theory
becomes inconsistent. The proof sketch is as follows.
In the theory we have an axiom that ensures every re-
gion has a nontangential proper part, and a theorem
that states that if region z is a proper part of region
y, then there exists another region z that is part of y,
but is disjoint with . From both of these, it follows
that every region is subdivided into an infinite set of
nontangential proper parts. However if we take the in-
finite union of all the nontangential proper parts of y,
then in the limit this union becomes identical with y.
However, the definition for NTPP requires no region
to externally connect with y, but y now identical with
the infinite union of all its nontangential proper parts,
must externally connect with its own complement —
which is inconsistent. Viewed another way this result
simply illustrates the fact that (on pain of contradic-
tion) interiors (in the topological sense of the term)
cannot be explicitly introduced into the theory. In
fact it can be shown that by adding the definition (for
the interior of region z):

int(z) =ge5 ty[V2[C(2,y) — FJW[NTPP(w,z) A C(z, w)]]

and positing the existence of interiors, a formal con-
tradiction is generated.

4.9 Comparisons with the Classical Calculus
of Individuals

Readers familiar with Leonard and Goodman’s (1940)
(classical) calculus of individuals will notice similar-

12This assumes that a legitimate path connects the node
NTPI with the nodes TPI,PO, TPP,NTPP and the inverses
for TPP and NTPP. Ontologically speaking this is the most
liberal result where we allow regions to change their topo-
logical type over time, i.e. from non-open to open as in
for example the path linking TPI and NTPI. Other less
liberal linkages may well be envisaged which would reduce
the number of connections between nodes.



ities between this calculus and the new calculus de-
scribed above. In the classical calculus, DR is axioma-
tised to be irreflexive and symmetrical, and is used
to create a set of dyadic relations and Boolean op-
erators defined on individuals. No analogues of DC
and EC (defined in Clarke’s calculus) are defined in
the classical calculus. With the weaker relation C this
distinction can be made. The new theory contains,
as part of its complement definition, a conjunct that
mirrors the definition for complementation in the clas-
sical calculus, i.e. the formula: Yay[O(z, compl(y)) <
—P(z,y)]. This conjunct forces the following formula:
Vay[P(z,y) < Vz[O(z,2) — O(z,y)] to be a theorem
in the new theory; in fact this equivalence mirrors the
definition for P in the classical calculus, where P is
defined solely in terms of O. The new theory straddles
between Clarke’s and the classical calculi of individu-
als.

5 Atomic regions: a discussion

In Randell, Cui and Cohn (1992) we allowed atomic
regions or atoms to be introduced into the ontology.
Atoms were defined as regions with no proper parts,
and an existential axiom was added that ensured ev-
ery region had an atom as a part. In the intended
model, atoms were understood to be ‘very small’ re-
gions. Atoms were then used in the definition of what
we called the skin of a region. This skin is comparable
to the notion of a mathematical surface, except that
unlike a surface proper, the skin of a region was un-
derstood to have non-zero thickness. The definition
for the skin of a region simplified the analogous defini-
tion given in Randell (1991), and in Randell and Cohn

(1992); and was a direct result of our new theory.

As the basic theory supports a model with a continu-
ous decomposition of regions into nontangential proper
parts (being a direct consequence of axiom (i) above),
some restriction was necessary to avoid building in-
consistency into the theory. Axiom (ii) used below
consequently replaced axiom (i). The basic extension
was presented as follows:

ATOM(z) =47 YY[P(y,2) — y = 2]

Ve[-ATOM(z) — Jy[ATOM(y) A P(y, 2)]] )

Vz[-ATOM(z) — Jy[NTPP(y, z)]] (i)

skin(z) =ge5 ty[V2[C(z, y) — FW[ATOM(v)A
TPP(v,z) A C(z,)]]]

One improvement to the above can immediately be
made: axiom (ii) is clearly too restrictive — it should
be rewritten as

Yz[-PROP-REGION(z) — Jy[NTPP(y, z)]]

but this is just one half of the definition of PROP-
REGION and so is logically redundant! Thus axiom
(i) should simply be deleted and not replaced with
anything.

5.1 Small is not beautiful: problems posed
by atoms

Unfortunately, it turns out that even given the re-
striction imposed by axiom (ii ) above, this is not
sufficient to stop inconsistency arising in the atomic
variant of this theory. The discovery of this came as
something of a surprise, since the axioms and defi-
nitions used seemed intuitively correct, until the dis-
covery of the contradiction forced us to look deeper
into the axiomatisation. The proof is as follows. As-
sume an arbitrary atom, call it b. Assume b is not
identical to the universe, then b has a complement,
and EC(b,compl(b)) follows. However, since b is an
atom, then everything connected to b, connects with
compl(b). From the definition of P, P(b,compl(b)) also
follows. P(b,compl(b)) implies O(b,compl(b) ), which
implies ~EC(b,compl(b)). Thus EC(b,compl(b)) and
—EC(b,compl(b)) — contradiction — QED. The prob-
lem lies with the definition of P, which (in the in-
tended domain) is false for atoms, for it is not true
that just because every region connected to an atom
is connected to its complement, that atom is necessar-
ily part of its complement.

Now it turns out that Clarke’s theory is immune from
this problem for the following reasons: (i) his defi-
nition for complement (being different) ensures that
-C(x,compl(x)) follows, and (ii) because of the exis-
tence of interiors in his theory. This latter feature
ensures the existence of some region that (connects
with itself but) does not connect with its complement.
And thus it does not follow that an atom posited in
Clarke’s theory (being identical to its own interior) is
part of its own complement. The explicit introduction
of (topological) interiors into Clarke’s calculus ensures
his theory is (at least on this point) sound, but given
we sought to eliminate this explicit characterisation
of open, semi-open and closed regions other solutions
must be sought.

5.2 Small is not beautiful: solutions

Below we give three potential solutions to the prob-
lem posed by admitting atoms into the domain. Two
of these require that atoms be introduced as a prim-
itive sort, while the third keeps atoms as a definable
sort but introduces points. This section covers work
in progress, so the proposed solutions must viewed in
this light.

The first solution is to make atoms a primitive sort,
that is to say we do not give a formal definition for
atom as above. Atoms are then allowed to have regions
as(parts which we call particles, but with the restric-
tion that particles always occur in atoms and do not
appear in non-atomic regions without also being em-
bedded in atoms. Thus what we call atoms here are
really pseudo-atoms since they contain proper parts.
The idea is that for most practical modelling purposes



(pseudo) atoms are considered to be the most primitive
entity that is explicitly referred to. The contradiction
arising from positing atoms now dissolves. Because
atoms now have proper parts, this means that it is no
longer true that every region which connects with an
atom connects with its complement.

Given atoms are represented as a primitive sort, we
need to axiomatise their properties. First we stipu-
late that any two atoms that overlap become identical.
Next we add the definition for a particle, together with
an axiom that every atom has a particle as a proper
part:

Vay[[ATOM(z) A ATOM(y) AO(z,y)] — z = y]
PARTICLE(z) =4.; Jy[ATOM(y) A PP(z, y)]
Vz[[ATOM(z) — Jy[PARTICLE(y) A PP(y, z)]
Vz[[~ATOM(z) A ~PARTICLE(z)] —

[P (y, z) A ATOM(y)]

The second solution takes atoms and the summation
operator as a primitive sort and function respectively
and then defines the part/whole relation in terms of
summed regions. First we axiomatise C as before and
define C on atoms. Then we define the relations DC,
= and EC for atoms. (Here it is useful to remember
that atoms can only be disconnected, externally con-
nected or be identical.) Axioms defining the standard
properties of the summation operator are then given,
together with an axiom that ensures that if two atoms
are digjoint, their sum is not an atom:

DC(z,y) =4er —Clz,y)
T =Y =def VZ[C(Z,I‘)H Z)y)]
EC(Z’, y) =def C(Z) y) A —|(l‘ = y)

Vesum(z,z) =z
Vey[sum(z, y) = sum(y, z)]
Veyzsum(z, sum(y, z)) = sum(sum(z, y), 2)]
Vey[-(z = y) — -ATOM(sum(z, y))]
REGION(z) =4.5 Yy[C(y, ) —
Jz[ATOM(z) A P(z,z) A C(y, 2)]]

Note that for the first group of formulae presented im-
mediately above, all the variables are of sort ATOM;
this restriction is relaxed in the second group where all
the variables are of sort SPATIAL (remembering that
ATOM is a subsort of SPATIAL in this theory).

Next we start to define the set of binary relations which
are true for non-atomic regions:

P(z,y) =aey I2[y = sum(z, z)]
O(z,y) =aep I2[P(2,2) ANP(2,y)]
EC(z,y) =aey ~O(z, y)A
Jzu[ATOM(z) A ATOM(u) A P(z, z)A
P(u,y) AEC(z, u)]

The reader should now be able to complete the set of
binary relations defined on non-atomic regions, using

the earlier set of definitions as a guide. The rest of
the axiomatisation then follows as before, excepting
of course that the summation operator does not now
appear as a definition.

The third solution keeps atoms as a defined sort, but
also introduces points as a new primitive sort into the
ontology. The general idea is to rework the definition
of the part/whole relation in terms of points instead
of regions and connection as before.

First the new sort POINT is stipulated to be pairwise
disjoint with REGION and NULL. A new primitive
relation ‘IN(z, y)’ read as ‘(point) z is incident in (re-
gion) y’ is then added; this replaces the primitive C
relation used above. IN is axiomatised to be irreflex-
ive and asymmetrical’3. Then we define both the C
and P relation in terms of points, instead of regions as
before:

Ve—IN(z, z)

Vzy[IN(z,y) — —IN(y, z)]

C(2,y) =des F2[IN(z,2) NIN(z,y)]
P(z,y) =aey V2[IN(2,2) — IN(z, y)]

The crucial point(!)  here is that the formula:
Vey[P(z,y) < Vz[C(z,z) — C(z,y)]] is now not prov-
able; this serves to block the proof which generated
the contradiction described above.

The rest of the axiomatisation then follows that given
in the main body of this paper. Note here that we have
chosen to replace C with IN as the primitive dyadic
relation upon which this axiomatisation is built. It is
certainly possible to axiomatise C as before and then
axiomatise IN in terms of C and P, i.e. stipulating that
two regions connect iff they share a common incident
point, and stipulating that one region is part of an-
other iff every point incident in the former is incident
in the latter. Our choice is simply based on ontolog-
ical parsimony, for while connection can be defined
in terms of incidence, incidence cannot be defined in
terms of connection.

6 Related and Further Work

We have already mentioned Clarke’s calculus of indi-
viduals, our earlier work of which this present theory
is a simplification, and Allen’s and Hamblin’s work on
interval logics. The only other work of which we are
aware, that uses Clarke’s theory for describing space,
is Aurnague (1991) and Vieu (1990). Other work on
the description of space using a body rather than a
point based ontology, can be found in Laguna (1922),
Tarski(1956) and Whitehead (1978). There have been
some attempts in the qualitative spatial reasoning lit-
erature to employ Allen’s interval logic, for describing

13Note that the two axioms for IN are not required in a
sorted logic.



space, see for example Freksa (1990) and Hernandez
(1990), but here a stronger primitive relation used,
which does not allow the full range of topological re-
lationships to be formally described as given in both
Clarkes’ and our original and new theories. Apart from
the question raised by adding atoms to the theory, we
are currently working on the question as to whether
the new theory supports decidable subsets. We have
already indicated some extensions to this new logic
above, including a temporal extension and extending
the ontology further to be able to reason about bodies
and describe, states, events and processes. For other
extensions to the spatial theory itself, work described
in Randell (1991) can also be included. For example,
we could add a metric extension to the theory, using
either a distance function, or alternatively by adding a
ternary relation (along the lines of Van Benthem 1982,
appendix A) that gives comparative distances between
objects.

7 Conclusions

The new theory gains over Clarke’s theory and the
original theory we developed from several viewpoints:
ontologically (the explicit distinction between open,
semi-open and closed regions is eliminated), defini-
tional (there are fewer defined predicates, and fewer
axioms), metatheoretically (there are fewer entries in
transitivity tables, and fewer nodes in the the sort hi-
erarchy), and computationally (for comparable theo-
rems, there are fewer formulae in the search space,
and fewer nested functions to address in definitions).

The major difference at first sight is ontological par-
simony, but we argue that the loss of granularity is
not important when modelling physical domains, since
physical objects correspond to ‘closed’ regions, and
boundaries can be modelled using ‘skins’.
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