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Abstract: Spatial data types or algebras for database systems should (i) be fully general (which
means, closed under set operations, hence e.g. a region value can be a set of polygons with holes),
(ii) have formally defined semantics, (iii) be defined in terms of finite representations available in
computers, (iv) offer facilities to enforce geometric consistency of related spatial objects, and (v) be
independent of a particular DBMS data model, but cooperate with any. We offer such a definition. A
central idea is to userealms as geometric domains underlying spatial data types. A realm as a general
database concept is a finite, dynamic, user-defined structure underlying one or more system data
types. A geometric realm defined here is a planar graph over a finite resolution grid. Problems of
numerical robustness and topological correctness are solved below and within the realm layer so that
spatial algebras defined above a realm enjoy very nice algebraic properties. Realms also interact with
a DBMS to enforce geometric consistency on object creation or update. The ROSE algebra is defined
on top of realms and offers general types to represent point, line, and region features together with a
comprehensive set of operations. It is described within a polymorphic type system and interacts with
a DBMS data model and query language through an abstractobject model interface. An example
integration of ROSE into the object-oriented data model O2 and its query language is presented.

Keywords: Spatial data types, algebra, realm, finite resolution, numerical robustness, topological
correctness, geometric consistency, object model interface, ROSE.
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1 Introduction

We consider aspatial database system to be a full-fledged DBMS with additional capabilities for the
representation and manipulation of geometric data. As such, it provides the database technology
needed to support applications such asgeographic information systems. The standard DBMS view for
the organization of spatial information is the following: A database consists of several classes of
objects. Aspatial object is just an object with an associated value (“attribute”) of aspatial data type,
such as, for example,point, line, or region. This is true regardless of whether the DBMS uses a
relational, complex object, object-oriented or some other data model. Hence the definition and
implementation of spatial data types is probably the most fundamental issue in the development of
spatial database systems.

Although spatial data types (SDTs) are used routinely in the description of spatial query languages
(e.g. [LiN87, JoC88, SvH91, To90]), have been implemented in some prototype systems (e.g.
[RoFS88, OrM88, Gü89]), and some formal definitions have been given [Gü88a, ScV89, GaNT91],
there is still no completely satisfactory solution available according to the following criteria:

• Generality. The geometric objects used as SDT values should be as general as possible. For
example, a region value should be able to represent a collection of disjoint areas each of
which may have holes. More precisely, this means that the domains of data typespoint, line,
andregion must be closed under union, intersection, and difference of their underlying point
sets. This allows for the definition of powerful data type operations with nice closure
properties.

• Rigorous definition. The semantics of SDTs, that is, the possible values for the types and the
functions associated with the operations, must be defined formally to avoid ambiguities for
the user and the implementor.

• Finite resolution. The formal definitionsmust take into account the finite representations
available in computers. This has so far been neglected in definitions of SDTs. It is left to the
programmer to close this gap between theory and practice which leads rather inevitably not
only to numerical but also topological errors.

• Treatment of geometric consistency. Distinct spatial objects may be related through
geometric consistency constraints (e.g. adjacent regions have a common boundary). The
definition of SDTs must offer facilities to enforce such consistency.

• General object model interface. Spatial data types as such are rather useless; they need to be
integrated into a DBMS data model and query language. However, a definition of SDTs
should be valid regardless of a particular DBMS data model and therefore not depend on it.2

Instead, the SDT definition should be based on an abstract interface to the DBMS data model
which we call theobject model interface.

The purpose of this paper (together with a companion paper [GüS93]) is to develop a formal definition
of spatial data types fulfilling these criteria. A central idea is to introduce into the DBMS the concept
of a realm. A realm is in general a finite, user defined structure that is used as a basis for one or more
system data types. Realms are somewhat similar to enumeration types in programming languages. A
realm used as a basis for spatial data types is essentially a finite set of points andnon-intersecting line

2 This also holds for the implementation level: A spatial type extension package (STEP) should be able to cooperate with
any extensible DBMS offering a suitable interface regardless of its data model.
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segments. Intuitively, it describes the complete underlying geometry of an application. All points,
lines and regions associated with objects (from now on calledspatial attribute values) can be defined
in terms of points and line segments present in the realm. In fact, in a database spatial attribute values
are then never created directly but only by selecting some realm objects. They are never updated
directly. Instead, updates are performed on the realm and from there propagated to the dependent
attribute values.

Hence, all attribute values occurring in a database arerealm-based. Furthermore, the algebraic
operations for the spatial data types are defined to construct only geometric objects that are realm-
based as well. So the spatial algebra is closed with respect to a given realm. This means in particular
that no two values of spatial data types occurring in geometric computation have “proper”
intersections of line segments. Instead, two initially intersecting segments have already been split at
the intersection point when they were entered into the realm. One could say that any two intersecting
SDT values (say, lines or regions) “have become acquainted” already when they were entered into the
realm. This is a crucial property for the correct and efficient implementation of geometric operations.

Realm objects - points and segments - are defined not in abstract Euclidean space but in terms of finite
representations. All geometric primitives and realm operations (e.g. updates) are defined in error-free
integer arithmetic. For mapping an application’s set of intersecting line segments into a realm’s set of
non-intersecting segments the concept of redrawing and finite resolution geometry from [GrY86] is
used. Although intersection points computed with finite resolution in general move away from their
exact Euclidean position, this concept ensures that the unavoidable distortion of geometry (that is, the
numerical error) remains bounded and very small and that essentially3 no topological errors occur.
This means that a programmer has a precise specification that directly lends itself to a correct
implementation. It also means that the spatial algebra obeys algebraic laws precisely in theory as well
as in practice. Furthermore, it is rather obvious that realms also solve the geometric consistency
problem.

Most closely related to this work are the formal definitions of spatial data types (or algebras) given by
Güting [Gü88a, Gü88b], Scholl and Voisard [ScV89, Vo92], and Garganoet al. [GaNT91]. All of
these proposals do not fulfill most of the criteria given above. In [Gü88a, Gü88b] data types for points,
lines, and regions are available but too restricted, e.g. a region is a single simple polygon (without
holes). In [ScV89] general regions are defined; in Voisard’s thesis [Vo92] this has been extended to
general types for points and lines. However, the definitions are unnecessarily complex. In [GaNT91]
there is only a single type for all kinds of geometric objects; a value is essentially a set of sets of pixels.
We feel this is not sufficient, since many interesting spatial operations cannot be expressed. As
mentioned, all of these proposals give formal definitions. However, those of Güting and of Scholl and
Voisard are not based on finite resolution; hence the numeric correctness problems are not addressed.
Garganoet al. base their definitions in principle on a finite underlying set (of pixels). But this is not
practical since these finite representations are far too large to be efficiently manageable. The
geometric consistency problem is not solved in any of these proposals; there is some weak support in
[Gü88a] through anarea data type, but it is not sufficient. Finally, all three proposals have connected
their spatial types to a fixed data model− Güting and Garganoet al. to the relational model and Scholl
and Voisard to a complex object algebra. Only Scholl and Voisard emphasize a clean interface

3 See the discussion in Section 2 and in[GüS93].
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between the spatial algebra and the general object model. We shall extend their work by offering an
abstract interface not dependent on any particular data model.

Separating geometric primitives from the remainder of geometric modeling was already proposed by
Frank and Kuhn [FrK86]. Because of the conflict between the infinite precision real numbers of
Euclidean geometry and the finite precision number systems of computers they suggest to abandon
coordinate-based geometry and to only consider the topological structures of point sets underlying
spatial values. Their topological data model (later continued in [EgFJ89]) is based on simplicial
complexes and has a similar purpose as our concept of realms. Essentially they offer an irregular
triangular network partition of the plane as a geometric domain over which spatial objects could be
defined. However, the connections are missing to the underlying finite arithmetic as well as to spatial
data types based on this model. Also, in our view a triangular partition contains too much information;
it is sufficient to keep those points and segments in a geometric domain that are needed for spatial
attribute values. Finally, their model is an abstract one whereas we show realms within a database
context.

Our description and formal development ofrealm-based spatial data types is given in two papers. In
the first paper [GüS93] the lower layers, namely numerically robust geometric primitives, realms and
their update operations and a number of realm-based structures (cycles, faces, ...) and primitives have
been defined. In this paper spatial data typespoints, lines, andregions and their operations, that is, the
spatial algebra (calledROSE algebra), are described and defined formally. Related issues such as
modeling partitions of the plane within the type system and an abstract object model interface are
addressed. We also show how the ROSE algebra can be integrated with a DBMS data model and query
language, using O2 as an example. In the following section we first provide an informal overview of
the complete concept.

2 Overview: Realm-Based Spatial Data Types

A realm is a set of points and non-intersecting line segments over a discrete domain, that is, a grid, as
shown in Figure 1.

Values of spatial data types can be composed from the objects present in a realm. Figure 2 shows some
values definable over the realm of Figure 1. Our realm-based spatial data types are calledpoints, lines,

Figure 1: Example of a realm
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and regions, hence A and B represent regions values, C is a lines value, and D a points value. The
precise structure of these values is not yet relevant here. One can imagine A and B to belong to two
adjacent countries, C to represent a river, and D a city.

The underlying grid of a realm arises simply from the fact that numbers have a finite representation
in computer memory. In practice, these representations will be of fixed length and correspond to
INTEGER or REAL data types available in programming languages (or to special, higher precision
implementations of number systems). Of course, the resolution will be much finer than could be
shown in Figure 1.

The concept of a realm as a basis of spatial data types serves the following purposes:
• It enforces geometric consistency of related spatial objects. For example, the common part

of the borders of countries A and B is exactly the same for both objects.
• It guarantees nice closure properties for the computation with spatial data types above the

realm. For example, the intersection of region B with line C (the part of river C lying within
country B) is also a realm-based lines value.

• It shields geometric computation in query processing from numeric correctness and
robustness problems. This is because such problems arise essentially from the computation
of intersection points of line segments which normally do not lie on the grid. With realm-
based SDTs, there are never any new intersection points computed in query processing.
Instead, the numeric problems are treated below the realm level, namely, whenever updates
are made to a realm.

• Additionally, a data structure representing a realm can be used as an index into the database.
Our implementation concept assumes that each point and segment in a realm has an
associated list of logical pointers to the spatial attribute values defined over it in the database.

Let us now focus on the treatment of numerical correctness problems below and within the realm
level. This is necessary because geometric data coming from the application are not intersection-free,
as required for a realm. Application data can at the lowest level of abstraction be viewed as a set of
points and intersecting line segments. These need to be transformed into a realm. As mentioned
before, the fundamental problem is that intersection points usually do not lie on the grid.

A B

C

D

Figure 2: Realm objects defined over the realm of Figure 1
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In Figure 3, the intersection point D’ of line segments A and B will be moved to the closest grid point
D. This leads, for example, to the following topological errors: (1) A test whether D lies on A or B
fails. (2) A test whether D lies properly within some area defined below A and B will incorrectly yield
true. (3) If there is another segment C between the true intersection point and D, D will be reported to
lie on the wrong side of C. The basic idea to avoid these errors is to slightly change segments A and
B by transforming them into chains of segments going through D, as shown in Figure 4. However, this
does not suffice, since it allows a segment to drift (through a series of intersections) by an arbitrary
distance from its original position. For example, a further intersection of A with some segment C
(Figure 5) is resolved as shown in Figure 6, where intersection point E has already a considerable
distance from the true intersection point of A and C. Note in particular that segment A has in Figure
6 been moved to the other side of a grid point (indicated by the arrow) which may later be reported to
lie on the wrong side of A.

A refined solution was proposed by Greene and Yao [GrY86]. The idea is to define for a segment s an
envelope E(s) roughly as the collection of grid points that are immediately above, below, or on s. An
intersection of s with some other segment may lead to a requirement that s should pass through some
point P on its envelope (the grid point closest to the true intersection point). This requirement is then
fulfilled by redrawing s by some polygonal line within the envelope rather than by simply connecting
P with the start and end points of s. Figure 7 shows a segment s (drawn fat) together with the grid
points of its envelope. Slightly above s a redrawing of s through P is shown.

Intuitively, the process of redrawing can be understood as follows: Think of segment s as a rubber
band and the points of the envelope as nails on a board. Now grip s at the true intersection point and
pull it around P. The resulting polygonal path is the redrawing. The number of segments of this path
is in the worst case logarithmic in the size of the grid, but it seems that in most cases only very few
segments are created. This approach guarantees that the polygonal line describing a segment always
remains within the envelope of the original segment. We adopt the technique for realms. It then means

BA
B

D’

A DD

Figure 3 Figure 4

CC

BA
BA DD

E E

Figure 5 Figure 6
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that by redrawing a segment can never drift to the other side of a realm point. It might still happen,
though, that after a redrawing a realm point is found to lieon a segment which it did not originally.

The formal definition of realm-based SDTs is organized as a series of layers. Each layer defines its
own structures and primitives, using the notions of the layers below. These layers are described
bottom-up in the companion paper [GüS93] and in the rest of this paper. Let us briefly provide an
overview of this development.

The lowest layer introducesrobust geometric primitives. It defines a discrete spaceN × N whereN =
{0, ..., n − 1} is a subset of the natural numbers. The objects in this space are points and line segments
with coordinates inN, calledN-points andN-segments. A number of operations (predicates) such as
whether anN-point lieson anN-segment or whether twoN-segmentsintersect, and whichN-point is
the result of intersecting twoN-segments, are defined. The crucial point is that these definitions are
given in terms of error-free integer arithmetic, hence they are directly implementable.

Next, geometricrealms are defined as described above; elements are calledR-points andR-segments.
Basic operations on realms are insertion and deletion ofN-points andN-segments which may trigger
the redrawing of segments as described above. Realms offer an interface to cooperate with a database
system. For example, the operation of inserting anN-segment returns besides a modified realm a
redrawing of the inserted segment and a set of redrawings of segments in the database that need to be
modified together with logical pointers to database representations of these segments.

The second layer defines certainstructures present in a realm that serve as a basis for the definition
of SDTs. A realm can be viewed as a planar graph; anR-cycle is a cycle of this graph. AnR-face is an
R-cycle possibly enclosing some other disjointR-cycles corresponding to a region with holes. AnR-
unit is a minimalR-face. These three notions support the definition of aregions data type. AnR-block
is a connected component of the realm graph; it supports the definition of alines data type. For all of
these structures there are also predicates defined to describe their possible relationships.

This completes the scope of [GüS93]. The definitions of the first two layers needed in this paper are
reviewed in Section 3.

The third layer (Section 4) introducesspatial data types points, lines, andregions and defines the
structure of corresponding values. Apoints value is a set ofR-points. There are two alternative views
of lines andregions. The first is that alines value is a set ofR-segments and aregions value a set of
R-units. The other view is equivalent but “semantically richer”: Alines value is a set of disjointR-
blocks and aregions value a set of (edge-) disjointR-faces. There are alsospatial algebra primitives
defined on values of these types.

s

P

Figure 7: Redrawing of a segments through an envelope pointP
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The following two sections prepare the definition of the fourth and final layer. In Section 5 a flexible
type system is introduced that allows one to precisely describe polymorphic operations that are central
to the ROSE algebra. In this type system it is also possible to cleanly model partitions of the plane so
that operations can be constrained to be applicable to partitions or regions of partitions. Apartition is
essentially a set of objects whoseregions attribute values are disjoint.

In Section 6 theobject model interface (OMI) is defined. We identify a number of concepts that need
to be present in the DBMS data (or object) model to allow it to cooperate with our spatial algebra. The
OMI has two parts. The first part is needed to define the semantics of operations of the ROSE algebra,
in particular for complex operations that manipulate sets of objects. The second part is needed to
embed the ROSE algebra into a query language; it consists of a number of facilities within the query
language that are required to make a full use of the ROSE algebra possible. The corresponding idea
at the system level is that any extensible database system offering an OMI implementation can
cooperate with aspatial type extension package (STEP) realizing the spatial algebra.

Then as a top layer theROSE algebra is described in Section 7; the semantics of all operations are
formally defined. There are four classes of operations:

• spatial predicates expressing topological relationships (e.g.inside, adjacent)
• operations returning atomic spatial values (e.g.intersection, contour)
• operations returning numbers (e.g.length, dist)
• operations on sets of objects (e.g.overlay, fusion)

The last group of operations manipulates not only SDT values but also the objects they are associated
with.

In Section 8 we show how the ROSE algebra can be integrated with a given DBMS data model and
query language, choosing O2 as an example. This illustrates the object model interface. Example
queries in O2SQL/ROSE are also shown to demonstrate the “expressive power” of this spatial algebra.

3 Review: Robust Geometric Primitives, Realms, and Realm-Based Structures

In this section we review the concepts and formal definitions from [GüS93] needed as a basis for
defining the ROSE algebra. We have already mentioned that there are several layers of definitions
each of which introduces its own structures and operations and uses the notions of the layers below.
To be able to distinguish operations of the various layers we use the following typographical
convention:

• Layer 1 - robust geometric primitives: underscore (e.g.intersect)
• Layer 2 - realms and realm-based primitives: underscore italic (e.g.area-disjoint)
• Layer 3 - spatial algebra primitives: bold italic (e.g.area-disjoint)
• Layer 4 - ROSE operations: bold (e.g.inside)

A summary of the various layers with their objects and operations is given in the Appendix.

3.1 Robust Geometric Primitives

The lowest layer introduces a finite discrete spaceN × N with N = {0, ...,n − 1} ⊆ N, points and line
segments over this space, and some simple predicates and operations on them. All definitions are
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based on error-free integer arithmetic which enables direct and robust implementation. AnN-point is
a pair (x, y) ∈ N × N. An N-segment is a pair of distinctN-points (p, q); the segments (p, q) and (q, p)
are defined to be equal.PN denotes the set of allN-points andSN the set of allN-segments. Formal
definitions ofrobust geometric primitives defined onN-points andN-segments are given in [GüS93].
We explain the primitives informally here: Two N-segmentsmeet if they have exactly one end point
in common. Theyoverlap if they are collinear and share a (partial)N-segment. If they have exactly
one common point but do not meet, theyintersect. They aredisjoint if they are neither equal normeet
nor overlap nor intersect. Theon primitive tests whether anN-point lies on anN-segment; thein
primitive does nearly the same but theN-point must not coincide with one of the end points of the
N-segment. Theintersection primitive calculates the intersection point of twoN-segments and rounds
it to the nearestN-point.

3.2 Realms

Realms serve as a basis for SDTs and essentially represent a finite, user-defined set of points andnon-
intersecting line segments over a discrete domain. GivenN, arealm over N, orN-realm for short, is a
setR = P ∪ S such that

(i) P ⊆ PN, S ⊆ SN

(ii) ∀ s ∈ S : s = (p, q) ⇒ p ∈ P ∧ q ∈ P

(iii) ∀ p ∈ P ∀ s ∈ S : ¬ (p in s)

(iv) ∀ s, t ∈ S, s ≠ t : ¬ (s andt intersect) ∧ ¬ (s andt overlap)

The elements ofP andS are calledR-points andR-segments. There is an obvious interpretation of a
realm as a spatially embedded planar graph with set of nodesP and set of edgesS.

3.3 Realm-Based Structures and Primitives

This layer defines certain structures and relationships between these structures that can be discovered
within a realm and that are useful for the definition of SDTs. A realm can be viewed as a planar graph;
informally, anR-cycle is a cycle of this graph. AnR-face is anR-cycle possibly enclosing some other
disjoint R-cycles corresponding to a region with holes. AnR-unit is a minimalR-face. These three
notions support the definition of aregions data type. AnR-block is a connected component of the
realm graph; it supports the definition of alines data type. For all of theserealm-based structures
predicates (primitives) are defined to describe their possible relationships. We now review the most
important formal definitions.

An R-cycle c is just a cycle in the graph interpretation of a realm, defined by a set ofR-segments
S(c) = { s0, ...,sm-1}, such that

(i) ∀ i ∈ {0, ..., m-1} : si meetss(i+1) modm

(ii) No other pairs of segments inS(c) meet.

Obviously the following relationships may exist between anN-point p and anR-cyclec:

(i) p on c :⇔ ∃ s ∈ S(c) : p on s
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For p = (x, y) let sp = ((x, y), (x, n − 1)) (that is, a vertical segment extending from p upwards to the
edge of the grid). Let Sr(c) be the set of segments in S(c) whose right end point, but not the left one,
is on sp (the left end point is the smaller one of the two end points in the (x, y)-lexicographical order).
Let Si(c) be the segments in S(c) that intersect sp. Then

(ii) p in c :⇔ ¬ p on c ∧ |Sr(c)| + |Si(c)| is odd

(iii) p out c :⇔ ¬ (p on c ∨ p in c)

Hence c partitions the set PN into three subsets Pin(c), Pon(c), and Pout(c). Let P(c) := Pon(c) ∪ Pin(c).

Cycles are interesting because they are the basic entities for the definition of regions over realms. The
relationships shown in Figure 8 may be distinguished between two R-cycles c1 and c2. The following
terminology is introduced for these configurations:

c2 is c1 and c2 are
• (area-)inside (i, ii, iii) • area-disjoint (iv, v, vi)
• edge-inside (ii, iii) • edge-disjoint (v, vi)
• vertex-inside (iii) • (vertex-)disjoint (vi)

c1.

The meaning is that (i) c2 is (w.r.t. area) inside c1, (ii) additionally has no common edges with c1,
(iii) has not even common vertices with c1. Similarly (iv) c2 is disjoint w.r.t. area with c1,
(v) additionally has no common edges with c1, (vi) additionally has not even common vertices with
c1. area-inside is the standard interpretation of the term inside, vertex-disjoint the standard
interpretation of the term disjoint. Furthermore there are two positive notions: c1 and c2 are adjacent
if they are area-disjoint and have common edges, they meet if they are edge-disjoint and have common
vertices. The predicates are formally defined as follows:

c1 (area-)inside c2 :⇔ P(c1) ⊆ P(c2)

c1 edge-inside c2 :⇔ c1 area-inside c2 ∧ S(c1) ∩ S(c2) = ∅

c1 vertex-inside c2 :⇔ c1 edge-inside c2 ∧ Pon(c1) ∩ Pon(c2) = ∅

c1 and c2 are area-disjoint :⇔ Pin(c1) ∩ P(c2) = ∅ ∧ Pin(c2) ∩ P(c1) = ∅

c1 and c2 are edge-disjoint :⇔ c1 and c2 are area-disjoint ∧ S(c1) ∩ S(c2) = ∅

c1 and c2 are (vertex-)disjoint :⇔ c1 and c2 are edge-disjoint ∧ Pon(c1) ∩ Pon(c2) = ∅

c1 and c2 are adjacent :⇔ c1 and c2 are area-disjoint ∧ S(c1) ∩ S(c2) ≠ ∅

(iii)

(ii)

(i)
(iv)

(v)

(vi)

Figure 8: Possible relationships between two R-cycles

c1

c2
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c1 and c2 meet :⇔ c1 and c2 are edge-disjoint ∧ Pon(c1) ∩ Pon(c2) ≠ ∅

One can observe similar ways how an R-segment s can lie within an R-cycle c:

For an R-point p and an R-cycle c we have two possibilities:

Formal definitions are left to the reader. Based on the concept of R-cycles, for the definition of a SDT
for regions the notions R-face and R-unit are introduced which describe regions from two different
perspectives and which are used equivalently. Both of them essentially define polygonal regions with
holes. An R-unit is a “minimal” R-face in the sense that any R-face within the R-unit is equal to the
R-unit. Hence R-units are the smallest region entities that exist over a realm. In the next section a
region (data type) will be defined that can either be viewed as a set of R-faces or, equivalently, as a set
of R-units. The first view emphasizes a minimal representation of the boundary of a region whereas
the latter view supports the definition of set operations for regions.

An R-face f is a pair (c, H) where c is an R-cycle and H = {h1, ..., hm} is a (possibly empty) set of
R-cycles such that the following conditions hold (let S(f) denote the set of segments of all cycles of f):

(i) ∀ i ∈ {1, ..., m} : hi edge-inside c

(ii) ∀ i, j ∈ {1, ..., m}, i ≠ j : hi and hj are edge-disjoint

(iii) Each cycle in S(f) is either equal to c or to one of the cycles in H (no other cycle can be formed
from the segments of f)

The first two conditions allow a hole within a face to touch in a vertex the boundary cycle c or another
hole. This is necessary in order to achieve closure under operations (e.g. subtracting face g from face
f may lead to a hole in f). On the other hand, to allow two holes to be area-disjoint makes no sense,
since then adjacent holes could be merged by eliminating common boundary segments (similarly for
adjacency of a hole with the boundary). The last condition ensures uniqueness of representation, that
is, there are no two different interpretations of a set of segments as sets of faces. Note that in a given
set of faces it is entirely possible for a hole of one face to contain some other faces (“islands”).

The grid points belonging to an R-face f are defined as P(f) := P(c) \ .

(ii)

• s (area-)inside c (i, ii, iii)

• s edge-inside c (ii, iii)

• s vertex-inside c (iii)

Figure 9: Possible relationships of an R-segment lying within an R-cycle

(i) (iii)

(i)

(ii)
• p (area-)inside c (i, ii)

• p vertex-inside c (ii)

Figure 10: Possible relationships of an R-point lying within an R-cycle

Pin hi( )
i 1=

m
∪



− 11 −

The possible relationships between anR-point p or anR-segments and anR-facef = (c, H) are:

(i) p (area-)inside f :⇔ p area-inside c ∧ ∀ h ∈ H : ¬ p vertex-inside h

(ii) s (area-)inside f :⇔ s area-inside c ∧ ∀ h ∈ H : ¬ s edge-inside h

The various notions ofinside and disjoint can be extended for the comparison of twoR-faces
f = (f0, ) andg = (g0, ), for example:

f (area-)inside g :⇔ f0 area-inside g0 ∧ ∀ ∈  : area-disjoint f0 ∨ ∃ ∈  : area-inside

This definition is illustrated in Figure 11.

f area-disjoint g :⇔ f0 area-disjoint g0 ∨ ∃ ∈  : f0 area-inside  ∨ ∃ ∈  : g0 area-inside

f edge-disjoint g :⇔ f0 edge-disjoint g0 ∨ ∃ ∈  : f0 edge-inside  ∨ ∃ ∈  : g0 edge-inside

The meaning of the remaining predicatesedge-inside, vertex-inside, vertex-disjoint, adjacent, meet
should be clear; definitions are omitted for brevity. We add a primitiveencloses:

f encloses g :⇔ ∃ ∈  : g0 area-inside

An R-unit as a minimalR-face is defined as follows. LetF(R) denote the set of all possibleR-faces.
Let f be anR-face.

f is anR-unit :⇔ ∀ g ∈ F(R) : g area-inside f ⇒ g = f

We denote byU(R) the set of allR-units. Figure 12 shows an example of a realm with all itsR-units
ui and an emphasizedR-face which is not anR-unit.

In [GüS93] the equivalence of two representations of a region over a realm is formally established,
namely, as a set of (pairwise) edge-disjointR-faces, and as a set of area-disjointR-units. Operations
called faces and units are defined to convert between the two formal representations. Hence the
equivalence can be expressed as:∀ F ⊆ F(R): faces(units(F)) = F. The operationunits is defined as
units(F) := {u ∈ U(R) |∃ f ∈ F: u area-inside f}. The operationfaces basically works as follows: From
a given set of area-disjointR-units, its multiset of boundary segments is formed. Then, all segments
occurring twice are removed. The remaining set of segments defines uniquely a set of edge-disjoint
R-faces. - As a result, we can now freely convert between the two formal representations and use in
the definition of operations always the more convenient one.

F G

g G g f F g f

g1

Figure 11: Example of the relationshipf area-inside g

f

g2
f1 f2

g

g G g f F f

g G g f F f

f F f
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Let T be a set of R-segments, that is, T ⊆ S. Then cycles(T) denotes the set of all cycles (in the graph
interpretation of realm R) that can be formed from segments in T. Furthermore, we say that a set T of
R-segments describes a set of pairwise edge-disjoint R-faces :⇔ there exists a set of edge-disjoint R-
faces F such that T = S(F). If T describes a set of edge-disjoint R-faces, then a function regions(T) is
defined to return this set of faces.

For the definition of an SDT for lines the notion of an R-block is introduced. A set T of R-segments is
called connected :⇔ ∀ r, t ∈ T ∃ s1, ..., sm ∈ T : r = s1, t = sm, and ∀ i ∈ {1, ..., m − 1} : si and si+1
meet. An R-block b is a connected subgraph in the graph interpretation of a realm, defined by its set
of R-segments S(b). Two R-blocks b1 and b2 are disjoint :⇔ ∀ s1 ∈ S(b1) ∀ s2 ∈ S(b2) : s1 and s2 are
disjoint. For an R-point p we consider the angularly sorted cyclic list Lp of R-segments s ∈ S(b1) ∪
S(b2) that meet in p. p is called a meeting point if Lp is the concatenation of two sublists Lp,1 and Lp,2
so that all R-segments of Lp,1 are elements of S(b1) and all R-segments of Lp,2 are elements of S(b2),
or vice versa (see Figure 13).

Let b1 and b2 be two R-blocks.

b1 and b2 meet :⇔ ∃ s ∈ S(b1) ∃ t ∈ S(b2): s and t meet in a meeting point ∧
∀ s ∈ S(b1) ∀ t ∈ S(b2) : s ≠ t ∧
(s and t meet in p ⇒ p is a meeting point)

b1 and b2 intersect :⇔ ∀ s ∈ S(b1) ∀ t ∈ S(b2) : s ≠ t ∧ ∃ s ∈ S(b1) ∃ t ∈ S(b2) : s and t meet
in p ∧ p is not a meeting point

Again, we have two equivalent representations of a lines value, namely, as a set of segments, or as a
set of disjoint R-blocks. For a set of segments T ⊆ S, blocks(T) denotes its partition into maximal
connected components. Then S(blocks(T)) = T.

Some primitives relate an R-block b and an R-face f.

b (area-)inside f :⇔ ∀ s ∈ S(b) : s area-inside f

b and f meet :⇔ ∀ s ∈ S(b) : ¬ s area-inside f ∧ ∃ s ∈ S(b) ∃ t ∈ S(f) : s and t meet

u1

u5
u6

u4

u3u2

u7

u8

u9

Figure 12: Example of an R-face which is not an R-unit
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b andf intersect :⇔ ∃ s ∈ S(b) : s area-inside f

EmbeddingN-points in the Euclidean plane, we can define the distancedist(p, q) between two
N-points, the lengthlength(s) of anN-segment, and the areaarea(c) inside anR-cycle in the well-
known way. The area inside anR-facef = (c, H) is defined asarea(f) := area(c) − area(h).

4 Realm-Based Spatial Data Types

The realm-based structures reviewed in the previous section form the basis for adefinition of spatial
data types. The basic types introduced are calledpoints, lines, andregions4 and will be part of a spatial
algebra defined in Section 7. There is a “flat” and a “structured” view of values of these types. The
“flat” view is the following:

For a given realm R, a value of type points is a set of R-points, a value of type lines is a set of
R-segments, and a value of type regions is a set of R-units.

The “structured” view, that we shall assume as the formal definition, is as follows:

For a given realm R, a value of type points is a set of R-points, a value of type lines is a set of
pairwise disjoint R-blocks, and a regions value is a set of pairwise edge-disjoint R-faces.

We have shown in [GüS93] that the two views are equivalent. The first view is conceptually very
simple and supports a direct understanding of set operations. The second view is “semantically richer”
and showslines and regions values as consisting of a number ofcomponents (blocks or faces).
Moreover, it allows one to express relationships between these components and also emphasizes the
representation of the boundary in case of regions. Note that aregions value may have holes. Holes are
important because (i) they allow for an adequate modelling of area features, and (ii) they make it
possible to obtain closure under point set operations. Figure14 illustrates the data types.

It should be obvious that these data types have very nice closure properties. They are closed under the
geometric operationsunion, intersection, anddifference with regard to the same realm. That is, the
result of such an operation is a realm-based value as well and corresponds to the definitions of the
spatial data types given above. The geometric operations can be reduced to the corresponding set-
theoretic ones and are defined as follows. LetP1, P2 be twopoints values,L1, L2 two lines values, and
R1, R2 two regions values. Then

4 Unfortunately, there is a collision between the typographical conventions for realm-based primitives and for data types
(both underscore italic). It cannot be avoided in order to remain consistent with [GüS93] and [Gü93] (the latter will be
used below as a framework for defining signatures).

p’b1 b2

p
b1 b2

Figure 13:p is a meeting point,p’ is not a meeting point.

h H∈
∑
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union (P1, P2) := P1 ∪ P2

union (L1, L2) := blocks(S(L1) ∪ S(L2))

union (R1, R2) := faces(units(R1) ∪ units(R2))

For intersection and difference the definitions are analogous. Due to the underlying realms, these
operations both in theory and in practice obey the usual algebraic laws (commutativity, associativity,
distributivity, ...).

The realm-based primitives reviewed in the previous section offer a formal basis for the definition of
spatial algebra primitives of which union, intersection, and difference have just been introduced.
The following further primitives are needed. Let F and G be two regions values.

F and G are area-disjoint :⇔ ∀ f ∈ F ∀ g ∈ G : f and g are area-disjoint

F and G are adjacent :⇔ F and G are area-disjoint ∧ ∃ f ∈ F ∃ g ∈ G : f and g are
adjacent

The meaning of the remaining predicates (area-)inside, edge-inside, vertex-inside, edge-disjoint,
(vertex-)disjoint, meet should be clear; definitions are omitted for brevity. We define two further
predicates intersect and encloses:

F and G intersect :⇔ (units(F) ∩ units(G) ≠ ∅)

F encloses G :⇔ ∀ g ∈ G ∃ f ∈ F : f encloses g

Let P and Q be two points values.

P and Q are disjoint :⇔ P ∩ Q = ∅

Let K and L be two lines values.

K and L are disjoint :⇔ ∀ k ∈ K ∀ l ∈ L : k and l are disjoint

K and L meet :⇔ (∀ k ∈ K ∀ l ∈ L : k and l are disjoint ∨ k and l meet) ∧
(∃ k ∈ K ∃ l ∈ L : k and l meet)

K and L intersect :⇔ (∀ k ∈ K ∀ l ∈ L : k and l are disjoint ∨ k and l intersect) ∧
(∃ k ∈ K ∃ l ∈ L : k and l intersect)

Let P be a points value, L a lines value, F a regions value, and v, w lines or regions values.

P (area-)inside F :⇔ ∀ p ∈ P ∃ f ∈ F : p area-inside f

a points value a lines value a regions value

Figure 14: Examples of spatial values
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L (area-)inside F :⇔ ∀ l ∈ L ∃ f ∈ F : l area-inside f

L andF meet :⇔ ∀ l ∈ L ∀ f ∈ F : ¬ l area-inside f ∧
∃ l ∈ L ∃ f ∈ F : l andf meet

L andF intersect :⇔ ∃ l ∈ L ∃ f ∈ F : l andf intersect

P on_border_of v :⇔ ∀ p ∈ P ∃ s = (q1, q2) ∈ S(v) : p = q1 ∨ p = q2

v border_in_common w :⇔ ∃ s ∈ S(v) ∃ t ∈ S(w) : s = t

5 The Type System

The ROSE algebra that we are going to define is a system of spatial data types together with operations
between these types. Many of the operations are applicable to several types. Hence we need a
framework and notations to describe polymorphic operations. We would also like to express certain
constraints for the applicability of some operations. For example, an adjacency test operation for
regions should only be allowed if the two operands are known to come from a set of disjoint regions
(that is, apartition of the plane). Similarly, an overlay operation should be constrained to two partition
operands and not be applicable to arbitrary collections of objects with region attributes. In this section
we briefly review a type system powerful enough to express polymorphic operations and the
mentioned constraints in a precise manner.

5.1 Second-Order Signature

A system of several sets and functions between these sets is called amany-sorted algebra. A many-
sorted signature describes the syntactic aspect of a many-sorted algebra. It consists of two sets of
symbols calledsorts andoperators; operators are annotated with strings of sorts. Each sort is thename
of a set of the algebra and each operator thename of a function. For example, the symbolslines,
regions, andbool may be sorts andintersectslines regions bool an operator. The annotation with sorts
defines the functionality of the operator. A signature defines a set of terms.

Second-order signature, introduced in [Gü93], is a system of two coupled many-sorted signatures
where the top-level signature offerskinds (sets of types) as sorts andtype constructors as operators.
The terms of this signature define a collection of types, that is, a type system. A simple example is
shown below. Each line describes a group of operators (type constructors in this case) with the same
functionality.

kinds DATA, GEO, SET

type constructors

→ DATA int, real, bool

→ GEO points, lines, regions

GEO → SET set

Here int, set, etc. are type constructors which generally have one or more argument kinds and one
result kind. A type constructor with zero argument kinds is called aconstant type. In the example all
constructors except forset are constant types. The terms of this signature, and therefore the available
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types of this type system, can be classified by result kinds. For example, there are exactly three types
of kind GEO. The types of kind SET areset(points), set(lines), andset(regions). In this example the
set of types is finite, but this is generally not the case.

A second, bottom-level, signature uses the types defined by the top-level signature as sorts. Usually
one does not write the bottom-level signature directly but rather asignature specification which
allows one to quantify over kinds and so to define polymorphic operations. For example, we can
define:

∀ data in DATA. data × data → bool =, <, ≤, ≥, >

∀ geo in GEO. geo × regions → bool inside

Here data and geo are type variables ranging over the kinds DATA and GEO, respectively. The
semantics of such a signature specification is a many-sorted signature which is obtained by
substituting for each type variable all types in the respective kind. Hence the first specification says
that the comparison operators are defined for two integers, two reals, or two boolean values. The
second specification defines aninside operator with functionalitiespoints × regions → bool, lines ×
regions → bool, andregions × regions → bool.

This completes already the description of the basic scheme of second-order signature. Of course, there
are also other ways of specifying polymorphic operations; for a discussion and references see [Gü93].

The basic scheme has been extended in [Gü93] to support the definition of flexible database query
languages. Some of these techniques are needed in this paper:

Extensions of the concept of signature. The purpose is to include for a given collection of types (sorts,
to be precise) “automatically” product types, union types, list types, and function types. Ifs, s1, ...,sn
andt are sorts then

• (s1 × ... × sn) is a sort (the product sort, denoting tuples of instances of thesi)
• (s1  ∪ ... ∪ sn) is a sort (the union sort, denoting instances in any of thesi)
• s+ is a sort (the sort denoting non-empty lists of instances ofs)
• (s1 × ... × sn → t) is a sort (denoting functions froms1 × ... × sn into t).

With these extensions one can, for example, define the following operations:

∀ geo in GEO.

(set(geo))+ → set(geo) union

set(geo) × (geo → bool) → set(geo) select

Here theunion operator takes one or more operands that are all sets of geometric values of the same
type and returns a set (the union) of this type. Theselect operator takes an operand of typeset(geo)
and a predicate on typegeo and returns a subset of the operand set fulfilling the predicate.

Specification techniques. Two additional specification techniques are illustrated by the following
example:

∀ geoi in GEO. (set(geoi))
+ → data: DATA weight

The notationgeoi is related to operators with a variable number of operands and means that for each
substitution of the variablegeoi an instance of the kind GEO is selected independently. Hence one
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possible operand combination forweight would beset(points) × set(lines) × set(lines). With the
quantification “∀ geo in GEO” all operands would have to be of the same type (e.g.set(points)).

The notation “data: DATA” is to be read as “some typedata in DATA” and means that there is a type
mapping associated with theweight operator. Intuitively the idea is that the operator determines itself
the result type within the kind DATA, depending on the given operand types. This is sometimes useful
when it is not possible or desirable to describe the result type precisely in the signature. To define the
semantics of such an operator one needs to supply a type mapping function (as a part of a second-order
algebra, see [Gü93] for details). In this example, theweight operator might return a value of typeint
if all operands are sets of points (and return the total number of points), and a value of typereal
otherwise (say, the total area or length). Some examples of meaningful operators with type mappings
occur in the ROSE algebra defined below.

Dynamic kinds. (This extension has not yet been covered in [Gü93]). Sometimes it is necessary to
modify dynamically the set of instances of a kind, that is, to create new types. For a kind K, the
notationnew(K) creates a new (anonymous) type in K; the value ofnew(K) is a type that can be used
in type expressions.

5.2 The Type of a Partition

The termpartition is used to refer to a disjoint subdivision of the plane into regions with associated
(non-spatial) attributes. For partitions, one would like to define special operations like testing for
adjacency (of two regions of a partition) or overlay (of two partitions, resulting in a new partition).
The question is how partitions can be described in a type system so that the operations can be
constrained to partition operands.

We feel that a partition should be modeled as a set of objects with associatedregions attribute values
and an additional constraint that for any pair of objects in one particular partition, theirregions values
are disjoint. To say this in a more general way, we would like to model and manipulate sets of values
such that for any two distinct values in such a set a certain condition holds. To consider an example
different from partitions, let us assume we would like to model sets of integers with the property that
there are no two consecutive integers in the set.

The idea to make this possible in the type system is to introduce restriction types and to collect them
within aspecialkind. Let d be a data type andp be a binary predicate ond. Thend p denotes a kind;
each typed’ in d p describes a set of values of typed such that for any two distinct elements ofd’ the
predicatep holds. Furthermore, any such typed’ is defined to be asubtype of d which means that all
operations defined for typed are also applicable to instances of typed’.

For the “non-consecutive integer” example, we could introduce a predicate “two-apart” on integers,
being true if the difference of the two operands is at least two. Theninttwo-apart denotes a kind whose
element types have carrier sets5 with the desired property. Hence the set {3, 5, 10} would have a type
within this kind whereas for the set {1, 2, 3} there would not exist a type within kindinttwo-apart. The
types themselves are anonymous (i.e. no explicit names for them need to be introduced).

5 For a type, its set of instances is called thecarrier.
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We use this as follows: The kind regions area-disjoint contains all types whose carriers are sets of
regions values such that any two distinct values of the type are area-disjoint. A quantification “∀ area
in regions area-disjoint” binds the area type variable to any such type. Hence an adjacency test can be
defined as:

∀ area in regions area-disjoint. area × area → bool adjacent

Here the quantification selects first one particular partition of the plane as a type area. Hence it is
guaranteed that any two arguments for the operator adjacent are from the same partition and are either
area-disjoint or equal. Note that when a new partition is created in query processing, we can obtain a
corresponding new anonymous type for it with the notation new(regions area-disjoint).

On the side of the database system this should be supported by making it possible to define restriction
types and to use them as attribute domains. For example, assume an operation area_disjoint

applicable to values of type regions has been made known to the DBMS. One might write:

type mycountries = restrict (regions, area_disjoint);

class states (name: string; region: mycountries; pop: integer)

An insertion of a new object into class states should then at least conceptually be viewed as preceded
by an insertion of a new regions value into the extension of type mycountries. It should be checked
that the new value is area_disjoint with all values already present.

6 The Object Model Interface

Spatial data types as such are rather useless; they need to be integrated into a DBMS data model and
query language. On the other hand, the definition of SDTs should be valid regardless of any particular
data model and therefore not depend on it. Consequently, SDTs should not be firmly embedded into
a particular DBMS data model. Instead, the SDT definition should be based on an abstract interface
to the DBMS data model which we call the object model interface (OMI). Different DBMS data
models can then use the spatial algebra as a provided resource for dealing with geometry. In this
section we define an object model interface for the ROSE algebra. In fact, there are two aspects of the
interface: (1) There are basic concepts and operations in the object model that are needed to define the
ROSE algebra, and (2) there are constructs and notations needed to embed the ROSE algebra into the
query language, that is, to use the ROSE algebra.

6.1 Object Model Interface Concepts for Defining the ROSE Algebra

The concepts that are needed to define the ROSE algebra are the following:

• object types/classes
• collections of objects
• functions for accessing (attribute) values from objects
• data types int, real, bool
• a pool of names (for new objects/functions)
• an object aggregation function
• an object extension function
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Object types/classes. We assume that each DBMS data model has some notion of one or more object
types or classes. For example, in a relational system, this would be relations; in an object-oriented
system we may have object class hierarchies, and objects may have a complex structure. In terms of
our type system we model this by a kind OBJ; each DBMS object class is represented as a type obj in
OBJ.

Collections of objects. The structures manipulated in (and obtained as a result of) queries may be sets
of tuples, nested relations, sequences of object identifiers, graphs, etc. The most simple, universally
valid and data model-independent abstraction is that of a set of objects. If a set of objects is not directly
available, the DBMS data model must provide functions to transform its structures containing objects
into a set of objects, and vice versa. In the type system we have a type constructor set applicable to
object types.

Functions for accessing attribute values. The OMI views an object as an abstract entity whose internal
structure is hidden. It is assumed that objects may have associated values of standard or spatial data
types and that these values can be accessed by means of attribute functions of type obj → data, for
any type obj in OBJ and data type data.

Data types int, real, bool. We assume that standard data types for integers, real numbers, and boolean
values exist. Some ROSE operations yield results of these types.

A pool of names. Some operations require (new) names as parameters, in particular for introducing
derived attributes (attribute functions). We introduce this pool of names as a type ident in a kind
IDENT.

Object aggregation function. Some spatial operations construct new objects as “aggregation objects”.
For that purpose the DBMS data model has to provide a “⊗” (product) function which for two objects
o1 of type obj1 and o2 of type obj2 forms an aggregation object o1 ⊗ o2. The same symbol is used to
denote a corresponding type mapping operation; hence there is also a product type obj1 ⊗ obj2 and
object o1 ⊗ o2 is of type obj1 ⊗ obj2. On the product type all attribute functions defined on either obj1
or obj2 are valid; this should be expressed by the type mapping (defined within the object model). In
a relational setting, this corresponds to concatenating two tuples when forming a join; the result tuple
has the attributes of both operand tuples.

Object extension function. Sometimes it is necessary to add an attribute to objects of a given object
type. For that purpose the DBMS data model must offer an extension function denoted by “⊕”. At the
instance level, this operation adds a data type value to an object, hence o ⊕ v is an object o extended
by a value v. At the type level, the given object type obj is extended by a attribute function attr
mapping objects into values of some data type data. Hence obj ⊕ (attr, data) denotes such an
extension type of which o ⊕ v is an instance if o has type obj and v has type data.

6.2 Concepts for Embedding the ROSE Algebra into a DBMS Query Language

This part of the object model interface contains requirements about certain notations and constructs
needed in the DBMS query language to allow an embedding and a full use of the ROSE algebra.
Facilities are needed to
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• denote a (spatial) data type value
• denote a collection of objects together with an attribute (attribute function)
• extend objects by derived (attribute) values
• allow naming of an SDT value or a new attribute
• offer a grouping operation.

To motivate why these facilities are needed we give a brief preview of some operations of the ROSE
algebra:

∀ obj in OBJ. ∀ geo, geo1, geo2 in GEO.
geo × regions → bool inside
lines × lines → points intersection
set(obj) × (obj → geo1) × geo2 → set(obj) closest
set(obj) × (obj → geo) × ident → set(o: OBJ) decompose

The meaning of the first two operations should be obvious. Theclosest operator takes a collection of
objects together with a spatial attribute function and a further SDT valuev and returns those objects
whose attribute value is closest tov (usually one object). Thedecompose operator also takes a
collection of objects with a spatial attribute. It produces a new collection of objects as follows: For
each object in the operand set its attribute value is decomposed into its components (a component is
a point, a block, or a face). If there aren components, thenn copies of the original object are produced
each of which has one component as the value of a new attribute. The name of the new attribute is
supplied as the third parameter of typeident.

We now discuss each of the mentioned facilities in turn and illustrate them in the context of the
relational model by (a) showing corresponding notations from geo-relational algebra [Gü88] and (b)
by extensions that might be used for SQL. In examples, relations

cities (cname:string; center:points; pop:int)
states (sname:string; territory:regions; language:string)

are used.

Denote a data type value. This is needed to supply operands to operations likeinside or intersection.
There are two cases: (i) within the scope of an “object set iteration”, and (ii) without object set
iteration. In the first case, each object in a set is considered in turn and it suffices to write down the
name of an attribute to denote a single data type value.

Q1: Calculate the population (in thousands) of all cities in Germany.

(a) cities select[centerinside Germany] extend[pop/1000 {thousands}]
(b) select cname, thousands: pop/1000

from cities
where centerinside Germany

Here within the scope of aselect or extend operator of geo-relational algebra or within the where-
clause or select-clause of SQL we have an “object set iteration” and an attribute name denotes a data
type value.

In the second case (without object set iteration), one would like to refer to a single data type value, in
particular, to the attribute value of some specific object. A notation is needed to identify a single object
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and to access one of its attributes. In the geo-relational algebra this is done by an extract operator. An
error message should appear if none or more than one object is identified by the condition.

Q2: Provide the geometry of the city Hagen (assuming there is only one “Hagen” in the cities
relation).

(a) cities extract[cname = “Hagen”; center] {Hagen}
(b) let Hagen

extract center
from cities
where cname = “Hagen”

Here we have extracted a single points value from the cities relation. We have also assigned a name
(Hagen) to this value so that it can be used in later queries.

Denote a collection of objects together with an attribute. This is needed for operations like closest or
decompose. Recall the signature for closest:

set(obj) × (obj → geo1) × geo2 → set(obj) closest

We need a notation to supply the two related operands “set(obj)” and “(obj → geo1)”.

Q3: Determine the city or cities closest to Hagen.

(a) cities select[cname ≠ “Hagen”] Hagen closest[center]
(b) closest Hagen

column center
from cities
where cname ≠ “Hagen”

In this example, “cities” corresponds to the “set(obj)” and “center” to the “(obj → geo1)” operand. In
geo-relational algebra first the set of objects is written and then the points value (the “geo2” operand);
the attribute is given separately in brackets. For an extended SQL we suggest to introduce a “column
α from β” construct to denote a set of objects β with an attribute α. This construct should be viewed
as returning the two operands separately as they are needed by the ROSE algebra. In contrast, writing
“select α from β” would yield a set (or multiset) of attribute values, that is, an operand of type
set(geo1). This is not what the operator needs; in fact, a set of values is not even available in the ROSE
type system given below.

Extend objects by derived (attribute) values. This is needed to make the results of spatial operations
available. In geo-relational algebra this is provided by the extend operator, in SQL by expressions in
the select-clause, as in query Q1.

Allow naming of an SDT value or a new attribute. We have already seen two instances of this. In query
Q2 a name (Hagen) was assigned to an SDT value. An attribute name must also be provided for
derived attributes, as in query Q1. Finally, new attribute names are needed by operations that construct
new objects such as decompose.
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Q4: Decompose all states into their basic areas.

(a) states decompose[territory {basic_area}]
(b) decompose into column basic_area

column territory
from states

Here (a) shows the style for naming the new attribute that would be used in geo-relational algebra
(although there was no decompose operator). For the extended SQL we have invented an “into
column α” construct for the same purpose.

Offer a grouping operation. This is needed to support a “fusion” operation (which essentially groups
a collection of objects and forms the union of the areas in each group).

Q5: Determine all regions of the states speaking the same language.

(a) states fusion[language; territory]
(b) fusion territory

from states
group by language

These applications of the fusion operator are really abbreviations of the use of grouping:

(a) states group_by[language; group sum[territory]]
(b) select sum(territory)

from states
group by language

In geo-relational algebra and in SQL such a grouping operation is available; it is used together with a
sum aggregate function of the ROSE algebra. There may be several attributes for grouping and
several aggregate expressions.

7 The ROSE Algebra

We are now ready to define the ROSE algebra itself (ROSE stands for RObust Spatial Extension). It
is a realm-based algebra, since data types are defined on realms and since operations operate on and
produce realm-based spatial values. All values occurring as operands are assumed to be defined over
the same realm.

Defining the ROSE algebra means that we will give a second-order signature with the types points,
lines, and regions as well as types of the object model interface. The algebra then consists of carrier
sets for the types and functions for the operations. The carrier sets for the three spatial types have
already been defined in Section 4. In this section we formally define the functions for all operations.

The type system of the ROSE algebra, as discussed in Sections 5 and 6, is summarized in the
following specification:
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kinds IDENT, DATA, EXT, GEO, OBJ, SET
type constructors

→ IDENT ident
→ DATA int, real, bool, ...
→ EXT lines, regions
→ GEO points, lines, regions

OBJ → SET set

Kind DATA describes the (standard) data types of the object model interface; there will be other types
in addition to the three that are required. There is a kind EXT just containing types lines and regions
which supports the definition of operations not suitable for points.

The operations of the ROSE algebra are divided into four groups. For each group we give an informal
introduction, show the signature, and then define the semantics of the operations.

7.1 Spatial Predicates

These operations compare two spatial values with respect to their topological relationships and return
a boolean value. The predicates’ names are self-explanatory.

∀ geo in GEO. ∀ ext, ext1, ext2 in EXT. ∀ area in regions area-disjoint.

geo × geo → bool =, ≠, disjoint

geo × regions → bool inside

regions × regions → bool area_disjoint, edge_disjoint,

edge_inside, vertex_inside

ext1 × ext2 → bool intersects, meets

area × area → bool adjacent, encloses

points × ext → bool on_border_of

ext1 × ext2 → bool border_in_common

For each operator op of the ROSE algebra we define a function fop which gives the operator’s
semantics and which has domains and codomain according to the operator’s signature entry. An
underlying realm R is assumed in all definitions. Of course, we rely on the primitives introduced in
Sections 3 and 4.

Let v1, v2 be two values of the same type in GEO. Then

f=(v1, v2) := (v1 = v2)

f≠(v1, v2) := (v1 ≠ v2)

fdisjoint(v1, v2) := (v1 and v2 are disjoint)

Let v be a value of a type in GEO and F be a value of type regions.

finside(v, F) := (v inside F)

Let v1, v2 be each either a lines or a regions value.
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fintersects(v1, v2) := (v1 and v2 intersect)

fmeets(v1, v2) := (v1 and v2 meet)

Let F and G be two regions values of a subtype area in regions area-disjoint.

fadjacent(F, G) := (F and G are adjacent)

fencloses(F, G) := (F encloses G)

The remaining definitions are omitted; they all just lift spatial algebra primitives to the ROSE level.

7.2 Operators Returning Spatial Data Type Values

The second group of operations consists of operators returning atomic spatial values as results. The
operators intersection, plus, and minus realize the closure properties of the ROSE algebra with
respect to intersection, union, and difference of two atomic spatial values. The common_border
operator finds the common boundary line(s) of two regions or lines values. The vertices operator
returns the vertex (corner) points of a lines or regions value and produces a points value. The contour
operator calculates a lines value from a regions value’s boundary. The interior operator is applied to
a lines value and yields a regions value which is composed of all regions that are enclosed by segments
of the lines value. If F is a regions value, interior(contour(F)) can be used to remove all holes of F;
both operators are not inverse to each other.

∀ geo in GEO. ∀ ext, ext1, ext2 in EXT.

points × points → points intersection

lines × lines → points intersection

regions × regions → regions intersection

regions × lines → lines intersection

geo × geo → geo plus, minus

ext1 × ext2 → lines common_border

ext → points vertices

regions → lines contour

lines → regions interior

Note that the intersection operator applied to two lines values does not yield a lines value as the set-
theoretic intersection of the underlying segment sets (see operator common_border) but a points
value.

Let P and Q be two points values, K and L be two lines values, and F and G be two regions values.

fintersection(P, Q) := intersection(P, Q)

fintersection(K, L) := {p ∈ R | ∃ s ∈ S(K) ∃ t ∈ S(L) : s and t meet in p ∧ p is not a meeting point}

fintersection(F, G) := intersection(F, G)

fintersection(F, L) := blocks({s ∈ S(L) | ∃ f ∈ F : s inside f})
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Let v1 and v2 be both either two points values, two lines values, or two regions values.

fplus(v1, v2) := union(v1, v2)

fminus(v1, v2) := difference(v1, v2)

Let K and L be two lines values and F and G be two regions values.

fcommon_border(K, L) := intersection(K, L)

fcommon_border(F, L) := fcommon_border(L, F) := blocks(S(F) ∩ S(L))

fcommon_border(F, G) := blocks(S(F) ∩ S(G))

Let v be a lines or regions value.

fvertices(v) := {p ∈ R | ∃ s ∈ S(v) : s = (p, q)}

Let F = {f1, ..., fn} = {(c1, H1), ..., (cn, Hn)} be a regions value.

fcontour(F) := blocks( S(ci))

Let L be a lines value.

finterior(L) := regions(  - {s ∈ S(L) | ∃ c ∈ cycles(S(L)) : s edge-inside c})

Forming the interior of a lines value L is a somewhat more complex operation. First, the union of all
segments is computed that occur in any cycles that can be formed from the segments of L. From this
set of segments all segments are removed that lie properly within (edge-inside) some cycle. Hence
only segments of “outer cycles” remain. Since these segments describe a set of edge-disjoint R-faces,
the regions function can be applied to return a corresponding regions value.

7.3 Spatial Operators Returning Numbers

The third group of operations contains spatial operators returning numbers. The no_of_components
operator yields the number of components (R-points, R-blocks, or R-faces) of a spatial value. The dist
operator calculates the minimal distance between any two spatial values. The diameter of a spatial
value is defined as the largest distance between any of its components. The length operator calculates
the length of all segments of a lines value. The area operator computes the sum of the areas of all
faces of a regions value. The perimeter operator calculates the sum of the length of all cycles of a
regions value. If we intend to compute only the sum of the length of the outer cycles and not of the
holes of a regions value, we can use the contour operator to eliminate holes first.

∀ geo, geo1, geo2 in GEO.

geo → int no_of_components

geo1 × geo2 → real dist

geo → real diameter

lines → real length

regions → real area, perimeter

i 1=

n

∪
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Let v and w be values of types in GEO. Let L be a lines value and F be a regions value.

fno_of_components(v) := card(v)

fdiameter(v) := max{dist(p, q) | p, q ∈ fvertices(v)}

flength(L) := length(s)

farea(F) := area(f)

fperimeter(F) := length(s)

Note that the four operators diameter, length, area, and perimeter are not invariant against
redrawing, i.e., each of these four operations applied before and after a necessary redrawing of one or
more segments of a lines or regions value will yield slightly different results. We want to define the
dist operator in a way that is invariant against redrawing, since it has besides a numerical aspect also
a topological one. Consider a set of spatial objects with a spatial attribute and a spatial reference value
for which the nearest spatial object has to be computed. If the distance calculations between spatial
reference value and spatial attribute value vary depending on possible redrawings, the answer
regarding the nearest spatial object may vary, too, and lead to topological inconsistency. Note the
relationship to the closest operator discussed below. Therefore we define the distance function as
follows. GP will denote the set of grid points associated with a spatial value.

For a points value v let GP(v) := v, for a lines value v let GP(v) := E(S(v)) (the union of the envelope
points of all segments of v), and for a regions value v let GP(v) := E(S(v)) ∪ Pin(v). Then

 0, if GP(v) ∩ GP(w) ≠ ∅
fdist(v, w) := 

 min{dist(p, q) | p ∈ GP(v), q ∈ GP(w)} otherwise

Although the sets of grid points used in the definition may be very large, this operation can be
efficiently implemented, since it can be reduced to distance computations between a point p and a
segment s. There it is only necessary to consider those envelope points that are neighbours of the
intersection point of s with a perpendicular line going through p.

7.4 Spatial Operators on Sets of Objects

Operators of the last group take sets of objects as operands; some of them create new sets of objects
as a result. The sum operator aggregates over the values of some spatial attribute of an object set and
computes the geometric union of all these values. The closest operator yields that object of an object
set whose spatial value is nearest to a spatial reference value. The decompose operator was already
explained in Section 6.2; it multiplies each object of an object set according to the number of
components of its spatial attribute value and adds this component as a new attribute. The overlay
operator allows to superimpose one partition of the plane on another one and to combine them into
area-disjoint regions. As described in Section 5.2, partitions are given as sets of objects with an
attribute of a type in regions area-disjoint. The resulting set of objects contains one object for each new
region obtained as the intersection of a region of the first partition with a region of the second partition.

s S L( )∈
∑

f F∈
∑

s S F( )∈
∑
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Note that it is not required that the plane is covered completely by the regions of a partition. Thus it
is possible that a region of the first partition does not intersect any region of the second partition. In
this case it will not be part of any new object6 (Figure 15).

The fusion operator merges the values of a specified (set of) spatial attribute(s) on the basis of the
equality of the values of another (set of) non-spatial attribute(s). For each group of equal non-spatial
attribute values a (set of) new spatial value(s) is created as the geometric union of a set of spatial
values of the group7. In Figure 16, a partition of districts with their land use is given. The task is to
compute the regions with the same land use. Neighbour districts with the same land use are replaced
by a single region, that is, their common boundary line is erased. Each of the hatched areas on the left
is part of an object describing a district. On the right after the application of the fusion operator all
areas belonging to the same group gi form a single regions value and are hatched in the same way.

The signature for these operations is as follows:

∀ obj, obj1, obj2 in OBJ. ∀ geo, geo1, geo2 in GEO. ∀ area1, area2 in regions area-disjoint.

∀ datai in DATA. ∀ geoj in GEO.

set(obj) × (obj → geo) → geo sum

set(obj) × (obj → geo1) × geo2 → set(obj) closest

set(obj) × (obj → geo) × ident → set(o: OBJ) decompose

set(obj1) × (obj1 → area1) × set(obj2) × (obj2 → area2) × ident

→ set(o: OBJ) overlay

set(obj) × (obj → datai)
+ × (obj → geoj)

+ → set(o: OBJ) fusion

Since the operations of this group deal with sets of objects, for their semantics definition the concepts
of the object model interface are needed.

6 This corresponds to the standard join operation. If regions of one partition not intersecting a region of the other partition
were in the result, it would be similar to an outer join.

7 The fusion operator could be extended to allow grouping also by spatial attributes. For efficient implementation this
requires a capability of sorting by spatial data type values, which means the ROSE algebra would have to provide a
“less-than” operator for each of the three SDTs imposing a linear order.

overlay

Figure 15: Overlaying two partitions of the plane
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For the definition of the sum operator let O = {o1, ..., on}, for n ≥ 0, be the operand set of objects and
attr the attribute function yielding an SDT value for each object.

 union(...(union(attr(o1), attr(o2)), ...), attr(on)) if O ≠ ∅
fsum(O, attr) := 

 ∅ otherwise

For the definition of the closest operator let O be the set of objects, attr the attribute function, and rv
the reference value for which the nearest spatial value has to be calculated. Then

fclosest(O, attr, rv) := {o ∈ O | ∀ o’ ∈ O : fdist(rv, attr(o)) ≤ fdist(rv, attr(o’))}

The decompose operator has an unspecified result type in OBJ; hence in addition to its semantics
function fdecompose it needs a type mapping τdecompose, as described in Section 5.1. When an operator
alpha with a type mapping is used in a query and applied to some operands (say alpha(a, b, c)), then
this will lead to a call of its semantics function falpha(a, b, c) during query execution. Additionally it
will lead to a call of the type mapping function τalpha during query parsing; the type mapping function
is called not with the actual operands (i.e., a, b, c) but instead with the actual types of these operands.
These types can vary because of the polymorphic specification of operators which is the reason why
type mappings are needed at all. The only exception to this rule are operands of type ident; for them
not the type ident but the actual identifier is passed to the type mapping function. This is because the
main purpose of such operands is the use in type mappings.

fdecompose(O, attr, name) := {o ⊕ v | o ∈ O, v ∈ attr(o)}

τdecompose(set(obj), (obj → geo), name) := obj ⊕ (name, geo)

Hence each object is extended by one of the components of its spatial attribute; the new object type
is an extension of the operand object type by a new attribute name of type geo. For example, the call
in query Q4 (Section 6.2) “decompose(states, territory, basic_area)”would lead to the following calls

wheat oats barley rye

fusion

d1

d7

d5

d2

d8

d9

d4

d6

d3

g1

g2

g3

g1

g4

g2

g3

Figure 16: Merging a partition of districts concerning the same land use
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of semantics function and type mapping:

fdecompose(states, territory, basic_area)
τdecompose(set(state), (state → regions), basic_area)

The overlay operator also needs a type mapping:

foverlay(O1, attr1, O2, attr2, name)

:= {(o1 ⊗ o2) ⊕ v | ∃ o1 ∈ O1 ∃ o2 ∈ O2 :

fintersects(attr1(o1), attr2(o2)) = true ∧ v = fintersection(attr1(o1), attr2(o2))}

τoverlay(set(obj1), (obj1 → area1), set(obj2), (obj2 → area2), name)

:= (obj1 ⊗ obj2) ⊕ (name, new(regions area-disjoint))

Here the resulting object type is the product of the two operand types extended by a new attribute
name of a new type in the kind regions area-disjoint.

The fusion operator is not formally defined since it is only an abbreviation of a corresponding
grouping operation, as described in Section 6. The semantics definition would rely on a formalization
of the semantics of the grouping operation.

8 Integration with a DBMS Query Language: O2SQL/ROSE

The purpose of this section is two-fold: (i) We show the integration of the ROSE algebra with one
particular data model and query language, which further illustrates the concepts and requirements of
the object model interface. (ii) We demonstrate the “expressive power” of the ROSE algebra (within
the context of a query language) by showing some example queries.

For the integration example we select O2 as one of the state-of-the-art object-oriented database
systems with O2SQL as its current and future standard query language [Ba89, BaCD89, BaDK92,
O293]. O2SQL is a functional language that deals with and allows to construct atomic values, tuples,
sets and lists, provides operations on these structures, and allows one to define methods on classes.
Flat as well as nested structures can be constructed, and all levels of a structure can be accessed.
Elements of sets and lists and components of tuples may be of any type or class. The syntax of O2SQL
has an SQL-like style through a select-from-where construct corresponding to the three algebraic
operations projection, cartesian product, and selection, extended by object-oriented features.

In the sequel we demonstrate the integration of our ROSE algebra with O2SQL by presenting example
queries. The notations regarding class definitions and queries comply with the notations in [BaDK92,
O293]. A few notational extensions are necessary. Examples are based on the following simple
database which models spatial aspects of Germany. The keyword public means that components of a
tuple structure are “visible” and can be accessed.

class State
public type tuple (name : string, territory : regions)

end;
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class City
public type tuple (name : string,

zipcode : integer,
statistical_data : tuple ( foundation_date : integer,

population : integer,
unemployment_rate : real),

municipal_area : regions)
end;

class Highway
public type tuple (number : string, way : lines)

end;

class River
public type tuple (name : string, route : lines)

end;

class District
public type tuple (name : string, region : regions, land_use : string)

end;

A class is a description of a group of objects but not a persistent repository for them in a database. In
O2 only objects associated with names are persistent. We therefore introduce for each class a named
collection of objects:

name Cities : set(City); name States : set(State); name Highways : set(Highway);
name Rivers : set(River); name Districts : set(District);

Spatial attributes are defined in the same way as attributes of standard data types, using the SDTs of
the ROSE algebra. Note however, that we have compromised on the typing of regions attributes. In
the example database, each of these attributes should really have its own type areai within the kind
regionsarea-disjoint in order to be able to model partitions of the plane. Such a sophisticated typing is
not available in O2. We will therefore assume that for the O2 integration the definition of the ROSE
algebra is slightly changed so that all operators defined on areai types are defined on regions instead.
This does not change the definition of syntax or semantics of these operators because any value of
some type areai in regionsarea-disjoint is in fact a regions value; it just means that type checking cannot
ensure any more that they are applied to partitions.

The syntax of the spatial operations of the ROSE algebra in a query language is not prescribed by the
signature of the operations but is part of the process of embedding the operations into the desired
query language, i.e., dependent on the extended query language. Here, we select infix syntax for
spatial predicates and the two operations plus and minus and a functional syntax for all other
operations.

Q1: List the names and the land use of districts which are neighbors with the same land use.

select tuple (dname1: d1.name, dname2: d2.name, land_use: d1.land_use)
from d1 in Districts,

d2 in Districts
where d1.region adjacent d2.region and d1.land_use = d2.land_use
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All spatial predicates of the ROSE algebra (first group of spatial operations) can be used as selection
criteria in the where clause, just like conventional predicates. The result of this query is a set of tuples
each formed by the tuple constructortuple. Components of tuples are accessed by the field extraction
operator denoted by a dot. Hence here we have the facility of the OMI:Denote a data type value
(within an object set iteration).

Q2: Which states are enclosed by which other states?

select tuple (state1: s1, state2: s2)
from s1in States,

s2in States
where s1.territoryencloses s2.territory

The result of the query is a set of tuples, each tuple being a pair ofState objects.

Q3: Determine which highways cross which rivers and list their names, their geometries and their
crossings.

select tuple (name: r.name, route: r.route, number: h.number, way: h.way,
crossing:intersection (r.route, h.way))

from r in Rivers,
h in Highways

where r.routeintersects h.way

Each tuple of the query result contains an attribute ‘crossing’ whose value is the intersection of a river
and a highway value. (OMI:Extend objects by derived attribute values, allow naming of a new
attribute.)

Q4: Associate with each state those cities lying inside that state.

select tuple (state: s, cities_in_state:select c
from c in Cities
where c.municipal_areainside s.territory)

from s in States

The result is a set of tuples, each tuple being a pair of aState object and a set ofCity objects whose
geometry lies inside the geometry of theState object.

Q5: Which rivers form partially the boundary line of which states? In which parts do they agree?

select tuple (rname: r.name, sname: s.name, border:common_border (s.territory, r.route))
from s in States,

r in Rivers
where s.territoryborder_in_common r.route

Q6: Compute the length of the river and highway network.

length (sum (select attribute way from h in Highways)
plus sum (select attribute routefrom r in Rivers))

Here we have introduced a first extension to O2SQL to fulfill the requirement of the OMI:Denote a
collection of objects together with an attribute. The notation is “select attribute attr from s in S”
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where attr is the name of the attribute and S the set of objects.8 This is analogous to the “column α
from β” construct discussed in Section 6.2.

It is interesting to observe that in this query first a single lines value is formed to which then the length
function is applied. Using the sum aggregate function of O2 applicable to sets of reals, one might
formulate the query as follows:

sum (select length(h.way) from h in Highways) +
sum (select length(r.route) from r in Rivers)

Actually the result will only be the same if no two highways use the same piece of the highway
network. But a more important issue to be discussed here is the view of aggregate functions. The sum
aggregate function of O2 used in this last example is applied to a set of values. In contrast, the only
aggregate function of the ROSE algebra (sum) is applied to a set of objects with a spatial attribute.
The rationale behind this is to keep the type system of the object model interface as simple as possible.
For example, in the relational model sets of values are not available. The ROSE algebra only assumes
that collections of objects and atomic values exist.

Q7: Calculate the perimeter of Bavaria (class State is assumed to describe states within Germany).

perimeter (element (select s.territory from s in States where s.name = “Bavaria”))

The O2SQL element operator extracts the unique element of a singleton set. This is exactly the facility
“denote a data type value (without object set iteration)” of the OMI. The expression “element ...”
denotes the territory of Bavaria.

Q8: Calculate the region outside Bavaria where wheat is cultivated.

sum (select attribute region
from d in Districts
where d.land_use = “wheat”)

minus
element (select s.territory

 from s in States
 where s.name = “Bavaria”)

This query yields an atomic spatial value.

Q9: Determine all cities that are located in areas which are completely enclosed by highways.

select c
from c in Cities
where c.municipal_area inside interior (sum (select attribute way from h in Highways))

This query yields a set of City objects fulfilling the where condition.

Q10: Check if the highways form a connected network.

no_of_components (sum (select attribute way from h in Highways)) = 1

8 For the SQL embedding in Section 6.2 we have used a keyword “column”. This seemed to fit with SQL which also
speaks of “tables” rather than relations. For O2 which uses terms like “tuple”, a keyword “attribute” appears adequate.
Of course, this is just a matter of taste.



− 33 −

Q11: List the name(s) of the highway(s) being closest to Munich.

defineMunich as
element(select c.municipal_area from c in Cities where c.name = “Munich”);

select h.number
fr om h in closest (selectattribute  way fr om h in Highways, Munich)

In the first step a named query of O2 defines Munich as a regions value. This is the facility “allow
naming of an SDT value” of the OMI. The closest operator takes as operands a class or any other
homogeneous set of objects together with a spatial attribute defined on that object type, and a spatial
reference value (in this case Munich). It returns a set of objects which can be used in a query at all
those positions where a set expression is allowed.

Q12: Determine the component regions of the state Schleswig-Holstein (which consists of a main
land area as well as several islands in the North Sea).

select s.component
fr om s in

decomposeinto component
selectattribute  territory
fr om s in States
where s.name = “Schleswig-Holstein”

The decompose operator has three arguments: a class or any other homogeneous set of objects, an
SDT attribute to be decomposed, and a name for the new attribute resulting from decomposition. The
query yields a set of regions values. Here we have introduced a second extension to O2SQL to offer
the facility “allow naming of a new attribute” of the OMI, using a phrase “into attr”, as in Section 6.2.

Q13: Partition the state Bavaria with respect to the districts of land use.

overlay into districts_within_Bavaria
(select attribute territory fr om s in States where s.name = “Bavaria”,
selectattribute  region fr om d in Districts)

The result is a set of objects with a new attribute “districts_within_Bavaria”. Each partition for the
overlay is given as a set of objects with a regions attribute.

Q14: Compute the regions of the same land use.

fusion (Districts; land_use; region)

The fusion operator requires three arguments which are syntactically separated by semicolons: a set
of objects, a list of non-spatial attributes used for grouping, and a list of spatial attributes used for
geometric union. In the query above the District objects are grouped according to equal land use and
for each group the geometric union of the regions values of the “region” attribute is formed.

O2SQL offers a grouping operator group so that the query can be formulated without an explicit
fusion operator:
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group d in Districtsby (land_use: d.land_use)
with (region: sum (select attribute p.regionfrom p in partition))

Here thegroup operator is applied to a set ofDistrict objects. It groupsDistrict objects by values of
their “land_use” attribute and produces for each group one result tuple with two attributes. The first
attribute “land_use” receives the value of the “land_use” attribute of the group; the second attribute
“region” is determined in thewith-clause by an expression which computes for each group the
geometric union of the “region” attribute values. One can refer to the current group by a keyword
partition.

9 Conclusions

In this paper and the companion paper [GüS93] we have defined the ROSE algebra, a system of realm-
based spatial data types. After the geo-relational algebra [Gü88a] which was implemented in the Gral
system9 [Gü89, BeG92] this is a second attempt to define a spatial algebra for database systems and
in some sense it represents what we have learned in the meantime. In closing, let us summarize the
highlights of the ROSE algebra. It may also be interesting to compare to the geo-relational algebra (in
the sequel geo-algebra for short).

General types and operations. The ROSE algebra has very general data types to represent points,
lines, and regions in the plane. For example, it is now possible to represent the whole area of a state
including islands or separate land areas in a singleregions value, or a complete highway network in
a singlelines value. On the one hand, this generality makes the spatial objects and operations
conceptually more difficult, requires a quite elaborate system of definitions, and also needs more
effort in the implementation. This is why in the geo-algebra a decision was made to deal only with
simple polygons and single-component objects. On the other hand, the generality is needed in
applications (with Gral this became obvious when the German state of Niedersachsen had to be
represented which encloses - as a hole - the state of Bremen). We feel that through the several layers
of definitions of the ROSE algebra we have managed the complexity. Apart from the better capability
to model spatial objects, an important benefit is that the types are now closed under set operations of
the underlying point sets - for any type one can form union, difference (plus, minus) or aggregate over
its values (sum) which makes the rather complex fusion operation [ScV89, GaNT91] a simple by-
product of grouping. Also, all operations are now defined in the most general way (e.g. theclosest
operation is available for all spatial types). In contrast, in the geo-algebra it was not possible to define
a difference operator on regions since it would have led to holes, and intersection had to be defined as
a relation operation because a resulting set of intersection values could not be represented as a single
SDT value.

Rigorous definition. The carrier sets of the types and the semantics of all operations have been defined
completely, down to the level of simple arithmetic primitives on integers. As a result, there is no
ambiguity for a programmer about the precise meaning of operations or about allowed structures. We
feel this is very important because when dealing with complex spatial structures invariably questions
about special cases come up like “Is it allowed that the boundary of a hole in a region touches the outer

9 The second author took part in this implementation effort.
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boundary?” or “Qualify two adjacent regions as intersecting?” The ROSE algebra definition gives
precise answers to all such questions to an implementor and, if not to end users, at least to people
writing manuals for end users.

Numerical robustness, finite resolution. The underlying realm provides the ROSE algebra with a
discrete basis and shields it from all problems of numerical robustness. Integer coordinates can be
used for the representation of SDT values; critical operations like testing whether points lie on the
border of regions become feasible. In contrast, in the geo-algebra operations likemeets or
common_border were omitted, because - with real numbers representing coordinates of SDT values
- it was not clear how these operations could be implemented in a numerically robust way. The
discrete basis also greatly simplifies the implementation of geometric algorithms for the operations.
For example, to implementcommon_border one can keep for eachlines or regions value its defining
segments in (x, y)-lexicographic order and then simply scan the two lists in parallel. Many operations
can be implemented by plane-sweep algorithms [NiP82, BeO79] which are simplified here because
no intersection points need to be computed; all sweep stations are known beforehand and one does not
need a dynamic structure to maintain the ordered list of sweep stations.

Data model independence, clean object model interface. The ROSE algebra is not tied to any
particular data model but can cooperate with many models and query languages. This might have been
achieved in a trivial way by omitting all operations manipulating objects (likeclosest, overlay) and
not caring how the results of geometric operations can be used in the DBMS. Instead, we have defined
an object model interface and investigated quite carefully the issues arising with the integration of the
ROSE algebra into a query language. Section 8 has demonstrated that a nice integration with, for
example, an object-oriented model and query language can be achieved. To our knowledge, this is the
first time that the problem of interfacing a general purpose query language with a complex
application-specific sublanguage has been examined in some detail. Such interfaces will be important
for cooperative database systems using external computation services [ScW91].

Open Problems and Future Work

Implementation of the ROSE algebra. Data structures for the three SDTs and procedures for all
operations except fordist and the set-manipulating operations of the last group (Section 7.4) have
been realized [Ri94] and are available as a module library written in Modula-2. The implementation
of operations makes heavy use of the following three techniques: (i) scan or parallel scan of the
halfsegment sequence10 of one or two objects, (ii) plane-sweep, and (iii) graph algorithms [Ri94].
Algorithms and practical aspects of the implementation will be described in a forthcoming paper
[GüRS95]. As a next step, we plan to encapsulate this implementation within a “data type extension
package” and then to connect it to the Gral system as well as to another query processor called
SECONDO.

A component that allows to represent a realm and which offers realm operations (updates with
redrawing, described in [GüS93]) is almost finished. The points and segments of a realm are stored in
an LSD-tree [HeSW89]. For the problems of interfacing realms and database systems see [GüS93].

10For alines or regions value, itshalfsegment sequence contains each segment of the object twice, once for the left and
once for the right end point, called thedominating point for this segment. The halfsegment sequence is ordered xy-
lexicographically by dominating points.
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Some problems remain with the realm-based approach and need to be further investigated:

Invariance under redrawing. We are not satisfied with the fact that some of the numeric ROSE
operations (length, area, etc.) yield slightly different results before and after a redrawing due to an
update of the realm. Whereas we feel that slight numerical errors are tolerable in contrast to
topological errors, this may also lead to “discrete errors”. For example, when a collection of objects
is sorted by area of its regions, the order may change through a realm update. Perhaps a definition of
these operations can be found that is sufficiently consistent with the geometry of the objects, but
invariant under redrawing.

Objects and operations violating realm closure. One is still interested in spatial objects that are not
part of the given realm. For example, it should be possible to draw interactively a region and then to
use it in a query. The new region cannot directly be compared with realm-based objects. One possible
strategy might be to insert this region temporarily into the realm and to remove it again when the query
has been processed. There may be other solutions. We have so far restricted attention to operations
that are closed with respect to the underlying realm, but there are also interesting operations that leave
the given realm, for example, construction of a Voronoi diagram, a convex hull, or of a buffer zone
around a spatial object. One should study how these can be accommodated. One strategy might be to
create a new realm for the new spatial values, select a set of SDT values in the database that might
interact with the new geometries and create another “small” realm for them, and then use a “merge”
operation on realms to compute all intersections.
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Appendix: Definition Layers For Realm-Based Spatial Data Types

Robust Geometric
Primitives

Objects: points, lines, regions

Operations: =, ≠, inside, edge_inside, vertex_inside, area_disjoint,
edge_disjoint, disjoint , intersects, meets, adjacent, encloses, on_-
border_of, border_in_common, intersection, plus, minus, com-
mon_border, vertices, contour, interior , count, dist, diameter,
length, area, perimeter, sum, closest, decompose, overlay, fusion

ROSE Algebra
Operations

Spatial Data Types
 and Spatial Algebra

Primitives

Objects: points, lines, regions

Operations: union, intersection, difference, (area-)inside, edge-inside,
vertex-inside, area-disjoint, edge-disjoint, (vertex-)disjoint, adja-
cent, meet, intersect, encloses, on_border_of, border_in_common

Realms, Realm-Based
Structures and Realm-

Based Primitives

Objects: R-point,R-segment;R-cycle,R-face,R-unit, R-block

Operations: on, in, out, (area-)inside, edge-inside, vertex-inside, area-
disjoint, edge-disjoint, (vertex-)disjoint, adjacent, meet, encloses, in-
tersect, dist, area

Objects: N-point,N-segment

Operations: =, meet, overlap, intersect, disjoint, on, in, intersection, par-
allel, aligned

Integer Arithmetic
(see [GüS93])

Objects: integers in the range [-2n3, 2n3] (n integer grid size)

Operations: +, -, ∗, div, mod, =, ≠, <, ≤, ≥, >


