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Abstract

1 Introduction
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One of the fundamental concepts necessary for the analysis of spatial data in a Geographic Informa-
tion System (GIS) is a formal understanding of the geometric relationships among arbitrary spatial
objects. Topological relations, a particular subset of geometric relations, are preserved under topo-
logical transformations such as translation, rotation, and scaling. A comprehensive formal catego-
rization of such binary topological relations between regions, lines, and points has been developed
that is based upon the comparison of the nine intersections between the interiors, boundaries, and
exteriors of the two objects. The basic criterion for the distinction of different topological relations
is whether the intersections are empty or not, thus identifying 2 mutually exclusive topological re-
lations. It is derived which of these 512 binary relations actually exist in IR between regions, lines,
and points. An equivalent model is developed that replaces the intersections with exteriors by sub-
set conditions of the closure so that efficient implementations of topological relations are possible
in geographic information systems.

Queries in spatial databases, such as Geographic Information Systems (GISs) [25, 48], image data-
bases [7, 64], or CAD/CAM systems [63], are often based on the relationships among spatial objects.
For example, in geographic applications typical spatial queries are, “Retrieve all cities that are within
5 miles of the interstate highway I-95” or, “Find all highways in the states adjacent to Maine.”
Current commercial database query languages, such as SQL [6] and Quel [67], do not sufficiently
support such queries, because they provide only tools for comparing equality or order of such simple
data types as integers or strings. The incorporation of spatial relations over geometric domains into a
spatial query language has been identified as an essential extension beyond the power of traditional
query languages [19, 64]. Some experimental spatial query languages support queries with one
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or the other spatial relationship (Table 1); however, their diversity, semantics, completeness, and
terminology vary dramatically [16, 32].

[30] left of, right of, beside, above, below, near, far,
touching, between, inside, outside

ATLAS [70] area adjacency, line adjacency, boundary relation-
ship, containment, distance, direction

MAPQUERY [25] on, adjacent, within
KBGIS [65] containment, subset, neighborhood, near, far,

north, south, east, west
KGIS [41] distance, overlay, adjacent, overlap
PSQL [64] covering, coveredBy, overlapping, disjoint, near-

est, furthest, within, outside, on perimeter
SQL extension [39] adjacent, contains, contains point, enclosed by,

intersect, near, self intersect
Geo-Relational Algebra [34] equal, not equal, inside, outside, intersect
Spatial SQL [16] disjoint, equal, meet, overlap, concur,

commonBounds

Table 1: Terms proposed or used for spatial relationships in query languages.

Spatial queries can be easily solved if geometric relationships between the objects of interest
are explicitly stored; however, such a scenario is unrealistic, even for relatively small data collec-
tions [12], because it would need tremendous amounts of storage space— values for each kind of
spatial relationships between objects—and imply complex maintenance procedures. For instance,
a GIS that explicitly recorded the geographic directions between any two objects would require ex-
tensive update operations because, with the addition of any new object, one must also determine
and subsequently store the corresponding direction values from the new object to all objects already
known in the database, and vice-versa (i.e., 2 new entries for a database with objects). In lieu
of recording all spatial relationships, it is more common to derive them, e.g., from their geome-
try or spatial location. This process needs a thorough understanding of possible geometric
relationships are and they can be determined.

The development of a coherent, mathematical theory of spatial relations to overcome shortcom-
ings in almost all geographic applications [5] is one of the goals of current GIS research [1, 56].
A formal definition, for instance, is a prerequisite for the query execution in a compiler and for
reasoning about the relationships among spatial objects. Its benefits will be threefold: (1) Such a
formalism may serve as a tool to identify and derive relationships. Redundant and contradicting
relationships can be avoided such that a minimal set of fundamental relationships can be defined.
(2) The formal methods can be applied to determine the relationship between any two spatial objects
given in a formal representation. Algorithms to determine relationships can be specified exactly, and
mathematically sound models will help to define the relationships formally. (3) The fundamental re-
lationships can be used to combine more complex relationships.

The exploration of spatial relationships is a multi-disciplinary effort. Cognitive scientists, psy-
chologists, and linguists are interested in how humans perceive the inter-relationships between spa-
tial objects and their studies focus on the use of spatial predicates and relations in natural lan-
guage [40, 49, 69]. Cartographers and geographers collected terms and prototypes of spatial re-
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2 Spatial Data Model

coincidence
neighborhood

close
about five miles north-easterly of

through into

lations. An early compilation of primitive spatial relations [30] lacks a formal underpinning, but is
close to a list [42] that is based on a cognitive linguistics approach [47].

The scope of this paper is to use formal methods for the identification of different topological
relations, a particular subset of geometric relations. Their characteristic is that they are preserved
under topological transformations such as translation, rotation, and scaling. Topological informa-
tion is a purely qualitative property and excludes any consideration of quantitative measures. For
example, two parcels are neighbors if they share a common boundary and the neighborhood rela-
tionship is independent of the length of the boundary or the number of common boundary segments.
It is important to keep in mind that topological equivalence does not preserve distances and direc-
tions, which are spatial relations that are part of other investigations [8, 26, 36, 59]; therefore, the
subsequent investigations are based upon continuity, which is described in terms of and

, and no reference to the notions of distance and direction will be made. Other spatial
relations, excluded from the investigations in this paper, are approximate relations, such as [62]
and [13], or relations that are expressions about the motion of one
or several objects such as and [69].

We concentrate on the geometry of the objects—regions, lines, and points—irrespective of their
particular meanings. While certain spatial terms may be specific to particular applications, in general
all spatial relations are based upon fundamental geometric principles and models. A consistent and
least redundant approach requires that the common concepts are identified at the geometry level in
the form of a fundamental set of spatial relations. These generic relationships can then be applied for
the definition of application-specific relationships. Linguists’ observations about the use of natural
language terms for the description of spatial relations support this approach [40, 69]. In the English
language, spatial relations and prepositions are independently used of the size and material of the
reference objects, yet context in which a specific relationship occurs is essential for the selection of
the correct terms.

The remainder of this paper is organized as follows: Section 2 summarizes the spatial data model,
for which the topological relations will be investigated. Section 3 introduces the 9-intersection as
our model to formalize binary topological relations. Their existence for regions, lines, and points in
IR is investigated in Section 4. In Section 5 our model is compared with other formalisms for spatial
relations and the conclusions in Section 6 describe an implementation and discuss future research
activities based on these results.

In order to describe the kinds of spatial objects one deals with and to determine what their particular
properties are, it is necessary to introduce a spatial data model. A spatial data model is a formalization
of the spatial concepts that humans employ when they organize and structure their perception of
space [24, 27]. These concepts differ depending on the observers’ experiences and the context in
which a person views some situation. Formalizations of spatial concepts are necessary, because
computer systems are essentially formal systems that manipulate symbols according to formal rules.
The role of a spatial data model is similar to the conceptual schema in the 3-schema view: concepts
get separated from the actual implementations, thus implementations of certain parts of the large
GIS software system become more independent and may be updated without affecting the remaining
software parts.

Here, the formalism will primarily serve as a means to verify that the readers’ assumptions and
expectations about spatial concepts concur. Without such a formal framework it would be impossible
to investigate and discuss the formalization of topological relations, because it may vary considerably
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2.1 Cells and Cell Complexes

Definition 1

Definition 2

Definition 3

Definition 4

n A n
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n A A r f A
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r f r n A

@A r f A

A A A

A
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A A

A A

x A A C

The definition of the topological dimension of a space is based on the concept of a refinement [55]. Examples of
one-dimensional spaces are a line and the border of a circle; common two-dimensional spaces are the open and the closed
disks, and their topological images. An -cell has the same dimension as its embedding space if the cell exists in that
space, but there is no homeomorphic mapping for the cell into an ( –1)-space.

algebraic
topology

cells

face

The closure of an -cell , denoted by , is the set of all faces - of , where
, i.e.,

-

The set-theoretic boundary of an -cell , denoted by , is the union of all -faces
- , where , that are contained in :

-

The interior of a cell , denoted by , is the set difference between ’s closure and
’s boundary:

The exterior of a cell , denoted by , is the set of all cells in the universe that are
not elements of the closure:

cell complexes

depending on the data model selected.

The spatial data model, upon which the definition of topological relations is based, uses
[3, 66], a branch of geometry deals with the algebraic manipulation of symbols that rep-

resent geometric configurations and their relationships to one another. The application of algebraic
topology has been the subject of extensive research in geographic information systems [11, 73] and
led to today’s most common spatial data model in GISs for modeling discrete spatial data [24, 27],
e.g., in Arc/Info [53] and TIGRIS [37], and a cartographic data transfer standard [57].

The algebraic-topology spatial data model is based on primitive geometric objects, called ,
which are defined for different spatial dimensions : A 0-cell is a node (the minimal 0-dimensional
object); a 1-cell is the link between two distinct 0-cells; and a 2-cell is the area described by a
closed sequences of three non-intersecting 1-cells. A of an -cell is any (0 . . . )-cell that is
contained in .

This spatial data model differs from the simplicial data model [20, 28] primarily in one property:
simplices are convex hulls, while cells may have arbitrarily shaped interiors.

The topological primitives relevant for the forthcoming investigations are the closure, interior,
boundary, and exterior of a cell.

0

=

0 ( 1)

=

=

=

From the elementary geometric objects, more complex ones can be formed as their aggregates,
called . The operations on cell complexes are defined in terms of the operations on
cells. Let be the number of cells ( . . . ) that constitute a complex .
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2.2 Integrated Topology

Definition 5

Definition 6

Definition 7

C x n A C

A C

@C @A @A @A

n C C n

A C C

C A @C

C

A

C A

n n

A R

The boundary of is the set of all boundaries of the -cells that constitute and
are part of a single in , i.e.,

The interior of an -complex , denoted by , is the set of all -cells in the
closure of that are not elements of ’s boundary, i.e.,

The exterior of a complex, denoted by , is the intersection of the exteriors of all
cells that are part of the complex, i.e.,

cell complexes

codimension

= ( ) ( ( ))

(0 . . . )

= ( )

=

From these definitions, it follows that (1) interior, boundary, and exterior of a cell (or a cell
complex) are mutually exclusive and (2) their union coincides with the universe.

Subsequently, the term will be used as a synonym for . For the sake of clarity,
some of the interior faces will be omitted in the figures.

In order to compare cells for coincidence, it is necessary to embed all cells into the same universe.
This integration allows for the solution of topological operations on a purely symbolic level, without
any consideration of metric. This fundamental topological structure has to fulfill two completeness
axioms [28]:

Completeness of incidence: The intersection of two cells is either empty or a face of both cells.
Hence, no two geometric objects must exist at the same location. For example, though a 1-cell
may represent both a part of a state boundary and a part of the border of a nation, the geometry
of the 1-cell will be recorded only once.

Completeness of inclusion: Every -cell is a face of a ( + 1)-cell. Hence, in a 2-dimensional
space every 0-cell is either start- or end-node of a 1-cell, and every 1-cell is in the boundary
of a 2-cell.

It is further assumed that the closure of each cell is strictly inside the universe ( ), i.e., no
cell is outside of or on the border of the universe.

The embedding of the cells into a universe gives rise to the definition of the codimension. The
defines the difference between the dimension of the embedding space and the dimension

of a cell. For example, codimension 1 for a 2-cell describes that it is located in a 3-space. The
codimension can be never less than zero and it is zero if and only if the cell and the space are of the
same dimension.
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2.3 Cells for Regions, Lines, and Points

n

R A B A

A @A A B B @B

B

A B

A B

A B A @B

A B A B

@A @B

A B @A B

A B @A B

3 9-Intersection as a Model for Topological Relations

region

region without holes
region with connected boundaries

region with holes

line

simple line

complex line

point

object parts

interior interior

Within the context of this paper, we are interested in a subset of cell complexes that are most com-
monly used in geographic and cartographic applications. The complexes are “homogeneously -
dimensional” and not partitioned into non-empty, disjoint parts. The commonly used geographic
features of points, lines, and regions are then defined as follows:

A is a 2-complex in IR with a non-empty, connected interior.

A is a region with a connected exterior and a connected boundary
(thus also called a ) (Figure 1a).

A is a region with a disconnected exterior and a disconnected bound-
ary (Figure 1b).

A is a sequence of connected 1-complexes in IR such that they neither cross each other
nor form closed loops.

A is a line with two disconnected boundaries (Figure 1c).

A is a line with more than two disconnected boundaries (Figure 1d).

A is a single 0-cell in IR .

Figure 1: A region with (a) connected and (b) disconnected boundary; and a (c) simple and (d)
complex line.

The binary topological relation between two cells, and , is based upon the comparison of ’s
interior ( ), boundary ( ), and exterior ( ) with ’s interior ( ), boundary ( ), and exte-
rior ( ). These six can be combined such that they form nine fundamental descriptions
of a topological relation between two n-cells. These are:

the intersection of ’s with ’s (and spelled “boundary-boundary intersec-
tion”), denoted by ( ),

the intersection of ’s interior with ’s boundary ( ),

’s interior with ’s exterior ( ),

the boundary-boundary intersection ,

’s boundary with ’s interior ( ),

’s boundary with ’s exterior ( ),
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9-intersection

topologically equivalent

topological invariants

content

empty non-empty

tertium non datur

the intersection of the two exteriors ( ),

’s exterior with ’s boundary ( ), and

’s exterior with ’s interior ( ).

Sometimes, we will also refer to more general terms like, “A’s interior intersections,” which
encompasses the three intersections , , and , or “B’s boundary intersections,”
which are , , and .

The framework for the description of the topological relation between two cells, and , is the
ordered set of these nine intersections, called the , which is concisely represented as a
3 3-matrix.

( ) =

Every different set of 9-intersections describes a different topological relation, and relations
with the same specifications will be considered to be ; therefore, the 9-
intersection can be employed to analyze whether or not two different configurations have the same
topological relation [23]. Topological relations are characterized by the of
these nine intersections, i.e., properties that are preserved under topological transformations [55].
Examples of topological invariants applicable to the 9-intersection are the content (i.e., emptiness or
non-emptiness) of a set, the dimension, the number of separations, and the sequence of disconnected
intersections of different dimensions along the boundary [21, 38].

For the 9-intersection mode, the of the nine intersections was identified as a simple
and most general topological invariant [21]. It characterizes each of the nine intersections by a
value ( ) or ( ). For example, the 9-intersections based on empty/non-empty
intersections for a configuration in which region covers region is:

( ) =
= = =
= = =
= = =

or briefly:

( ) =

Subsequently, the latter notation will be used as a shortcut. The sequence of the nine inter-
sections, from left to right and from top to bottom, will always be (1) interior, (2) boundary, and
(3) exterior.

The nine empty/non-empty intersections describe a set of relations that provides a complete
coverage—any set is either empty or not empty and . Furthermore, they are mutu-
ally exclusive so that the union (OR) of all specifications is identically true, i.e., one of the specified
relations holds true for any possible configuration, and the intersection (AND) of any two specified
relations is identically false, i.e., only a single one exists between two cells.

For the goal of this paper—the formal identification of existing topological relations—it is ex-
tremely useful that the 9-intersection can concisely describe topological properties and constraints
of both existing and non-existing relations.
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3.1 Topological Properties
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A variety of topological properties between two cells, and , can be expressed in terms of the
9-intersection [18]. Those intersections that do not matter and, therefore, can take an arbitrary value
will be marked by a “wild card” ( ).

Let and be arbitrary non-empty parts of and , respectively.

If is from then the intersection between these two parts must be empty, while the
other eight intersections can take any arbitrary value. For example, if ’s boundary is disjoint
from ’s interior then the 9-intersection between and must match the following pattern:

( ) =

If with then the intersection between these two parts must be non-empty. For
example, if ’s interior intersects with ’s boundary then the 9-intersection between and
must match the following pattern:

( ) =

If is a ( ) of then the intersection between these two parts must be non-empty.
Furthermore, the two intersections between and the other two parts of , and , must
be empty, because the parts are pairwise disjoint, otherwise, there would be some part of
outside of , which would contradict the subset relation. For example, if ’s boundary is a
subset of ’s interior (Figure 2a), then the 9-intersection between and must match the
following pattern:

( ) =

Likewise, if is a of two parts, and ( = ), such that and , then
the intersections with these two parts must be non-empty, while the intersection between
and the third part of must be empty. For example, if ( ) such that
and (Figure 2b), then the 9-intersection between and must match the following
pattern:

( ) =

A consequence of the first subset rule is that if two object parts, and , , then the
intersection between and must be non-empty, while the other four intersections, having
either or as an argument, must be empty. This follows from = if and .
For example, if the two boundaries of and coincide then the 9-intersection between and

must match the following pattern:

( ) =
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4 Existing 9-Intersections in IR

3.2 Constraints for Non-Existing Relations

Figure 2: (a) ’s boundary being a subset of ’s interior and (b) ’s boundary being a subset of ’s
interior and boundary.

In a similar way, the 9-intersection can be used to describe “negative” topological constraints, i.e.,
configurations that cannot exist. Non-existing configurations may be due to particular properties of
the objects (e.g., regions or lines), the embedding space (e.g., 2-D plane or surface of a 3-D object),
the relation between the objects and the embedding space (i.e., the codimension), or the spatial data
model (e.g., discrete or continuous). The following example is to illustrate the idea of representing
non-existing relations in terms of the 9-intersection. Between two non-empty cells in IR , there must
be at least one non-empty intersection, otherwise, no geometric interpretation can be found. In terms
of the 9-intersection, it is impossible that all nine intersections are empty; therefore, the following
condition holds:

( ) =

Multiple conditions for non-existing relations may be correlated such that the same non-existing
relation, described by two patterns of 9-intersections, is a member of different conditions. For exam-
ple, if one condition is more specific than another condition then all of ’s non-existing inter-
sections are included in the set of ’s non-existing intersections. Using the 9-intersection, such de-
pendencies can be easily detected by comparing the corresponding values of the two 9-intersections.
For example, the condition that “all nine intersections must not be empty” is implied by condition

that “the exteriors of two cells must always be non-empty,” because :

= =

This section focuses on the binary relations in IR between an -cell and an -cell, where 0
2. Based upon the empty/non-empty 9-intersections, 2 topological relations are possible

between two cells; however, only a smaller number of them can be realized in a particular space.
Some of them depend on the dimensions and codimensions of the cells. The goal of this section is
to identify which topological relations may be realized and which ones may not.

The approach taken is a three-step process:
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4.1 Relations between Two Regions with Codimension 0

non-existing

4.1.1

The exteriors of two cells intersect with each other, i.e.,

If both interiors are disjoint then ’s interior intersects with ’s exterior, and vice-
versa, i.e.,

the formalization of topological conditions for relations in terms of the empty/non-
empty 9-intersections, which are translated into specification patterns for non-existing topo-
logical relations;

the calculation of the set of 9-intersections that exist between two cells as the set of all 512
possible relations, reduced by the union of all non-existing relations; and

the verification of the existence of the remaining relations by realizing prototypical geometric
configurations in IR .

Since different topological conditions apply depending on the codimensions of the objects in-
volved, the investigations will be separated into relations between two regions in 2-D (Section 4.1);
two lines in 2-D (Section 4.2); a region and a line in 2-D (Section 4.3); and the trivial relations
with points in 2-D (Section 4.4). Subsequently, we present one combination of conditions that leads
to the set of existing binary topological relations between any combination of regions, lines, and
points. Numerous other combinations of conditions are possible. Though our set of conditions is
not necessarily minimal, it is such that (1) no condition is part of another condition and (2) no con-
dition is covered by any combination of other conditions. The first property can be easily checked
by comparing the 9-intersections of all conditions (Section 3.2). To evaluate the second property
a test program was used to compare those 9-intersections that fulfilled all conditions with the 9-
intersections that fulfilled only -1 conditions. If the latter set was equal to the first set, then the
condition left out was implied by the combination of the other relations and, therefore, redundant.

Conditions for Regions.

The intersection between two exteriors is only empty if at least one of the two regions coincides with
IR , or if the union of the two cells is the universe. This follows immediately from = IR
and = IR : is only empty if either = IR , or = IR , or = IR . All
three scenarios are impossible for the cell data model, because IR and IR . Thus also
( ) IR ; therefore, the following condition holds:

( ) = (1)

The following three conditions are based upon a particular property of this spatial data model,
namely the fact that if the boundaries of two regions do not coincide then there is either some inte-
rior or exterior between them. This implies that if ’s interior does not intersect with ’s exterior
then the interiors must intersect (Condition 2), ’s boundary must not intersect with ’s exterior
(Condition 3), and ’s interior must not intersect with ’s boundary (Condition 4).

( ) = (2)
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If ’s interior is a subset of the ’s closure then ’s boundary must be a subset of ’s
closure as well, and vice-versa, i.e.,

If ’s interior intersects with ’s boundary then it must also intersect with ’s exterior,
and vice-versa, i.e.,

’s boundary intersects with at least one part of , and vice-versa, i.e.,

If both interiors are disjoint then ’s boundary cannot intersect with ’s interior, and
vice-versa, i.e.,

If ’s interior intersects with ’s interior and exterior, then it must also intersect with
’s boundary, and vice-versa, i.e.,

If both boundaries do not intersect with each other then at least one boundary must
intersect with its opposite exterior, i.e.,

( ) = (3a & b)

( ) = (4)

A cell with a non-empty boundary cannot have all three boundary intersections empty. =
implies IR = . Since = IR it follows that ( ) = ,
which is only true if at least one part of intersects with ’s boundary.

( ) = (5a & b)

Since the boundary of a region separates its interior from the exterior, every path from the exterior
to the interior crosses the boundary (Jordan-Curve-Theorem) [66]. This gives rise to the following
four conditions:

( ) = (6a & b)

Every connected object part that intersects with both the interior and exterior of another object
must also intersect with that object’s boundary. For arbitrary regions, only the interior is connected.

( ) = (7a & b)

Unless the boundaries of two regions coincide, at least one boundary must intersect with the
other region’s exterior.

( ) = (8)
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Condition 9

Condition 10

Condition 11

Condition 12

If both interiors do not intersect with each other then at least one boundary must in-
tersect with its opposite exterior, i.e.,

4.1.2

If both boundaries intersect with the opposite interiors then the boundaries must also
intersect with each other, i.e.,

If ’s interior intersects with ’s exterior then ’s boundary must also intersect with
’s exterior, i.e.,

If the interiors do not intersect with each other then ’s boundary must intersect with
’s exterior, and vice-versa, i.e.,

4.1.3

Likewise, if the interiors of two regions are separated then at least one boundary must intersect
with the opposite exterior.

( ) = (9)

Conditions for Regions without Holes.

Conditions (1)–(9) apply to regions—independent of whether they have holes or not. Regions with-
out holes are a more restricted class of spatial objects than regions and, therefore, their topological
relations have further constraints. The crucial property of a region without holes is that its boundary
is connected. This fact, in combination with the Jordan-Curve-Theorem, gives rise to the definition
of the following three conditions:

( ) = (10)

( ) = (11)

( ) = (12)

Realization of Region Relations.

The 9-intersections of the existing relations between two regions can be determined by successively
applying these conditions and canceling the corresponding non-existing 9-intersections from the set
of all 512 relations. Eighteen relations exist in IR if the region boundaries are connected or discon-
nected, eight of which can be realized only for regions with connected boundaries. The existence
of the topological relations corresponding to the 9-intersections has been verified by finding their
geometric interpretations. Figure 3 shows prototypes of the eight relations between arbitrary regions
( – ) and the ten particular relations between regions with disconnected boundaries ( – ),
respectively.

Some of the conditions for regions are generic so that they apply also for other cells:
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4.2.1

4.2 Relations between two Lines with Codimension 0

Figure 3: A geometric interpretation of the 8 relations between two regions with connected bound-
aries

Condition (1) holds for any two non-empty cells.

Conditions (2)–(4) hold for any two non-empty cells, and , of the same dimension. If the
dimension of is greater than the dimension of then only the first part of each condition
applies.

Condition (5) holds for any two cells with non-empty boundaries.

Conditions (6)–(12) apply only to regions with codimension 0.

Line Conditions.

Lines are non-empty cells with non-empty boundaries, therefore, Conditions (1)–(5) apply. Addi-
tional constraints must hold for two lines due to the property of the spatial data model that another
point exists between any two distinct points; therefore, if the exterior of one line intersects with the
boundary of another line, the exterior must also intersect with the interior of the other line. This
implies:
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If ’s closure is a subset of ’s interior then either ’s exterior intersects with both
’s boundary and ’s interior, or not at all, and vice-versa, i.e.,

4.2.2

Each boundary can intersect with at most two opposite parts, i.e.,

If ’s boundary is a subset of ’s boundary, then the two boundaries coincide, and
vice-versa, i.e.,

4.2.3

( ) = (13a)

(13b)

Simple Line Conditions.

If the two lines are simple then both boundaries consist of two points, each of which has no extend
and, therefore, can only intersect with one part of another object. This particular property of simple
lines leads to the following condition:

( ) = (14a & b)

Likewise, the fact that the boundary of a simple line is a subset of the boundary of another
simple line implies that no part of the boundary can be outside of ’s boundary. If there were
some part of ’s boundary outside of ’s boundary, this would mean that ’s boundary has more
than two disconnected boundaries, and then the line would not be simple anymore.

( ) = (15a)

(15b)

Realization of Line Relations.

There are 57 relations between two lines, 33 of them can be also realized between simple lines. Fig-
ures 4 and 5 show the 9-intersections and corresponding geometric interpretations of the 33 relations
between two simple lines and of the 24 relations that exist only for complex lines, respectively.
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Figure 4: A geometric interpretation of the 33 relations that can be realized between two simple
lines.
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Figure 5: A geometric interpretation of the 24 additional relations between two non-simple lines.
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4.3 Relations between a Region and a Line

The interior of a region always intersects with the exterior of a line , i.e.,

The boundary of a region always intersects with the exterior of a line , i.e.,

The interior of a line must intersect with at least one of the three parts of a region
, i.e.,

The relations between a region and a line involve two objects of different dimensions, therefore,
conditions that hold between a region and a line do not necessarily hold between a line and a region.

From the previous definitions for regions, the symmetric Condition (1), and the asymmetric
parts of Conditions (3a), (5a), (6a), and (7a) apply also for the relations between a region and a
line. Further constraints are due to the fact that the regions and lines have different dimensions. The
dimension of the interior of a region is always greater than the dimension of the closure of a line

, therefore, :

( ) = (16)

By definition, a line has a non-empty boundary and contains no loops. A region’s boundary, on
the other hand, is a closed 1-cell. This implies that the closure of a line is at most a true subset ( )
of the region’s boundary:

( ) = (17)

The interior of a line is always non-empty, which implies the following condition:

( ) = (18)

Twenty 9-intersections fulfill these conditions for the topological relations between two lines.
One of them can be realized only if the line consists of more than one segment, i.e., if it is a non-
simple line. If the line has only a single segment then the intersections must also fulfill the conditions
for simple lines, (14a) and (15a). The 9-intersections and their geometric representations for a region
and a line are shown in Figure 6.
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Figure 6: A geometric interpretation of the 20 relations between a region and a line (one of them
can be only realized if the line is non-simple).
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Condition 19

Condition 20

Condition 21

Condition 22

Condition 23

Interior, boundary, and exterior of any non-point object intersect with the exterior
of a point , i.e.,

The interior of a point can only intersect with a single part of another object, i.e.,

The interior of a point must be a subset of one of the three parts of another object,
i.e.,

Both exteriors must intersect, i.e.,

The interior of a point intersects with exactly one opposite object part, i.e.,

Since the boundary of a point is empty, it is irrelevant to analyze its three boundary intersections.
This leaves six significant intersections for describing the topological relations between a non-point
(region or line) and a point and gives rise to 2 possible relations. The conditions for non-existing
intersections are based on the fact that a point is always a true subset ( ) of one of the three parts—
interior, boundary, and exterior—of a non-point object.

( ) = (19)

( ) = (20)

( ) = (21)

This leaves three combinations of intersections between a point and a non-point that can be
realized for point-region and point-line configurations).

Finally, for the sake of completeness, the trivial case between two points. Since both boundaries
are empty, there are only four relevant intersections, that is, the intersections between interiors and
exteriors. Condition (1) for the 9-intersection can be immediately applied to these four intersections:

( ) = (22)

Since a point is “atomic,” it cannot intersect with more than one part of another cell. On the
other hand, points are non-empty and therefore, they must intersect with at least one part of another
cell.

( ) = (23)

This leaves two combinations of intersections for which the corresponding topological relations,
disjoint and equal, can be realized between two points.
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5 Related Work

5.1 Symbolic Projections

5.2 Derivatives of Allen’s Interval Relations

geometric reasoning

cardinal directions

distance direction
AND OR NOT

symbolic projections

2D string

A common thread in most spatial reasoning systems is the attempt to formalize spatial reasoning
tasks by translating the problem into Cartesian coordinate space and to use common Euclidean
geometry to find the solution [14, 51, 54, 72]. The field of is based on this
premise [46]. By using a propositional representation, such as predicates for the relations between
objects, it is possible to describe qualitative spatial concepts without the need to bring them into a
quantitative environment [9].

Computational approaches focusing on mathematical models to formalize relations among sym-
bolic representations of conceptually modeled objects have been mainly investigated in artificial
intelligence and engineering. Various models for , such as north, east, and north-
east, have been discussed [59] and formalized for point objects [26], and their properties have been
analyzed and compared with desirable properties of models for cardinal directions. It has also been
proposed to derive topology from metric by using the primitives of and in com-
bination with the logical connectors , , and [58], which is only described for precise
metric positions and leads to serious implementation problems in computers [31, 52] due to the
finiteness of the underlying number system [20, 29].

The most extensively investigated formalism for spatial relations is based on a segmentation of the
plane, called [9]. Symbolic projections translate exact metric information into a
qualitative form and allow for reasoning about the spatial relations among objects in a 2-D plane [8].
The order in which objects appear, projected vertically and horizontally, is encoded into two strings,
called , upon which spatial queries are executed as fast substring searches [9]. Initially, this
approach has been proposed only for non-overlapping objects (using the two operators “less” and
“equal”). An extension of this algebra with the operator “edge-to-edge” [43] allows for overlapping
objects. By including the “empty space” into the 2D strings ambiguities that may exist for certain
configurations can be resolved [44].

It was shown that symbolic projections and the 9-intersection are both suitable for powerful
spatial reasoning [8, 18]. The major differences are:

Symbolic projections and their derivatives subdivide the space, while the 9-intersection con-
siders the objects and how they are embedded into space.

Symbolic projections are primarily based on the relation “less” along to perpendicular axes,
therefore, modeling directions such as north, south, east, and west, from which topological
relations are derived. The 9-intersection, on the other hand, is only concerned with topological
relations.

Unlike the 9-intersection, which is invariant under topological transformations, symbolic pro-
jections depend on the orientation of the objects and, therefore, they are not invariant under
rotation.

The shapes of the objects (convex/concave) matter for the relations modeled by the symbolic
projections, while the 9-intersection is independent of the shape of the objects.

Another popular framework are the relations between one-dimensional intervals, initially proposed
for modeling time [4]. They have been frequently extended to describe spatial relations in 2- and
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6 Conclusions

4-intersection

5.3 4-Intersection

6.1 Summary

3-dimensional space [33, 36, 61]. Some of the extension from 1-dimensional intervals, initially
designed to model time, carry over the ordering (start/end) of the interval boundaries to the higher
dimension. Most of these approaches assume that spatial objects are described by their bounding
rectangles, to which Allen’s approach can be easily generalized; however, rectangles are sometimes
only crude approximations of the actual shapes of the objects and, therefore, they represent only a
simplified model of spatial data. Variations for imprecise boundaries, using fuzzy logic [74], have
been also studied [15].

The 9-intersection can be also considered a derivative of Allen’s approach. Initially it was pro-
posed to use only the four intersections of the two interiors and boundaries [17, 23], which was
shown to be sufficient for codimension 0 [21]. Pigot’s extension for triangles in IR uses the five
intersections of ’s boundary with ’s interior, boundary, “exterior,” “above,” and “below” [60].
Actually, this “exterior” is the exterior of projected into IR , and “above” and “below” are then
the two sets in IR that are separated by the union of ’s interior, boundary, and “exterior.” Based
on this classification schema, a total of fourteen topological relations are distinguished between two
triangles in IR .

The initial model for binary topological relations was developed for regions embedded in IR [21].
This model, called the , considers the two objects’ interiors and boundaries and ana-
lyzes the intersections of these four object parts for their content (i.e., emptiness and non-emptiness).
Several researchers have tried to model line-region and line-line relations in IR just with the 4-
intersection [10, 35, 68]. It is obvious that the 4-intersection is a subset of the 9-intersection, so
that the 9-intersection would be able to distinguish more details than the 4-intersection. For region-
region configurations in IR , the 4-intersection and the 9-intersection provide the same eight rela-
tions; however, for line-line and region-line relations, the 4-intersection distinguishes only 16 and
11 relations, respectively. The major difference for line-line relations is that the 4-intersection does
not suffice to establish an equivalence relation [22], because several different line-line configurations
have the same empty/non-empty 4-intersection. Similarly for region-line relations, the 4-intersection
does not distniguish between certain topologically distinct configurations that may be critical for
defining natural-language spatial predicates to be used in spatial query languages [50]. With the
9-intersection, these problems are overcome.

A formalism for the definition of binary topological relations has been presented that is based upon
purely topological properties and, therefore, independent from the existence of such non-topological
concepts as distance or direction. Binary topological relations are described by putting the three
topologically distinct parts of one object—its interior, boundary, and exterior—into relation with
the parts of the other object. Formally, this has been described as the 9-intersection, i.e., all possible
set intersections of the parts. The criterion for distinguishing different topological relations is the
content of the 9-intersections, i.e., whether the intersections are empty or non-empty.

The search for a method that provides also an efficient implementation led to the separation of
the 9-intersection into the primary criterion or 4-intersection—empty or non-empty intersections be-
tween interiors and boundaries—and the secondary criterion, whether or not boundaries and interiors
are subsets of the other objects closure. The 4-intersection representation proved to be sufficient for
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6.2 Implementation

6.3 Discussion and Future Work

modeling the topological relations between two -cells if their boundaries are connected and their
codimensions are zero; however, the 4-intersection is insufficient if the objects are embedded into a
higher dimensional space and the secondary criterion has also to be examined to resolve ambigui-
ties; however, the 4-intersection is insufficient if the objects are embedded into a higher dimensional
space and the secondary criterion has also to be examined to resolve ambiguities.

A variation of the 9-intersection has been implemented in MGE-Dynamo [38]. Since each part of a
cell is an aggregate of primitives with a unique identifier, the relevant operations, such as interior and
boundary, can be implemented as symbolic, rather than arithmetic, operations. The implementation
needs four fundamental operations:

testing whether an intersection of two parts is empty;

testing whether an intersection of two parts is non-empty;

testing whether a part is included in another part; and

testing whether a part is not included in another part.

These are standard operations, for which most efficient implementations have been proposed, for
instance in language compilers [2].

The particular benefit of this approach for the implementation of a GIS is that it provides a com-
plete coverage of binary topological relations. Users can build from them customized topological
relations, accessible in their spatial query language [39]. For example, some applications may dis-
regard the topological difference between and and integrate the two into a single
relation, say , such that has a non-empty interior intersection, an empty and a non-empty
boundary-intersection, while the value of the boundary intersection does not matter.

This framework may also serve as an internal representation for a graphical spatial query lan-
guage in which users sketch the spatial constraints graphically. In order to process such queries
in a geographic database, the topological constraints contained in the sketch must be parsed and
translated into a symbolic representation such a the 9-intersection.

The results of this paper represent a significant advancement in the investigations of formalisms for
topological relations. Compared to our previous results [21], the novel findings are:

The application of the framework of empty and non-empty intersections to objects with codi-
mension greater than zero. This was achieved by introducing the 9-intersection.

The inclusion of objects with connected disconnected boundaries, giving rise to treat lines
and -dimensional objects ( 1) with holes.

With the 9-intersection we have found a model within which topological constraints can be
formalized and compared.

Issues still to be investigated include:

Topological relations between complex objects, i.e., objects that are made up of simpler ones—
either of the same dimension or mixed dimensions, such as a line ending at a region and both
together form a single object.
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