412 Sorting 2.5 Bucket and Sample Sort 413

Py Py

either the random or the heme works well, but in othe S
19]23] 4 [11]12

Initial element

24[15] 9 E _iyu_.:.u distribution

scheme delivers good pe l pivot selection schemes g
in Problems 9.20 and 9.21.
P>

u[4]s “J.x.____m_._i_..h

Local sort &
sample selection

2] Al)

9.5 Bucket and Sample Sort

A popular serial algorithm for sorting an array of n elements whose values
distributed over an interval |a. b] is the bucket sort algorithm. In this algori "
[a, b] is divided into m equal-sized subintervals referred to as buckets, and ..
is placed in the appropriate bucket. Since the n elements are uniformly dis
the interval [a, b], the number of elements in each bucket is roughly n/m.
then sorts the elements in each bucket, yielding a sorted sequence. The run
algorithm is & (n log(n/m)). For m = ©(n), it exhibits linear run time, ®c__.
the reason that bucket sort can achieve such a low complexity is because it}
the n elements to be sorted are uniformly distributed over an interval [a, b],
Parallelizing bucket sort is straightforward. Let n be the number of el
sorted and p be the number of processes. Initially, each process is assigned a
elements, and the number of buckets is selected to be m = p. The parallel
bucket sort consists of three steps. In the first step, each process partitions its bl
elements into p sub-blocks, one for each of the p buckets. This is possible be darantees that the number of elements ending up in each bucket is less than 2n/m
process knows the interval |a, b) and thus the interval for each bucket. In the v
each process sends sub-blocks to the appropriate processes. After this step, ¢at
has only the elements belonging to the bucket assigned to it. In the third step, &
sorts its bucket internally by using an optimal sequential sorting algorithm.
Unfortunately, the assumption that the input elements are uniformly dist
interval [a, b] is not realistic. In most cases. the actual input may not have !
bution or its distribution may be unknown. Thus, using bucket sort may resuit
that have a significantly different number of elements, thereby degrading)
such situations an algorithm called sample sort will yield significantly better
The idea behind sample sort is simple. A sample of size s is selected from
sequence, and the range of the buckets is determined by sorting the sample
m — 1 elements from the result. These elements (called splitters) divide the : 8 We now analyze the complexity of sample sort on a message-passing com-
equal-sized buckets. After defining the buckets, the algorithm proceeds in thes oeesses and O(p) bisection bandwidth,
bucket sort. The performance of sample sort depends on the sample size § 8 isort of n/ p elements requires time @ ((r/p) log(n/ p)), and the selection of
is selected from the n-element sequence.] elements requires time ©(p). Sending p— 1 elements to process Py is similar
Consider a splitter selection scheme that guarantees that the number &.‘.w...., dtion (Section 4.4); the time required is @(p?). The time to internally sort
up in each bucket is roughly the same for all buckets. Let n be the nume Ample elements at Py is @ (p? log p), and the time to select p — 1 splitters is
to be sorted and m be the number of buckets. The scheme works as follo¥ = | splitters are sent to all the other processes by using one-to-all broadcast
the n elements into m blocks of size n/m each, and sorts each block by ! hich requires time ©(plog p). Each process can insert these p— 1 splitters
From each sorted block it chooses m — 1 evenly spaced elements. The 7 ed block of size n/p by performing p — | binary searches. Each process
selected from all the blocks represent the sample used to determine 8its block into p sub-blocks, one for each bucket. The time required for

717] 9 [20] 8 |16] Sample combining

Global sphitter
selection

Py P

i - PP EE
s (617 [8[9 [10[1n]12[13[1a]1s e[17]18] 19 20[21[22]23]24] Firial et

L 1

4

parallelize the splitter selection scheme? Let p be the number of processes.
sort, set m = p. thus, at the end of the algorithm, each process contains
ents belonging to a single bucket. Each process is assigned a block of n/p
ch it sorts sequentially. It then chooses p — | evenly spaced elements from
ock. Each process sends its p — 1 sample elements to one process — say Py.
sequentially sorts the p(p — 1) sample elements and selects the p — |
Ly, process P broadcasts the p — 1 splitters to all the other processes. Now
\ proceeds in a manner identical to that of bucket sort. This algorithm is

n Figure 9.20.

il Sustenahonnnt - Thitiiadih ! adbtat - A o8 e e i R R s S
processes (that is, buckets). The communication time for this step is difficult to ¢ ;
precisely, as it depends on the size of the sub-blocks to be communicated. These syhd
can vary arbitrarily between O and n/p. Thus, the upper bound on the communicatjey
is O(n) + O(plog p).

If we assume that the elements stored in each process are uniformly distrib

procedure ENUM_SORT (n)
begin
for each process Py ; do
Cljl =05
for each process P; ; do _
if (A[i] < A[j]) or (A[i]l = A[jland i < j) then

&

each sub-block has roughly ®(n/p?) elements. In this case, the parallel run time is. Cljl==1
i else
local sort sort sample block partition) Cljl:=0;
i . il 9.
. " m., - communication = 10. for each process P, ; do

12. end ENUM_SORT

In this case, the isoefficiency function is @Qw log p). If bitonic sort is used to
p(p — 1) sample elements, then the time for sorting the sample would be G (p log

2 orithm 9.7 Enumeration sort on a CRCW PRAM with additive-write conflict resolution.
the isoefficiency will be reduced to ©@(p-log p) (Problem 9.30).

ment A[i] is smaller than A]j] and writes 0 otherwise. Because of the additive-
flict resolution scheme, the effect of these instructions is to count the number of
smaller than A[j] and thus compute its rank. The run time of this algorithm is
Modifications of this algorithm for various parallel architectures are discussed in
_

n9.26.

9.6 Other Sorting Algorithms

As mentioned in the introduction to this chapter, there are many sorting algorithm
we cannot explore them all in this chapter. However, in this section we briefly pn
two additional sorting algorithms that are important both practically and theoretica
discussion of these schemes will be brief. Refer to the bibliographic remarks (Secti ,
for references on these and other algorithms. Radix Sort
dix sort algorithm relies on the binary representation of the elements to be sorted.
| ..ﬂo the number of bits in the binary representation of an element. The radix sort
ith examines the elements to be sorted r bits at a time, where r < b. Radix sort
b/r iterations. During iteration i, it sorts the elements according to their i least
nt block of r bits. For radix sort to work properly, each of the b/r sorts must be
e, A sorting algorithm is stable if its output preserves the order of input elements with
ne value. Radix sort is stable if it preserves the input order of any two r-bit blocks
these blocks are equal. The most common implementation of the intermediate b/r
)" sorts uses enumeration sort (Section 9.6.1) because the range of possible values
22" — 1] is small. For such cases, enumeration sort significantly outperforms any
arison-based sorting algorithm.

ider a parallel formulation of radix sort for n elements on a message-passing com-
e with n processes. The parallel radix sort algorithm is shown in Algorithm 9.8. The
op of the algorithm (lines 3-17) performs the b/r enumeration sorts of the r-bit
The enumeration sort is performed by using the prefix_sum() and parallel_sum()
S. These functions are similar to those described in Sections 4.1 and 4.3. During
eration of the inner loop (lines 6-15), radix sort determines the position of the el-
18 with an 7-bit value of j. It does this by summing all the elements with the same
#and then assigning them to processes. The variable rank holds the position of each

9.6.1 Enumeration Sort

All the sorting algorithms presented so far are based on compare-exchange operatio
section considers an algorithm based on enumeration sort, which does not use co
exchange. The basic idea behind enumeration sort is to determine the rank of eachel
The rank of an element ; is the number of elements smaller than a; in the seques
to be sorted. The rank of @; can be used to place it in its correct position in the s
sequence. Several parallel algorithms are based on enumeration sort. Here we
one such algorithm that is suited to the CRCW PRAM model. This formulation §
elements by using n? processes in time @ (1). .
Assume that concurrent writes to the same memory location of the CRCW PRAME
in the sum of all the values written being stored at that location (Section 2.4.1). €
the n® processes as being arranged in a two-dimensional grid. The algorithm ¢
of two steps. During the first step, each column j of processes computes the
of elements smaller than a;. During the second step, each process Py ; of the f
places a; in its proper position as determined by its rank. The algorithm is
Algorithm 9.7. Tt uses an auxiliary array C[1...n] to store the rank of each eleme
crucial steps of this algorithm are lines 7 and 9. There, each process P; ;, writes 14

