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Abstract

The phenomenon of movement arises whenever the same object occupies dif-
ferent positions in space at different times. Therefore a theory of movement must
contain theories of time, space, objects, and position. We provide a theoretical ba-
sis for describing movement events in terms of the conditions for their occurrence,
which refer to the holding or not holding of various positional fluents at different
times. For this we need to bring together a formal model of time with a formal
model of space. By attending closely to the constraints imposed by continuity on
the temporal behaviour of different fluents we develop theory of dominance, which
enables us to generate ab initio the perturbation relation on the full set of positional
relations.

1 Introduction

The phenomenon of movement arises whenever the same object occupies different
positions in space at different times. This bare definition already suggests the main
ingredients of a theory of movement:

1. A theory of time, comprising (a) a theory of times, i.e., a fundamental set of
temporal entities, usually either instants or intervals, which act as loci in the
temporal dimension for things to happen in, and (b) a theory of temporal order
by which the fundamental set of times is endowed with an ordering relation,
representing temporal sequence.

2. A theory of space, analogous to the theory of time but with points or regions as
the fundamental entities, and a more complex theory of spatial ordering.

3. A theory of objects, which allows objects to be rigid or non-rigid (the latter being
capable of a wider variety of modes of motion than the former), and to have
parts, and which can include objects which are not discrete individuals (consider
the water in a river—which certainly moves), or which are not even concrete
substances at all (e.g., holes and shadows, both capable of movement).
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4. A theory of position, which brings together the theory of objects with the theory
of space, the idea being that, at any one time, each object occupies a certain part
of space, which is called its position at that time. The position of an object can be
specified as the total region of space occupied by it at a time. An object’s position
will thus be a region of space precisely congruent, in the geometrical sense, to the
body itself.

Our aim is to provide a framework for formalising our “common-sense” knowledge
of the world. This is a different enterprise from that of physics, which seeks to go
beyond our common-sense view, correcting it where it is in error, and providing a
unified explanatory framework. But we should not ignore the fact that a well-developed
physico-mathematical theory of motion exists; and ideally our common-sense view
should be reconcilable with the physico-mathematical view. A common-sense theory is
typically qualitative in nature, whereas the physico-mathematical picture is quantitative.
We shall be particularly interested in examining how phenomena such as continuity,
which find a natural expression in the quantitative theory, can be expressed when we
move over to a qualitative theory. Throughout, it should be borne in mind that all
theories, whether qualitative or quantitative, naive or scientific, are idealisations and as
such cannot be regarded as absolutely true to the complete underlying reality.

2 Theory of Time

We shall use an instant-based model
���������
	��

, which posits a set
�

of entities called
instants to be the fundamental set of temporal loci. They are endowed with a relation	

of temporal succession. We use abbreviations as follows:


���� ∆� 
 	 ����
 � �

 	 � 	�� ∆� 
 	 ����� 	��

Properties typically ascribed to this relation (cf. (van Benthem 1983)) are as follows
(we use the capitalised parts of the names as labels for the axioms):

1. IRReflexivity. No time precedes itself:�

�� � 
 	 
 ���

2. TRAnsitivity. If time



precedes time
�

which in turn precedes time
�
, then



also

precedes
�
:

�

 � � ����� 
 	 � 	�� � 
 	!�"���

3. LINearity. Of any two distinct times, one precedes the other:�

 � � � 
$#� � � 
 	 �%�&� 	 
 ���

4. UNBoundedness. Every time has a time preceding it, and a time which it precedes
(so there are no first and last times):�


�'(� ����� � 	 
 	��)�
�
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5. DENsity. Between any two times there is a third (and hence, given IRR and
TRANS, infinitely many): �


 � � � 
 	 � � ' � � 
 	$� 	 � � �
�

An interval is defined by specifying, for each instant, whether it precedes, begins,
divides, ends, or follows the interval. It is sufficient to specify just two instants, namely
the unique instants at which the interval begins and ends. We could thus define an
interval as an ordered pair

� 
 � ���
of instants, where


 	 �
. We call this the pair model of

an interval. The instants which precede
� 
 � ���

are precisely the instants which precede

, and the instants which follow

� 
 � ���
are the ones which follow

�
.

If � � � 
 � ���
, we write ���	� � � ��� 
 and 
���
 � � � � � . This notation allows us to refer

to the instants marking the beginning and end of any interval we can refer to. We write� ��� � 
 � � � whenever either

 � ����� � � � or


 � 
���
 � � � , and say that



limits � in this case.
We write


	� � � , and say that



divides � , as an abbreviation for ���	� � � ��	 
 	 
���
 � � � .
The motivation for this term is simply that



divides � into two contiguous subintervals� ����� � � �
� 
�� and

� 
 � 
���
 � � � � .
An interval is often identified with a range of instants, namely all those instants

which divide it. For the interval
� 
 � ���

these are the instants
�

such that

 	���	 �

. The
instants in the range are thus members of the set � ��� 
 	�� 	 ��� � and it is customary to
identify the interval with this set. We call this the ‘set model’ of an interval. Although
it is widely used in mathematical modelling, the set model of an interval has nothing
to offer over and above the pair model. In particular, the distinction between open and
closed intervals which is suggested as a natural extension of the set model does not
seem to have any application either to physical time or to any of our common-sense
conceptions of time.

There are three distinct temporal successions relation on intervals, and any of them
can be taken as fundamental. Their definitions are

� immediate succession, in which the first interval ‘meets’ the second at an instant,
without any intervening interval:

� 
 � ��� � � � ��� � ∆� � � �(�

The instant at which the intervals meet in this case is
�

(
� �

).

� delayed succession, in which the first interval is separated from the second by an
intervening interval: � 
 � ��� 	 � �(��� � ∆� � 	��(�
The intervening interval in this case is

� � � � �
.

� general sucession, which covers the preceding two cases:

� 
 � ��� 	 � �(��� � ∆� � � �(�
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General succession is the disjunction of immediate and delayed succession, which are
themselves mutually incompatible. We write things like � � � � � and � 	 � 	��

with the
obvious meanings. We write ����� � to denote the instant at which � meets

�
(so if � � � 
 � ���

and
� � � � � � �

then ����� � � � ). Note the ‘polymorphic’ character of the symbol ‘
	

’,
which we use both as a relation on instants and as a relation on intervals; it is natural to
think of these as the ‘same’ relation (since with instants, succession is always delayed
succesion). Note, however, that our axioms for

	
are intended to apply only to the

relation on instants (in particular, LIN does not hold when the terms of the relation are
intervals).

Using our axioms for
	

we can prove a number of important properties of
�
, as

follows (the proofs are easy and are omitted here—but we indicate which axioms we
need to use; where no axioms are cited, nothing more is needed than the definitions of

�
and

	
). In M2, ‘ 	 ’ is the exclusive ‘or’ connective.

(M1)

�
� � � �
� �
� � � � � � � � � � � � � � � � � �

[No axioms]
(M2)

�
� � � �
� �
� � � � � � � � � � � 	�� 	 � � � 	 � 	
�(�

[LIN]
(M3)

�
� ' � ��� � � � � � � � [UNB]

(M4)

�
� � � �
� �
� � � � � � � � � � � � � � � ���(�

[No axioms]
(M5)

�
� � � � � � � � ' �

�
� � ��� � ����� � � � � ��� � ��� � � � � ��� [TRA]

(M6)

�
� ' � ��� � � � � �

�
� � ��� � � ��� � � � � � � � ����� � � � ��� [DEN]

Note that M4 and M5 together imply that if � meets
�

then there is a unique interval
which meets whatever

�
meets and is met by whatever � is met by (existence is given by

M5, uniqueness by M4). We denote this interval ��� �
; it is the interval which begins

when � begins and ends when
�

ends, and hence spans the entire time taken up by � and�
together.

We can define further relations on intervals as follows. We use infix notation after
the fashion of (Allen 1983):

��� � ∆� ' ��� � � � ��� � � � ����� � � � ��� � � � �
��� � ∆� ' � � � � ��� � �
��� � ∆� ' � ��� � � ��� � � � � �
�"! � ∆� ' � � � �#� � ���
� � � ∆� ��� � � �"� � � �"! �
�%$ � ∆� � � � � � � �

( � � � � � � ! are read as ‘overlaps’, ‘starts’, ‘is during’, and ‘finishes’, respectively.) The
relations $ and

�
are analogous to the set-theoretic relations of subset ( & ) and proper

subset ( ' ), and indeed could be defined to be identical to them if the set model of an
interval were to be adopted.

Following Allen, it is often regarded as more satisfactory to base one’s temporal
model on intervals as the fundamental temporal units rather than instants. Allen and
Hayes (1985) do this, using equivalents of (M1)–(M6) as their axioms for immediate
succession. They also show how instants can be defined in their system; the resulting
system satisfies our axioms for instants. It follows that it does not matter whether we
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base our temporal model on instants or intervals. By choosing appropriate definitions
we will end up with equivalent systems starting from either choice. It is certainly
convenient to be able to use both instant and interval notations!

The model of time presented here is dense, because of axiom M6. The obvious
mathematical model for dense time, satisfying all our axioms, is to represent instants
by real numbers, with temporal succession represented by the ‘less than’ relation. We
could either choose the set of all real numbers to represent

�
, or any dense subset of

them, such as the rational numbers. Dense time implies that there is no lower limit to
the length of an interval, and while this is a satisfactory idealisation for many purposes,
sometimes there are good reasons not to accept it. For example, in a context in which
intervals are only known through observation and measurement, there is an effective
lower limit to the length of an interval, corresponding to our chronometrical resolving
power; or again, one may be concerned with physical processes which always require a
certain minimum duration in which to occur.

For these reasons, an alternative discrete model of time is often preferred: mathe-
matically, this is tantamount to representing instants as integers rather than real numbers.
In our axiomatisation, it is necessary to replace the axiom DEN by

6. DISCreteness. If time



precedes time
�

then there is an earliest time
�

which



precedes and a latest time
� � which precedes

�
:�


 � � � 
 	 � � ' �
�
� � 
 	 �#� � � ��� ��' � �

�
� � � 	 � � � � �)� ���

Note how we say that
�

is the earliest time which



precedes: an arbitrary time
�

is
preceded by



if and only if it is either equal to or preceded by

�
, so that the only times

which



precedes are
�

and anything which
�

precedes; and analogously for the latest
time which precedes



.

In discrete time, the elements of
�

are atomic intervals, or moments. A general
interval in discrete time is the concatenation of one or more consecutive moments, a
natural measure of its duration being the number of moments involved. This is quite
different from dense time, where it makes no sense to speak of ‘consecutive instants’,
and duration has to be introduced as an additional primitive, not derivable from the
temporal order alone. As will be seen below, we still need the notion of ‘instant’ in
discrete time: we shall need to speak of the instant at which two consecutive moments
meet. The reason for this will become apparent when we consider the occurrence
conditions for an instantaneous event in the next section.

In the rest of this paper we shall mostly confine our attention to dense rather than
discrete time. None the less, much of what we say about movement in the next section
can be adapted fairly straightforwardly to the latter case. On the other hand, the later
material on continuity and the theory of dominance applies specifically to dense time,
and does not make much sense in the discrete case.
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3 Movements and their Occurrence Conditions

We use the RCC-8 system (Randell, Cui and Cohn 1992) for specifying relations between
regions. There are eight basic relations, as follows:

DC A is disconnected from B
EC A is externally connected to B
PO A partially overlaps B
EQ A is equal to B
TPP A is a tangential proper part of B
NTPP A is a non-tangential proper part of B
TPPI A has B as a tangential proper part
NTPPI A has B as a non-tangential proper part

These eight relations correspond closely to the eight relations determined by Egenhofer’s
4-intersection method (Egenhofer 1991). Regions will be mainly of interest to us as
possible positions for movable bodies. The position of a body can be given, with greater
or less precision, by the RCC-8 relation which it bears to some known region, such as
the position of another body. To be able to talk about motion, we need only relativise
this to time.

We take as our fundamental notion for the analysis of change the idea of a fluent.
A fluent can take different values at different times. If

�
is a fluent and � is a value it

can take, then
� �

� is a proposition that can be true or false at different times, in other
words a Boolean fluent, or state. Likewise, if

�
1 and

�
2 are fluents, and � is a relation

which may hold between values that they can take, then �
���

1
���

2
�

is also a state.
We write ���

� 
	� - � 
 � � � 
 � to indicate that state � holds at instant


, and ���

� 

� � � � � �
to indicate that � holds throughout the interval � (Allen 1984, Galton 1990). These two
notations are connected by the rule

���
� 

� � � � � � �

�

	� � �����

� 

� - � 
 � � � 
 �
�
which says that a state holds throughoutan interval if and only if it holds at every instant
which divides the interval. This could be taken as a definition of ���

� 

� in terms of
���

� 

� - � 
 , if desired. An immediate consequence is Allen’s rule

���
� 

� � � � � � � �%$ � � ���

� 

� � � � � ���
which says that a state holds throughout every subinterval of any interval throughout
which it holds.

We write ��
 � � to refer to the state which holds when and only when both � and � �
hold (state-conjunction), and

� � to refer to the state which holds when and only when
� fails to hold (state-negation). Formally, they obey the rules

���
� 

� - � 
 � ��
 � � � 
 � �

���
� 

� - � 
 � � � 
 � � ���

� 

� - � 
 � � � � 
 ���
���

� 

� - � 
 � � � � 
 � � � ���
� 

� - � 
 � � � 
 ���

We write �����
�
�
�

to denote the position of body � . This is a region having exactly
the same shape and size as � , so that � can fit into it with no space left over. Since the
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position of � can change over time, �����
�
�
�

is a fluent. We write

���
� 

� � � � ����� � � ��� � ��� � �

to indicate that throughout interval � , the position of � bears the RCC relation � to
region � .

To handle movement we need a formalism for referring to events, since a movement
is an event, not a state. We write ����� � � � � � � � � to indicate that an event of type � occurs
over interval � . Allen’s rule for ����� � � � is

����� � � � � � � � � � � � � � � ����� � � � � � � � �
�
which says that an event does not occur over any proper subinterval of an interval over
which it occurs. (So events can be described as unitary, in contrast to states, which
are homogeneous.) This rule can be regarded as a constraint on the allowable event-
types. We shall also have cause to talk about instantaneous events. For these we write
����� � � � - � 
 � � � 
 � to indicate that an event of type � occurs at the instant



(see Galton

(1994) for a detailed treatment of instantaneous events).
Our paradigm for analysing movement will be to specify a movement event � in

terms of its occurrence conditions, that is in terms of a formula of one of the forms

����� � � � � � � � � ∆� �����

����� � � � - � 
 � � � 
 � ∆� �����

where the right-hand side is a formula not containing � (Galton 1993, Galton 1994). We
shall consider a number of examples.

Suppose we wish to define what it is for � to move from position �
1 to position �

2

over the interval � . A natural first attempt might be to stipulate that � must be at � 1

throughout some interval
�

which meets � , and at � 2 throughout some interval which �
meets. In order to ensure that the event occurs over the whole interval � , and not some
proper subinterval (in accordance with Allen’s rule for ����� � � � ), we should add that �
is not at either � 1 or � 2 at any time during � itself. This gives us the definition:

����� � � � � � � � � � � � � 1
� �

2
��� � � ∆�' � �
� � � � � � � � ���

� 

� � � ��� � � � � �
1
� � � � ���

� 

� � ����� � � � � �
2
���(� � �

���
� 

� � � ��� � � � #� �

1
� � � � ���

� 

� � � ��� � � � #� �
2
� � �
�

This definition is adequate if we do not allow states to be said to hold at instants, for
example if our model of time is discrete; but it will not do in general. For suppose �
moves from position �

0 to �
3, passing through positions � 1 and �

2, in that order, but
without stopping at either of them. Then there is no interval throughout which � is at
either � 1 or � 2, yet � still moves from �

1 to �
2 over the interval between the times at

which it is at these positions. We must replace our definition of � � � � by:

����� � � � � � � � � � � � � 1
� �

2
��� � � ∆�

���
� 

� - � 
 � � ��� � � � � �

1
� ����� � � � � � ���

� 

� - � 
 � ����� � � � � �
2
� 
���
 � � � � �

���
� 

� � � ��� � � � #� �

1
� � � � ���

� 
	� � ����� � � � #� �
2
� � ���
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Note that this definition subsumes the previous one, since if � is at position �
1 over an

interval meeting � , then by continuity it must be at � 1 at the beginning of � , and likewise
with � 2 at the end.

Suppose next that we wish to say that � enters region � over interval � . A natural
first attempt would be to postulate that � must be just outside (EC) � throughout some
interval

�
which meets � , and just inside (TPP) � throughout some interval

�
which �

meets; during � itself, � must be partly inside and partly outside (PO) � :

����� � � � � � � 
 � � � � � � ��� � � ∆�
' � ��� � � � � � � � ���

� 
	� � 
 ��� ����� � � �
� � �
� � � � �
���

� 

� ��� � � � ��� � � �
� � �
� � � � ���
� 

� � ������� � ��� � � ��� � �����(� �
�

As before, we can argue that � does not need to be EC or TPP to � for more than an
instant: consider the case where � approaches � from a distance and enters it without
pausing in either the EC or the TPP positions. A more general definition is therefore:

����� � � � � � � 
 � � � � � � �
� � � ∆�
���

� 
	� - � 
 � 
 ��� ����� � � ��� � ��� ���	� � � � � �
���

� 
	� ��� � � ����� � � �
� � �
� � � � ���
� 

� - � 
 ������� � � ��� � � �
� � �
� 
���
 � � � � ���

Suppose finally we wish to characterise the event of two objects’ coming into contact;
this is an instantaneous event. It can happen at the meeting point of two intervals � � � ,
such that � is separated from � throughout � and touching � throughout

�
:

���
� 

� � � ��� � ��� � � ��� � ��� � � � ��� � � � ���

� 
	� � 
 ��� ����� � � �
� ����� � � � �
� � ���

The event itself occurs at the instant ����� � . However, this does not cover the case where
� moves towards � and then enters it. Then � first makes contact with � at ����� � , where

���
� 
	� � � � � � ��� � � �
� ����� � � � �
� � � � ���

� 

� ��� � � � ��� � � �
� ����� � � � �
� � � �
�

Here we can infer, by continuity, that � is EC to region � at the instant


. Even this does

not cover the case where the objects move apart as soon as they have touched. If the
moment of touching is ����� � , then we have

���
� 

� � � ��� � ��� � � ��� � ��� � � � ��� � � � ���

� 

� � � ��� � ��� � � ��� � ��� � � � ��� � �

but this does not tell us that they ever touched. Hence we have to bring in explicit
reference to the state of affairs holding at the instant ����� � itself. Our fully general
definition, subsuming the others, will therefore be

����� � � � - � 
 � � � ������� 
 � � � � ��� 
 � ∆�
' � � 
 � 
���
 � � � � ���

� 

� � � ��� � ��� � � ��� � ��� � � � ���
� 

� - � 
 � 
 � � � ��� � � �
� � �
� 
 � �

This says that � is touching � at the instant which ends an interval throughout which �
is separated from � : that is the instant at which � makes contact with � . Nothing need
be said about what state holds after that instant.
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Note that in discrete time, the same analysis will apply, but it requires us to locate
the instantaneous event of making contact at the instant where two intervals meet. This
will always be expressible as the meeting point of two atomic intervals (moments). This
example shows why it is necessary to have instants as well as moments in a discrete
model; but they do not have to be postulated separately, since the existence of the
instants follows of necessity from the fact of each moment’s immediately preceding the
next.

4 Continuity

We have mentioned continuity several times; in this section we examine more closely
what it entails. Two different notions of continuity are suggested by our experience of
the physical world. On the one hand there is the continuity of space and time, which we
are accustomed to regard as “seamless” continua admitting arbitrarily fine subdivision
and no “gaps”. On the other hand, there is the continuity of change, according to
which measurable physical magnitudes such as the position, velocity, acceleration,
or temperature of a body vary smoothly in time, again presenting an appearance of
seamlessness, with no instantaneous jumps.

Notice here that we only refer to the appearance of seamlessness. Of course,
many phenomena which appear continuous at one scale are seen to be discrete when
observed more closely. An obvious example is afforded by the atomic structure of
matter. Another example, with a temporal dimension, is provided by the illusion of
continuity produced by the rapid succession of frames in a cine-film. As mentioned in
the introduction, we are working with idealisations of the world we experience, and our
purpose in this section is to examine closely the relationship between those idealisations
in which phenomena are naturally represented as continuous (e.g., using the real number
system) and those—such as the qualitative system of RCC-8—in which continuity does
not find an obvious or natural expression.

Continuity of space and time is represented mathematically by modelling space
and time in terms of the ordered set

�
IR
�
	��

of real numbers. The time dimension is
represented by IR itself, each number corresponding to a temporal instant; space is
represented by the Cartesian product IR3, each triple of real numbers corresponding to
a single spatial point. The special features of

�
IR
�
	��

which suit it for this role are

� Density: between any two real numbers there is a third, and hence, by iteration,
infinitely many. (Cf. our axiom DEN.)

� Dedekind completeness: if IR is partitioned into two disjoint subsets
�

and �
such that every member of

�
is less than every member of � , then either

�
has a

greatest member, or � has a least member, but not both.

Note that neither the integers nor the rational numbers possess both these properties.
The integers fail on both counts, the rationals on only the second. In the absence of
Dedekind completeness, the temporal sequence admits ‘gaps’, at which the totality of
instants can be divided into two parts

�
and � without there being a unique instant to

mark the point of division; this is felt to be incompatible with continuity.
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Temporal intervals and spatial regions, on this picture, must be specified in terms of
the relationships they bear to the instants or points that have been identified with real
numbers or triples thereof. From a physical point of view, we require each point (or
instant)

�
to bear exactly one of the following relations to each region (or interval) � :

� �
is inside � ;

� �
is on the boundary of � ;

� �
is outside � .

We shall regard an interval/region as entirely determined once it is known for every
instant/point whether it lies inside, outside or on the boundary of the interval/region.

Note that this criterion of identity for intervals and regions is blind to the open/closed
issue. There is no physical significance to the idea of a membership relation that is
separate from the inside/outside/boundary trichotomy. This trichotomy excludes the
idea that a region can ‘contain its own boundary’, there being no separate notion of
containment apart from ‘inside’. Nothing is gained by identifying a region either with
the set of its interior points or with the set of its interior points plus boundary points,
since a set is an abstract notion such that the relation it bears to its members is sui generis
and not to be confused with the relation between a whole and its parts or between a
region and the points of its interior or boundary.

The second kind of continuity, continuity of change, is modelled mathematically by
representing measurable magnitudes as functions (of time) that are continuous in the
special mathematical sense, namely:

The function
�

: IR
�

IR is continuous at the point � 0
� IR so long as, for

every real number ��� 0, there exists a real number ��� 0 such that for
every � � IR, if � 0

� � 	 � 	 � 0 ��� then
� � �

0
� � � 	 � � � ��	 � � �

0
� ��� .

The intuitivenotion of continuity demands that a function should be continuous at every
point: so there are ‘no jumps’. This excludes certain well-known ‘pathological’ cases,
e.g., a function which is continuous at irrational points but not at rational ones.

Granted that the mathematical model is well suited to modelling continuous change,
there is now a problem about modelling discontinuous change. This is the classical
‘dividing instant’ problem, which goes back to Plato and Aristotle. It may be phrased as
follows: Let � be a state such that ���

� 
	� � � � � � � � � � � � ���
� 

� � � � � � ; can we determine

whether ���
� 

� - � 
 � � � ����� � � ?

An easy instance of this problem is the following: let � be the state � ���
�
�
� � � .

We are supposing that an interval throughout which the position of � is different from
� meets an interval throughout which � is in position � :

���
� 

� � ����� � � � #� � � � � � � � � � ���

� 

� � � ��� � � � � � � � ���

For � ���
�
�
� #� � , it is enough that the space occupied by some part of � is disjoint from

� —in particular, � does not have to be right outside � to count as not being at � . If the
motion of � is continuous, then for � to move to � from any position � � distinct from
� it must pass through a range of intermediate positions forming a path from � � to � .

10



Suppose, then, that � is not at � at the instant

 � ����� � . Let

�
be any instant dividing

�
:

since � is at � thoughout
�
, it is at � at

�
. So � moves from � � at



to � at

�
. Hence,

by continuity, it must occupy positions along a path joining � � to � at some times in the
interval

� 
 � ���
. But this is a subinterval of

�
. Hence there are times during

�
when �

is not at � —contradicting our assumption that � is at � throughout
�
. It follows that �

must be at � at instant



as well. There is an asymmetry between the states represented
by ‘ � is at � ’ and ‘ � is not at � ’, which could be expressed by saying that the former
must be true on closed sets of instants, the latter on open sets (compare the continuity
rule of (Williams 1990)). In the somewhat infelicitous terminology of Galton (1990),
‘ � is at � ’ is a state of position whereas ‘ � is not at � ’ is a state of motion.

In general, if the state � describes the state of the world with respect to some
continuously variable property (such as the position of a body), then the above type
of argument can be used to determine a solution to the dividing instant problem. The
problem becomes more vicious when � is essentially discontinuous, i.e., when there
are no intermediate states between a state of the world described by � and a state of the
world described by

� � .
An example which is often cited in this connection concerns a lamp which may be

on or off. Suppose the lamp is off over the interval � � � 

1
� 


2
�

and on over
� � � 


2
� 


3
�
.

The problem is whether the lamp is on or off at the instant



2
� ����� � . There are a number

of different responses one might make here:

1. The lamp is neither on nor off at



2. This response comes in two flavours:

(a) The proposition ‘The lamp is on at



2’ is ill-formed—propositions have
truth-values over intervals, not at instants.

(b) The proposition does have a truth-value—but it is neither true nor false.
Instead we use a three-valued logic, and assign the third truth value to this
case.

2. The lamp is both on and off at



2. This is bizarre, but I have heard it seriously
suggested.

3. The lamp is off at



2. To justify this, we treat the state of the lamp as continuously
variable: we postulate a real variable

�
, taking values in the range � 0 � � � and

representing the amount of illumination from the lamp. Then ‘The lamp is off’
means

� �
0, while ‘The lamp is on’ means

� � 0 (this case is exactly parallel to
that of our body � moving away from the position � ).

4. The lamp is on at



2. This can be similarly justified by means of a different
interpretation of ‘on’ and ‘off’: this time say that ‘The lamp is off’ means

� 	 �
,

and ‘The lamp is on’ means
� � �

. This case is parallel to � moving to position
� , exactly as in our first example.

5. Finally, one might reject the premisses, and deny that it is possible for an interval
over which the lamp is off to be immediately followed by an interval over which
it is on. To justify this, one must deny that ‘The lamp is off’ is the negation of
‘The lamp is on’. We can do this by defining ‘The lamp is off’ to mean

� �
0,
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and ‘The lamp is on’ to mean
� � �

. In order for the lamp to change from being
off to being on, it has to pass over the range of values for which 0

	 � 	 �
,

and this must take time. What happens is that the lamp is off over some interval� 

1
� 


2
�
, it is on over an interval

� 

3
� 


4
�
, and neither on nor off over the interval� 


2
� 


3
�
, which may be of extremely short duration. Of course the dividing instant

problem arises again with respect to the instants



2 and



3, but this time it is of the
relatively harmless continuous variety that we have dealt with already: the lamp
is off (i.e.,

� �
0) at



2, and on (i.e.,

� � �
) at



3.

Response 1(a) is interesting because it has become prominent in AI, largely owing
to the influence of Allen. Allen’s work was prefigured by that of Hamblin in philosophy
(Hamblin 1969, Hamblin 1971). Hamblin was very much motivated by the dividing
instant problem. Here we highlight the fact that there is a radical incompatibility
between the view of the world espoused by Allen and Hamblin and that implicit in the
standard mathematical view which models continuity using the real numbers.

This incompatibility does not only arise from the dividing instant problem. A more
serious problem concerns what I call instantaneous tenure (Galton 1994). By tenure of
a state I mean an event which consists of that state’s holding for a certain time, flanked
by times at which it does not hold. For example, if the lamp is off over interval

� 

1
� 


2
�
,

on over
� 


2
� 


3
�
, and off again over

� 

3
� 


4
�
, then an event of tenure of the state of the

lamp’s being on occurs on the interval
� 


2
� 


3
�
. Hamblin explicitly denied the possibility

that a tenure event could be instantaneous, referring to the impossibility of a red book
turning green just at midnight and then immediately becoming red again, so that there
is only a single instant at which it is green. We may grant Hamblin his example, but
what of the ball tossed up into the air: surely there is an instant, and only an instant,
at which it is moving neither up nor down? On the standard mathematical view, this is
inescapable. Aristotle would have said that in this situationwhat actually happens is that
the ball comes to rest at the highest point of its trajectory, stays there for a short interval,
then begins descending. If this is correct, then there is a serious mismatch between
what actually happens and the mathematical apparatus standardly used by physicists to
describe what happens in cases like this. (Note that this issue cannot, in principle, be
settled by observation or measurement, since the length of the supposed interval might
always be below the threshold of discrimination; once again, the matter at stake is one
of finding a workable idealisation.)

Even more seriously, consider the case of a body � moving uniformly along a line
from position � to position � , passing through position � on the way. This is the example
used to criticise Allen in (Galton 1990). Suppose the whole movement takes up interval� 


1
� 


3
�
. The part of the movement during which � moves from � to � must occupy some

initial interval of this, say
� 


1
� 


2
�
. The remainder of the interval, namely

� 

2
� 


3
�
, is

taken up by the movement from � to � . It is natural to say that � is at � at instant



2. On
the other hand, it is not at � at any other time during

� 

1
� 


3
�
. We thus have instantaneous

tenure of the state of � ’s being at � .
We cannot dismiss this by claiming that it does not matter what we say is the case

at



2, for if we are not prepared to say that � is at � at



2, we must deny that � is at � at
all during the interval

� 

1
� 


3
�
, despite the explicit supposition that � passes through � .

We should have to allow that a body can pass through a position without being there.
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The alternative is to say that if � passes through � then it must spend some time there;
but this destroys continuity. For there is not enough time for � to spend a positive
duration at each of a nondenumerable set of positions along the path from � to � , so
either we have to deny that the path contains nondenumerably many positions (which
entails denying Dedekind completeness, and hence the continuity of space) or we must
deny that � occupies every position along the path at some time during its move (which
entails denying continuity of movement).

If we are committed to the beliefs that (a) all motion must be continuous, and (b) a
body cannot occupy a positionwithout spending some positive length of time there, then
the only way out is to deny that motion is possible at all. Perhaps something of this sort
was what motivated Zeno’s arrow paradox, though of course Zeno was working with
a conception of continuity that had not yet been formulated in terms of the Dedekind
property.

5 The Theory of Dominance

When giving the occurrence conditions for � � ������� 
 , we noted that if we have � � over
� and

� � over
�
, where � meets

�
, then we must, by continuity, have 
 � at the instant

����� � . In this section we explore further the role that continuity has to play in arguments
of this kind. Essentially, we shall look at the structure of the state-space consisting of
the RCC-8 relations from the point of view of its being a qualitative projection of an
underlying continuous space.

We say that a state � � is a perturbation of state � if and only if one of these states
can hold at an instant which limits an interval throughout which the other state holds,
i.e., at least one of the following situations can occur:

���
� 

� � � � � � � � ��� � 
 � � � � ���

� 

� - � 
 � � � � 
 �
���

� 

� � � � � � � � � � � � 
 � � � � ���
� 

� - � 
 � � � 
 �

If only the first of the above situationscan occur, then we shall say that state � � dominates
state � , written � � � � , whereas if only the second can occur, � � is dominated by � ,
written � ��� � . The motivation for the term ‘dominance’ is as follows: suppose that �
holds throughout � and that � � holds throughout

�
, where � meets

�
. Then we can think

of � and � � as being in competition as to which of them, if either, should hold at the
instant ����� � . It is the dominant state which wins.

To illustrate these ideas, we divide the state-space for a single real variable into the
three qualitative states positive,negative and zero, abbreviated

�
, � , and � respectively.

Assuming continuous variation, we have

���
� 

� � � � � � � � ��� � 
 � � � � ���

� 

� - � 
 � � � 
 ���
This is because if the value of the variable is non-zero at



, then by continuity it must

assume values arbitrarily close to that non-zero value, and hence non-zero themselves,
at all times sufficiently close to



, and this is incompatible with its being zero throughout

an interval beginning or ending at


. This means that neither of the situations

���
� 

� � � � � � � � ��� � 
 � � � � ���

� 
	� - � 
 � ��� 
 �
���

� 

� � � � � � � � ��� � 
 � � � � ���
� 

� - � 
 � � � 
 �
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can occur. On the other hand, if our variable increases uniformly over the interval� �
1
�
1
�

so that its value is 0 at time 0, then we have

���
� 

� � � � � � 1

�
0
� � � � � � � 0 � � � 1

�
0
� � � ���

� 

� - � 
 � � � 0 �
���

� 

� ����� � 0 � 1 � � � � ��� � 0 � � 0 � 1 � � � ���
� 

� - � 
 � � � 0 ���

It follows that � dominates both � and
�

. Moreover, � and
�

are not perturbations
of each other (and hence neither can dominate the other), since it is not possible
for the value of the variable to change from � to

�
or vice versa without passing

through � . The complete dominance relation on the set � � � � � � � is therefore given
by � � � � � � �

.
While it is quite possible two specify two states which are mutual perturbations

although neither dominates the other, we shall only be concerned with state spaces in
which all perturbation relations involve dominance in one direction or other, as in the
example above. The general definition is:

A dominance space is a pair
����� � � , where

� �
is a finite set of states

� � is an irreflexive, asymmetric relation on
�

, where � � � � is read
“ � � dominates � ”,

and the following temporal incidence rule holds�
� � ��� � �!� ���

� 

� � � � � � � � � � � 
 � � � � ���
� 

� - � 
 � ��� � 
 � � ������� �

(where � � �
� abbreviates
� � � � � � � � � � � � � ).

The temporal incidence rule ensures that if a state � holds throughout an interval � then
the only states apart from � itself which can hold at the limits of � are ones which
dominate � .

The key fact about dominance spaces is that a set of such spaces can be combined
into a composite dominance space, as shown by the following theorem.

Theorem 1. Let
���

1
� �

1
�
,
���

2
� �

2
�
,
� � �

,
����� � � �(� be dominance spaces. Then

���
1 � �

2 � ����� � ��� � � �

is also a dominance space, where � is defined by the rule
�� � �� � if and only if �
	���� �	 for � � 1

� � � � � and
�� #� �� � ,

where
�� denotes the ordered � -tuple

� � 1
� � 2
� � � � � � � � , understood as representing the

state-conjunction � 1 
�� 2 

�����


 � � .

Proof. First, since
�

1
���

2
� � � � �
� �

are all finite, so is
�

1 � �
2 � ����� � � � � Next, we must

check the properties of � . That � is irreflexive follows immediately from the condition�� #� �� � appearing in the definition. To show that � is asymmetric, suppose that both���� �� � and
�� � �

�� . Then for � � 1
�
2
� � � � � � , both � 	 � � �	 and � �	 � � 	 , so by

14



asymmetry of � 	 , � 	 � � �	 . It follows that
�� � �� � . Hence if we have

�� � �� � then we
do not have

�� � �
�� .

Finally, we must check the temporal incidence rule. Suppose that

���
� 

� � �� � � � � � ��� � 
 � � � � ���

� 

� - � 
 � �� � � 
 �
�
Then for

� �
1
�
2
� � � � � � we have

���
� 

� � � � � � � � � � � � 
 � � � � ���

� 

� - � 
 � ���� � 
 ���
which by the

�
th temporal incidence rule implies that � �� � � � � . We thus have

� ���1 � 1 � 1
� � � ���2 � 2 � 2

� � ����� � � ���� � � � � ���
i.e.,

�� � �
�� as required.

�

The importance of this theorem is that it enables us systematically to build complex
dominance spaces from simpler ones. We can start with very simple spaces where the
dominance relations are easy to verify ‘by hand’, and then build up to more complicated
cases where these relations are less straightforward to determine. Since we are deal-
ing with dominance spaces, information regarding dominance also provides complete
information about perturbation as well. In the next section we illustrate this with two
examples of particular relevance to the present study. Further examples can be found in
(Galton 1995).

6 Applications to Spatial Change

We can construct RCC-8 as a dominance space by noting that the RCC-8 relations are
uniquely determined by knowing (a) whether all, some, or none of A is inside B, (b)
whether all, some, or none of B is inside A, and (c) whether A and B share any boundary
points. (Here we are using the word ‘some’ in its exclusive sense, i.e., some but not
all). This representation is related, but not identical, to Egenhofer’s 4-intersection. The
three factors can be represented numerically as follows:

(a) Let
� � area of A inside B

area of A
�

Then the three states are � � 0 (none of A is inside B), 0
	 � 	 1 (some of A is

inside B), and � � 1 (all of A is inside B). The state ‘some’ is dominated by both
‘none’ and ‘all’.

(b) As with (a), but with A and B swapped around:

� � area of B inside A
area of B

�

(c) Let � be the minimum distance between a boundary point of A and a boundary
point of B. Then we have two states �

�
0 (i.e., A and B share at least one

boundary point) and � � 0 (A and B do not share any boundary point). The state
�
�

0 dominates the state � � 0.
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Figure 1: Generation of the dominance space for the RCC-8 spatial relations.

These three little dominance spaces would, if they were mutually independent, combine
to give a space with 3 � 3 � 2

�
18 elements. The dominance relations are computed

using Theorem 1, as shown in Figure 1, where the arrows indicate the direction of
dominance.

In fact the three spaces are not independent; all but 8 of the elements are impossible
(e.g., if none of A is inside B then none of B can be inside A either). The eight possible
combinations correspond exactly with the spatial relations in RCC-8, as follows1:

B in A A in B Share boundary
DC none none no
EC none none yes
PO some some yes
TPP some all yes

NTPP some all no
TPPI all some yes

NTPPI all some no
EQ all all yes

1Note that this analysis assumes that each region consists of a single connected component.
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Figure 2: The dominance space for the RCC-8 spatial relations.

In Figure 1 the nodes corresponding to these eight possibilities are labelled with the
appropriate RCC-8 designations. A clearer view of the dominance space can be obtained
by deleting all the ‘impossible’ nodes and rearranging those that remain as in Figure
2. It is reassuring to note that this diagram is identical, apart from the addition of the
dominance arrows, to that of (Randell et al. 1992)!

From this figure we can read off, for example, that a transition between DC and PO
must involve passing through EC, though since this dominates both its neighbours the
intermediate state need only hold for an instant. We can also see that the state TPP can
hold for an single instant in the context of a transition between PO and NTPP (since
it dominates both of these states), but if it holds in the context of a transition between
EQ and NTPP then it must do so for an interval (since it is dominated by EQ). These
conclusions are in conformity with the demands of continuity.

For a more complicated example, we consider the position of a non-rigid body in
relation to two fixed disconnected regions. There are eight relations which the position
of the body can stand in with respect to either region individually. If its position with
respect to one region were free to vary independently of its position with respect to the
other, this would give us a state space containing 64 product relations. In fact only 31
elements of the full Cartesian product can be realised. In particular, if the position of
the body in relation to one region is EQ, TPP, or NTPP, then it can only be DC with
respect to the other. This is because the two regions are themselves DC. This gives
us the six composite relations (EQ,DC), (TPP,DC), (NTPP,DC), (DC,EQ), (DC,TPP),
and (DC,NTPP). The remaining five simple relations are genuinely independent for
each of the two positions, giving a further 25 composite relations. All 31 relations
are portrayed pictorially in Figure 3, with the dominance—and hence perturbation—
relations as determined from Theorem 1.

Using this figure, we can observe that, for example, if a body is EC to region 1 and
DC to region 2, then in order to become DE to 1 and EC to 2 it must first become either
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Figure 3: Position of a non-rigid body in relation to two fixed regions.

DC to both or EC to both—the latter case being possible for a single instant, the former
requiring an interval.

7 Concluding Remarks

We have provided a theoretical basis for describing movement events in terms of the
conditions for their occurrence, which consist of the holding or not holding of various
positional fluents at different times. To do this we have brought together a formal model
of time, based on a set of instants endowed with a total ordering, with a formal model of
space based on regions. By attending closely to the constraints imposed by continuity
on the temporal behaviour of different fluents we developed a theory of dominance by
which we are able to generate from first principles the neighbourhood relation on the
RCC-8 set of qualitative positional relations, as well as on more complicated state-spaces
such as the possible positions of a non-rigid body in relation to two fixed regions.

We advocate the use of dominance as providing a systematic tool for investigating
the structure of qualitative state-spaces derived from an underlying space that is con-
ceptualised as continuous. As such, the theory of dominance is not only of interest
in the spatial domain, although that does provide a highly appropriate testing ground,
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with perhaps the richest set of particular examples, for the theory. There is considerable
scope for further research in investigation of the dominance structure of other qualitative
spaces in the literature on spatial reasoning, as for example the orientation-based system
of (Freksa 1992).

With regard to the work presented in this paper, an intriguingopen question remains.
Our theory of dominance depends on our being able to speak meaningfully of a state
holding at an instant. We used the theory to help us generate the perturbation and
dominance relations for complex state-spaces. The resulting diagrams can be read as
supplying information about perturbation only, ignoring the dominance information. As
such, they can be recognised as valid even if one does not accept the premiss that states
can be said to hold at instants. The utility of dominance in deriving results relating
to perturbation seems to indicate that dominance expresses deep-seated characteristics
of the spaces in question. But as explicitly presented here, it is incompatible with the
widespread view (as expressed for example by Allen and Hayes (1985)) that it does
not make sense to speak of a state holding at an instant, but only over an interval.
The question facing us is therefore whether there exists an alternative formulation of
the dominance theory which can play the same role as that theory in uncovering the
perturbation structure of complex state-spaces, without presupposing the contentious
association of states with instants.
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