
Tree Compression and Indexing

(2005; Ferragina, Luccio, Manzini, Muthukrishnan)

Paolo Ferragina, University of Pisa, www.di.unipi.it/˜ferragin
S. Srinivasa Rao, IT University of Copenhagen, www.itu.dk/people/ssrao

entry editor: Paolo Ferragina

INDEX TERMS: Trees, Indexing data structures, Data compression, Tree navigation and search.
SYNONYMS: XML compression and indexing.

1 PROBLEM DEFINITION

Trees are a fundamental structure in computing. They are used in almost every aspect of modeling
and representation for explicit computation like searching for keys, maintaining directories, and
representations of parsing or execution traces—to name just a few. One of the latest uses of
trees is XML, the de facto format for data storage, integration, and exchange over the Internet (see
http://www.w3.org/XML/). Explicit storage of trees, with one pointer per child as well as other
auxiliary information (e.g. label), is often taken as given but can account for the dominant storage
cost. Just to have an idea, a simple tree encoding needs at least 16 bytes per tree node: one pointer
to the auxiliary information (e.g. node label) plus three node pointers to the parent, the first child,
and the next sibling. This large space occupancy may even prevent the processing of medium size
trees, e.g. XML documents. This entry surveys the best known storage solutions for unlabeled and
labeled trees that are space efficient and support fast navigational and search operations over the
tree structure. In the literature, they are referred to as succinct/compressed tree indexing solutions.

Notation and basic facts. Consider a rooted tree T of arbitrary degree and shape. In what
follows it will be detailed three main classes of trees and their information-theoretic storage costs.
The storage lower bound is derived via a simple counting argument: at least log |U | bits are needed
to distinguish any two objects of a universe U .1

Ordinal Trees. T is unlabeled and its children are left-to-right ordered. The number of ordinal
trees on t nodes is Ct =

(
2t
t

)
/(t + 1) which induces a lower bound of 2t−Θ(log t) bits.

Cardinal k-ary Trees. T is labeled on its edges with symbols drawn from alphabet Σ, where k =
|Σ|. Any node has degree at most k because the edges outgoing from each node have distinct
labels. Typical examples of cardinal trees are the binary tree (k = 2), the (uncompacted) trie
and the Patricia tree. The number of k-ary cardinal trees on t nodes is Ck

t =
(
kt+1

t

)
/(kt + 1)

which induces a lower bound of t(log k + log e) bits, when k is a slowly-growing function of t.

(Multi-)Labeled Trees. T is an ordinal tree, labeled on its nodes with symbols drawn from
alphabet Σ. In the case of multi-labeled trees, every node has at least one symbol as its
label. The same symbols may repeat among sibling nodes, so that the degree of each node is
unbounded, and the same labeled-subpath may occur many times in T , anchored anywhere.

1Throughout the entry, all logarithms are taken to the base 2, and it is assumed 0 log 0 = 0.

1

The information-theoretic lower bound on the storage complexity of this class of trees on t
nodes comes easily from the decoupling of the tree structure and the storage of tree labels.
For labeled trees it is log Ct + t log |Σ| = t(log |Σ|+ 2)−Θ(log t) bits.

The following query operations should be supported over T :

Basic navigational queries. They ask for the parent of node u, the ith child of u, the degree of
u. These operations may be restricted to some label c ∈ Σ, if T is labeled.

Sophisticated navigational queries. They ask for the jth level-ancestor of u, the depth of u,
the subtree size of u, the lowest common ancestor of a pair of nodes, the ith node according
to some node ordering over T , possibly restricted to some label c ∈ Σ (if T is labeled). For
even more operations see [2, 10].

Subpath query. Given a labeled subpath Π, it asks for the (number occ of) nodes of T that
immediately descend from Π. Every subpath occurrence may be anchored anywhere in the
tree (i.e. not necessarily in its root).

The elementary solution to the tree indexing problem consists of encoding the tree T via a
mixture of pointers and arrays, thus taking a total of Θ(t log t) bits. This supports basic navigational
operations in constant time, but is not space efficient and requires the whole visit of the tree to
implement the subpath query or the more sophisticated navigational operations! Here the goal is
to design tree storage schemes that are either succinct, namely “close to the information-theoretic
lower bound” mentioned before, or compressed in that they achieve “entropy-bounded storage”.
Thus, succinct/compressed tree indexing solutions are distinct from simply compressing the input,
and then uncompressing it later on at query time!

In this entry, it is assumed that t ≥ |Σ| and the Random Access Machine (RAM) with word
size Θ(lg t) is taken as model of computation. This way, one can perform various arithmetic and
bit-wise boolean operations on single words in constant time.

2 KEY RESULTS

The notion of succinct data structures was introduced by Jacobson [9] in a seminal work over eigh-
teen years ago. He presented a storage scheme for ordinal trees using 2t + o(t) bits and supporting
basic navigational operations in O(log log t) time (i.e. parent, first child and next sibling of a node).
Later, Munro and Raman [12] closed the issue for ordinal trees on basic navigational queries and
the subtree-size query by achieving constant query-time and 2t+o(t) bits of storage. Their storage
scheme is called Balanced Parenthesis (shortly, BP).2 Subsequently, Benoit et al. [3] proposed a
storage scheme called Depth-First Unary Degree Sequence (shortly, DFUDS) that still uses 2t + o(t)
bits but performs more navigational operations like ith child, child rank, and node degree in con-
stant time. Geary et al. [8] gave another representation still taking asymptotically optimal space
that extends DFUDS’s operations to the level-ancestor query.

Although these three representations achieve the optimal space occupancy, none of them sup-
ports every existing operation in constant time: e.g. BP does not support ith child and child rank,
DFUDS and Geary et al.’s representation do not support LCA. Recently Jansson et al. [10] extended
the DFUDS storage scheme toward two directions: (1) they showed how to implement in constant

2Some papers [Chiang et al., ACM-SIAM SODA ’01; Sadakane, ISAAC ’01; Munro et al., J.ALG ’01; Munro and
Rao, ICALP ’04] have extended BP to support in constant time other sophisticated navigational queries like LCA, node
degree, rank/select on leaves and number of leaves in a subtree, level-ancestor and level-successor.

2

time all navigational operations above; (2) they showed how to compress the new tree storage
scheme up to Hd(T), which denotes the entropy of the distribution of node degrees in T .3

Theorem 1. [Jansson et al. 2007] For any rooted tree T with t nodes, there exists a tree indexing
scheme that uses tHd(T) + O(t(log log t)2/ log t) bits and supports all navigational operations in
constant time.

This improves the standard tree pointer-based representation, since it needs no more than
Hd(T) bits per node and does not compromise the performance of sophisticated navigational oper-
ations. In the case of highly regular trees, it is Hd(T) ≤ 2, so the improvement may be significant!
This result can be extended to achieve the kth order entropy of the DFUDS sequence, by adopting
any compressed-storage scheme for strings (see e.g. [7] and references therein).

Benoit et al. [3] extended the use of DFUDS to cardinal trees, and proposed a tree indexing
scheme whose space occupancy is close to the information-theoretic lower bound and supports
various navigational operations in constant time. Raman et al. [14] improved the space by using a
different approach (based on storing the tree as a set of edges) thus proving the following:

Theorem 2. [Raman et al. 2002] For any k-ary cardinal tree T with t nodes, there exists a
tree indexing scheme that uses log Ck

t + o(t) + O(log log k) bits and supports in constant time the
following operations: finding the parent, the degree, the ordinal position among its siblings, the child
with label c, the ith child of a node.

The subtree size operation cannot be supported efficiently using this representation, so [3] should
be resorted to in case this operation is a primary concern.

Despite this flurry of activity, the fundamental problem of indexing labeled trees succinctly has
remained mostly unsolved. In fact, the succinct encoding for ordered trees mentioned above might
be replicated |Σ| times (one per possible symbol of Σ), and then the divide-and-conquer approach
of [8] might be applied to reduce the final space occupancy. However, the final space bound would
be 2t + t log |Σ| + O(t|Σ| log log log t

log log t) bits, which is nonetheless far from the information-theoretic
storage bound even for moderately large Σ. On the other hand, if subpath queries are of primary
concern (e.g. XML), one can use the approach of [11] which consists of a variant of the suffix-tree
data structure properly designed to index all T ’s labeled paths. Subpath queries can be supported
in O(|Π| log |Σ|+ occ) time, but the required space would be still Θ(t log t) bits (with large hidden
constants due to the use of suffix trees). Recently, some papers [1, 2, 5] addressed this problem in
its whole generality by either dealing simultaneously with subpath queries and basic navigational
operations [5], or by considering multi-labeled trees and a larger set of navigational operations [1, 2].

The tree-indexing scheme of [5] is based on a transform of the labeled tree T , denoted xbw[T],
which linearizes it into two coordinated arrays 〈Slast,Sα〉: the former capturing the tree structure
and the latter keeping a permutation of the labels of T . xbw[T] has the optimal (up to lower-
order terms) size of 2t + t log |Σ| bits and can be built and inverted in optimal linear time. In
designing the XBW-transform, the authors were inspired by the elegant Burrows-Wheeler transform
for strings [4]. The power of xbw[T] relies in the fact that it allows to transform compression
and indexing problems on labeled trees into easier problems over strings. Namely, the following
two string-search primitives are key tools for indexing xbw[T]: rankc(S, i) returns the number of
occurrences of the symbol c in the string prefix S[1, i], and selectc(S, j) returns the position of the
j-th occurrence of the symbol c in string S. The literature offers many time/space efficient solutions
for these primitives that could be used as a black-box for the compressed indexing of xbw[T] (see
e.g. [2, 13] and references therein).

3The BP representation and the one of Geary et al. [8] have been recently extended to support further operations—
like depth/height of a node, next node in the same level, rank/select over various node orders— still in constant time
and 2t + o(t) bits [Personal communication by Rao, 2006].

3

Theorem 3. [Ferragina et al. 2005] Consider a tree T consisting of t nodes labeled with symbols
drawn from alphabet Σ. There exists a tree indexing scheme that has the following performance:

• if |Σ| = O(polylog(t)), the compressed index takes at most tH0(Sα) + 2t + o(t) bits, supports
basic navigational operations in constant time and subpath searches in O(|Π|) time.

• if |Σ| = Ω(polylog(t)), the compressed index takes at most t(Hk(Sα) + Hk(Slast) + o(log |Σ|))
bits, but navigational operations and queries are slowed down by a factor of o(log log3 |Σ|).

where Hk(s) is the kth order empirical entropy of string s, with Hk(s) ≤ Hk−1(s) for any k > 0.

Basic navigational operations mean the parent of a node u, the ith child of u with some label
c, or the degree of u. Note that Hk(Sα) ≤ H0(Sα) ≤ log |Σ|, hence the indexing of xbw[T] takes
the same space of its plain representation, up to lower order terms, but now one can additionally
navigate and search T efficiently. This is indeed a sort of pointerless representation of the labeled
tree T with additional search functionalities!

If sophisticated navigational operations over labeled trees are a primary concern, and subpath
queries are not necessary, then the approach of Barbay et al. [1, 2] should be followed. They pro-
posed the novel concept of succinct index, which is different from the concept of succinct/compressed
encoding implemented by all the above solutions. A succinct index does not touch the data to be
indexed, it just accesses the data via basic operations offered by the underlying abstract data type
(ADT), and requires asymptotically less space than the information-theoretic lower bound on the
storage of the data itself. The authors reduce the problem of indexing labeled trees to the one
of indexing ordinal trees and strings; and the problem of indexing multi-labeled trees to the one
of indexing ordinal trees and binary relations. Then, they provide succinct indexes for strings
and binary relations. In order to present their result, the following definitions are needed. Let
tc be the number of nodes labeled c in T , and let ρc be the maximum number of labels c in any
rooted path of T (called the recursivity of c). Define ρ as the average recursivity of T , namely
ρ = (1/m)

∑
c∈Σ(tcρc).

Theorem 4. [Barbay et al. 2007] Consider a tree T consisting of t nodes (multi-)labeled with
possibly many symbols drawn from alphabet Σ. Let m be the total number of symbols in T , and
assume that the underlying ADT for T offers basic navigational operations in constant time and re-
trieves the ith label of a node in time f . There is a succinct index for T using m(log ρ+o(log(|Σ|ρ)))
bits that supports for a given node u the following operations (where L = log log |Σ| log log log |Σ|):

• every c-descendant or c-child of u can be retrieved in O(L (f + log log |Σ|)) time.

• the set A of c-ancestors of u can be retrieved in O(L (f + log log |Σ|) + |A| (log log ρc +
log log log |Σ| (f + log log |Σ|))) time.

3 APPLICATIONS

As trees are ubiquitous in many applications, this section concentrates just on two examples that,
in their simplicity, highlight the flexibility and power of succinct/compressed tree indexes.

The first example regards suffix trees, which are a crucial algorithmic block of many string
processing applications— ranging from bioinformatics to data mining, from data compression to
search engines. Standard implementations of suffix trees take at least 80 bits per node. The
compressed suffix tree of a string S[1, s] consists of three components: the tree topology, the string
depths stored into the internal suffix-tree nodes, and the suffix pointers stored in the suffix-tree
leaves (also called suffix array of S). The succinct tree representation of [10] can be used to encode
the suffix-tree topology and the string depths taking 4s+o(s) bits (assuming w.l.o.g. that |Σ| = 2).
The suffix array can be compressed up to the kth order entropy of S via any solution surveyed in

4

[13]. The overall result is never worse than 80 bits per node, but can be significantly better for
highly compressible strings!

The second example refers to the XML format which is often modeled as a labeled tree. The suc-
cinct/compressed indexes in [1, 2, 5] are theoretical in flavor but turn out to be relevant for practical
XML processing systems. As an example, [6] has published some initial encouraging experimental
results that highlight the impact of the XBW-Transform on real XML datasets. The authors show
that a proper adaptation of the XBW-Transform allows to compress XML data up to state-of-the-art
XML-conscious compressors, and to provide access to its content, navigate up and down the XML
tree structure, and search for simple path expressions and substrings in few milliseconds over MBs
of XML data, by uncompressing only a tiny fraction of them at each operation. Previous solutions
took several seconds per operation!

4 OPEN PROBLEMS

For a complete set of open problems and further directions of research, the interested reader is
referred to the recommended readings. Here two main problems, which naturally derive from the
discussion above, are commented.

Motivated by XML applications, one could like to extend the subpath search operation to the
efficient search for all leaves of T whose labels contain a substring β and that descend from a given
subpath Π. The term “efficient” here means in time proportional to |Π| and to the number of
retrieved occurrences, but independent as much as possible of T ’s size in the worst case. Currently,
this search operation is possible only for the leaves which are immediate descendant of Π, and even
for this setting, the solution proposed in [6] is not optimal.

There are two main encodings for trees which lead to the results above: ordinal tree represen-
tation (BP, DFUDS or the representation of Geary et al.) and XBW. The former is at the base of
solutions for sophisticated navigational operations, and the latter is at the base of solutions for
sophisticated subpath searches. Is it possible to devise one unique transform for the labeled tree T
which combines the best of the two worlds and is still compressible?

5 EXPERIMENTAL RESULTS

Look at http://cs.fit.edu/∼mmahoney/compression/text.html and at the paper [6] for nu-
merous experiments on XML datasets.

6 DATA SETS

Look at http://cs.fit.edu/∼mmahoney/compression/text.html and the references in [6].

7 URL to CODE

Paper [6] contains a list of software tools for compression and indexing of XML data.

8 CROSS REFERENCES

Compressed Text Indexing; Rank and Select over Binary Strings; Succinct Encoding of Permuta-
tions and its Applications to Text Indexing; Table Compression; Text Indexing.

5

9 RECOMMENDED READING

[1] J. Barbay, A. Golynski, I. Munro, and S. S. Rao, Adaptive searching in succinctly
encoded binary relations and tree-structured documents, in Proc. 17th Combinatorial Pattern
Matching conference (CPM), 2006, pp. 24–35.

[2] J. Barbay, M. He, J. Munro, and S. S. Rao, Succinct indexes for string, bynary rela-
tions and multi-labeled trees, in Proc. 18th ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2007.

[3] D. Benoit, E. Demaine, I. Munro, R. Raman, V. Raman, and S. S. Rao, Representing
trees of higher degree, Algorithmica, 43 (2005), pp. 275–292.

[4] M. Burrows and D. Wheeler, A block sorting lossless data compression algorithm, Tech.
Report 124, Digital Equipment Corporation, 1994.

[5] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan, Structuring labeled
trees for optimal succinctness, and beyond, in Proc. 46th IEEE Symposium on Foundations
of Computer Science (FOCS), 2005, pp. 184–193.

[6] , Compressing and searching XML data via two zips, in Proc. 15th International World
Wide Web Conference (WWW), 2006, pp. 751–760.

[7] P. Ferragina and R. Venturini, A simple storage scheme for strings achieving entropy
bounds, in Proc. 18th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2007.

[8] R. Geary, R. Raman, and V. Raman, Succinct ordinal trees with level-ancestor queries,
in Proc. 15th ACM-SIAM symposium on Discrete Algorithms (SODA), 2004, pp. 1–10.

[9] G. Jacobson, Space-efficient static trees and graphs, in Proc. 30th IEEE Symposium on
Foundations of Computer Science (FOCS), 1989, pp. 549–554.

[10] J. Jansson, K. Sadakane, and W. Sung, Ultra-succinct representation of ordered trees,
in Proc. 18th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2007.

[11] S. R. Kosaraju, Efficient tree pattern matching, in Proc. 20th IEEE Foundations of Com-
puter Science (FOCS), 1989, pp. 178–183.

[12] I. Munro and V. Raman, Succinct representation of balanced parentheses and static trees,
SIAM Journal on Computing, 31:3 (2001), pp. 762–776.

[13] G. Navarro and V. Mäkinen, Compressed full text indexes, ACM Computing Surveys,
2007 (To appear).

[14] R. Raman, V. Raman, and S. S. Rao, Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets, in Proc. 13th ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2002, pp. 233–242.

6

