
DCM 2005 Preliminary Version

On Reversible Combinatory Logic

Alessandra Di Pierro 1

Dipartimento di Informatica, Universitá di Pisa, Italy

Chris Hankin and Herbert Wiklicky 1,1

Department of Computing, Imperial College London, United Kingdom

Abstract

The λ-calculus is destructive: its main computational mechanism – beta reduction –
destroys the redex and makes it thus impossible to replay the computational steps.
Recently, reversible computational models have been studied mainly in the context
of quantum computation, as (without measurements) quantum physics is inher-
ently reversible. However, reversibility also changes fundamentally the semantical
framework in which classical computation has to be investigated. We describe an
implementation of classical combinatory logic into a reversible calculus for which
we present an algebraic model based on a generalisation of the notion of group.

1 Introduction

It has been suggested, e.g. [11], that the standard model for computation
as embodied in Turing Machines answers the problem of what constitutes a
“computational procedure” in Hilbert’s 10th Problem by reference to mental
arithmetic as practised in previous times by European school children, accoun-
tants and waiters. This “waiter’s arithmetic” is non-reversible and destructive.
It is open to speculation whether a culture based on reversible computation
like an abacus would have developed a different basic computational model.
Quantum computation and the need for minimal energy loss make reversible
computation once again interesting, see e.g. [15]. This has been the moti-
vation for van Tonder [14] who presents a reversible applied lambda calculus
(with quantum constants); his operational semantics provided the inspiration
for the operational semantics of our reversible version rCL of Combinatory
Logic. On the other hand, the set of combinators that we consider here have

1 The authors are partly funded by the EPSRC project S77066A “Quantitative Analysis
of Computational Resources”.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Di Pierro, Hankin, Wiklicky

also been studied by Abramsky [1,2], although with a different motivation,
namely the links between reversible calculus and linear logic.

Our main motivation for investigating a reversible version of Combinatory
Logic is ultimately the development of a denotational semantics of (prob-
abilistic versions of) the λ-calculus reflecting the operational semantics we
introduced in [10]. This kind of semantics is based on linear operator alge-
bras and aims to support a compositional approach to (probabilistic) program
analysis. The close relationship between reversibility and certain important
classes of linear operators – in particular unitary and normal operators – was
the starting point of a deeper investigation of the structure of reversible com-
putation.

Reversibility naturally introduces a notion of symmetry into computation
and is therefore strongly related to the theory of groups and their action, which
are considered by most mathematicians as being virtually synonymous of sym-
metry [16]. Starting from the work on invertible lambda terms we could then
use the group of permutations for the classical λ-calculus as our mathematical
base for investigating compositionality issues in the static analysis of com-
plex systems. However, the notion of automorphism associated to group is in
some sense too “trivial” to characterise the symmetry involved in a reversible
computation; it turns out that the structure of these objects can be better
characterised algebraically by using groupoids and not just groups. In fact,
the extension from groups to groupoids was formally introduced to describe
reversible processes which may traverse a number of states. These cannot be
easily captured by using group theory as this only allows us to characterise
processes which start from one point and (possibly after a number of steps)
come back to the same point. On the contrary, in groupoid theory processes
can have different start and end points but they can be composed if and only
if the starting point of one process is the end point of the previous one. In-
tuitively, a groupoid can be thought of as a group with many identities [6].
It is interesting to note that according to Connes, quantum mechanics was
discovered by considering the groupoid of quantum transitions rather than
the group of symmetry [7].

2 The Groupoid Structure of Reversible Computations

Our approach to reversible computation is based on a particular algebraic
model of computation which naturally reflects the operational meaning of
term reduction and its reverse process. This model is based on the notion of a
groupoid. A groupoid, also known as a virtual group, is an algebraic structure
introduced by Brandt [5] (for further details see e.g. [13,16,12,6]).

Definition 2.1 A groupoid with base B is a set G with mappings α and β
from G onto B, a partially defined binary operation (g, h) 7→ g · h = gh, and
an inverse map g 7→ g−1 from G to G satisfying the following conditions:

2

Di Pierro, Hankin, Wiklicky

(i) gh is defined whenever β(g) = α(h), and in this case α(gh) = α(g) and
β(gh) = β(h).

(ii) if gh and hk are defined then so are (gh)k and g(hk) and they are equal
(associativity).

(iii) For each g ∈ G, there are left- and right-identity elements λg and %g

satisfying λgg = g = g%g.

(iv) Each g ∈ G has an inverse g−1 satisfying g−1g = %g and gg−1 = λg.

An important property of groupoids is that α(g) and λg (β(g) and ρ(g))
determine one another, that is there is a bijection between the base B and the
set of all the identity elements of G. This implies that identities are essentially
unique, or in other words there is only one object which is “composable” on
the left (right) with a given object g.

Consider a set of ‘computational processes’ C = {Ci}i, such as for example
those specified via some programs in a formal programming language. Among
the elements in C we would usually expect to find a ‘neutral’ or ‘identity com-
putation’, that is intuitively a computational process which does not change
any input state, such as for example a skip statement in a while language.
We would also usually be able to define a way to compose two processes se-
quentially, in the sense that we can feed the result of one computation C1 into
another computation C2 by obtaining a new one usually denoted by C1; C2 or
C2◦C1. Moreover, In order for the computation be reversible we need a notion
of symmetry. These general ideas which essentially identify reversible compu-
tation with some kind of (symbolic) dynamical process establish a groupoid
structure on C. In order to see this more precisely, consider a calculus with a
notion of “reduction” i.e. a transition relation // between terms T, . . . ∈ T ,
and its transitive and reflexive closure // // . Define a computational groupoid
G = G(T , // //) as follows:

• G ⊆ T × T with (T, T ′) ∈ G iff T // // T ′.

• B = T
• α((T, T ′)) = T and β((T, T ′)) = T ′

• (T, T ′) · (T ′, T ′′) = (T, T ′′)

• λ(T,T ′) = (T, T) and %(T,T ′) = (T ′, T ′)

• (T, T ′)−1 = (T ′, T).

Intuitively, we can reverse a computation for a term T ∈ T if we keep infor-
mation about its ‘history’, i.e. information about the transition steps that have
been performed during the computation. A highly expensive way to make the
transition relation // reversible is to use as history all strings H ∈ H = T ∗

of terms in T and replace each transition T1
// T2, by 〈T1 | H〉 // // 〈T2 | HT1〉

for all H ∈ H. In this way we record the complete history of the previous
terms and it is easy to see that computation is now reversible, i.e. we can
reverse a derivation path until we reach the initial term.

3

Di Pierro, Hankin, Wiklicky

In general, we might be interested in a more “efficient” way of recording
the derivation history of a term. However, it depends on the nature and
structure of the original calculus what information the history has to record;
for example, in Van Tonder’s λ-calculus [14] the history keeps track only of
the substitutions which take place in each β-reduction step.

3 Combinatory Logic

Combinatory Logic (CL) is a formalism which (similarly to the λ-calculus) was
introduced to describe functions and certain primitive ways to combine them
to form other functions. With respect to the λ-calculus it has the advantage
that is variable free; this allows one to avoid all the technical complications
concerned with substitutions and congruence. It has on the other hand the
disadvantage of being less intuitive than the λ-notation. For the purpose of
this work we have opted for this more involved formalism because it allows for
a more agile treatment and definition of our notion of reversible computation.

Definition 3.1 [Combinatory Logic Terms] The set of combinatory logic terms,
CL-terms, over a finite or infinite set of constants containing K and S and an
infinite set of variables is defined inductively as follows:

(i) all variables and constants are CL-terms,

(ii) if X and Y are CL-terms, then (XY) is a CL term.

The two combinators S and K form a common basis for combinatory logic.
However, other sets of basic combinators can be defined. We will use the base
consisting of four basic operations encoded in the combinators B (implement-
ing bracketing), C (elementary permutations), W (duplication), and K (for
deletion) which are defined as follows (cf [8, p379]):

K ≡ λxy.x, W ≡ λxy.xyy, C ≡ λxyz.xzy, B ≡ λxyz.x(yz).

Importantly, we can use B, W and C to implement the common combinator
S (cf [8, p155]):

S ≡ B(B(BW)C)(BB).

In order to generate equalities provable in this calculus we use a notion of
reduction similar to the weak reduction for the SK-calculus [3]. This is defined
as the smallest extension of the relation on CL-terms induced by the basic
operators which is compatible with application.

Definition 3.2 The reduction relation // on CL-terms is defined by the
following rules:

(i) KXY // X,

(ii) WXY // XY Y ,

(iii) CXY Z // XZY ,

(iv) BXY Z // X(Y Z),

(v) X // X ′ implies XY // X ′Y ,

(vi) X // X ′ implies Y X // Y X ′,

We will denote by // // the reflexive transitive closure of // .

4

Di Pierro, Hankin, Wiklicky

The relation between the λ-calculus and CL is a standard result (cf. [3,
p156]). With reference to the standard base {S, K} there is a canonical encod-
ing ()CL of λ terms in CL terms. It is a well known result that in presence
of a rule for extensionality the two theories λ-calculus and CL(which are in
general not equivalent) become equivalent (cf.[3, Def 7.3.14]).

3.1 Invertible Terms

The assumption of extensionality is also essential in the investigation of in-
vertibility, as shown in [9,4] in the context of λ-calculus.

Within the theory CL+ext that is CL extended with the rule (cf [3,
Def 7.1.10]):

Px = P ′x with x 6∈ FV (PP ′) implies P = P ′,

we can characterise the invertible combinatory logic terms. We first observe
that a semi-group structure on the extended theory CL+ext is given by
defining a composition of terms by means of the B combinator as

X · Y = BXY

as for all Z we get (X ·Y)Z = BXY Z = X(Y Z). This operation is associative
and can be seen as implementing ‘sequential’ or ‘functional composition’. In
the λ-calculus it is defined by

M ·N = λz.M(Nz)

for any two λ-terms M, N .

Moreover, we can take the I combinator as the identity; in the λ-calculus
this is given, for example, by the term λx.x.

Naturally, the question arises which terms of a calculus like CL+ext form
a group, i.e. for which terms X we have an element X−1 (the inverse) such
that

X ·X−1 = X−1 ·X = I.

The classically invertible CL terms are all those terms X for which there is
a Y such that BXY = BY X = I holds (cf also [8, Sect 5.D.5 and Def 5.D.1]).
A very simple example of an invertible term is the identity combinator I which
is its own inverse. In fact, we have that I · I = BII = I. However, in calculi
without extensionality this might be about the only example of an invertible
term. According to [3, Section 21.3] the invertible terms in the λ-calculus
(without extensionality) form the trivial group {I}. Extensionality is therefore
needed to obtain some non-trivial invertible elements. It allows us to show
for example that C = C−1, i.e. C is its own inverse. This is intuitively clear
as the combinator C is essentially representing a transposition of its 2nd and
3rd argument and permutations are reversible. Dezani [9] and Bergstra and
Klop [4] have studied the problem of how to describe the invertible elements in
different calculi and theories. This also resulted in a description of the group
of all invertible elements in the λη-calculus (cf. [3, Ch 21]).

5

Di Pierro, Hankin, Wiklicky

Contrary to the classical approach we will define a calculus which is re-
versible in the sense that all reductions in the calculus are invertible. The
new reversible calculus will be an extension of the CL+ext theory, so that
all classical CL+ext reductions will still be reductions in the new calculus.

4 Reversible Combinatory Logic

Providing a mechanism to record the computational history of a term allows
us to define a reversible version of CL, which we will call rCL.

Formally, we define a reversible combinatory logic term, or rCL-term, as
a pair 〈M | H〉, where M is a classical CL-term, which we refer to as the
proper term, and H is a list of elements S which record the reduction steps
S (forward execution) and their expansion steps S (backward execution). We
refer to H as the history term and define its syntax by

H ::= ε | S : H | S : H

S ::= TKm
n | Wm

n | Bm
n | Cm

n

with T a classical CL-term and n,m ∈ N. We denote by H be the set of all
history terms. The meaning of the two numbers n and m is to record the exact
point in the term in which the combinator, i.e. its corresponding reduction
rule, is applied, and the length of prefix of the reduced term, respectively.
This information is important to guarantee a unique replay of all reduction
steps. We will often omit ε and use blank to represent the empty history. We
will denote by S + l with l ∈ N a history step where the position reference is
increased by l, e.g. TKm

n + l = TKm
n+l and by H + l a position shift applied to

a whole history, i.e. H + l = S1 + l : S2 + l : . . . : Sk + l.

Formally, we define the function len on classical CL-terms by:

len(X) =

 1 if X is a constant or variable

n + m if X = (Y Z) with len(Y) = n and len(Z) = m.

The reversible (forward) reduction relation on rCL is defined by:

(i) 〈KXY | 〉 // // 〈X | Y K
len(X)
0 〉,

(ii) 〈WXY | 〉 // // 〈XY Y |Wlen(X)
0 〉,

(iii) 〈CXY Z | 〉 // // 〈XZY | Clen(X)
0 〉,

(iv) 〈BXY Z | 〉 // // 〈X(Y Z) | Blen(X)
0 〉,

The reversible (backward) reduction relation on rCL is defined by:

(i) 〈X | 〉 // // 〈KXY | Y K
len(X)

0 〉,

(ii) 〈XY Y | 〉 // // 〈WXY |Wlen(X)

0 〉,

(iii) 〈XZY |〉 // // 〈CXY Z | C
len(X)

0 〉,

(iv) 〈X(Y Z)|〉 // // 〈BXY Z| Blen(X)

0 〉,
Additionally the assume the following structural rules:

(i) 〈X | 〉 // // 〈X ′ | H ′〉 implies 〈XY | 〉 // // 〈X ′Y | H ′〉,
(ii) 〈X | 〉 // // 〈X ′ | H ′〉 implies 〈Y X | 〉 // // 〈Y X ′ | H ′ + len(Y)〉,
(iii) 〈X | 〉 // // 〈X ′ | H ′〉 implies 〈X | H〉 // // 〈X ′ | H : H ′〉.
(iv) 〈X | H : H〉 // // 〈X | 〉 and 〈X | H : H〉 // // 〈X | 〉.

6

Di Pierro, Hankin, Wiklicky

The last two rules allows us to go back to the starting point by reversing
the history. For example:

〈W | 〉 // // 〈KWB | BK
1

0〉 // // 〈W | BK
1

0 : BK1
0〉 // // 〈W | 〉, and

〈KWB | 〉 // // 〈W | BK1
0〉 // // 〈KWB | BK1

0 : BK
1

0〉 // // 〈KWB | 〉

This also shows that the histories BK
1

0 and BK1
0 are (right and left) inverses of

each other (cf. Section 4.1). We denote by // // // the reflexive and transitive
closure of // // .

Example 4.1 Without the position references the following two terms reduce
to the same term:

〈K(CW)C | 〉 // // 〈CW | CK〉 and 〈KCCW | 〉 // // 〈CW | CK〉
It is therefore impossible to tell where 〈CW | CK〉 came from. However with
position information we have

〈K(CW)C | 〉 // // 〈CW | CK2
0〉 and 〈KCCW | 〉 // // 〈CW | CK1

0〉

The position information also allows us to encode different reduction strate-
gies (n = 0 indicates left-most reduction) as in the following example.

Example 4.2 Let us consider the classical term W(BXY Z)K. It has two
possible reduction paths which are reflected in the history terms:

〈W(BXY Z)K | 〉 // // 〈(BXY Z)KK | W4
0〉 // // 〈(X(Y Z))KK | W4

0 : B1
0〉 and

〈W(BXY Z)K | 〉 // // 〈(W(X(Y Z))K | B1
1〉 // // 〈(X(Y Z))KK | B1

1 : W3
0〉

Classical combinatory logic can be embedded in rCL by representing any
CL-term M with a rCL-term T of the form 〈M | ε〉. We can show that
the weak reduction relation for CL-terms can be simulated by the reversible
reduction relation on rCL. This is implied by the following more general
result.

Proposition 4.3 For every M ∈ CL we have:

M // // N or N // // M iff ∀H ∈ H ∃H ′ ∈ H : 〈M | H〉 // // // 〈N | H ′〉.

4.1 The History Group H

For a history H = S1 : S2 : . . . : Sn−1 : Sn ∈ H, we define its formal inverse

H = S1 : S2 : . . . : Sn−1 : Sn = Sn : Sn−1 : . . . : S2 : S1

with the following properties: (i) H = H and (ii) H : H = ε.

It is easy to see that by construction the set of histories H forms a group
with with respect to the composition operation “:”.

The inverse of a history and the inverse of a classical CL term, if it exists,
are closely related. The inverse history can, to a certain degree, simulate the
effects of the inverse term. In order to establish this relation, we first show how
the group structure of the history terms interacts with the reversible reduction
rules introduced before.

7

Di Pierro, Hankin, Wiklicky

Lemma 4.4 Let X be a classical CL term, and let H ∈ H. Then

〈X | 〉 // // // 〈X ′ | H〉 iff 〈X ′ | 〉 // // // 〈X | H〉.

Proof. As H : H ≡ H : H = ε, we have

〈X | H〉 // // // 〈X ′ | H : H〉 ≡ 〈X ′ | 〉
and thus by the reversible backward reduction rules

〈X ′ | 〉 // // // 〈X | H〉.
2

We can now show that for classical invertible terms M, histories can be
used to simulate a reduction for the inverse M−1 given a reduction for M .

Proposition 4.5 Let M be an invertible term in CL. Given a history H ∈ H
and two CL terms N1 and N2 such that

〈MN1 | 〉 // // // 〈N2 | H〉.
Then there exist H ′, H ′′ ∈ H such that

〈M−1N2 | H ′′〉 // // // 〈N1 | H ′〉.

Proof. By Lemma 4.4 and the hypothesis we have that 〈N2 | 〉 // // // 〈MN1 |H〉.
Using the history H and again Lemma 4.4, we get

〈M−1N2 | H + len(M−1)〉 // // // 〈M−1MN1 | 〉.
Therefore

〈M−1N2 | H + len(M−1 + 1 : B
len(M−1

0 〉 // // 〈BM−1N2 | H + len(M−1 + 1〉
// // // 〈BM−1MN1 | 〉

def
= 〈(M−1 ·M)N1 | 〉 // // // 〈N1 | H ′〉.

2

4.2 The Groupoid of Reversible Computations

Given a group G and a set X, a group action of G on X is defined as a
homomorphism π of G into the automorphism group of X, i.e. π(g) ∈ Aut(X)
such that π(e) = id, and π(gh)(x) = π(g)(π(h)(x)). Given a group action π
of G on X we can define a groupoid G = G(X, G, π) as follows:

• G ⊆ X ×G×X with (x, g, y) ∈ G iff π(g)(x) = y.

• B = X

• α((x, g, y)) = x and β((x, g, y)) = y

• (x, g, y) · (y, h, z) = (x, hg, z)

• λ(x,g,y) = (x, e, x) and %(x,g,y) = (y, e, y)

• (x, g, y)−1 = (y, g−1, x).

We show that the set of reversible computations is the groupoid defined
by the action of the history group H on the set of rCL terms. Intuitively, this

8

Di Pierro, Hankin, Wiklicky

Groupoids

Group Actions

Equivalence Relations

Groups

Fig. 1. Groups, Group Actions and Equivalence Relations

means that each history term determines a permutation on rCL corresponding
to a reversible computation, and vice versa.

Consider the groupoid G defined by the action π of H on rCL given by

π(H)(〈M | H ′〉) = 〈M | H ′ : H〉

The computational groupoid G(rCL, // // //) constructed as in Section 2 using
the transition relation // // // on rCL terms, and the group action groupoid
G(rCL,H, π) defined above are isomorphic. The isomorphism is given by
simply forgetting about the “connecting history”.

Proposition 4.6 The map δ : G(rCL,H, π) → G(rCL, // // //) which is defined
as δ(〈T, H, T ′〉) = 〈T, T ′〉, i.e. δ = (α, β), is a groupoid isomorphism.

5 Conclusion

We have introduced a reversible version rCL of Combinatory Logic where
terms are enriched with a “history” part which allows us to uniquely “replay”
every computational step. We have utilised the structure of a groupoid to
model computation in rCL.

Groupoids can bee seen as a generalisation of several mathematical struc-
tures, such as groups, group actions and equivalence relations, as shown in
Figure 1 (cf. [12]). The last two structures are particularly relevant for our
treatment of rCL. In fact, the computational paths of a reversible calcu-
lus can be seen as the orbits of a group acting on some space, in our case
the history group acting on the space of rCL terms. On the other hand,
the equational theory of a calculus introduces an equivalence relation on the
terms. Groupoids are therefore able to accommodate the operational seman-
tics as well as the equational theory of rCL.

Further work will concentrate on constructing a denotational semantics
for rCL based on the groupoid structure presented here. Our aim is in a
compositional definition of transition operators which serves as a basis for
semantics-based analysis techniques for the λ-calculus. For this we hope to
exploit well-established results on the relation between operator algebras (in
particular C∗ algebras) and groupoids [13]. Furthermore, we believe that
reversible combinatory logic can in principle be used for a (maybe highly
inefficient) translation of classical into quantum computation.

9

Di Pierro, Hankin, Wiklicky

References

[1] Abramsky, S., A structural approach to reversible computation, in: Proceedings
of LCCS 2001, 2001, pp. 1–16.

[2] Abramsky, S., E. Haghverdi and P. Scott, Geometry of interaction and linear
combinatory algebras, Mathematical Structures in Computer Science 12 (2002),
pp. 625–665.

[3] Barendregt, H. P., “The Lambda Calculus,” Studies in Logic and the
Foundations of Mathematics 103, North-Holland, 1984, revised edition.

[4] Bergstra, J. and J. W. Klop, Invertible terms in the lambda calculus, Theoretical
Computer Science 11 (1980), pp. 19–37.

[5] Brandt, W., Über eine Verallgemeinerung des Gruppengriffes, Mathematische
Annalen 96 (1926), pp. 360–366.

[6] Brown, R., From groups to groupoids: a brief survey, Bull. London Math. Soc.
19 (1987), pp. 113–134.

[7] Connes, A., “Noncommutative Geometry,” Academic Press, San Diego, 1994.

[8] Curry, H. B. and R. Feys, “Combinatory Logic,” North-Holland, 1958.

[9] Dezani-Ciancaglini, M., Characterization of normal forms possesing inverse in
the λ− β − η-calculus, Theoretical Computer Science 2 (1976), pp. 323–337.

[10] Di Pierro, A., C. Hankin and H. Wiklicky, Probabilistic lambda-calculus and
quantitative program analysis, Journal of Logic and Computation 15 (2005),
pp. 159–179.

[11] Mundici, D. and W. Sieg, Paper machines, Philosophica Mathematica Series
III, 3 (1995), pp. 5–30.

[12] Ramsay, A. and J. Renault, editors, “Groupoids in Analyis, Geometry, and
Physics,” Contemporary Mathematics 282, AMS, Providence, RI, 2001.

[13] Renault, J., “A Groupoid Approach to C∗-Algebras,” Lecture Notes in
Mathematics 793, Springer Verlag, Berlin – Heidelberg – New York, 1980.

[14] van Tonder, A., A lambda calculus for quantum computation, SIAM Journal of
Computation 33 (2004), pp. 1109–1135.

[15] Vitanyi, P., Time, space, and energy in reversible computing, in: Proceedings of
the ACM International Conference on Computing Frontiers, 2005.

[16] Weinstein, A., Groupoids: Unifying internal and external symmetry, Notices of
the AMS 43 (1996), pp. 744–752.

10

	Introduction
	The Groupoid Structure of Reversible Computations
	Combinatory Logic
	Invertible Terms

	Reversible Combinatory Logic
	The History Group H
	The Groupoid of Reversible Computations

	Conclusion
	References

