
La struttura concettuale dei sistemi di comunicazione

04/03/2002

Informazione e mondo fisico

Strumenti di supporto alla gestione dell'informazione

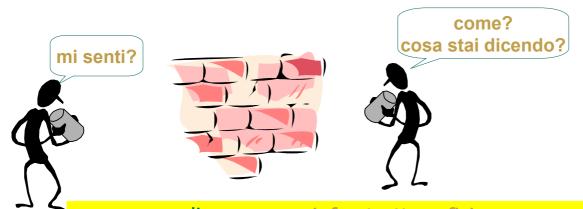
Alcuni dati di fatto:

- uno scambio di informazione diretto ("da mente a mente") non è possibile
- e quindi: scambiamo informazione impiegando i nostri vari apparati fisici come strumenti di supporto
- e quindi: lo scambio "più multimediale" (e quindi più ricco informazionalmente) che si può realizzare è quello non mediato tecnologicamente
- ciò nonostante: per molte, spesso ottime, ragioni negli scambi informativi ci facciamo supportare da strumenti ("media") di vario genere

04/03/2002

Il ruolo degli strumenti di comunicazione

Gestire informazione


... cioè sulle reti di sistemi per la gestione dell'informazione ...

04/03/2002

Per comunicare ...

/1

... è necessario che esista un canale fisico adatto (requisito per la connessione fisica)

occorre predisporre una infrastruttura fisica: degli strumenti per trasferire i segnali tra i comunicanti

Per comunicare ...

/1

... è necessario che esista un canale fisico adatto (requisito per la connessione fisica)

Per comunicare ...

12

... è necessario avere competenze linguistiche comuni (requisito per la trasmissione)

delle regole per interpretare i segnali "a basso livello" 04/03/2002

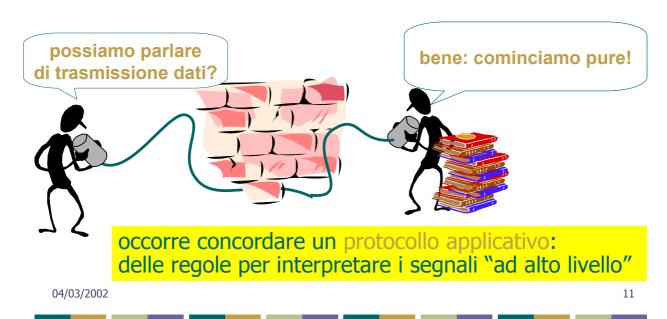
Per comunicare ...

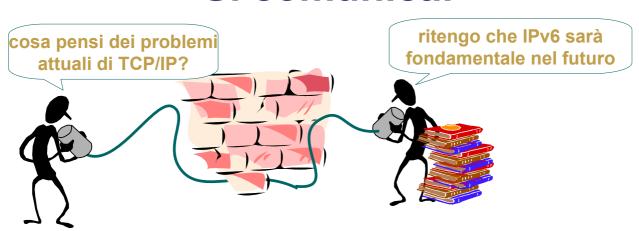
12

... è necessario avere competenze linguistiche comuni (requisito per la trasmissione)

Per comunicare ...

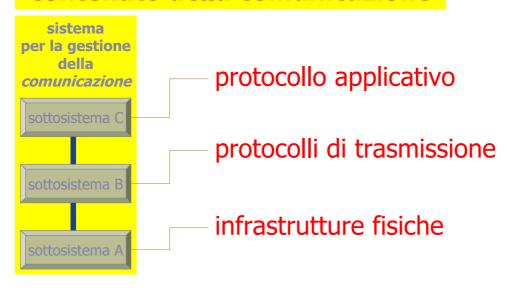
/3


... è necessario avere competenze di contenuto comuni (requisito per la comunicazione)


Per comunicare ...

/3

... è necessario avere competenze di contenuto comuni (requisito per la comunicazione)


Si comunica!

Se le soluzioni adottate per soddisfare le tre precondizioni sono efficienti, la comunicazione si realizza *come se* esse non fossero più necessarie ("trasparenza" dei protocolli e dell'infrastruttura)

L'architettura del sistema

contenuto della comunicazione

04/03/2002

La procedura basilare

/1

Tizio vuole inviare una comunicazione a Caio; perciò:

- formula il contenuto mediante il protocollo applicativo di C;
- esprime il risultato mediante i protocolli di trasmissione di B;
- trasforma il risultato in un segnale mediante le infrastrutture di A,
- che gestiscono il trasferimento del segnale verso Caio

La procedura basilare

/2

Caio vuole ricevere la comunicazione di Tizio; perciò:

- riceve il segnale trasferito da Caio e lo rende disponibile mediante le infrastrutture di A
- trasforma il segnale in un'espressione mediante i protocolli di trasmissione di B;
- interpreta il contenuto dell'espressione mediante il protocollo applicativo di C

sistema
per la gestione
della
ricezione
di Caio


Caio

sottosistema C

sottosistema B

04/03/2002

In sintesi: il networking

La logica dell'architettura

- Il problema della comunicazione viene scomposto in sottoproblemi, organizzati "per livelli"
- Per ogni sottoproblema viene identificato un sottosistema dotato delle competenze necessarie alla soluzione di quel sottoproblema
- Ogni sottosistema opera trasformando input in output:

 Ogni sottosistema opera senza disporre di una visione complessiva dell'intero problema

04/03/2002 17

Le ragioni dell'architettura

La segmentazione delle competenze necessarie alla comunicazione consente di:

- specializzare i singoli sottosistemi
- rendere facilmente intercambiabili sottosistemi dello stesso livello, senza con ciò dover modificare gli altri sottosistemi

Dal networking all'inter-networking

- Tizio e Caio vogliono comunicare, e concordano perciò di usare uno stesso sottosistema C ...
- ... ma i sottosistemi A e/o B di cui dispongono sono diversi
- COSA SI PUO' FARE PER EVITARE L'INCOMUNICABILITA' ?

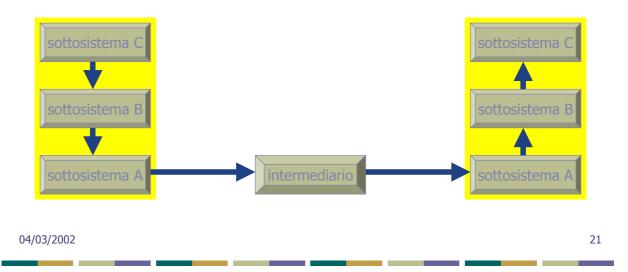
04/03/2002

Incomunicabilità storiche

Livello A: occorre predisporre un'infrastruttura telematica

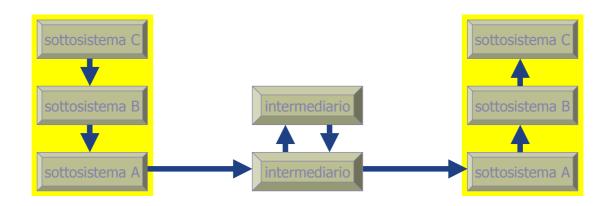
Livello B: occorre stabilire dei protocolli di trasmissione

Livello C: occorre stabilire un protocollo applicativo


Storicamente le diverse società di informatica e telecomunicazioni hanno offerto soluzioni differenti, e non sempre compatibili l'una con l'altra, per i sottosistemi A, B e C

se io "ho la rete X" e tu "hai la rete Y", allora i miei calcolatori non sono in grado di comunicare con i tuoi ...

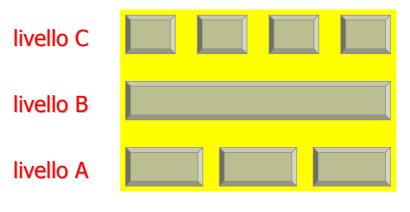
... a meno di non introdurre dei "dispositivi intermediari" ad hoc


Intermediari "di livello A"

Se il problema riguarda solo la connessione fisica ...

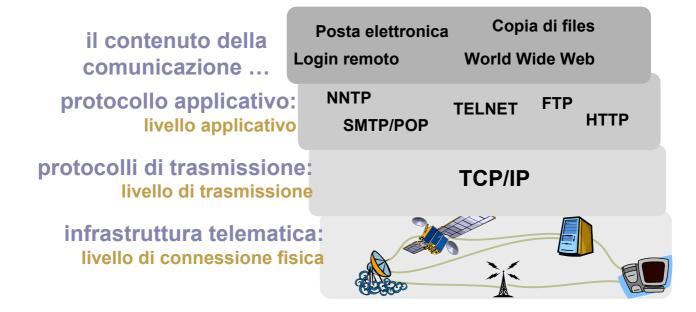
Intermediari "di livello B"

Se il problema riguarda anche la trasmissione ...


A partire dall'esperienza delle comunicazioni sociali ...

Nelle situazioni comunicazionali più tipiche:

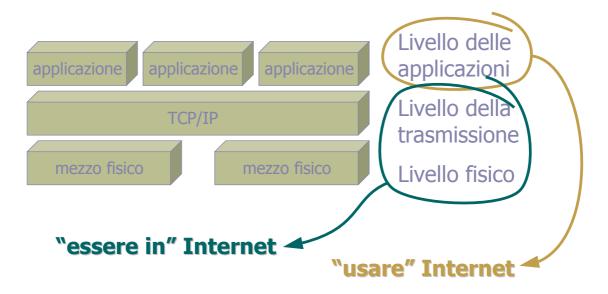
[A] la connessione fisica è assicurata da infrastrutture diverse ...


[C] ... gli argomenti oggetto di comunicazione sono molteplici ...

[B] ... ma la lingua usata per comunicare è la stessa

04/03/2002

La struttura di Internet

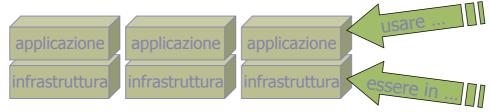

Cos'è Internet

Dunque Internet, che include soluzioni molto varie per il livello di connessione fisica e per quello applicativo, è caratterizzata da una sostanziale omogeneità nel livello della trasmissione:

Internet è la rete dei calcolatori che "parlano TCP/IP"

04/03/2002 25

"Essere in" e "usare"



... prima si entra nella rete; quindi la si usa ...

Il caso dei media tradizionali

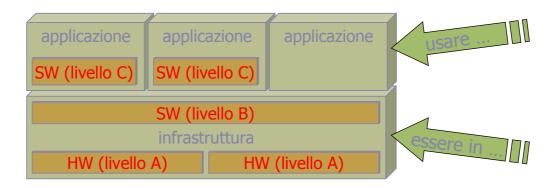
La distinzione tra "essere in" e "usare" è propria di ogni sistema a rete

Tradizionalmente la comunicazione si realizza creando un'infrastruttura *hardware* ad hoc e quindi "riempiendola di contenuti"

Le rigidità delle infrastrutture si ripercuotono sulle applicazioni: un'infrastruttura diversa per ogni applicazione

04/03/2002 27

Una caratterizzazione dei media


Un medium è caratterizzato informazionalmente non solo per *il tipo* dei contenuti che porta (testi, immagini, video, audio, ...), ma anche per le *strutture comunicazionali* che è in grado di gestire. Per esempio:

Medium	Tipo contenuti	Point2point	Broadcast	Sincrono	Asincrono
Sistema	Audio e video		√	√	(con video-
televisivo	(testo con televideo)		ř	, r	registratore)
Sistema	Audio (testo e	√		√	(con segreteria
telefonico	immagini con	•		ľ	telefonica)
	fax)				
Sistema	dipende dai	√			/
postale	"sottomedia"	•			'
	usati				
Editoria	Testo e		1		1
(quotidiani,)	immagini		▼		▼

Lo stretto legame tra infrastruttura e applicazione trasferisce la rigidità dell'infrastruttura all'applicazione

Virtualizzando l'infrastruttura

Nel caso dei "nuovi media":

Una stessa infrastruttura per applicazioni molteplici

04/03/2002

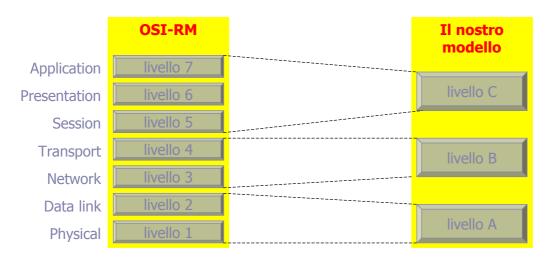
La multi-medialità dei nuovi media

Quali tipi di contenuti porta e quali strutture comunicazionali è in grado di gestire il medium Internet?

Medium	SottoMedium	Tipo contenuti	Point2point	Broadcast	Sincrono	Asincrono
Internet	World wide	Testo,		√		√
	web	immagini,		•		, ,
		audio, video,				
	Email	Testo,	√			1
		immagini,	•			
		audio, video,				
	Chat / video-	Testo,	√		/	
	conferenza	immagini,	*		, , , , , , , , , , , , , , , , , , ,	
		audio, video,				

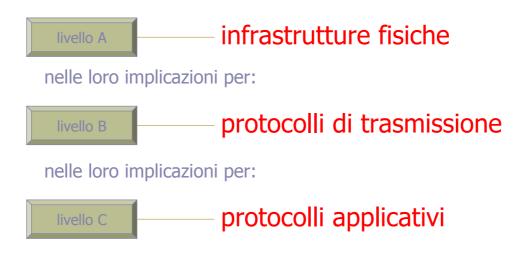
La virtualizzazione dell'infrastruttura conferisce flessibilità alle applicazioni utilizzabili

Sintesi

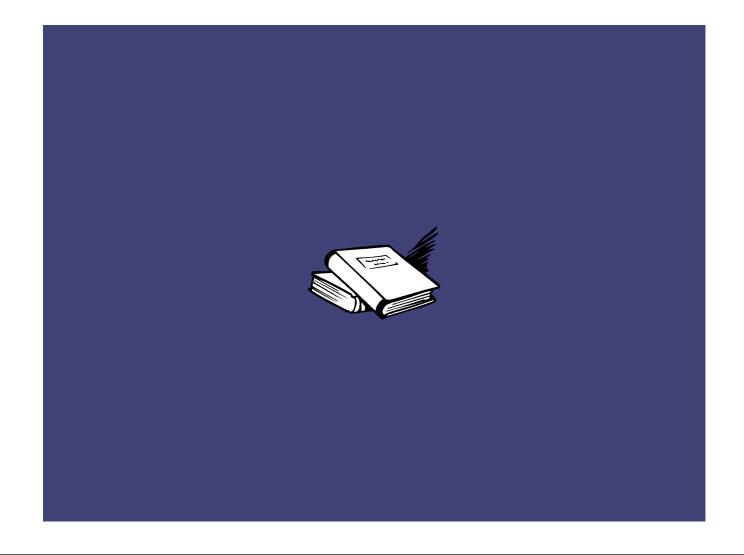

Le infrastrutture dotate di un livello software che virtualizza il livello hardware sono flessibili dal punto di vista delle applicazioni:

una stessa infrastruttura
per applicazioni molteplici,
distinte sia per tipi di contenuti portati
sia per strutture comunicazionali gestite

04/03/2002


Verso le questioni tecnologiche

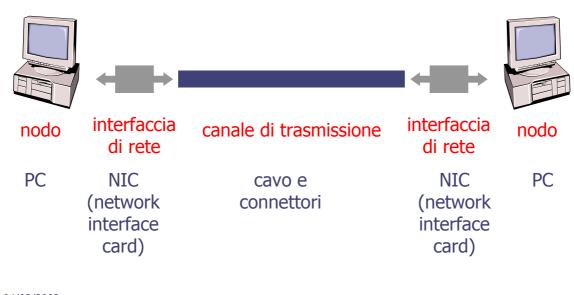
La struttura per livelli A, B e C è una versione concettuale e astratta dello schema adottato da ISO, *International Organization for Standardization*, per modellizzare i sistemi di (inter)networking, chiamato OSI-RM, *Open Systems Interconnection Reference Model*, organizzato in 7 livelli:


Come proseguiremo ...

Tratteremo successivamente:

04/03/2002

33



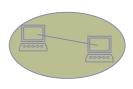
Sistemi di comunicazione: livello A infrastrutture fisiche

04/03/2002

Gli ingredienti di base

La più semplice rete di calcolatori:

Parametri quantitativi

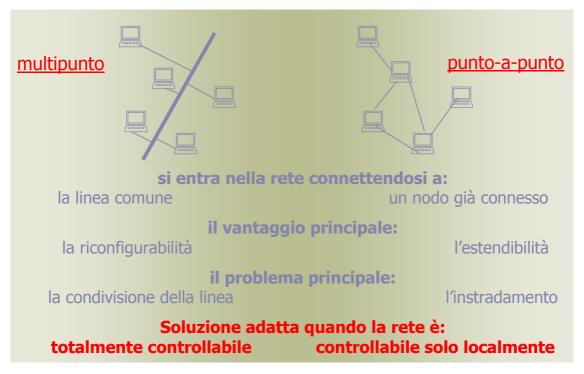

Un sistema di trasmissione (cavi, connettori, eventuali dispositivi intermedi, NIC) si caratterizza fondamentalmente per:

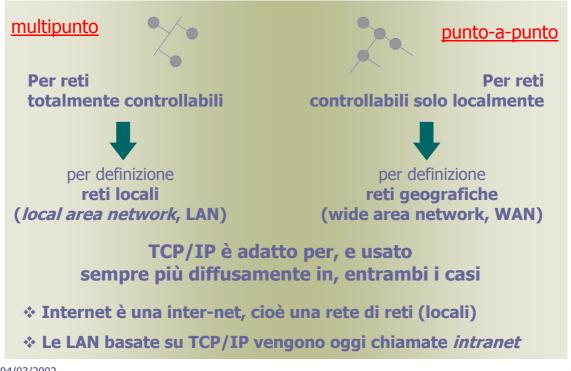
- la velocità di trasmissione che garantisce (la capacità di canale, misurata in bit al secondo, bps)
- la lunghezza massima consentita


04/03/2002 37

Il problema dell'accesso

In una rete si suppone che ogni nodo possa comunicare con ogni altro nodo ...



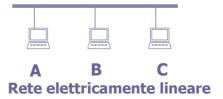

- ... e se i nodi diventano 100, 1000, 10000, ... ??? I canali dedicati diventano davvero troppi!
- La soluzione: introdurre un sistema di commutazione (switching), cioè di condivisione dei canali

Soluzioni per la commutazione

04/03/2002

Reti locali e reti geografiche

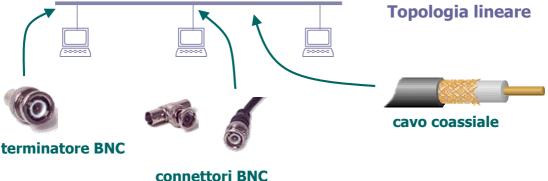
Reti locali, LAN



- Calcolatori, NIC, cavi e dispositivi propri
- Canali sempre disponibili, dotati di alta capacità di trasmissione e il cui costo di uso è nullo
- Ci si connette alla rete connettendosi alla linea comune attraverso un "punto di lavoro" messo a disposizione dall'amministratore della rete
- Lo standard ormai affermato è **Ethernet**, che specifica in particolare le condizioni di accesso concorrente allo stesso canale da parte di più stazioni

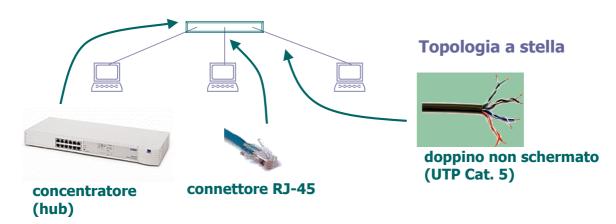
04/03/2002 41

La logica di Ethernet

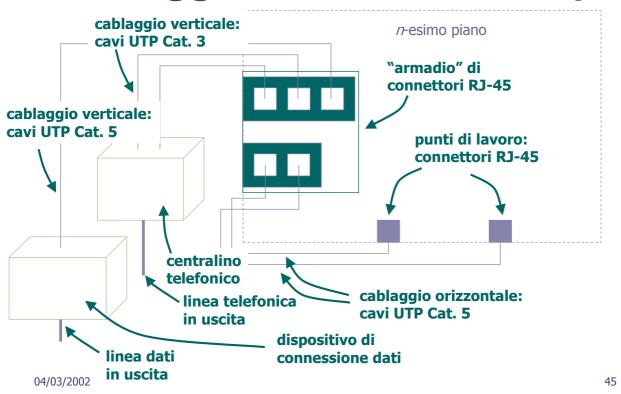

- Ogni nodo (in effetti il suo NIC) è identificato univocamente mediante un indirizzo (indirizzo MAC, Media Access Control; p.es. 00:10:A4:0C:6E:2A)
- Ogni nodo per comunicare con un altro nodo deve conoscerne l'indirizzo (è richiesta una fase previa di identificazione di presenza sulla rete)

A deve comunicare con C:

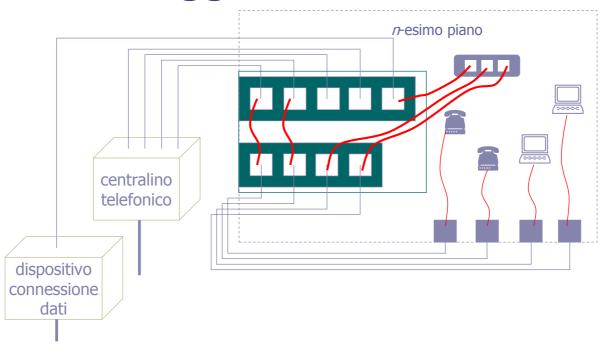
- predispone un segnale costituito dall'indirizzo del destinatario e dal contenuto della comunicazione
- prima di cominciare a trasmettere verifica che la linea non sia occupata da altri segnali, e nel caso attende; quindi invia il segnale sulla linea
- ogni nodo a cui giunge il segnale legge l'indirizzo presente e controlla se è lui il destinatario; in caso negativo reimmette il segnale sulla linea
- In questo modo può accadere che i segnali trasmessi da più nodi si trovino contemporaneamente sulla linea: si genera una collisione, di cui i nodi vengono informati
- Dopo un tempo di ritardo, ogni nodo prova a ritrasmettere il suo segnale
 un protocollo di accesso al canale chiamato CSMA/CD, Carrier Sense Multiple Access with Collision Detection


Ethernet, tradizionalmente

- Capacità di canale: 10 Mbps
- Scelta molto economica (nessun dispositivo intermedio necessario), ma critica dal punto di vista dell'affidabilità


04/03/2002 43

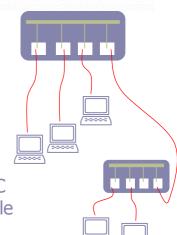
FastEthernet



- Capacità di canale: 100 Mbps
- Scelta attualmente tipica, anche perché la stessa infrastruttura può essere usata, in modo riconfigurabile, per dati e fonia

Cablaggio strutturato: setup

Cablaggio strutturato: uso



Un approfondimento: hub e switch

- Gli hub non modificano la struttura lineare della LAN ...
- ... con la conseguenza che i nodi connessi a un hub costituiscono un unico dominio di collisione

 Per segmentare la rete in più domini di collisione, e quindi ridurre statisticamente il numero delle collisioni sulla LAN e quindi migliorarne le prestazioni, al posto di hub si usano switch

 Uno switch è in grado di memorizzare gli indirizzi MAC dei nodi connessi a ogni sua porta e propaga il segnale solo alla porta del nodo destinatario

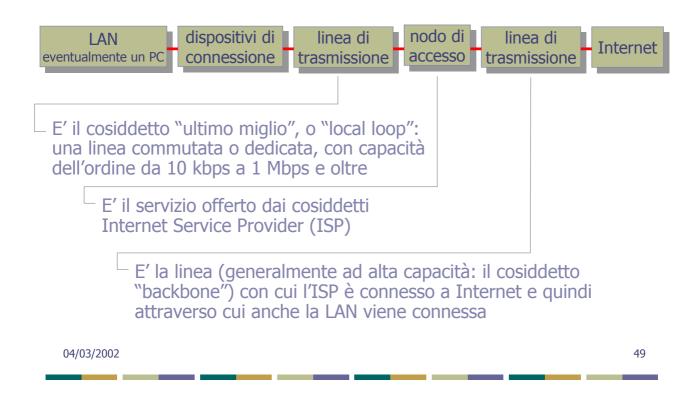
04/03/2002

Reti geografiche, WAN

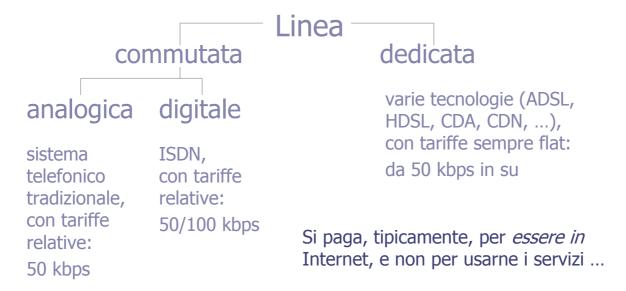
LAN: calcolatori, NIC, cavi e dispositivi propri

WAN: solo i propri apparati sono sotto controllo diretto

LAN: canali sempre disponibili, con alta capacità di trasmissione, a costo di uso nullo WAN: la disponibilità dei canali e la loro capacità di trasmissione dipende dalla tecnologia; il costo di uso può essere elevato


LAN: ci si connette alla linea comune

WAN: ci si connette alla rete connettendosi a un nodo già connesso e in grado di fornire connettività


LAN: lo standard ormai affermato è Ethernet

WAN: varie tecnologie sono utilizzabili (PSTN, ISDN, xDSL, CDN, ...)

Struttura del sistema di accesso

Tecnologie per il local loop

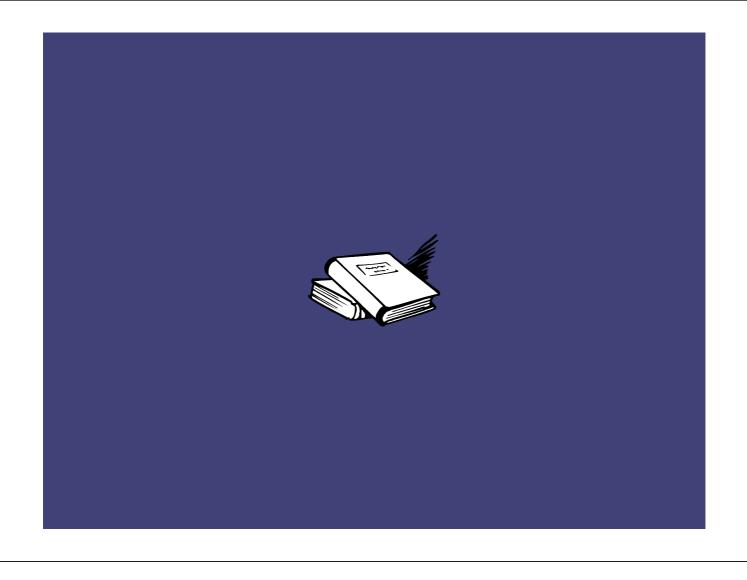
La propria LAN è *in* Internet solo quando il local loop è attivo: cioè sempre nel caso di linea dedicata, mentre nel caso di linea commutata ...

QoS: la qualità del servizio

La capacità effettiva del canale che connette due nodi in una WAN dipende dalle capacità dei tratti di linea tra i due nodi

... secondo la logica della catena, che è forte quanto il suo anello più debole

D'altra parte, non ogni tratto è sotto il nostro controllo: lo sono, anzi, solo il local loop e, indirettamente, il backbone dell'ISP


E' per questo che la qualità del servizio di connettività dipende da:

- le caratteristiche del local loop
- la qualità dell'ISP scelto, e in particolare:
 - la sua condizione di connettività
 - la capacità di canale che ci si riserva ("banda garantita") sul suo backbone

04/03/2002 51

Sviluppi (prossimi) futuri

- Connettività dedicata e con canali ad alta capacità per tutti:
 - fibre ottiche
 - satelliti
- Integrazione con i sistemi di connettività mobile:
 - telefonia
 - calcolatori palmari e simili

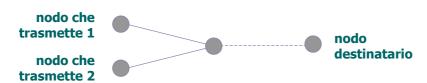
Sistemi di comunicazione: livello B protocolli di trasmissione

Dal livello A al livello B

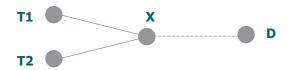
Una volta che le condizioni infrastrutturali per l'accesso alla rete sono soddisfatte, occorre stabilire "la lingua comune" della rete

"Dai segnali ai bit"

04/03/2002 55


Ancora il problema della commutazione

Una volta che i problemi "di livello A" sono stati risolti ...


... condizioni di accesso e uso:

- sistema telefonico: alternativamente accessibile o non, a capacità di canale costante
- rete di calcolatori: sempre accessibile, a capacità di canale variabile

Perché?

Schemi di commutazione

Prima soluzione: chi arriva per primo prende tutto

T1 a X: la linea verso D è accessibile? Se sì, assegnala a me e lasciamela fino a che non ho terminato la trasmissione; altrimenti: abortisci l'operazione

Per comunicare si crea temporaneamente una linea dedicata ("circuito"):

commutazione di circuito

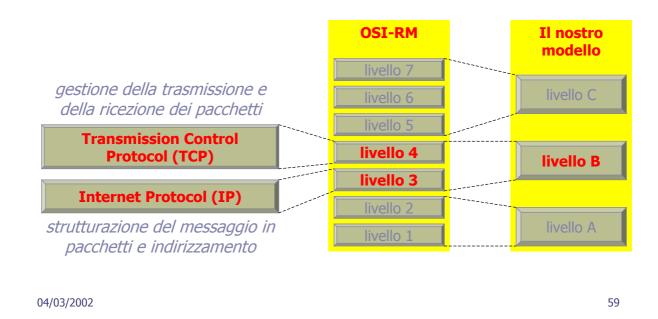
Seconda soluzione: le risorse sono sempre condivise tra tutti

T1 a X: per trasmettere a D, divido il messaggio in parti indipendenti e te le invio.
Ogni volta che la linea è disponibile, trasmetti a D una parte del mio messaggio
Per comunicare si segmenta il messaggio in parti indipendenti ("pacchetti"):

commutazione di pacchetto

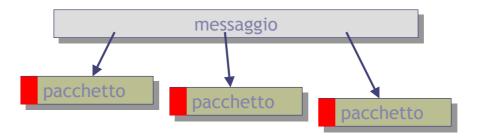
04/03/2002 57

Commutazione di pacchetto e TCP/IP


I calcolatori, che operano efficientemente in multitasking, comunicano tipicamente su reti a commutazione di pacchetto → I nodi destinatari risultano sempre disponibili a rispondere positivamente a richieste di attivazione di comunicazione

TCP/IP è un insieme di protocolli per la comunicazione basata sulla commutazione di pacchetto

I protocolli TCP/IP sono largamente indipendenti dalle specifiche infrastrutture "di livello A", tanto da essere ugualmente adottabili, e adottati, sia per LAN che per WAN


Uno sguardo a TCP/IP

La struttura (semplificata) di riferimento per il livello B:

IP: gestione dei pacchetti

IP gestisce ogni messaggio da trasmettere in forma frammentata, come un *insieme di pacchetti*

La struttura (semplificata) di un pacchetto:

IP: indirizzamento

Ogni nodo di una rete IP è identificato da un indirizzo univoco di 32 bit, usualmente scritto nella forma di 4 byte in notazione

Una "maschera di bit"
distingue nell'indirizzo IP
un indirizzo di sottorete

Internet Protocol (TCP/IP) Properties

212 . 239 . 33 . 115

255 . 255 . 255 . 0

e un indirizzo di nodo all'interno della sottorete

In questo caso 212.239.33 è l'indirizzo della sottorete (che dunque può contenere fino a 255 nodi) e 115 è l'indirizzo del nodo

04/03/2002 61

IP: gestione dell'indirizzamento

• Se il nodo destinatario appartiene alla stessa sottorete del nodo mittente (p.es. se il suo indirizzo IP è 212.239.33.10), si attiva l'Address Resolution Protocol (ARP), che converte l'indirizzo IP del destinatario nel suo indirizzo MAC, e quindi si inviano i pacchetti al nodo così identificato

In caso contrario, si inviano i pacchetti a un nodo pre-identificato

Internet Protocol (TCP/IE)

(detto "default gateway") dotato della capacità di routing, cioè di instradare correttamente i pacchetti verso il nodo destinatario

 Internet Protocol (TCP/IP) Properties

 IP address:
 212 . 239 . 33 . 115

 Subnet mask:
 255 . 255 . 255 . 0

 Default gateway:
 212 . 239 . 33 . 1

Ancora su IP

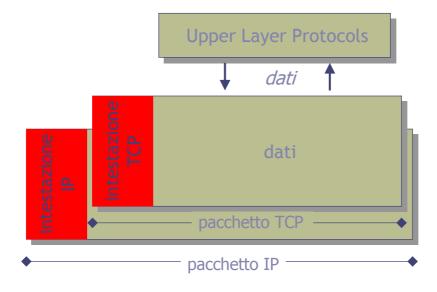
L'indirizzo IP di cui deve disporre ogni nodo di una rete IP

può essere assegnato a priori in modo statico, oppure dinamicamente mediante un nodo

Internet Protocol (TCP/IP) Properties

You can get IP settings assigned automatically if your network supports this capability. Otherwise, you need to ask your network administrator for the appropriate IP settings.

- Obtain an IP address automatically
- Use the following IP address:


abilitato al Dynamic Host Configuration Protocol (DHCP)

- Sono complessivamente disponibili 2³² indirizzi IP diversi: non pochi, ma in prospettiva ... (verso IPv6)
- IP è un protocollo assai efficiente, ma non offre garanzie sulla consegna dei pacchetti: un problema per molti tipi di applicazioni ... da risolvere con protocolli di livello 4

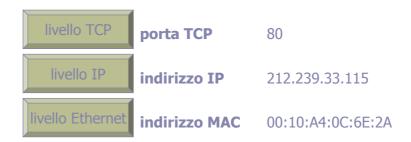
04/03/2002 63

Dal livello 3 al livello 4

Da IP a TCP, mediante incapsulamento dei dati

La logica di TCP

 TCP fornisce, "sopra a IP", il controllo degli errori e la sequenzializzazione nella trasmissione dei dati degli ULP


La struttura (semplificata) dell'intestazione TCP:

checksum numero di sequenza porta del mittente porta del destinatario

Due nodi comunicano al livello TCP mediante "porte", ognuna identificata da un numero a 16 bit, generalmente scritto in notazione decimale (p.es. 212.239.33.115:80 è la porta 80 del nodo con indirizzo IP 212.239.33.115)
Uno stesso nodo può mantenere comunicazioni diverse attive contemporaneamente, ognuna su una diversa porta

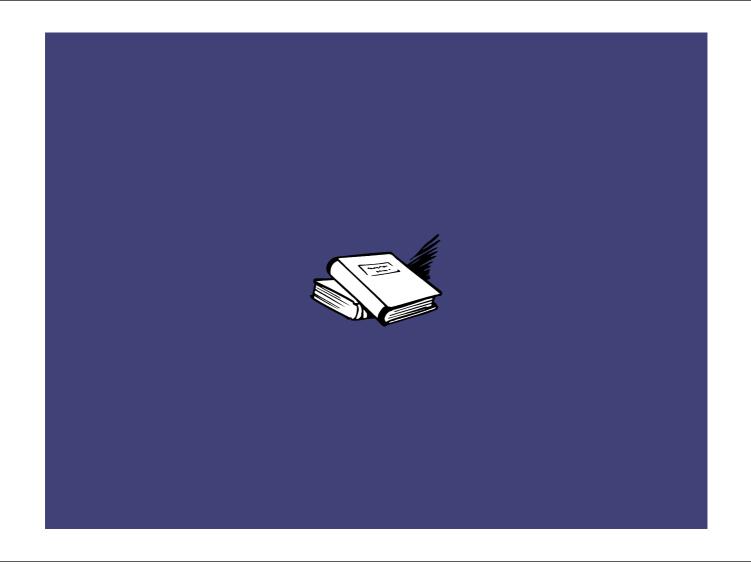
04/03/2002 65

I livelli di indirizzamento

In trasmissione:

nel pacchetto TCP: porta TCP del destinatario

incapsulato nel:


nel pacchetto IP: indirizzo IP del destinatario

risolto mediante ARP nel:

indirizzo MAC del destinatario

In ricezione:

de-incapsulamenti successivi, per ottenere l'indirizzo IP e quindi la porta TCP a cui la trasmissione è rivolta

