Oriented Matroids as a Foundation for Space in GIS

Abstract

This paper explains why a particular mathematical structure, called
an oriented matroid, is relevant to the foundations of geographic in-
formation science. A finite set of points in the plane can be given
the structure of an oriented matroid and this finite structure captures
enough of the geometrical structure of the idealized continuous plane
to be able to perform useful computations such as finding the convex
hull of a subset of the points. The advantage of oriented matroids over
some approaches to discrete space, such as Schneider’s realms, is that
they are purely finite combinatorial structures that make no mention
of R” or Q", even though the intended models are finite subsets of
these spaces. We provide brief details of the theory of oriented ma-
troids, but the emphasis is on providing a motivation for the study of
oriented matroids in the GIS context.
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computable geometry.



1 Introduction

This paper explains why a particular mathematical structure, called an ori-
ented matroid, is relevant to the foundations of geographic information sci-
ence (GIS). In order to place our explanation within the appropriate context,
we begin by considering the general issue of the spatial foundation of GIS.

The classical conception of space in GIS, which is by no means univer-
sally accepted, has a number of features that include what may be termed
continuity and externality. By continuity we mean that a region can always
be subdivided into strictly smaller subregions; by externality we mean that
space exists independently of the objects or fields about which we record
information. The view that space is continuous is found not only in the
quantitative approach based on real numbers, but also in the qualitative
approach of the region-connection calculus [Coh96]. Discrete alternatives to
space have been proposed by several authors including Galton [Gal99].

Both the object and the field paradigms in GIS are based on a view
of the world where space exists prior to entities which may populate it
(objects), or vary over it (fields). A radical alternative would be that a
place is constructed by the events that happen there and that places are
different only because different things happen there. In this view space does
not exist on its own. A full development of this approach does not appear
to have been carried out. The terminology object-centered as opposed to
space-centred is apposite. However, Goodchild’s usage [Goo0l, p3], views
the objects as located in a continuous space, rather than the space itself
being created by the relationships between objects.

There is good motivation, from the GIS standpoint, for investigating
space which is neither continuous, nor exists apart from relationships be-
tween events or processes. One might suppose that such approaches are
no more than a computationally convenient way of modelling the world,
and that we would be approximating a genuinely continuous and absolute
space. However, it is remarkable that recent ideas in theoretical physics sug-
gest that space might ‘really’ be both discrete and created by relationships
rather than being absolute. The two aspects of space are in fact intimately
connected As Smolin puts it [Smo00, p96]

“To understand what we mean when we say that space is dis-
crete, we must put our minds completely into the relational way
of thinking, and really try to see the world around us as nothing
but a network of evolving relationships. These relationships are
not among things situated in space — they are among the events
that make up the history of the world. The relationships define
the space, not the other way round.”

If then we want space which is both discrete and relational where should
we look? What might be the mathematical form of such a theory? At



present, no such theory has been constructed in a completed form, either
for the needs of the foundations of GIS or of quantum gravity. It would be
premature to guess what all the ingredients should be, but our purpose in
this paper is to demonstrate that for the needs of GIS, oriented matroids are
a particularly promising basis. Their value in theoretical physics is outside
our scope, but we note that connections are being investigated, for example
Nieto’s work [Nie02].

Overview

The structure of the paper is as follows. In section 2 we consider first the
classical notion of space based on the real numbers, R, discuss its short-
comings, and describe briefly some existing alternatives. In the following
section we give an overview of Knuth’s CC-systems [Knu91]. These form a
special class of oriented matroids and Knuth’s motivation for investigating
these was the development of a Delaunay triangulation algorithm, which is
important in processing geographic data [Jon97, p200]. We introduce the
definition and key concepts of matroid theory in section 4, providing two
illustrative examples in sections 4.2 and 4.3. The matroid concepts are de-
veloped in section 5 where we consider oriented matroids and extend the
examples of section 4. Our proposals for how oriented matroids might be
used in GIS are presented in section 6, and the final section provides some
conclusions.

2 Spatial Representations

The most common view of geographical space is that it forms a plane which
can be described in terms of real number coordinates. For three dimensional
data, R3, can be used; taking time as a fourth dimension leads to R*. In
this section we review the drawbacks of of this approach, and consider some
alternatives to spaces based on R.

2.1 Deficiency of R”

The problem with using R* to reason about computation is that its mathe-
matics has to be translated into computational terms. Any program written
in terms of this mathematics has to be translated in order to be implemented,
and it might not be obvious how to do this. Worse, a completely accurate
translation might not even be possible.

Some authors have expressed the view that for practical purposes the
inadequacies of the translation are negligible compared with the accuracy
of available data. Goodchild [Goo01, p2] says “Double precision offers 14
decimal digits ..., an absurd level of precision given the typical accuracy of



geographical data. ... only when coordinates are represented by short inte-
gers is there a need to be concerned about machine precision”. There are a
number of objections to this view which need to be considered. While the
precision of 14 digits is more than adequate, it has to be remembered that
iterative calculations performed on such data can readily reduce the preci-
sion to a level which does have practical consequences. Another objection is
that blithely computing with computer represented reals is not acceptable if
we want to be able to argue rigourously about the behaviour of our systems.
To be able to provide assurance that systems have specified behaviour, an
underlying theory is necessary. Without such an underlying theory we can-
not specify exactly what an implementation of a convex hull algorithm, say,
does. We can specify the algorithm’s behaviour when it operates on real
numbers, but these cannot be implemented.

Computing the intersection of two lines is an instance of a class of ge-
ometric intersection problems the practical importance of which for GIS is
well known, see, for example, [Jon97, pp187-192] and [Wis02, chap. 3]. Sup-
pose we need to compute the point of intersection, p, if it exists, of straight
line segments [w, z] and [y, z] in the plane. It may be assumed that the end-
points are inputs or outputs of some computation and so each contains only
a finite amount of information; so they are points of Q? (i.e. with rational
coordinates). The calculation is mathematically very simple: if either of
the line segments is horizontal or vertical it is even simpler, but otherwise
p = Aw + (1 — A\)z, where

(y2 — 22)(z1 — 21) — (22 — 22) (31 — 21)

T T =) — o) — (0 — w)z— 22)

where w = (w1, ws), etc. Obviously p € Q?, and the numerator and denomi-
nator of its coordinates are not arbitrarily large, but are bounded by the size
of the numerator and denominator of the other points. It often happens,
however, perhaps during a process that involves many iterations, that they
are still too large to be stored in the computer at hand. Therefore, unless
the computation is to be aborted, p is rounded to the closest point ¢ that
can be stored. Then p is the point of intersection in the mathematics but ¢
is the computed point of intersection, which is a rounding error.

The problem is illustrated in figure 1. Think of the set of pairs of floating-
point numbers in a computer as a grid of points in the plane. The intersec-
tion point p is not a point in the computer, so is rounded to the closest point
that is, which is q. But this rounding gives an error, for example, when it
is asked on which side of the dotted line the point of intersection lies: p lies
on one side and g on the other.



Figure 2: Example of realm on left, but right hand diagram is not a realm.

2.2 Discrete Spaces Embedded in R”

We now consider two approaches to a discrete space embedded in R™. These
contrast sharply with oriented matroids which provide an approach indepen-
dent of R”.

2.2.1 Realms

A realm [Sch97] is a grid of points in the plane together with a collection
of straight line segments between pairs of these points such that the inter-
section of any two line segments is either empty or an end-point of both.
In a computer, the points are pairs of floating-point numbers, and a line is
represented by its two end-points. It is precisely because of the intersection
problem above that the line segments in a realm are subject to the restric-
tion that they are; built into the very definition of a realm is a restriction on
the amount of mathematics of R” or (' that is to be used in computation.

2.2.2 Digital Topology and Geometry

A computer screen is a set of pixels, and a digital object is any subset
of this set. Many questions concerning the topology of digital objects arise
naturally in image analysis: When is an object connected? What is its
boundary? Does it contain any holes?

The meaning of these questions depends on how a screen is interpreted



mathematically, and a natural interpretation is to regard a screen as a grid of
squares in the plane R?, each pixel representing a square. This approach suf-
fers from the same problem as that noted for realms: the space is embedded
in idealized Euclidean space. We argue that it is far more computationally
relevant to embed them in a finite mathematical structure.

The problem with an embedding in continuous space is that the defini-
tions of digital connectivity etc. are in terms of infinite criteria (a digital
image may be defined as being connected if its corresponding uncountably
infinite point set in the plane is connected), whereas any program that checks
whether a digital image is connected is, at least if it terminates, implement-
ing finite criteria. There is therefore a gap between the mathematics of
digital images and its implementation. Digital topology was introduced in
order to close this gap, by regarding a screen as a finite mathematical struc-
ture. The original approach was to regard a screen as a graph (in which the
vertices are pixels, and the edges represent adjacency of pixels). A subse-
quent approach, by Khalimsky, and later by Kovalevsky, developed mainly
to obtain an improved digital Jordan curve theorem, is to regard a screen as
a finite non-Hausdorff topological space. The two approaches are described
and compared in [KR91].

Digital topology is a well-established discipline, and the topology of dig-
ital images is by now well-understood. The same cannot be said for the
geometry of digital images. Although the name “digital geometry” is be-
ing used more often, most of the work that goes under this heading is still
entirely topological. To provide a digital geometry prompts a number of
questions, as yet unanswered. Are there useful finite geometries associated
with a screen that would provide a mathematical basis for digital geometry?
Are these geometries axiomatic? Can, for example, a straight line or a con-
vex set on a screen be regarded as actually being a straight line or convex set
in some autonomous axiomatic geometry, and not merely as an approxima-
tion of some Fuclidean straight line or convex set? We believe that matroids
and oriented matroids are highly relevant to these issues, and for a concrete
example of the use of oriented matroids in spatial computation we turn to
the work of Knuth on the foundations of computational geometry.

3 Knuth’s CC Systems

Knuth [Knu91] investigated the connection between geometric computation
and matroids through his work on C'C-systems, which are closely related to
oriented matroids. Below we see how C'C-systems encode some geometrical
structure of certain finite sets of points using a three-place relation. Knuth
showed that this provided enough structure to carry out useful computa-
tions, such as a convex hull algorithm. This provides a good illustration of
the general oriented matroid approach of capturing geometric information



in a purely finite combinatorial structure that makes no mention of R” or
@, even though the intended models are finite subsets of these spaces.

3.1 Definition of C'C-System

A CC-system consists of a finite set E together with a ternary relation B
(that (z,y,z) € B is written simply as zyz, and that (z,y,z) € B is written
—zyz) such that

(CC1) zyz = yzx;

(CC2) zyz = —xz2y;

(CC3) zyzV yrz;

(CC4A) zzy Nwzy Nwrz = wxy;

(CCB) zyv A zyw A zyz A zow A zwz = 2zvx.

These structures have the following geometry. A straight line is any
pair of distinct points {a, b}, and its corresponding open half-spaces are
the sets {z | abz} and {z | axb}. The convex hull of a set is then the set of
those points that cannot be separated from it: z is in the convex hull of X if
there is no open half-space that contains = and does not intersect X. Knuth
then proceeds to develop algorithms, expressed in terms of the structure of
the systems alone, for computing the geometry of CC-systems, and one of
the main points is that this leads to significantly better algorithm design for
computational geometry.

3.2 Models of CC-Systems

The main intended models are as follows. Consider any finite subset E of the
plane that does not contain any triple of collinear points, and let B(z,y, 2)
if z,y, z are distinct and, when travelling clockwise around the unique circle
that contains them, after passing through x then y is reached before z. This
relation is called the clockwise ordering, and satisfies the five conditions
above.

An example is shown in Figure 3; consider the clockwise ordering on
the set of six points in the plane. In the resulting CC-system, the open
half-spaces corresponding to the straight line {a,b} are {e} and {c.d, f};
the convex hull of the set {a,b,c,d} is the set {a,b,c,d, f}. It is always the
case that the convex geometry a set inherits from the plane is encoded by
its clockwise ordering: the geometry is the geometry of the CC-system.

Given, then, a set of “planar points” (pairs of floating point numbers,
say) in a computer, one regards these not as embedded in the plane, but
rather as points of a CC-system, and computes their geometry accordingly.
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Figure 3: Clockwise ordering relation

Of course, one does not actually store (in principle possible, though in prac-
tice entirely infeasible) the CC-sytem in the computer memory, any more
than the plane is ever stored (though this of course is impossible); one instead
sets up a means of computing its structure. For planar points z = (z1,z2),
y = (y1,y2) and z = (21, 29), let

X1 X9 1
det(z,y,z) = | y1 Y2 1 |=2z1(y2 — 22) — y1(w2 — 22) + 21(x2 — ¥2),
AR 1

and let B(z,y,z) if det(x,y,z) > 0. This indeed gives a CC-system, and is
the clockwise ordering were the planar points embedded in the plane.

It might be useful to summarize what is going on here. Knuth is focussing
on one property of the plane, that of the clockwise order, and disregarding
all others. This order can be computed via computing determinants of
matrices, and its abstract properties form a purely combinatorial geometry
— a CC-system. Geometric algorithms, such as a convex hull algorithm
(and, subsequently, a Delaunay triangulation algorithm, which is based on
an extension of the clockwise order), are designed in terms of this property
alone, and Knuth states that this leads to significantly improved algorithm
design.

As Knuth then observes, CC-sytems form a certain class of oriented ma-
troid; in fact the axioms for a CC-system are close to the so-called chirotope
axioms for oriented matroids. Oriented matroids admit many different ax-
iomizations, and in section 5 we will give one of the most standard of these.
In preparation for this, the next section introduces matroids.

4 Matroids

Oriented matroids can be described as matroids with additional structure.
In this section we review some of the basic concepts of matroid theory. For
the full story see the book [Ox192].

The concept of a vector space is one of the basic building blocks under-
lying the algebraic approach to GIS proposed by Frank [Fra99, p101]. The
insight of Whitney, the originator of matroid theory in the 1930s, was that



one can throw away the vector space, keeping only the structure captured
by the matroid, and still have a good theory of linear geometry. Thus, one
view of matroids is that they abstract the notion of linear independence
from vector space theory. However, matroids also capture the structure of
affine geometry, many aspects of graph theory, and several other areas.

4.1 Definition and key concepts

A matroid M is a finite set E together with a collection Z of subsets of FE,
called independent sets, such that:

(I1) @ is independent;
(I2) Every subset of an independent set is independent;

(I3) For any independent sets I,.J such that I has more elements than J,
there exists some z € I\J such that J Uz is independent.

The following are, very briefly, the most fundamental concepts in matroid
theory. A basis of X C F is any of its maximal independent subsets. It can
be shown that all bases have the same number of elements. The rank of X,
denoted r(X), is the cardinality of any of its bases; the closure is defined
as (X) ={e€e E|r(X)=r(XUe)}. A closed set is any set that is equal
to its closure. A dependent set is any set that is not independent, and a
circuit is any minimal dependent set.

Equivalent axiomatizations of matroids exist in many different forms.
To understand the relationship of matroids to oriented matroids, we give
the description in terms of circuits. A collection of subsets, C C P(E), is
the collection of circuits of a matroid iff

(C1) @ ¢C;
(02) 01,02 € C, CiCcCy=Ch = 02;
(03) 01,02 € C, & 75 02, ze(CiNCy=3C3€C. C3 C (Cl U 02)\$

A fundamental aspect of matroid theory is that of duality. A hyper-
plane is any closed set H such that r(H) 4+ 1 = r(FE), and the complement
of a hyperplane is called a cocircuit. The set of all cocircuits satisfy the
matroid circuit axioms, and so form another matroid on the same ground set
as the original matroid. This is called the dual matroid. Every matroid is
the dual of its dual.

4.2 Affine Matroids

One class of examples of matroids that is particularly important for our
purposes is that based on the notion of affine independence. In the plane



Figure 4: Five points in the plane.

R?, the affine sets (also called flats or closed sets) are: the empty set,
the points themselves, the straight lines, and the plane itself. The affine
hull of any set is the smallest affine set that contains it. A set is affine
independent iff its affine hull is not the affine hull of any of its proper
subsets. Given a set F of points in the plane, we can construct a matroid,
called the affine matroid on F, by taking the independent sets to be the
sets of points which are affine independent.

For example, consider the set of points in the plane shown in figure 4.
The independent sets in the inherited matroid are all the (< 3)-element
subsets except {a, c,d}. The circuits are {a,c,d}, {a,b,d, e}, {b,c,d, e}, and
the hyperplanes are {a, b}, {a,c, d}, {a, e}, {b,c}, {b,d}, {b, e}, {c, e}, {c,d}.
The bases are all the 3-element subsets except {a,c,d}. The affine sets are:
@; all the singleton subsets; {a,c,d} and all the doubleton subsets except

{a,c}, {a,d}, {c,d}; {a,b,c,d, e}

4.3 Graphic Matroids

A non-empty collection of edges in an undirected graph is a circuit if it can
be ordered ey, ..., e, such that there exist distinct vertices vy, ...,v; such
that e; is an edge between v; and v;41 (indices considered mod k+1). A set
of edges is independent if it contains no circuit (these sets are called forests
in graph theory; a connected forest is a tree), and these independent sets
satisfy the matroid axioms. In the example shown in figure 5, the circuits
are e, ab, adf, bdf. The cocircuits of a graphic matroid are its minimal
cut-sets, which in the example are ¢, df, abd, abf.

The bases of a graphic matroid of a connected graph are its spanning
trees. This is one example of the (quite extensive) use of matroids in com-
puter science and spatial computation, particularly in the area of combina-
torial optimization. A good basic reference is [CCT98].
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Figure 5: Graph to illustrate construction of graphic matroid

5 Oriented matroids

In this section we sketch the main concepts for oriented matroids. For a
detailed study, the book [BVS'99] is a valuable source.

Vector spaces do not in general have enough structure to support a theory
of convexity; it is only vector spaces over ordered fields that do. We can
therefore hardly expect matroids to have any theory of convexity. One view
is that an oriented matroid is a matroid plus convexity.

5.1 Definition and Key Concepts

To define oriented matroids we need the concept of a signed set. A signed
set is any pair X = (X, X 1) of disjoint sets, which we will call its parts.
Its opposite is the signed set —X = (X, X7), and its support is the set
X = X UXT. A signed set is said to be a signature of its support. A cir-
cuit signature of a matroid is a collection of signatures of its circuits that
contains exactly two signatures of each circuit, and these two are opposite.

An oriented matroid is a matroid together with a circuit signature
such that, for any signed circuits X # —Y, and any e € Xt NY ™, there is
a signed circuit Z such that Z* C (XTUYT)\eand Z~ C (X UY )\e.

As with matroids, duality is a fundamental aspect of the theory. Two
signed sets are orthogonal if either their supports are disjoint or one part of
one intersects both parts of the other. Given any oriented matroid and any
cocircuit of its underlying matroid, there is, up to opposites, a unique signa-
ture of the cocircuit that is orthogonal to every signed circuit. The resulting
collection of cocircuit signatures is an orientation of the dual matroid, and
so we have another oriented matroid, called the dual of the original. Every
oriented matroid is the dual of its dual.

5.2 Affine Oriented Matroids

Consider the affine matroid on a finite subset E of Euclidean space (or any
vector space over an ordered field). Any circuit admits a unique partition,
called a Radon partition, into two sets such that the Euclidean convex
hulls of these sets intersect. Taking, for each circuit, the pair of opposite

11



Figure 6: Illustrating construction of affine oriented matroid

Figure 7: Tllustrating construction of graphic oriented matroid

signed sets determined by its Radon partition gives an oriented matroid,
called the affine oriented matroid !

In figure 6, the signed circuits in the affine oriented matroid are (ae,d),
(ad,bc), (ae,bc), (bee,d) and their opposites. The signed cocircuits are
(abd, @), (acd, D), (ab,e), (a,de), (ac,e), (b,c), (bde, &), (cde, @) and their
opposites.

5.3 Graphic oriented matroids

A non-empty collection of edges in a directed graph is a circuit if it can be
ordered ey, ..., e, such that there exist distinct vertices vy, ..., v, such that
e; is an edge from v; to v;11 or from v; 1 to v; (indices considered mod k+1).
For each circuit, consider the signature ({e; | e; an edge from v; to v; 41},
{ei | e; an edge from v;;1 to v;}) and its opposite. This gives an oriented
matroid.

In figure 7, the signed circuits in the graphic oriented matroid are (e, &),
(ab, @), (af,d), (bd, f) and their opposites. The signed cocircuits are (¢, &),
(df, @), (ad,b), (a,bf) and their opposites.

6 Applying Oriented Matroids to GIS

In this section we identify ways in which oriented matroids might be applied
in GIS. In each case further work will be required before the full details of
the oriented matroid approach are available and can be evaluated. However,

!The term affine oriented matroid is used in the literature for a quite different
structure on E.
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Figure 8: Continuous Part

there is sufficient evidence to justify the claim that these are important
research directions which should be pursued.

6.1 Conventional Background Space

The most straightforward application of oriented matroids in GIS would
be to represent the geometrical structure of a collection of discrete points
in a similar way to the grid of points in a realm. Geographical objects
having point locations could then be referenced to elements of the matroid.
Geographical entities corresponding to regions or linear features could also
be represented, but to do so we need to show how certain subsets of (certain
kinds of) oriented matroids can be thought of as standing for regions in
continuous space.

Using an oriented matroid to encode the affine structure of a discrete
grid, we can think of the elements of the matroid as points. The open
interval between a pair of adjacent points can then be represented by the
pair of corresponding elements of the matroid, and the interior of a square
bounded by four pairs of adjacent points can be represented by the four
elements representing these points. To give a detailed treatment here we
would need to introduce cell complexes, but the picture in figure 8 coveys
the main idea. The cells in the grid of points on the left are: (i) every point;
(ii) every vertically or horizontally adjacent pair of points; (iii) every square
of four points as shown. Diagram (iv) shows the continuous part of each
set, that is, the subset of continuous space which it represents.

Equipped with this notion of continuous part, we can represent a region
by a set of cells, each cell being represented by a set of 1, 2, or 4 elements of
the oriented matroid. Such a set of cells need not be a crisp subset; we could
use a rough description making the distinction between cells lying wholly
within a continuous region and those which lie partly in and partly outside
the region. This suggests that concepts from rough set theory already used

13



O
O
O
3 ;
[ JSW
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in GIS [BSO01] can be adapted to the oriented matroid setting.

6.2 Relational Space

Oriented matroids need not be used to support a kind of space independent
from the objects about which we record geographical information. An alter-
native is to identify the elements of the matroid not with idealized locations,
but with particular entities, such as houses, trees, and fish markets. Such
an approach would encode certain geometrical relationships between the en-
tities without needing to situate them first within some space. This could
provide a relational representation of space, as discussed in the introduction
to this paper.

6.3 Handling Incomplete Information

Geographical data is inherently inaccurate and incomplete [Wor98, Goo01].
Goodchild [Goo01, p3] advocates an ‘object-centered’ approach in which
point locations are ‘conceptualized as located at the center of a circle of
possibility in continuous space’ rather than identified with the nearest point
in a discrete grid. We argue that using oriented matroids allows an approach
which is intermediate between what Goodchild advocates and the method
of realms championed by Schneider [Sch97].

We agree that realms are too rigid — forcing locations to fit into a prede-
termined grid — but argue that implemented space cannot be the ideal con-
tinuous space imagined by Goodchild. The solution is to replace continuous
space by an oriented matroid, but to allow regions of possibility, represented
by subsets of the matroid. An example of how we can avoid some of the
problems which realms encounter, is given in figure 9 which concerns the
intersection of two lines (i.e. affine sets of rank 2) in the inherited oriented
matroid on a grid of points in R2.
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Figure 9 shows the lines {a, b} and {c,d}. Now these lines “cross”, but
there is no point in the oriented matroid that witnesses this: the Euclidean
point of intersection z does not exist in the oriented matroid. Now consider
the set C of 4 points outlined: z lies in the continuous part of C', which is
the shaded open square indicated. Rather than round x to its nearest point
in the oriented matroid, which is e, and call this the point of intersection,
we might instead say that the lines “intersect” at C. Instead of giving
erroneous information, namely that the lines intersect at e, we are choosing
to give incomplete information, namely that the point of intersection lies
somewhere in the continuous part of C.

6.4 Triangulations

We have already indicated that regarding elements of an oriented matroid
as points, it is possible to represent regions by sets of points. To develop
this approach further, it will be necessary to investigate the geometry of
such regions. One way of developing the theory of regions within oriented
matroids is via triangulations of oriented matroids [San02]. Some initial
steps to providing a ‘geometry of triangulations’ for applications to GIS
have already been taken by Webster [Web02].

Further motivation for the study of triangulations of oriented matroids
is provided by the use of triangulated irregular networks in GIS [Jon97,
p200] and by the possibility of using refinements of triangulations to handle
multiresolution spatial data [FMP99].

6.5 Unified Data Model

Winter [Win98] has already noted the possibility of using cell complexes to
provide a unified data model encompassing the merits of both the raster and
vector approaches. The possibility of using oriented matroids to handle not
only points but also regions of continuous space should allow a space built
from matroids to function in a similar way.

7 Conclusions and Further Work

In this paper we have considered oriented matroids from the viewpoint of
the spatial needs of geographical information science (GIS). In providing a
brief tutorial introduction to theory of oriented matroids (sections 3-5) we
have only been able to give the most basic concepts and examples. The main
contribution of the paper is to have identified, in section 6, particular GIS
issues which can be addressed by oriented matroids. All of these application
areas need additional research before the potential of oriented matroids for
GIS can be fulfilled — the development of all these areas constitutes further
work that the authors are currently undertaking. It would be possible to
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identify extra application areas, but we have restricted ourselves in section 6
to those where there there is already sufficiently good evidence for the vi-
ability of an oriented matroid approach. One more speculative topic that
deserves mention is the variation of geographical data over time. It would
be worthwhile investigating whether the idea of a set of oriented matroids
varying over a space, as in the theories of combinatorial differentiable mani-
folds and matroid bundles [And99], has the appropriate structure to address
the challenges of this topic.
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