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Abstract

The phenomenon of movement arises whenever the same object occupies dif-
ferent positionsin space at different times. Therefore a theory of movement must
contain theories of time, space, objects, and position. We provide a theoretical ba-
sis for describing movement eventsin terms of the conditions for their occurrence,
which refer to the holding or not holding of various positional fluents at different
times. For this we need to bring together a formal model of time with a formal
model of space. By attending closely to the constraints imposed by continuity on
the temporal behaviour of different fluentswe develop theory of dominance, which
enables usto generate ab initio the perturbation relation on the full set of positional
relations.

1 Introduction

The phenomenon of movement arises whenever the same object occupies different
positionsin space at different times. This bare definition already suggests the main
ingredientsof a theory of movement:

1. A theory of time, comprising (8) a theory of times, i.e, a fundamenta set of
tempora entities, usualy ether instants or intervals, which act as loci in the
tempora dimension for things to happen in, and (b) a theory of temporal order
by which the fundamental set of times is endowed with an ordering relation,
representing temporal sequence.

2. Atheory of space, analogous to the theory of time but with points or regions as
the fundamental entities, and a more complex theory of spatial ordering.

3. Atheory of objects, which alows objectsto berigid or non-rigid (the latter being
capable of a wider variety of modes of motion than the former), and to have
parts, and which can include objects which are not discrete individuals (consider
the water in a river—which certainly moves), or which are not even concrete
substances at dl (e.g., holes and shadows, both capable of movement).



4. Atheory of position, which brings together the theory of objects with the theory
of space, theidea being that, a any one time, each object occupies a certain part
of space, whichiscalled itsposition at that time. The position of an object can be
specified asthetota region of space occupied by it at atime. An object’sposition
will thusbe aregion of space precisely congruent, in the geometrical sense, tothe
body itself.

Our am is to provide a framework for formaising our “common-sense” knowledge
of the world. Thisis a different enterprise from that of physics, which seeks to go
beyond our common-sense view, correcting it where it is in error, and providing a
unified explanatory framework. But we should not ignorethefact that awell-devel oped
physico-mathematical theory of motion exists, and ideally our common-sense view
should be reconcil able with the physico-mathematical view. A common-sensetheory is
typically qualitativein nature, whereas the physi co-mathematical pictureisquantitative.
We shall be particularly interested in examining how phenomena such as continuity,
which find a natural expression in the quantitative theory, can be expressed when we
move over to a qualitative theory. Throughout, it should be borne in mind that &l
theories, whether qualitative or quantitative, naive or scientific, are idealisationsand as
such cannot be regarded as absolutely true to the complete underlying reality.

2 Theory of Time

We shall use an instant-based moddl 7 = (T, <), which positsaset T" of entitiescalled
instantsto be the fundamental set of tempora loci. They are endowed with arelation
< of temporal succession. We use abbreviations as follows:

t<u

t<uVit=u

[I> (>

t<u<vw t<uhu<vwv

Properties typically ascribed to this relation (cf. (van Benthem 1983)) are as follows
(we use the capitalised parts of the names as |abels for the axioms):

1. IRReflexivity. No time precedes itself:

Vi-(t < t).

2. TRAngitivity. If timet precedes time u which in turn precedes time v, thent¢ also
precedes v:
Vi, u, v(t<u<v — t<v).

3. LINearity. Of any two distinct times, one precedes the other:
ViutZu—t<uVu<t).

4. UNBoundedness. Every timehasatime precedingit, and atimewhichit precedes
(so there are no first and last times):

Vidu, v(u <t < v).



5. DENsity. Between any two times there is a third (and hence, given IRR and
TRANS, infinitely many):

Vi, u(t<u—Ju(t<v<u)).

An interval is defined by specifying, for each instant, whether it precedes, begins,
divides, ends, or followstheinterval. It issufficient to specify just two instants, namely
the unique instants at which the interval begins and ends. We could thus define an
interval as an ordered pair (¢, u) of instants, wheret < «. Wecall thisthe pair model of
an interval. Theinstantswhich precede (¢, u) are precisely the instants which precede
t, and theinstants which follow (¢, u) are the oneswhich follow w.

If i = (t, u), wewrite Beg(i) =t and End(i) = u. Thisnotationalows usto refer
to the instants marking the beginning and end of any interval we can refer to. We write
Lim(t, i) whenever eithert = Beg(i) ort = End(i), and say that ¢ limits: inthiscase.
We write tE4, and say that ¢ divides i, as an abbreviation for Beg(i) < t < End(i).
The motivation for thisterm issimply that ¢ divides: into two contiguous subintervals
(Beg(i),t) and (t, End(7)).

An interva is often identified with a range of instants, namely all those instants
which divideit. For theinterval (¢, u) thesearetheinstantsv suchthatt < v < u. The
instantsin therange are thus members of theset {v |t < v < u}, and itis customary to
identify the interval with this set. We call thisthe ‘set model’ of an interval. Although
it iswidely used in mathematical modelling, the set model of an interval has nothing
to offer over and above the pair model. In particular, the distinction between open and
closed intervals which is suggested as a natura extension of the set model does not
seem to have any application either to physical time or to any of our common-sense
conceptions of time.

There are three distinct temporal successions relation on intervas, and any of them
can be taken as fundamental. Their definitionsare

¢ immediate succession, in which thefirstinterval ‘meets' the second at an instant,
without any intervening interval:

<t7 u)l(“: w)

The instant at which theintervals meet in thiscase isu (= v).

(>

u="7v.

o delayed succession, inwhich thefirst interval is separated from the second by an
intervening interval:

(t,u) < (v, w) 2 u<w
The intervening interval in thiscase is (u, v).

¢ general sucession, which covers the preceding two cases:

(t,u) < (v, w)



General succession is the digunction of immediate and delayed succession, which are
themselves mutually incompatible. We writethingslikei|j|k andi < j < k with the
obviousmeanings. Wewritei][j to denotetheinstant at which i meetsj (soif i = (¢, u)
and j = (u,v) then i][j = u). Note the ‘polymorphic’ character of the symbol ‘<’,
which we use both as arelation on instantsand as arelation on intervals; it is natural to
think of these as the ‘same’ relation (since with instants, succession is always delayed
succesion). Note, however, that our axioms for < are intended to apply only to the
relation on instants (in particular, LIN does not hold when the terms of the relation are
intervals).

Using our axioms for < we can prove a number of important properties of |, as
follows (the proofs are easy and are omitted here—but we indicate which axioms we
need to use; where no axioms are cited, nothing more is needed than the definitions of |
and <). InM2, '@’ istheexclusive'or’ connective.

(ML) Vi, j, k 1(ilk AdLA Gk — §|]) [No axioms]
M2) Vi, 5,k IGkAIl —i<IDillDj<k) [LIN]
(M3)  Vidj, k(jlilk) [UNB]
(M4) Vi, j, k IGJIINEIL— 5 =k) [No axioms]

(M5) Vi, j[ilj — JkVI[(I|k — U]i) A (k| — j|D)]] [TRA]
(M6)  Vidj, k[j|k AVI[(I|i < I|j) A (i]l = k|1)]]  [DEN]

Note that M4 and M5 together imply that if ¢ meets 5 then there is a unique interval
which meets whatever j meets and is met by whatever i ismet by (existence isgiven by
M5, unigueness by M4). We denote thisinterval i + j; it is the interval which begins
when i begins and ends when j ends, and hence spans the entire time taken up by ¢ and
J together.

We can define further relations on intervals as follows. We use infix notation after
the fashion of (Allen 1983):

i0j 2 W k(i=i+kAj=k+5)
iSj 2 3k[j=i+k

iDj 2  Jkij=k+i+]

iFj 2 3k[j=k+1]

iCj & iSjviDjViFj

iCj &2 icjivi=j

(0,8, D, Fareread as' overlaps', ‘starts', ‘isduring’, and *finishes', respectively.) The
relations C and C are analogousto the set-theoretic relations of subset (C) and proper
subset (C), and indeed could be defined to be identical to them if the set model of an
interval were to be adopted.

Following Allen, it is often regarded as more satisfactory to base one's temporal
model on intervals as the fundamental tempora units rather than instants. Allen and
Hayes (1985) do this, using equivalents of (M1)«(M6) as their axioms for immediate
succession. They aso show how instants can be defined in their system; the resulting
system satisfies our axioms for instants. It follows that it does not matter whether we



base our tempora modd on instants or intervals. By choosing appropriate definitions
we will end up with equivalent systems starting from either choice. It is certainly
convenient to be able to use both instant and interval notations!

The model of time presented here is dense, because of axiom M6. The obvious
mathematical model for dense time, satisfying all our axioms, is to represent instants
by real numbers, with temporal succession represented by the ‘less than’ relation. We
could either choose the set of al real numbers to represent 7', or any dense subset of
them, such as the rational numbers. Dense time implies that thereis no lower limit to
thelength of an interval, and whilethisis a satisfactory idealisation for many purposes,
sometimes there are good reasons not to accept it. For example, in a context in which
intervals are only known through observation and measurement, there is an effective
lower limit to the length of an interval, corresponding to our chronometrical resolving
power; or again, one may be concerned with physical processes which alwaysrequirea
certain minimum duration in which to occur.

For these reasons, an alternative discrete model of time is often preferred: mathe-
matically, thisistantamount to representing instantsasintegersrather than real numbers.
In our axiomatisation, it is necessary to replace the axiom DEN by

6. DISCreteness. If timet precedes time u then thereis an earliest time v which ¢
precedes and a latest time v’ which precedes u:

Vi, u(t < u— IVt < w v <w)A'Vu(w < u—w<v)).

Note how we say that v isthe earliest time which ¢ precedes: an arbitrary time w is
preceded by ¢ if and only if it is either equal to or preceded by v, so that the only times
which ¢ precedes are v and anything which v precedes; and analogously for the latest
time which precedest.

In discrete time, the elements of 7" are atomic intervals, or moments. A general
interval in discrete time is the concatenation of one or more consecutive moments, a
natural measure of its duration being the number of moments involved. Thisis quite
different from dense time, where it makes no sense to speak of ‘ consecutive instants’,
and duration has to be introduced as an additional primitive, not derivable from the
tempora order done. As will be seen below, we still need the notion of ‘instant’ in
discretetime: we shall need to speak of the instant at which two consecutive moments
meet. The reason for this will become apparent when we consider the occurrence
conditionsfor an instantaneous event in the next section.

In the rest of this paper we shall mostly confine our attention to dense rather than
discretetime. None the less, much of what we say about movement in the next section
can be adapted fairly straightforwardly to the latter case. On the other hand, the later
meaterial on continuity and the theory of dominance applies specifically to dense time,
and does not make much sense in the discrete case.



3 Movementsand their Occurrence Conditions

Weusethe RCC-8 system (Randell, Cui and Cohn 1992) for specifying rel ationsbetween
regions. There are eight basic relations, as follows:

DC A isdisconnected from B

EC A isexternally connected to B

PO A partialy overlaps B

EQ Aisequal toB

TPP A isatangential proper part of B
NTPP A isanon-tangentia proper part of B
TPPI A has B asatangential proper part
NTPPI A has B as anon-tangential proper part

Theseeight relations correspond closely to the eight rel ations determined by Egenhofer’s
4-intersection method (Egenhofer 1991). Regions will be mainly of interest to us as
possiblepositionsfor movablebodies. The position of abody can be given, with greater
or less precision, by the RCC-8 relation which it bears to some known region, such as
the position of another body. To be able to talk about motion, we need only relativise
thisto time.

We take as our fundamental notion for the analysis of change the idea of a fluent.
A fluent can take different values at different times. If f isafluent and a isavaueit
can take, then f = a isapropositionthat can be true or false at different times, in other
words a Boolean fluent, or state. Likewise, if f; and f, are fluents, and R isarelaion
which may hold between vaues that they can take, then R( f1, f2) isdso astate.

We write Holds-at(S,t) toindicatethat state S holds at instant ¢, and Holds(S, 1)
toindicatethat S holdsthroughout the interval i (Allen 1984, Galton 1990). These two
notations are connected by therule

Holds(S, 1) — YtEiHolds-at(S,1),

which saysthat a state holdsthroughout an interval if and only if it holds at every instant
which divides the interval. This could be taken as a definition of Holds in terms of
Holds-at, if desired. Animmediate consequenceis Allen’srule

Holds(S,i) Ni C j — Holds(S,j),

which says that a state holds throughout every subinterval of any interval throughout
which it holds.

Wewrite S 1.5’ torefer to the state which holdswhen and only when both S and S’
hold (state-conjunction), and — S to refer to the state which holds when and only when
S failsto hold (state-negation). Formally, they obey the rules

Holds-at(ST S',t) < Holds-at(S,t) A Holds-at(S', 1),
Holds-at(—S,t) — -~ Holds-at(S,1t).

We write pos(a) to denote the position of body «. Thisis aregion having exactly
the same shape and size as @, so that a can fit into it with no space |ft over. Since the



position of a can change over time, pos(a) isafluent. We write
Holds(R(pos(a),r),1)

to indicate that throughout interval ¢, the position of a bears the RCC relation R to
regionr.

To handle movement we need aformalism for referring to events, since amovement
isan event, not astate. Wewrite Occurs(e, i) to indicate that an event of typee occurs
over interve ¢. Allen’srulefor Occurs is

Occurs(e,i) A j C i — —Occurs(e, j),

which says that an event does not occur over any proper subinterval of an interval over
which it occurs. (So events can be described as unitary, in contrast to states, which
are homogeneous.) This rule can be regarded as a constraint on the alowable event-
types. We shall aso have cause to talk about instantaneousevents. For these we write
Occurs-at(e,t) to indicate that an event of type e occurs at the instant ¢ (see Galton
(1994) for a detailed treatment of instantaneous events).

Our paradigm for analysing movement will be to specify a movement event ¢ in
terms of its occurrence conditions, that isin terms of aformulaof one of the forms

Occurs(e, i)

> >

Occurs-at(e, t)

wheretheright-hand sideisaformulanot containing e (Galton 1993, Galton 1994). We
shall consider a number of examples.

Suppose we wish to define what it isfor a to move from position r; to position 7
over the interval i. A naturd first attempt might be to stipulate that « must be at r1
throughout some interval j which meets ¢, and at r» throughout some interval which i
mests. In order to ensure that the event occurs over the wholeinterval ¢, and not some
proper subinterval (in accordance with Allen’srule for Occurs), we should add that «
isnot at either r1 or r; at any time during 7 itself. This givesusthe definition:

Occurs(move(a,ri,r2),1) 2
35, k(Jilk A Holds(pos(a) = r1,j) A Holds(pos(a) = rz, k)) A
Holds(pos(a) # r1,i) A Holds(pos(a) # r2,1).

This definition is adequate if we do not alow states to be said to hold at instants, for
example if our model of timeisdiscrete; but it will not do in general. For suppose a
moves from position rg to r3, passing through positions r1 and r», in that order, but
without stopping at either of them. Then thereis no interval throughout which « is at
either r1 or r,, yet a still moves from ry to r, over the interva between the times at
whichitisat these positions. We must replace our definition of move by:

Occurs(move(a, ri,r2),1) 2
Holds-at(pos(a) = r1, Beg(i)) A Holds-at(pos(a) = rp, End(i)) A
Holds(pos(a) # r1,1) A Holds(pos(a) # ra, ).



Note that this definition subsumes the previous one, sinceif « is at position 1 over an
interval meeting ¢, then by continuity it must be at r; at the beginning of ¢, and likewise
with r, at the end.

Suppose next that we wish to say that a enters region » over interval i. A natura
first attempt would be to postulate that « must be just outside (EC) r throughout some
interval j which meets ¢, and just inside (TPP) r throughout some interval k& which ¢
meets; during 7 itself, « must be partly inside and partly outside (PO) r:

Occurs(enter(a,r), i) 2
35, k(J|ilk A Holds(EC (pos(a),r),3))A
Holds(PO(pos(a),r),i) A Holds(TPP(pos(a),r), k)).

As before, we can argue that a does not need to be EC or TPP to » for more than an
instant: consider the case where a approaches r from a distance and enters it without
pausing in either the EC or the TPP positions. A more generd definition istherefore:

Occurs(enter(a,r), i) 2
Holds-at(EC(pos(a),r), Beg(i))A
Holds(PO(pos(a),r),i) A Holds-at(T P P(pos(a),r), End(i))).

Supposefinally wewishto characterisetheevent of two objects’ cominginto contact;
thisis an instantaneous event. It can happen at the meeting point of two intervals ¢, j,
such that « is separated from & throughout ¢ and touching 4 throughout j:

Holds(DC(pos(a), pos(b)), i) A Holds(EC (pos(a), pos(b)), j).

The event itself occurs at the instant ¢][j. However, this does not cover the case where
a moves towards b and then entersit. Then a first makes contact with b at 7][j, where

Holds(DC(pos(a), pos(b)), 1) A Holds(PO(pos(a), pos(b)), 7))

Here we can infer, by continuity, that « is EC to region r at theinstant ¢. Even thisdoes
not cover the case where the objects move apart as soon as they have touched. If the
moment of touching isi][j, then we have

Holds(DC(pos(a), pos(b)), i) A Holds(DC'(pos(a), pos(b)), j)

but this does not tell us that they ever touched. Hence we have to bring in explicit
reference to the state of affairs holding at the instant ¢][;j itself. Our fully general
definition, subsuming the others, will therefore be

Occurs-at(connect(a,r),1) 2

Ji(t = End(i) A Holds(DC(pos(a),r),i) A Holds-at(EC (pos(a),r),t))

This saysthat « istouching b at the instant which ends an interval throughout which a
is separated from b: that is the instant at which ¢ makes contact with 5. Nothing need
be said about what state holds after that instant.



Note that in discrete time, the same analysis will apply, but it requires usto locate
the instantaneous event of making contact at theinstant where two intervals meet. This
will always be expressibl e asthe meeting point of two atomicintervals(moments). This
example shows why it is necessary to have instants as well as moments in a discrete
model; but they do not have to be postulated separately, since the existence of the
instantsfollows of necessity from thefact of each moment’simmediately preceding the
next.

4 Continuity

We have mentioned continuity several times; in this section we examine more closday
what it entails. Two different notions of continuity are suggested by our experience of
the physical world. On the one hand there isthe continuity of space and time, which we
are accustomed to regard as “seamless’ continuaadmitting arbitrarily fine subdivision
and no “gaps’. On the other hand, there is the continuity of change, according to
which measurable physical magnitudes such as the position, velocity, acceleration,
or temperature of a body vary smoothly in time, again presenting an appearance of
seamlessness, with no instantaneous jumps.

Notice here that we only refer to the appearance of seamlessness. Of course,
many phenomena which appear continuous at one scale are seen to be discrete when
observed more closely. An obvious example is afforded by the atomic structure of
meatter. Another example, with a temporal dimension, is provided by the illusion of
continuity produced by the rapid succession of framesin a cine-film. Asmentioned in
theintroduction, we are working with ideali sations of the world we experience, and our
purposein this section isto examine closely the rel ationship between thoseideslisations
inwhich phenomenaare naturally represented as continuous(e.g., using thereal number
system) and those—such as the qualitative system of RCC-8—in which continuity does
not find an obvious or natural expression.

Continuity of space and time is represented mathematically by modelling space
and time in terms of the ordered set (IR, <) of real numbers. The time dimension is
represented by IR itself, each number corresponding to a temporal instant; space is
represented by the Cartesian product IR®, each triple of real numbers corresponding to
asingle spatia point. The specia features of (IR, <) which suit it for thisrole are

¢ Density: between any two real numbers there is athird, and hence, by iteration,
infinitely many. (Cf. our axiom DEN.)

e Dedekind completeness: if IR is partitioned into two disjoint subsets L and R
such that every member of L islessthan every member of R, then either L. hasa
greatest member, or R has aleast member, but not both.

Note that neither the integers nor the rational numbers possess both these properties.
The integers fail on both counts, the rationals on only the second. In the absence of
Dedekind compl eteness, the temporal sequence admits ‘gaps’, at which the totality of
instants can be divided into two parts L. and R without there being a unique instant to
mark the point of division; thisisfelt to be incompatible with continuity.



Temporal intervalsand spatia regions, on this picture, must be specified in terms of
the relationships they bear to the instants or points that have been identified with rea
numbers or triples thereof. From a physical point of view, we require each point (or
instant) P to bear exactly one of the following relations to each region (or interval) R:

e PisinsdeR;
e P isontheboundary of R;
e Pisoutside R.

We shall regard an interval/region as entirely determined once it is known for every
instant/point whether it liesinside, outside or on the boundary of the interval/region.

Notethat thiscriterion of identity for interval sand regionsisblind to the open/closed
issue. Thereis no physical significance to the idea of a membership relation that is
separate from the inside/outside/boundary trichotomy. This trichotomy excludes the
idea that a region can ‘contain its own boundary’, there being no separate notion of
containment apart from ‘inside’. Nothing is gained by identifying a region either with
the set of itsinterior points or with the set of its interior points plus boundary points,
sinceaset isan abstract notion such that therelationit bearsto itsmembersissui generis
and not to be confused with the relation between a whole and its parts or between a
region and the points of itsinterior or boundary.

The second kind of continuity, continuity of change, is modelled mathematically by
representing measurable magnitudes as functions (of time) that are continuous in the
special mathematical sense, namely:

The function f : IR — IR is continuous at the point z¢ € IR so long as, for
every real number ¢ > 0, there exists area number § > 0 such that for
evaryz € R,if zg— 6 < z < zo+ 6 then f(zo) — e < f(z) < f(zo)+e.

Theintuitivenotion of continuity demands that a function should be continuousat every
point: so there are ‘no jumps'. Thisexcludes certain well-known *pathological’ cases,
e.g., afunction which is continuousat irrational pointsbut not at rational ones.

Granted that the mathematical model iswell suited to model ling continuous change,
there is now a problem about modelling discontinuous change. This is the classica
‘dividinginstant’ problem, which goes back to Plato and Aristotle. It may be phrased as
follows: Let S beastate suchthat Holds(—S, i) Ai|j A Holds(S, j); can we determine
whether Holds-at(S,][j)?

An easy instance of this problem is the following: let S be the state pos(a) = r.
We are supposing that an interval throughout which the position of « is different from
r meets an interval throughout which a isin position r:

Holds(pos(a) # r,i) Ai|j A Holds(pos(a) = r, j).

For pos(a) # r, it isenough that the space occupied by some part of a is digoint from
r—in particular, « does not have to be right outside » to count as not being at . If the
motion of a is continuous, then for a to move to » from any position r’ distinct from
r it must pass through a range of intermediate positions forming a path from ' to r.

10



Suppose, then, that  isnot a r at theinstant ¢ = 7][j. Let u be any instant dividing j:
since a isat r thoughout j, itisat r & u. So a moves fromr’ a ¢ tor a u. Hence,
by continuity, it must occupy positionsaong a path joining »’ to r at sometimesin the
interval (¢, u). But thisisa subinterval of j. Hence there are times during j when a
isnot at r—contradicting our assumption that « is at » throughout j. It followsthat a
must be a r a instant ¢ aswell. There isan asymmetry between the states represented
by ‘aisa r’ and ‘a isnot a 7', which could be expressed by saying that the former
must be true on closed sets of instants, the latter on open sets (compare the continuity
rule of (Williams 1990)). In the somewhat infelicitous terminology of Galton (1990),
‘aisat r’ isastate of position whereas ‘e isnot at »’ is a state of motion.

In general, if the state S describes the state of the world with respect to some
continuoudly variable property (such as the position of a body), then the above type
of argument can be used to determine a solution to the dividing instant problem. The
problem becomes more vicious when S is essentialy discontinuous, i.e., when there
are no intermediate states between a state of theworld described by S and a state of the
world described by —S.

An example which is often cited in this connection concerns a lamp which may be
on or off. Supposethelamp isoff over theinterval i = (t1,t,) and onover j = (¢2,3).
The problemiswhether thelamp ison or off at theinstant¢, = i|[j. There are anumber
of different responses one might make here:

1. Thelamp isneither on nor off at ¢,. Thisresponse comesin two flavours:

(8 The proposition ‘The lamp is on at ¢,’ is ill-formed—propositions have
truth-valuesover intervals, not at instants.

(b) The proposition does have a truth-value—but it is neither true nor false.
Instead we use a three-valued logic, and assign the third truth value to this
case.

2. The lamp is both on and off at ¢,. Thisisbizarre, but | have heard it serioudly
suggested.

3. Thelampisoff at¢,. Tojustify this, we treat the state of the lamp as continuously
varigble: we postulate a real variable [, taking values in the range [0, L] and
representing the amount of illumination from the lamp. Then ‘Thelamp is off’
means ! = 0, while'Thelampison’ means! > 0 (thiscase is exactly parald to
that of our body a moving away from the position r).

4. The lamp ison at t,. This can be similarly justified by means of a different
interpretation of ‘on’ and ‘off’: thistime say that ‘ Thelamp isoff’ means! < L,
and ‘Thelampison’ means! = L. Thiscaseis parald to a moving to position
r, exactly asin our first example.

5. Finally, one might reject the premisses, and deny that it is possiblefor an interval
over which the lamp is off to beimmediately followed by an interval over which
itison. To justify this, one must deny that ‘ The lamp is off’ is the negation of
‘The lamp ison’. We can do this by defining ‘ The lamp is off’ to mean { = 0,

1



and ‘Thelampison’ tomean ! = L. In order for thelamp to change from being
off to being on, it has to pass over the range of values for which0 < [ < L,
and thismust take time. What happensisthat the lamp is off over some interval
(t1,t2), it ison over aninterval (t3,t4), and neither on nor off over the interval
(t2,t3), which may be of extremely short duration. Of coursethedividing instant
problem arises again with respect to theinstants¢, and t3, but thistimeitisof the
relatively harmless continuous variety that we have dealt with already: the lamp
isoff (i.le,l=0)at ¢ty andon(i.e, !l = L) a t3.

Response 1(8) isinteresting because it has become prominent in Al, largely owing
totheinfluence of Allen. Allen’swork was prefigured by that of Hamblin in philosophy
(Hamblin 1969, Hamblin 1971). Hamblin was very much motivated by the dividing
instant problem. Here we highlight the fact that there is a radical incompatibility
between the view of the world espoused by Allen and Hamblin and that implicit in the
standard mathematical view which models continuity using the real numbers.

This incompatibility does not only arise from the dividing instant problem. A more
serious problem concernswhat | call instantaneoustenure (Galton 1994). By tenure of
astate | mean an event which consists of that state’s holding for a certain time, flanked
by times at which it does not hold. For example, if thelamp isoff over interval (1,5},
on over (t2,t3), and off again over (t3,14), then an event of tenure of the state of the
lamp’sbeing on occurson theinterval (¢, t3). Hamblin explicitly denied the possibility
that a tenure event could be instantaneous, referring to the impossibility of a red book
turning green just at midnight and then immediately becoming red again, so that there
isonly asingleinstant at which it is green. We may grant Hamblin his example, but
what of the ball tossed up into the air: surely there is an instant, and only an instant,
at which itis moving neither up nor down? On the standard mathematical view, thisis
inescapable. Aristotlewould have said that inthissituationwhat actually happensisthat
theball comes torest at the highest point of itstrajectory, staystherefor a short interval,
then begins descending. If this is correct, then there is a serious mismatch between
what actually happens and the mathematical apparatus standardly used by physiciststo
describe what happens in cases like this. (Note that thisissue cannot, in principle, be
settled by observation or measurement, since the length of the supposed interval might
always be below the threshold of discrimination; once again, the matter at stake is one
of finding aworkableidealisation.)

Even more seriously, consider the case of a body ¢ moving uniformly along aline
from position p to position r, passing through position¢ ontheway. Thisistheexample
usedto criticiseAllenin (Galton 1990). Supposethewholemovement takes up interval
(t1,13). Thepart of the movement during which « movesfrom p to ¢ must occupy some
initial interval of this, say (t1,%2). The remainder of the interval, namely (t»,13), is
taken up by the movement from ¢ to . Itisnatural tosay that a isat ¢ at instant ¢,. On
the other hand, itisnot at ¢ at any other timeduring (¢1, t3). Wethushaveinstantaneous
tenure of the state of a’sbeing at g.

We cannot dismiss this by claiming that it does not matter what we say is the case
at to, for if we are not prepared to say that a isat ¢ at ¢, wemust deny that a isat ¢ at
al during the interval (t1,t3), despite the explicit supposition that « passes through 4.
We should have to dlow that a body can pass through a position without being there.
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The alternative isto say that if a passes through ¢ then it must spend some time there;
but this destroys continuity. For there is not enough time for a to spend a positive
duration at each of a nondenumerable set of positions aong the path from p to r, so
either we have to deny that the path contains nondenumerably many positions (which
entails denying Dedekind compl eteness, and hence the continuity of space) or we must
deny that a occupies every position aong the path at some time during its move (which
entails denying continuity of movement).

If we are committed to the beliefs that (a) all motion must be continuous, and (b) a
body cannot occupy apositionwithout spending some positivelength of timethere, then
the only way out isto deny that motionis possibleat al. Perhaps something of this sort
was what motivated Zeno's arrow paradox, though of course Zeno was working with
a conception of continuity that had not yet been formulated in terms of the Dedekind

property.

5 TheTheory of Dominance

When giving the occurrence conditionsfor connect, we noted that if we have DC' over
i and PO over j, where i meets j, then we must, by continuity, have EC at the instant
i][7. Inthis section we explore further the role that continuity has to play in arguments
of thiskind. Essentialy, we shall ook at the structure of the state-space consisting of
the RCC-8 relations from the point of view of its being a qualitative projection of an
underlying continuous space.

We say that a state S’ is a perturbation of state S if and only if one of these states
can hold at an instant which limits an interval throughout which the other state holds,
i.e, a least one of the following situations can occur:

Holds(S,1) A Lim(t,i) A Holds-at(S’,1)
Holds(S',i) A Lim(t, i) A Holds-at(S,t)

If only thefirst of theabovesituationscan occur, then weshall say that state.S’ dominates
state S, written S’ »~ S, whereas if only the second can occur, S’ is dominated by S,
written S’ < S. Themotivation for theterm ‘dominance’ isas follows: supposethat S
holdsthroughout ; and that S’ holds throughout 7, where i meets 5. Then we can think
of S and S’ as being in competition as to which of them, if either, should hold at the
instant ¢][j. It isthe dominant state which wins.

Toillustrate these ideas, we divide the state-space for asinglereal variable into the
three qualitative states positive, negative and zero, abbreviated P, V, and Z respectively.
Assuming continuous variation, we have

Holds(Z,1) A Lim(t,1) — Holds-at(Z,t).
Thisis because if the value of the variable is non-zero at ¢, then by continuity it must
assume vaues arbitrarily close to that non-zero value, and hence non-zero themselves,

at al timessufficiently closetot, and thisisincompatiblewith its being zero throughout
an interval beginning or ending at ¢. This means that neither of the situations

Holds(Z,i) A Lim(t, i) A Holds-at(P,t)
Holds(Z,1) A Lim(t,1) A Holds-at(N,t)
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can occur. On the other hand, if our variable increases uniformly over the interval
(—1,1) so that itsvalueis 0 a time 0, then we have

Holds(N,(—1,0)) A Lim(0, (—1,0)) A Holds-at(Z,0)
Holds(P,{0,1)) A Lim(0,(0, 1)) A Holds-at(Z,0).

It followsthat Z dominates both N and P. Moreover, N and P are not perturbations
of each other (and hence neither can dominate the other), since it is not possible
for the value of the variable to change from N to P or vice versa without passing
through Z. The complete dominance relation on the set {N, Z, P} is therefore given
byZ >~ NAZ > P.

While it is quite possible two specify two states which are mutual perturbations
athough neither dominates the other, we shall only be concerned with state spaces in
which al perturbation relations involve dominance in one direction or other, asin the
example above. The generd definitionis:

A dominance spaceisapair (S, >), where

e Sisafinite set of states

e > isanirreflexive, asymmetric relation on S, where S >~ S isread
“S’ dominates S”,

and the following temporal incidence rule holds
VS, S" € S(Holds(S,i) A Lim(t,i) A Holds-at(S',t) — 5" = S)
(where S” > S abbreviates (S” >~ S) v (5’ = 9)).

The temporal incidence rule ensures that if astate S holdsthroughout an interval ¢ then
the only states apart from S itself which can hold at the limits of i are ones which
dominate S.

The key fact about dominance spaces is that a set of such spaces can be combined
into a composite dominance space, as shown by the foll owing theorem.

Theorem 1. Let (S1,>1), (S2,>2), ..., (Sn,>n) be dominance spaces. Then
(S1x 82 x - X8y, )
is also a dominance space, where > is defined by therule
S Stifandonlyif S; = Sifori=1,...nand S # 5,

where S denotes the ordered n-tuple (S1, Sz, . . ., Sn), understood as representing the
state-conjunction Sy M S, M- -1 S,,.

Proof. Firgt, since 81, S, . . ., S, aredl finite, s0isS1 x S x -+ - x S, Next, we must
check the propertiesof . That > isirreflexive followsimmediately from the condition
S # S’ appearing in the definition. To show that - is asymmetric, suppose that both
S=S8adS = S. Thenfori = 1,2,...,n, bothS; > S/ and S > S;, so0 by
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asymmetry of >, S; = S/. Itfollowsthat S = §'. Henceif we have § » S’ then we
do not have 5" > S.
Finally, we must check the temporal incidence rule. Suppose that

Holds(g, i) A Lim(t,i) A HOlds-at(g’, t).

Thenfork =1,2,...,n wehave

Holds(Sk,1) A Lim(t, i) A Holds-at(S},, 1),
which by the kth temporal incidenceruleimpliesthat S}, > Si. We thus have

(5121 S1) A (S32282) A= A (S}, =n Sn),
ie, S = S asrequired. 0

The importance of thistheorem isthat it enables us systematically to build complex

dominance spaces from simpler ones. We can start with very simple spaces where the
dominancerelationsare easy toverify ‘ by hand’, and then build up to more complicated
cases where these relations are less straightforward to determine. Since we are deal-
ing with dominance spaces, information regarding dominance aso provides complete
information about perturbation as well. In the next section we illustrate this with two

examples of particular relevance to the present study. Further examples can befoundin
(Gdton 1995).

6 Applicationsto Spatial Change

We can construct RCC-8 as a dominance space by noting that the RCC-8 relations are
uniquely determined by knowing (a) whether al, some, or none of A isinside B, (b)
whether al, some, or noneof B isinsideA, and (c) whether A and B share any boundary
points. (Here we are using the word ‘some’ in its exclusive sense, i.e., some but not
all). Thisrepresentation isrelated, but not identical, to Egenhofer’s4-intersection. The
three factors can be represented numerically as follows:
(@ Let
_ areaof AinsideB
“= areaof A

Then thethree statesare « = 0 (noneof A isinsideB), 0 < a < 1(someof A is

insideB), and « = 1 (all of A isinsideB). The state‘some' isdominated by both

‘none’ and ‘dl’.

(b) Aswith (a), but with A and B swapped around:

areaof B inside A
areaof B

8=

(c) Let v be the minimum distance between a boundary point of A and a boundary
point of B. Then we have two states v = O (i.e,, A and B share at least one
boundary point) andy > 0 (A and B do not share any boundary point). The state
v = 0 dominatesthe statey > 0.
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PROPORTION OF B INSIDE A
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\ \ |
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EC BOUNDARY
None — O POINTS
SHARED?
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DC
PROPORTION PO
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All — EQC\ TPP\
O

NTPP

O

Figure 1: Generation of the dominance space for the RCC-8 spatial relations.

These threelittledominance spaces would, if they were mutually independent, combine
to givea space with 3 x 3 x 2 = 18 elements. The dominance relations are computed
using Theorem 1, as shown in Figure 1, where the arrows indicate the direction of
dominance.

In fact the three spaces are not independent; all but 8 of the el ements are impossible
(e.g., if noneof A isinside B then none of B can beinside A either). The eight possible
combinations correspond exactly with the spatia relationsin RCC-8, as follows®:

BinA AinB Shareboundary

DC none none no
EC none none yes
PO some  some yes
TPP some all yes
NTPP | some al no
TPPI all some yes
NTPPI all some no
EQ all all yes

INote that this analysis assumesthat each region consists of a single connected component.
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TPP NTPP

DC EC PO EQ

TPPI NTPPI

Figure 2: The dominance space for the RCC-8 spatial relations.

In Figure 1 the nodes corresponding to these eight possibilities are labelled with the
appropriate RCC-8designations. A clearer view of thedominance space can be obtained
by deleting dl the ‘impossible’ nodes and rearranging those that remain as in Figure
2. Itisreassuring to note that this diagram is identical, apart from the addition of the
dominance arrows, to that of (Randell et al. 1992)!

From thisfigure we can read off, for example, that a transition between DC and PO
must involve passing through EC, though since this dominates both its neighbours the
intermediate state need only hold for an instant. We can also see that the state TPP can
hold for an single instant in the context of a transition between PO and NTPP (since
it dominates both of these states), but if it holds in the context of a transition between
EQ and NTPP then it must do so for an interval (sinceit is dominated by EQ). These
conclusionsare in conformity with the demands of continuity.

For a more complicated example, we consider the position of a non-rigid body in
relation to two fixed disconnected regions. There are eight relations which the position
of the body can stand in with respect to either region individudly. If its position with
respect to one region were free to vary independently of its position with respect to the
other, this would give us a state space containing 64 product relations. In fact only 31
elements of the full Cartesian product can be redlised. In particular, if the position of
the body in relation to one region is EQ, TPP, or NTPR, then it can only be DC with
respect to the other. Thisis because the two regions are themselves DC. This gives
us the six composite relations (EQ,DC), (TPP,DC), (NTPP,DC), (DC,EQ), (DC,TPP),
and (DC,NTPP). The remaining five simple relations are genuinely independent for
each of the two positions, giving a further 25 composite reations. All 31 relations
are portrayed pictorialy in Figure 3, with the dominance—and hence perturbation—
relations as determined from Theorem 1.

Using thisfigure, we can observe that, for example, if abody isEC to region 1 and
DC toregion 2, thenin order to become DE to 1 and EC to 2 it must first become either
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Figure 3: Position of a non-rigid body in relation to two fixed regions.

DC to both or EC to both—thelatter case being possible for asingleinstant, the former
requiring an interval.

7 Concluding Remarks

We have provided a theoretical basis for describing movement events in terms of the
conditionsfor their occurrence, which consist of the holding or not holding of various
positiona fluentsat different times. To do thiswe have brought together aforma model
of time, based on a set of instantsendowed with atotal ordering, with aformal model of
space based on regions. By attending closdly to the constraints imposed by continuity
on the temporal behaviour of different fluents we developed a theory of dominance by
which we are able to generate from first principles the neighbourhood relation on the
RCC-8 st of quditative positional relations, aswell ason morecomplicated state-spaces
such as the possible positions of a non-rigid body in relation to two fixed regions.

We advocate the use of dominance as providing a systematic tool for investigating
the structure of qualitative state-spaces derived from an underlying space that is con-
ceptualised as continuous. As such, the theory of dominance is not only of interest
in the spatial domain, athough that does provide a highly appropriate testing ground,
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with perhapstherichest set of particular examples, for thetheory. Thereisconsiderable
scopefor further research ininvestigation of thedominance structure of other qualitative
spacesintheliteratureon spatial reasoning, as for example the orientation-based system
of (Freksa 1992).

Withregard to thework presented in thispaper, an intriguing open question remains.
Our theory of dominance depends on our being able to speak meaningfully of a state
holding at an instant. We used the theory to help us generate the perturbation and
dominance relations for complex state-spaces. The resulting diagrams can be read as
supplyinginformation about perturbation only, ignoring the dominanceinformation. As
such, they can be recognised as valid even if one does not accept the premiss that states
can be said to hold at instants. The utility of dominance in deriving results relating
to perturbation seems to indicate that dominance expresses deep-seated characteristics
of the spaces in question. But as explicitly presented here, it isincompatible with the
widespread view (as expressed for example by Allen and Hayes (1985)) that it does
not make sense to speak of a state holding a an instant, but only over an interval.
The question facing us is therefore whether there exists an aternative formulation of
the dominance theory which can play the same role as that theory in uncovering the
perturbation structure of complex state-spaces, without presupposing the contentious
association of states with instants.
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