
Suint Enoding of Permutationsand its Appliations to Text Indexing(2003; Munro, Raman, Raman, Rao)J�er�emy Barbay (University of Waterloo), www.s.uwaterloo.a/~jbarbayJ. Ian Munro (University of Waterloo), www.s.uwaterloo.a/~imunroentry editor: Paolo FerraginaINDEX TERMS: Suint Data Strutures, Permutations, Funtions, Text Strings, BinaryRelationsSYNONYMS: None is reported.1 PROBLEM DEFINITIONA suint data struture for a given data type is a representation of the underlying ombinatorialobjet that uses an amount of spae \lose" to the information theoreti lower bound togetherwith algorithms that supports operations of the data type \quikly". A natural example is therepresentation of a binary tree [5℄: an arbitrary binary tree on n nodes an be represented in2n + o(n) bits while supporting a variety of operations on any node, whih inlude �nding itsparent, its left or right hild, and returning the size of its subtree, eah in O(1) time. As there are�2nn �=(n+ 1) binary trees on n nodes and the logarithm of this term1 is 2n � o(n), the spae usedby this representation is optimal to within a lower order term.In the appliations onsidered in this entry, the priniple onern is with indexes supportingsearh in strings and in XML-like douments (i.e. tree-strutured objets with labels and \freetext" at various nodes). As happens not only labeled trees but also arbitrary binary relations over�nite domains are key building bloks for this. Preproessing suh data-strutures so as to be ableto perform searhes is a omplex proess requiring a variety of subordinate strutures.A basi building blok for this work is the representation of a permutation of the integersf0; : : : ; n�1g, denoted by [n℄. A permutation � is trivially representable in ndlg ne bits whih iswithin O(n) bits of the information theoreti bound of lg(n!). The interesting problem is to supportboth the permutation and its inverse: namely, how to represent an arbitrary permutation � on [n℄in a suint manner so that �k(i) (� iteratively applied k times starting at i, where k an be anyinteger so that ��1 is the inverse of �) an be evaluated quikly.2 KEY RESULTSMunro et al. [7℄ studied the problem of suintly representing a permutation to support omputing�k(i) quikly. They give two solutions: one supports the operations arbitrarily quikly, at the ostof extra spae; the other uses essentially optimal spae at the ost of slower evaluation.Given an integer parameter t, the permutations � and ��1 an be supported by simply writingdown � in an array of n words of dlg ne bits eah, plus an auxiliary array S of at most n=t shortuts1All logarithms are taken to the base 2. By onvention, the iterated logarithm is deonted by lg(i) n, hene lg lg lg xis lg(3) x. 1

or bak pointers. In eah yle of length at least t, every t-th element has a pointer t steps bak.�(i) is simply the i-th value in the primary struture, and ��1(i) is found by moving forward until abak pointer is found and then ontinuing to follow the yle to the loation that ontains the valuei. The trik is in the enoding of the loations of the bak pointers: this is done with a simple bitvetor B of length n, in whih a 1 indiates that a bak pointer is assoiated with a given loation.B is augmented using o(n) additional bits so that the number of 1's up to a given position and theposition of the r-th 1 an be found in onstant time (i.e. using the rank and selet operations onbinary strings [8℄). This gives the loation of the appropriate bak pointer in the auxiliary array S.
5

1

8
7

2

4

6

3

i 1 2 3 4 5 6 7 8�(i) = 4 8 6 3 5 2 1 7B = 1 0 0 0 0 1 1 0S = 7 1 6Figure 1: A permutation on f1; : : : ; 8g, with 2 yles and 3 bak pointers. The full lines orrespondto the permutation, the dashed lines to the bak pointers, the grey lines to the edges traversed toompute ��1(3).For example, the permutation � = (4; 8; 6; 3; 5; 2; 1; 7) onsists of two yles, (1; 4; 3; 6; 2; 8;7)and (5) (see Figure 1). For t = 3, the bak pointers are yling bakward between 1, 6 and 7 inthe largest yle (there are none in the other beause it is smaller than t). To �nd ��1(3), follow� from 3 to 6, observe that 6 is a bak pointer beause marked by the seond 1 in B, and followthe seond value of S to 1, then follow � from 1 to 4 and then to 3: the predeessor of 3 has beenfound. As there are bak-pointer every t elements in the yle, �nding the predeessor requiresO(t) memory aesses.For arbitrary i and k, �k(i) is supported by writing the yles of � together with a bit vetor Bmarking the beginning of eah yle. Observe that the yle representation itself is a permutationin \standard form", all it �. For example, the permutation � = (6; 4; 3; 5; 2; 1) has three ylesf(1; 6); (3); (2; 5; 4)g and is enoded by the permutation � = (1; 6; 3; 2; 5; 4) and the bit vetorB = (1; 0; 1; 1; 0; 0). The �rst task is to �nd i in the representation: it is in position ��1(i). Therank and selet operations on B now enable us to �nd the segment of the representation ontainingi. From this �k(i) is easily determined by taking k modulo the yle length and moving that numberof steps around the yle starting at the position of i.Other than the support of the inverse of �, all operations are performed in onstant time, henethe total time depends on the value hosen for t.Theorem 1 (Munro et al. 2003). There is a representation of an arbitrary permutation � on[n℄ using at most (1 + ")n lgn +O(n) bits that an support the operation �k() in time O(1="), forany onstant " less than 1 and for any arbitrary value of k.It is not diÆult to prove that this tehnique is optimal under a restrited model of pointermahine. So, for example, using O(n) extra bits (i.e. O(n= lgn) extra words),
(lgn) time is ne-essary to ompute both � and ��1. However, using another approah Munro et al. [7℄ demonstratethat the lower bound suggested does not hold in the RAM model. The approah is based on theBenes Network, a ommuniation network omposed of swithes that an be used to implementpermutations.Theorem 2 (Munro et al. 2003). There is a representation of an arbitrary permutation � on[n℄ using at most dlg(n!)e+ O(n) bits that an support the operation �k() in time O(lgn= lg(2) n).2

While this data-struture uses less spae than the other, it requires more time for eah operation.It is not known whether this time bound an be improved using only O(n) \extra spae". As aonsequene, the �rst data struture is used in all appliations. Obviously, any other solution anbe used, potentially with a better time/spae trade-o�.3 APPLICATIONSThe results on permutations are partiularly useful on two lines of researh, �rst in the extensionof the results on permutation to arbitrary integer funtions; and seond, and probably more impor-tantly, in enoding and indexing text strings, whih themselves are used to enode sparse binaryrelations and labeled trees. This setion summarizes some of these results.3.1 FuntionsMunro and Rao [9℄ extended the results on permutations to arbitrary funtions from [n℄ to [n℄.Again fk(i) indiates the funtion iterated k times starting at i. If k is nonnegative, this isstraightforward. The ase in whih k is negative is more interesting as the image is a (possiblyempty) multiset over [n℄ (see Figure 2 for an example). Whereas � is a set of yles, f an beviewed as a set of yles in whih eah node is the root of a tree. Starting at any node (elementof [n℄), the evaluation moves one step toward the root of the tree or one step along a yle (e.g.f(8) = 7; f(10) = 11). Moving k steps in a positive diretion is straightforward, one moves up atree and perhaps around a yle (e.g. f5(9) = f3(9) = 3) When k is negative one must determineall nodes of distane k from the starting loation, i, in the diretion towards the leaves of the trees(e.g. f�1(13) = f1; 11; 12g, f�1(3) = f4; 5g). The key tehnial issue is to run aross suint treerepresentations piking o� all nodes at the appropriate levels.Theorem 3 (Munro and Rao 2004). For any �xed ", there is a representation of a funtionf : [n℄! [n℄ that takes (1+ ")n lgn+O(1) bits of spae, and supports fk(i) in O(1+ jfk(i)j) time,for any integer k and for any i 2 [n℄.
2 4 3 5

6

7

8

12

1

13

11

10

9i 1 2 3 4 5 6 7 8 9 10 11 12 13f(i) = 13 2 4 3 3 5 5 7 7 11 13 13 10f�1(i) = fg f2g f4,5g f3g f6,7g fg f8,9g fg fg f13g f10g fg f1,11,12gFigure 2: A funtion on f1; : : : ; 13g, with 3 yles and 2 nontrivial tree strutures.3.2 Text StringsIndexing text strings to support the searh for patterns is an important general issue. Barbay etal. [2℄ onsider \negative" searhes, along the following lines:De�nition 1. Consider a string S[1; n℄ over the alphabet [l℄. A position x 2 [n℄ mathes a literal� 2 [l℄ if S[x℄ = �. A position x 2 [n℄ mathes a literal �� if S[x℄ 6= �. The set f1; : : : ; lg is denotedby [�l℄. 3

Given a string S of length n over an alphabet of size l, for any position x in the string, anyliteral � 2 [l℄[[�l℄ and any integer r, onsider the following operators:� string rankS(�; x): the number of ourrenes of � in S[1::x℄;� string seletS(�; r): the position of the r-th ourrene of � in S, or 1 if none exists;� string aessS(x): the label S[x℄;� string predS(�; x): the last ourrene of � in S[1 : : :x℄, or 1 if none exists; and� string suS(�; r): the �rst ourrene of � in S[x : : :℄, or 1 if none exists.Golynski et al. [4℄ observed that a string of length l on alphabet [l℄ an be enoded and indexedby a permutation on [l℄ (whih for eah label lists the positions of all its ourrenes) together witha bit vetor of length 2l (whih signals the end of eah sub-list of ourrenes orresponding to alabel). For instane, the string ACCA on alphabet fA;B;C;Dg is enoded by the permutation(1; 4; 2; 3) and the bit vetor (0; 0; 1; 1; 1; 0; 0; 1). Golynski et al. are then able to support theoperators rank, selet and aess in time O(lg(2) n), by using a value of t = lg(2) n in the enodingof permutation of Theorem 1.This enoding ahieves fast support for the searh operators de�ned above restrited to labels(not literals), with a small overhead in spae, by integrating the enodings of the text and theindexing information. Barbay et al. [2℄ extended those operators to literals, and showed how toseparate the suint enoding of the string S, in a manner that assumes we an aess a word ofS in a �xed time bound, and a suint index ontaining auxiliary information useful to supportthe searh operators de�ned above.Theorem 4 (Barbay et al. 2007). Given aess to a label in the raw enoding of a stringS 2 [l℄n in time f(n; l), there is a suint index using n(1+o(lg l)) bits that supports the operatorsstring rankS, string predS and string suS for any literal � 2 [l℄ [[�l℄ in O(lg(2) l � lg(3) l �(f(n; l)+ lg(2) l)) time; and the operator string seletS for any label � 2 [l℄ in O(lg(3) l � (f(n; l)+lg(2) l)) time.The separation between the enoding of the string or an XML-like doument and its index hastwo main advantages:� The string an now be ompressed and searhed at the same time, provided that the om-pressed enoding of the string supports the aess in reasonable time, as does the one desribedby Ferragina and Venturini [3℄.� The operators an be supported for several orderings of the string, for instane indued bydistint traversals of a labeled tree, with only a small ost in spae. It is important forinstane when those orders orrespond to various traversals of a labeled struture, suh asthe depth-�rst and DFUDS traversals of a labeled tree [2℄.3.3 Binary RelationsGiven two ordered sets of sizes l and n, denoted by [l℄ and [n℄, a binary relation R between thesesets is a subset of their Cartesian produt, i.e. R � [l℄�[n℄. It is used, for instane, to representthe relation between a set of labels [l℄ and a set of objets [n℄.Although a string an be seen as a partiular ase of a binary relation, where the objets arepositions and exatly one label is assoiated to eah position, the searh operations on binaryrelations are diverse, inluding operators on both the labels and the objets. For any literal �,objet x, and integer r, we onsider the following operators:4

� label rankR(�; x): the number of objets labeled � preeding or equal to x;� label seletR(�; r): the position of the r-th objet labeled � if any, or 1 otherwise;� label nbR(�), the number of objets with label �;� objet rankR(x; �): the number of labels assoiated with objet x preeding or equal to label�;� objet seletR(x; r): the r-th label assoiated with objet x, if any, or 1 otherwise;� objet nbR(x): the number of labels assoiated with objet x; and� table aessR(x; �): heks whether objet x is assoiated with label �.Barbay et al. [1℄ observed that suh a binary relation, onsisting of t pairs from [n℄�[l℄, an beenoded as a text string S listing the t labels, and a binary string B indiating how many labels areassoiated with eah objet. So searh operations on the objets assoiated with a �xed label areredued to a ombination of operators on text and binary strings. Using a more diret redution tothe enoding of permutations, the index of the binary relation an be separated from its enoding,and even more operators an be supported [2℄:Theorem 5 (Barbay et al. 2007). Given support for objet aessR in f(n; l; t) time on abinary relation formed by t pairs from an objet set [n℄ and a label set [l℄, there is a suint indexusing t(1 + o(lg l)) bits that supports label rankR for any literal � 2 [l℄ [[�l℄ and label aessRfor any label � 2 [l℄ in O(lg(2) l � lg(3) l � (f(n; l; t) + lg(2) l)) time, and label seletR for any label� 2 [l℄ in O(lg(3) l � (f(n; l; t) + lg(2) l)) time.To onlude this entry, note that a labeled tree T an be represented by an ordinal tree odingits struture [6℄ and a string S listing the labels of the nodes. If the labels are listed in preorder(resp. in DFUDS order) the operator string suS enumerates all the desendants (resp. hildren)of a node mathing some literal �. Using suint indexes, a single enoding of the labels and thesupport of a permutation between orders is suÆient to implement both enumerations, and othersearh operators on the labels. These issues, along with strings and labeled trees ompressiontehniques whih ahieve the entropy of the indexed data, are overed in more details in otherentries ited in the Cross Referenes setion.4 OPEN PROBLEMSNone is reported.5 EXPERIMENTAL RESULTSNone is reported.6 DATA SETSNone is reported.7 URL to CODENone is reported. 5

8 CROSS REFERENCESCompressed Text Indexing; Compressed SuÆx Array; Rank and Selet over Binary Strings; TextIndexing, Tree Compression and Indexing.9 RECOMMENDED READING[1℄ J. Barbay, A. Golynski, J. I. Munro, and S. S. Rao, Adaptive searhing in suintlyenoded binary relations and tree-strutured douments, in Proeedings of the 17th AnnualSymposium on Combinatorial Pattern Mathing (CPM), vol. 4009 of Leture Notes in Com-puter Siene (LNCS), Springer-Verlag, 2006, pp. 24{35.[2℄ J. Barbay, M. He, J. I. Munro, and S. S. Rao, Suint indexes for strings, binary rela-tions and multi-labeled trees, in Proeedings of the 18th ACM-SIAM Symposium on DisreteAlgorithms (SODA), ACM, 2007, pp. 680{689.[3℄ P. Ferragina and R. Venturini, A simple storage sheme for strings ahieving entropybounds, in Proeedings of the 18th ACM-SIAM Symposium on Disrete Algorithms (SODA),ACM, 2007, pp. 690{695.[4℄ A. Golynski, J. I. Munro, and S. S. Rao, Rank/selet operations on large alphabets: atool for text indexing, in Proeedings of the 17th Annual ACM-SIAM Symposium on DisreteAlgorithms (SODA), ACM, 2006, pp. 368{373.[5℄ G. Jaobson, Spae-eÆient stati trees and graphs, in Proeedings of the 30th IEEE Sym-posium on Foundations of Computer Siene (FOCS), 1989, pp. 549{554.[6℄ J. Jansson, K. Sadakane, and W.-K. Sung, Ultra-suint representation of orderedtrees, in Proeedings of the 18th ACM-SIAM Symposium on Disrete Algorithms (SODA),ACM, 2007, pp. 575{584.[7℄ J. I. Munro, R. Raman, V. Raman, and S. S. Rao, Suint representations of permu-tations, in Proeedings of the 30th International Colloquium on Automata, Languages andProgramming (ICALP), vol. 2719 of Leture Notes in Computer Siene (LNCS), Springer-Verlag, 2003, pp. 345{356.[8℄ J. I. Munro and V. Raman, Suint representation of balaned parentheses and statitrees, SIAM Journal on Computing, 31 (2001), pp. 762{776.[9℄ J. I. Munro and S. S. Rao, Suint representations of funtions, in Proeedings of theInternational Colloquium on Automata, Languages and Programming (ICALP), vol. 3142 ofLeture Notes in Computer Siene (LNCS), Springer-Verlag, 2004, pp. 1006{1015.
6

