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Abstract

Consider an ordered, static tree T where each node has a label from alphabet Σ. Tree T may be
of arbitrary degree and shape. Our goal is designing a compressed storage scheme of T that supports
basic navigational operations among the immediate neighbors of a node (i.e. parent, ith child, or any
child with some label, . . .) as well as more sophisticated path-based search operations over its labeled
structure.

We present a novel approach to this problem by designing what we call the XBW-transform
of the tree in the spirit of the well-known Burrows-Wheeler transform for strings [7]. The XBW-
transform uses path-sorting to linearize the labeled tree T into two coordinated arrays, one capturing
the structure and the other the labels. Using the properties of the XBW-transform, we go beyond the
information-theoretic lower bound. For the first time, our compressed indexes support navigational
operations and path search operations within (near)-optimal time bounds and entropy-bounded space.

Our XBW-transform is simple and likely to spur new results in the theory of tree compression
and indexing, as well in interesting application contexts. As an example, we use the XBW-transform
to design and implement a compressed index for XML documents whose compression ratio is sig-
nificantly better than the one achievable by state-of-the-art tools, and its query time performance is
order of magnitudes faster.

1 Introduction
Consider a rooted, ordered, static tree data structure T on t nodes where each node u has a label drawn
from an alphabet Σ. The children of node u are ranked, that is, have left-to-right order. Tree T may
be of arbitrary degree and shape, and the alphabet Σ may be arbitrarily large. Our goal is to design a
compressed storage scheme for T that supports basic navigational operations between adjacent nodes
in T , as well as more sophisticated subpath-search operations over the labeled structure of T . To be
precise, let u be a node in T and let c be a symbol of Σ:

∗CONTACT AUTHOR: Paolo Ferragina, ferragina@di.unipi.it. This paper merges and extends the results pub-
lished in the Procs of the 46th IEEE Focs 2005 [16] and in the Procs of the 15th WWW 2006 [17]. This work has been partially
supported by NSF DMS 0354600 and by the Italian MIUR grants MAIN-STREAM and Italy-Israel FIRB “Pattern Discov-
ery Algorithms in Discrete Structures, with Applications to Bioinformatics”.
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Navigational queries ask for the parent of u, the ith child of u, or the degree of u. The last two opera-
tions might possibly be restricted to the children of u with label c, given that T is ordered and no
restriction on the labeling of its nodes is imposed.

Visualization queries retrieve the nodes in the subtree rooted at u. Any possible order (i.e. pre, in, post)
should be implemented.

Subpath queries ask for the (number occ of) nodes of T that descend from a labeled subpath Π, which
may be anchored anywhere in the tree (i.e. not necessarily in its root). Here “descend” refers to
the direct descendants of Π’s occurrences, hence its offsprings.

The elementary solution to the tree indexing problem above is to represent the tree using a mixture
of pointers and arrays using a total of Θ(t log t) bits.1 This trivially supports each of the navigational
operations in constant time, but it would require the whole visit of the tree to implement the subpath
queries. A more sophisticated approach is needed to search efficiently for arbitrary subpaths over T : it
consists of using a variant of the suffix-tree data structure properly designed to index all T ’s paths [32].
Subpath queries can be supported in O(|Π| log |Σ| + occ) time, but the required space is still Θ(t log t)
bits (with large hidden constants due to the use of suffix trees [33]).

If the space issue is a primary concern, we have to renounce to pointer-based tree representations
and resort the notion of succinct data structures introduced by Jacobson [28] in a seminal work over
seventeen years ago. The key issue addressed by these data structures is to use space close to their
information-theoretic lower bound and yet support various operations efficiently on the indexed data.
Thus, succinct data structures are distinct from simply compressing the input, and then uncompressing
it later at query time. This area of research was initiated by [28] in the special case of unlabeled trees,
that is, considering the structure of the tree but not its labels. The number of binary (unlabeled) trees
on t nodes is Ct =

(
2t+1

t

)
/(2t + 1); therefore log Ct = 2t − Θ(log t) is an obvious lower bound to the

storage complexity of binary trees. [28] presented a storage scheme in 2t + o(t) bits while supporting
the navigational operations in O(1) time. This is a significant improvement over the standard pointer-
based representation of trees, without compromising the performance for navigation operations; it is
also asymptotically optimal (up to lower-order terms) in storage space. Nearly ten years later, Munro
and Raman [42] extended the results with more efficient and also different operations, including subtree
size queries. Since then, a slew of results have further generalized these methods to unlabeled trees
with higher degrees [6] and ever richer sets of operations such as level-ancestor queries [23]. Succinct
representations have been invented for other data structures too, including ordered sets (e.g. [46]), strings
[45], graphs (e.g. [43]), functions [44], permutations [41], and others.

Despite this flurry of activity, the fundamental problem of indexing labeled trees succintly has re-
mained mostly unsolved.2 In fact, the labeled tree case is significantly better motivated than the unlabeled
case because many applications of Computer Science generate navigational problems on labeled trees,
be they for representing data or computation. A recent application is for XML, the de facto format for
data storage, integration, and exchange over the Internet (see http://www.w3.org/XML/). As the
relationships between elements in an XML document are defined by nested structures, XML documents
are often modeled as trees whose nodes are labeled with strings of arbitrary length drawn from a usually

1Throughout this paper we assume that all logarithms are taken to the base 2, whenever not explicitly indicated, and we
assume 0 log 0 = 0.

2We use “indexing succinctly” to mean not only representing or compressing trees, but also supporting navigation and
search operations on them.
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large alphabet Σ. Therefore, at the core of XML-based applications reside efficient data structures for
navigating and searching labeled trees with large Σ.

The information-theoretic lower bound for storing labeled trees is easily seen to be 2t − Θ(log t) +
t log |Σ| bits, where the first two terms follow from the structure of the tree and the last term from the
storage of the node-labels. A trivial solution to the compressed indexing of labeled trees would be to
replicate |Σ| times the known structures for the unlabeled case. This could be somewhat improved by
a suitable divide-and-conquer approach [23] to achieve 2t + t log |Σ| + O(t|Σ| log log log t

log log t
) bits of storage

and support navigational operations in constant time. However, this is far from the optimal even for
moderately large Σ, since the big-O term dominates the others for |Σ| = Ω(log log t). This is discourag-
ing since applications such as XML processing or execution traces routinely generate labeled trees over
large alphabets. Equally discouraging is the state of “techniques” we know for indexing trees to suc-
cinctness. Jacobson [28] reduced the problem of succinct indexing of unlabeled trees to that of ranking
and selection problems on arrays as well as parenthesis matching on a sequence of balanced parentheses.
These techniques have since been extended with other algorithmic ideas such as partitioning the tree into
subtrees. Still, the techniques we have so far, work on the tree structure and cannot embed the label
information in a way that is suitable for efficient navigation or compression.

1.1 Our results
We present a new approach to indexing labeled trees without pointers that supports all the operations
stated above in (near-)optimal time and achieves succinctness not only in information-theoretic sense,
but also at a deeper level of the entropy of the input. This will lead us to compressed indexes for labeled
trees. Our results are based upon a new XBW-transform of the labeled tree T , denoted by xbw[T ],
which linearizes the tree into two coordinated arrays 〈Slast,Sα〉, one capturing the structure and the other
the labels of T . These two arrays are compressible and efficiently searchable, and thus lets us transform
compression and indexing problems on trees into well-understood problems on strings. xbw[T ] has
the optimal size of 2t + t log |Σ| bits (Theorem 1) and can be built and inverted in optimal linear time
(Theorems 2 and 3). In designing the XBW-transform we were inspired by the elegant Burrows-Wheeler
transform (BWT) for strings [7]. In the past few years, the BWT has been the unifying tool for string
compression and indexing, producing many important breakthroughs [45]. In the spirit of BWT, which
relies on suffix sorting for grouping together similar symbols of the input string, our XBW-transform
relies on path sorting to linearize and group the labels of T within the two coordinated xbw[T ]’s arrays.

Using XBW, we present a compression scheme for labeled trees that turns the sophisticated labeled-
tree compression problem into an easier string compression problem. The performance of this scheme
will be evaluated by means of the kth order entropy of the two strings constituting xbw[T ] (Theorem 4).
The resulting algorithm is off from the obvious lower bound of 2t − Θ(log t) bits (which does not even
take into account the node labels), by a factor (Hk(Sα) + 2)/2, where Hk(s) is the kth order empirical
entropy of string s (for a formal definition see Eqn. 1 of Section 3). This bound is never worse than
the log |Σ| factor obtained by encoding the tree T trivially but it can be significantly better depending
on the distribution of the node labels in T . The experiments in Section 5.2 will show the effectiveness
of such a simple tree-compression approach. In Section 3 we will also comment on more sophisticated
instantiations of this scheme that have recently lead to more effective compression results.

Using XBW, we also present a compressed-indexing scheme for labeled trees that turns the tree
indexing problem into the design of rank and select primitives over strings drawn from an arbitrary
alphabet Σ. We recall that: Given a string S[1, t] over Σ, rankc(S, q) is the number of times the sym-
bol c occurs in the prefix S[1, q], and selectc(S, q) is the position of the q-th occurrence of the symbol c
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in S. Literature has many efficient implementations for rank and select (see e.g. [45, 5] and references
therein). XBW lets us use such primitives as a black-box for implementing navigational and search oper-
ations over the labeled tree T , going beyond succinctness to entropy-bounded data structures. Theorems
6, 7, and 8 report our main results which can be summarized as follows. For any alphabet Σ, such that
|Σ| = O(polylog(t)), there exists a succinct indexing of xbw[T ] that takes at most tH0(Sα) + 2t + o(t)
bits and supports all navigational and subpath search operations in optimal time. We can turn these
results to hold for kth order entropy and larger alphabets, but every operation gets slowed down by a
o(log log3 |Σ|) time factor. Note that no prior algorithmic result is known for supporting subpath queries
on trees represented succinctly. We also note that this approach to the indexing of xbw[T ] can be re-
garded to as a pointerless representation of T with additional search functions because it takes at most
(log |Σ| + 2 + o(1)) bits per node, as H0(Sα) ≤ |Σ| (see section 3). It is interesting to note that a
tighter analysis on the compression performance of the proposed indexing scheme shows that it is off of
the tree-compression space bound by just an additional o(t log |Σ|) term which is usually negligible in
practice, as will be shown in the experiments of Section 5.4. Any time/space improvement in the design
of rank and select primitives for strings immediately lead to advancements in the compressed indexing
problem for labeled trees.

We mentioned earlier the approach based on the suffix tree of a tree [32]. There have been a number
of recent results on succinctly representing the suffix tree of a string [45], but the structural properties of
the string have been crucially used in building, inverting and searching that suffix tree. For managing the
suffix tree of a tree succinctly, new approaches and algorithms are needed. Our XBW-transform may be
thought of as the compressed representation for the suffix tree of the tree.

The results of our paper are theoretical in flavor, nonetheless, these results are of immediate relevance
to practical XML processing systems. In Section 5 we discuss some encouraging, preliminary experi-
mental results which were initially published in [17] and are summarized here to highlight the impact of
the XBW-transform on real datasets. We show that a proper adaptation of the XBW-transform allows to
compress XML data, provide access to its content, navigate up and down the XML tree structure, and
search for simple path expressions and substrings, while keeping all data in their compressed form and
uncompressing only a tiny fraction of them at each operation. Our experimental analysis will concen-
trate on two main tools: an XML compressor, called XBZIP, and an XML compressed index, called
XBZIPINDEX. The former tool is simple in that it relies on standard string-compression methods to
squeeze the two arrays of xbw[T ]. Our experiments will show that XBZIP achieves compression ratios
comparable to the state-of-the-art XML-conscious compressors, such as [35, 1, 10], which tend to be sig-
nificantly more sophisticated in employing a number of heuristics to mine structure from the document
in order to compress “similar contexts”. The latter tool XBZIPINDEX will combine the XBW-transform
with effective string-compressed indexes like the FM-index [19], achieving compression performance
up to 35% better and time efficiency order of magnitudes faster than state-of-the-art tools like XGRIND

[49] and XPRESS [39].

REMARK. Subsequent to the conference versions [16, 17] of the present paper, various results have
been published in main conferences on tree compression and indexing problems. Some papers [4, 25, 5]
have proposed improved implementations for the rank and select primitives on strings drawn from
arbitrary alphabets, and [48, 26, 22] have showed how to turn these 0th order entropy bounds into kth
order entropy bounds. These results can be used as black-boxes within our tree compression and indexing
schemes. This is actually what we do in Section 4 where our theorems are improved versions of their
corresponding counterparts in [16, 17] because of this ability to plug in.

Some other papers [4, 5, 29] have recently extended the set of navigational operations that may be
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supported on labeled and multi-labeled trees to more sophisticated queries— like ancestors, descen-
dants and node depth— based on the DFUDS representation of ordinal trees by [6]. They achieved
sub-logarithmic time for those navigational operations and Ω(t) bits of storage. Therefore their solutions
are succinct but cannot be considered entropy-bounded; furthermore, they do not support the powerful
subpath search operation over the tree T as instead we do with the XBW.

Finally, some results have proposed novel uses of our XBW-transform to compress LZ-tries [3] or to
dynamize the labeled-tree compressed indexing problem [27]. These results again show that the XBW is
a very general tool which may spur new results in the theory of tree compression and indexing, as well
in other interesting application contexts, not just XML data.

1.2 Structure of the paper
Section 2 introduces the XBW-transform and describes its structural and optimality properties, and the
optimal algorithms to convert T into xbw[T ] and vice versa. Section 3 describes the tree-compression
scheme based on the XBW-transform and comments on some of its instantiations. Section 4 presents
the (near-)optimal succinct data structures for indexing xbw[T ] and thus supporting in (near-)optimal
time navigational and subpath search operations over the labeled tree T . Finally, Section 5 presents
the compression and indexing tools for XML data, namely XBZIP and XBZIPINDEX, and discuss the
experimental results.

2 The XBW-transform for labeled trees
Let T be an ordered tree of arbitrary fan-out, depth and shape. T consists of n internal nodes and `
leaves, for a total of t = n + ` nodes. Every node of T is labeled with a symbol drawn from an alphabet
Σ. We assume that Σ is the set of labels effectively used in T ’s nodes and that these labels are encoded
with the integers in the range [1, |Σ|]. This assumption needs a preliminary sorting step, but makes the
approach general enough to deal uniformly with labels which are long strings, as it occurs in various
applications (see Section 5).
For each node u, we compute the following information:

• last[u] is a binary flag set to 1 if u is the rightmost (last) child of its parent;

• α[u] denotes the label of u plus one bit that indicates whether node u is internal or a leaf;

• π[u] is the string obtained by concatenating the labels on the upward path from u’s parent to the
root of T (the root as an empty π component).

We point out that the information plugged into α[u] is needed to distinguish between internal nodes
and leaves. There are cases in which the additional bit is not needed, for example when Σ consists of two
disjoint subsets ΣN and ΣL which are used to label internal nodes and leaves, respectively. In this paper,
we follow the common practice (see e.g. [23]) that assumes to have one unique alphabet Σ for labeling
all of T ’s nodes. Nonetheless, for the sake of presentation, we will adopt the notation α[u] ∈ ΣN or
α[u] ∈ ΣL to indicate whether u is an internal node or a leaf of T , respectively. See Figure 1.a for
an illustrative example in which we have used uppercase and lowercase letters to denote ΣN and ΣL,
respectively.

To define the XBW-transform we build a sorted multi-set S consisting of t triplets, one for each
node of T . We build S in two steps: (1) Visit T in pre-order and, for each visited node u, insert the
triplet 〈last[u], α[u], π[u]〉 in S; (2) Stably sort S according to the π-component of its triplets. Since
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Figure 1: (a) A labeled tree T where ΣN = {A,B, C, D, E} and ΣL = {a, b, c}. Notice that α[u] = α[v] = B
and π[u] = π[v] = A. (b) The multi-set S obtained after the pre-order visit of T . (c) The final multi-set S after the
stable sort based on the π’s component of its triplets.

sibling nodes of T may be labeled with the same symbol, many nodes may have the same π-string.
Consequently, S is a multi-set, and we need the stable sort to preserve the identity of the triplets. Note
that the triplet of the root goes to the first position. Hereafter we will use Slast[i] (resp. Sα[i], Sπ[i]) to
refer to the last (resp. α, π) component of the i-th triplet of S.

Theorem 1 The XBW-transform of a labeled tree T consists of the two arrays 〈Slast,Sα〉 after sorting,
and takes 2t + t dlog |Σ|e bits.

The space cost is derived by observing that Sα needs t(dlog |Σ|e + 1) bits since we need to encode
each symbol of Σ plus the distinguishing (leaf vs. internal node label) bit, and Slast needs t bits. This
space bound is optimal in the worst case (up to lower order terms) since 2t − Θ(log t) bits are needed
to represent the t-node ordinal tree structure of T [28], and t dlog |Σ|e bits are needed to represent T ’s
labels.

We note that any pair 〈Slast[i],Sα[i]〉 corresponds to a node u of the tree T . Consequently, in the rest
of the paper we will interchangeably use u or S[i], depending on the context. We notice that the XBW-
transform induces an implicit numbering on the tree nodes within the range [1, t]. Other numbering
schemes do exist in the literature but use a larger numbering range [50], or use a large range which is
squeezed on-the-fly by means of constant-time query operations [6], or use the minimal range [1, t] but
do not offer the nice compression and indexing properties of the XBW-transform [47].

The following two properties of the ordered multi-set S[1, t] constitute the basic block upon which
we will design our algorithms for computing, inverting, navigating and searching xbw[T ]. They im-
mediately follow from the definition of the transform (Property 1) and from the way S has been built
(Property 2).

Property 1 “Composition” of S.

1. Slast has n bits set to 1 (one for each internal node), and ` = t− n bits set to 0.

2. Sα is a permutation of the symbols labeling T ’s nodes.
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3. Sπ contains all the upward labeled paths of T consisting of internal-node labels only. Each path
is repeated a number of times equal to the number of its offsprings.

Property 2 “Structural relation” between T and S.

1. The first triplet of S refers to the root of T .

2. The triplet of node u precedes the triplet of node v in S iff either π[u] < π[v] lexicographically, or
π[u] = π[v] and u precedes v in the pre-order visit of T .

3. Let u1, . . . , uz be the children of node u in T . The triplets s[u1], . . . , s[uz] lie contiguously in S
following this order. Moreover, the subarray Slast[u1 · · ·uz] provides the unary encoding of u’s
degree, namely Slast[uz] = 1 and Slast[ui] = 0 for all 1 ≤ i < z.

4. Let u, v be two nodes of T having the same label α[u] = α[v]. If the triplet of node u precedes the
triplet of node v in S, then the (contiguous block of) children of u precede the (contiguous block
of) children of v in S.

As an illustrative example of the above properties, let us look at Figure 1 in which we have two
nodes u and v labeled B, whose upward path is A. The triplet of u occurs at S[2] whereas the triplet
of v occurs at S[4], thus reflecting the fact that u precedes v in the pre-order visit of T (Property 2,
item 2). Actually, the triplets of the two nodes are not contiguous because of the second child of the
root, whose upward path is also A. Node u has three children whose triplets occur contiguously at S[5, 7]
with Slast[5, 7] = 001 (Property 2, item 3). Node v follows node u in S, and indeed the single child of v
occurs at S[8] correctly past the triplets of u’s children (Property 2, item 4). This holds for any pair of
nodes, independently of their upward path: S[5] and S[11] are equally labeled but have different upward
paths, nonetheless their children S[12] and S[15] preserve their relative order.

The following property shows that the tree structure of T is implicitly encoded into xbw[T ], and
can be algorithmically used to simulate a navigation of T given rank/select data structures over the two
arrays of xbw[T ].

Property 3 Let c ∈ ΣN be an internal node label, and let S[j1, j2] be all triplets whose π-components
are prefixed by symbol c. If u is the ith node labeled c in Sα, its children occur contiguously within
S[j1, j2] and delimited by the (i− 1)st and the ith bit set to 1 in Slast[j1, j2].

Proof: Given the definition of Sπ and the stable sort of S, the range S[j1, j2] identifies all children of
nodes labeled c in T . All these children occur in S subdivided into groups which are delimited by triplets
whose last-component is set to 1 (Property 2, item 3). Moreover, these groups preserve the order of their
parents (Property 2, item 4). Consequently, if u is the ith node labeled c in Sα, its children will form the
ith block of children in S[j1, j2]. By Property 2 item 3, u’s children are delimited by the (i− 1)st and the
ith 1s in Slast[j1, j2].

As an illustrative example, let us look in Figure 1 at node v whose label B is the second one in Sα.
All the children of nodes labeled B occur in the range S[5, 8], they include also the three children of u.
According to Property 3, the children of v (just one!) form the second group in S[5, 8] and, hence, are
delimited by the first and the second bit set to 1 in Slast (namely, last[7] = last[8] = 1). From this we
also infer that v has one child and this is stored in S[8, 8].
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Algorithm PathSort(T )

1. Create the array IntNodes[1, t] initially empty.
2. Visit the internal nodes of T in preorder. Let u denote the ith visited node. Write in IntNodes[i]

the symbol α[u], the level of u in T , and the position in IntNodes of u’s parent.
3. Let j ∈ {0, 1, 2} be such that the number of nodes in IntNodes whose level is ≡ j (mod 3) is

at least t/3. Sort recursively the upwards subpaths starting at nodes in levels 6≡ j (mod 3).
4. Sort the upward sub-paths starting at nodes in levels ≡ j mod 3 using the result of Step 3.
5. Merge the two sets of sorted subpaths by exploiting their lexicographic names.

Figure 2: Optimal algorithm for sorting the π-components of the tree T .

2.1 From T to xbw[T ]: constructing the transform
The explicit construction of S through the concretization of π-strings requires too much space and time.
As a limit case, if T consists of a single path of t nodes, the overall size of Sπ is Θ(t2). Therefore the
construction of S must be implicit. Such a construction will be done in linear time. However, for the sake
of presentation, we start by proposing an algorithm which runs in O(t log t) time and uses O(t log t) bits
of space. We will then refine this idea to achieve the optimal O(t) time complexity, based on a simple
generalization of the skew algorithm for suffix array construction [30], here extended from strings to
labeled trees.

An O(t log t)-time algorithm for constructing xbw[T ]. The algorithm is a reminiscence of the
so called tree contraction technique used in the PRAM model to solve several tree-based problems in
logarithmic parallel-time. It operates in O(log t) phases, and its ultimate goal is to assign to each upward
path in T an integer (hereafter called name) that denotes its lexicographic rank among all upward paths
of T . Given these path-names, the sorting of all S’s triplets would boil down to a linear-time radix sort.
In phase i, the algorithm operates on a labeled tree Ti which is a contracted version of T : the parent
pi(u) of a node u in Ti is the 2i-th ancestor of u in the original tree T . At the beginning we set T0 = T ;
in the (i + 1)th phase, we derive the structure of Ti+1 from the one of Ti by just contracting two parent
pointers from any node. This means that, at any recursive step, the height of Ti is shrinking by a factor
two and the fan-out of Ti is possibly increasing. The latter issue will not be a problem because we will
always access the tree via parent pointers in constant time.

In order to assign names to upward paths of T , the algorithm proceeds via better and better approxi-
mations during its recursive steps. At the beginning we have T0 = T , and the algorithm assigns to every
node u a label name0[u] = α[u]. At a generic phase i > 0, the label namei[u] becomes the lexico-
graphic rank of the labeled (upward) subpath in T that starts from u and leads to its 2ith ancestor in T .
Let us denote this subpath with π2i [u]. Notice that π2i [u] is actually the prefix of length 2i of π[u], and
this prefix is actually the one denoted by the (contracted) edge that connects u to its parent pi(u) in Ti. It
is easy to note that Θ(log t) phases are sufficient to assign lexicographic names to all (full) upward paths
of T . For deriving namei+1[u] from namei[u], radix-sort all pairs 〈namei[u], namei[pi(u)]〉. Given
that the names are integers in the range [1, t], every recursive step takes O(t) time, and thus the algorithm
takes overall O(t log t) time.

An optimal O(t)-time algorithm for constructing xbw[T ]. In order to achieve time optimality,
we need to avoid some duplicate work that naturally arises in the algorithm above. The tree-contraction
technique leads to considers all Θ(t) upward paths at all recursive phases, independently of the existence

8



of shared subpaths. Our optimal algorithm, summarized in Figure 2, operates recursively over a tree
which shrinks by height and by number of nodes (and hence by processed upward paths). The algorithm
is based on a simple generalization of the skew algorithm for suffix array construction of strings [30],
here extended to deal with tree-based data. The only non-trivial step of this generalization is the recursion
(Step 3) in which we restrict the radix-sorting to only the (upward) subpaths that start at nodes in levels
6≡ j (mod 3) (above we sorted all possible subpaths). The parameter j is chosen in such a way that the
number of nodes being at level ≡ j (mod 3) is at least t/3; hence a constant fraction of upward paths
are ensured to be dropped from the subsequent recursive steps.3 Note that: (1) the height of the new
(contracted) tree shrinks by a factor three (instead of two), hence the node naming requires the radix sort
over triples of names rather than on pairs of names; (2) given the choice of j, the number of nodes of the
new (contracted) tree will be at most 2t/3, thus ensuring that the running time of the algorithm satisfies
the recurrence T (t) = T (2t/3) + Θ(t) = Θ(t); (3) following an argument similar to [30], the names
of the dropped subpaths can be computed in O(t) time from the names of the non-dropped subpaths, by
radix sorting. In fact, it suffices to note that any subpath starting at level≡ j (mod 3), can be expressed
as the concatenation of a node and a subpath starting at level 6≡ j (mod 3) (whose name is recursively
known). The merging of the two sets of subpaths, to achieve a unique naming assignment, can be done
as in [30]. Noting that each element of the array IntNodes takes O(log t) bits we have:

Theorem 2 Let T be a labeled tree with t nodes and labels drawn from an alphabet Σ. The transform
xbw[T ] can be computed in O(t) time and O(t log t) bits of working space.

Recall that we are assuming all symbols in Σ be used to label T ’s nodes, and that they are packed
into the range [1, t]. Otherwise, we should add the sorting cost of naming the n internal node labels of T
by consecutive integers.

2.2 From xbw[T ] to T : inverting the transform
Property 3 ensures that the two arrays 〈Slast,Sα〉 forming xbw[T ] contain enough information for deriv-
ing parent-child relations between T ’s nodes. The key issue is therefore to show that the reconstruction
of T may be done in O(t) optimal linear time, and thus that each parent-child relationship can be in-
ferred in constant-amortized time. The pseudocode of RebuildTree is given in Figure 3. It deploys two
subroutines BuildF and BuildJ which are detailed in Figures 4 and 5.

The algorithm RebuildTree works in three phases, takes O(t) optimal time, and reconstructs the tree
T in depth-first order. In the first phase (Step 1) it builds the array F that approximates Sπ at its first
symbol: F[x] stores the position in S of the first triplet whose π-component is prefixed by x. For the
example in Figure 1 we have F[B] = 5, since S[5] is the first triplet having its π-component prefixed
by the internal-node label B. In the second phase (Step 2), the algorithm exploits F to efficiently build
the array J which encodes the first-child pointer of each node in T : J[i] = j if S[j] is the first child
of S[i], and J[i] = −1 if S[i] is a leaf. For the example in Figure 1 we have J[2] = 5, since the node
u at S[2] has its first child stored at S[5]. In the third final phase, the algorithm deploys the array J to
simulate a depth-first visit of T , creates its labeled nodes, and properly connects them to their parents. In
what follows we concentrate on proving the correctness of algorithm RebuildTree, since its linear time
complexity can be easily derived from its computational structure.

3In the original Skew Algorithm [30], the recursion consists of sorting all suffixes starting at positions 6≡ 1 (mod 3).
The algorithm works equally well if instead of 1 we use either 0 or 2 because any choice ensures a constant shrinking of the
contracted string which is passed to the recursive call. Of course, this may be not the case for a tree T of arbitrary fan-out,
depth and shape, as the one we are dealing with.
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Algorithm RebuildTree(xbw[T ])

1. F = BuildF(xbw[T ]); {F[x] = first entry in S whose π-component is prefixed by symbol x}

2. J = BuildJ(xbw[T ], F); {J[i] = position in S of the first-child of S[i]; J[i] = −1 if leaf.}
3. Create node r and set Q = {〈1, r〉};
4. while Q 6= ∅ do {We still have nodes to create in T }
5. 〈i, u〉 = pop(Q);
6. j = J[i]; {Take the block of u’s children in S}
7. if (j = −1) then continue; {u is a leaf of T }
8. Find first j′ ≥ j such that Slast[j

′] = 1; {S[j, j′] are the children of u in T }
9. for h = j′ downto j do { Recall that Q is a stack}

10. Create the node v labeled Sα[h];
11. Attach v as first child of u;
12. push(〈h, v〉,Q);
13. return node r.

Figure 3: Reconstruct T from xbw[T ] in depth-first order.

Algorithm BuildF(xbw[T ])

1. for i = 1, . . . , t do C[Sα[i]] ++; { Count occurrences of node labels }
2. F[1] = 2; { Sπ[1] is the empty string }
3. for i = 1, . . . , |ΣN | − 1 do { consider just the internal-node labels }
4. s = 0; j = F[i];
5. while (s 6= C[i]) do { not all blocks of children have been passed }
6. if (Slast[j + +] = 1) then s + +; { one further block of children has passed}
7. F[i + 1] = j;
8. return F.

Figure 4: Compute array F such that F[i] = j iff Sπ[j] is the first entry of S prefixed by i.
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Algorithm BuildJ(xbw[T ], F)

1. for i = 1, . . . , t do
2. if (Sα[i] ∈ ΣL) then J[i] = −1; { Sα[i] is a leaf label}
3. else
4. z = J[i] = F[Sα[i]]; { Sα[i] is an internal-node label }
5. while (Slast[z] 6= 1) do z + +; { reach the last child of Sα[i] }
6. F(Sα[i]) = z + 1;
7. return J

Figure 5: Compute array J such that J[i] = j if S[j] is the first child of S[i], and J[i] = −1 if S[i] is a
leaf.

We start noting that the computation of array F may be limited to symbols in ΣN since π-components
are built upon internal-node labels only (Property 1, item 3). Algorithm BuildF in Figure 4 first stores in
C[y] the number of occurrences of each symbol y in T , and then computes F inductively. The base case is
obvious: Step 2 sets F[1] = 2 since Sπ[1] is the empty string (Property 2, item 1), and we have assumed
that all symbols of Σ are present in T . For the ith inductive step, we know that all π-components
prefixed by i correspond to children of nodes labeled i, and these children occur contiguously in S
starting at position F[i] by Property 3. Moreover, since the nodes labeled i are C[i] in number, we have
C[i] contiguous blocks of children which can be identified by looking at entries set to 1 in Slast. The loop
in Steps 5–6 serves for this purpose, and therefore the value F[i + 1] is correctly set at Step 7.

Algorithm BuildJ in Figure 5 computes the array J in O(t) optimal time via a single scan of Sα, by
reusing the space allocated for array F with the following invariant: for every symbol c, F[c] points to
the block of children of the next occurrence in Sα of a node labeled c (step 6). At the beginning F is
correctly set, due to its definition. For the inductive step we exploit Property 3, that is, if c = Sα[i] is
the kth occurrence of symbol c in Sα, then the children of S[i] correspond to the k-th block of children
counting from position F[c]. Given that we are scanning Sα, F[c] advances on these blocks of children
as occurrences of c are met over Sα (Steps 5 and 6). Similarly we set the entries of the array J (Step 4).
Noting that each element of this array takes O(log t) bits we have:

Theorem 3 A t-node labeled tree T can be reconstructed from its transform xbw[T ] in optimal O(t)
time and O(t log t) bits of working space.

3 Compressing labeled trees
The locality principle exploited in string compressors states that each element of a string depends strongly
on its nearest neighbors, namely, predecessor and/or successor symbols. The context of a symbol c is
defined on strings as the substring that precedes c. A k−context is a context of length k. The larger is k,
the better should be the prediction of c given its k-context. Given this, the compressibility of a string s is
usually measured in terms of its kth order empirical entropy, where k ≥ 0 [37]. The 0th order empirical
entropy of a string s is defined as: H0(s) = −(1/|s|) ∑

c∈Σ(sc log(sc/|s|), where sc is the number of
occurrences of symbol c in s. Given H0, the k-th order empirical entropy of string s is defined as:

Hk(s) = (1/|s|)
∑

ρ∈Σk

|sρ|H0(sρ), (1)
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Algorithm TreeCompress(T , Clast, Cα)

1. Compute the XBW-transform of T , namely xbw[T ] = 〈Slast,Sα〉.
2. Use compressor Clast to squeeze Slast.
3. Use compressor Cα to squeeze Sα.

Figure 6: Algorithm to compress the labeled tree T .

where sρ is the string formed by all symbols x such that x immediately follows an occurrence of substring
ρ in s. As an example, if s = ababcabdaa and ρ = ab, then sρ = acd.

Our starting point for compressing xbw[T ] is a generalization of the notion of k-context to labeled-
tree data. The theory of Markov random fields [53] extends the k-context notion for strings to more
general mathematical structures, including trees, by defining the symbol’s nearest neighbors as its ances-
tors, its children, or any set of nearest nodes. In this paper, we naturally define the k-context of a node u
in T as the k-long prefix of π[u], and denote it by πk[u]. Therefore πk[u] is the k-long subpath leading to
u in T , or equivalently u descends from a subpath labeled as πk[u] (note that the nodes in πk[u] are met
upwards). As for string data, we postulate that similarly labeled nodes descend from similar k-contexts,
and that the longer is k the better should be the prediction provided by πk[u] for the symbol labeling node
u (i.e. α[u]). Section 5 supports this statement with a practical example drawn from XML data.

The xbw[T ] shows a local homogeneity property on the string Sα that can be proved via the notion of
k-contexts on trees. This property mimics, on labeled trees, the same strong property obtained for strings
by the Burrows-Wheeler Transform [7]. Specifically, node labels get distributed over Sα according
to a pattern that clusters closely the labels which descend from “similar” upward paths sharing long
prefixes. To see this, let us pick any two nodes u and v, and consider their contexts π[u] and π[v]. Given
the sorting of S, the longer is the shared prefix between π[u] and π[v], the closer are the labels α[u]
and α[v] in Sα. These close labels are thus expected to be few distinct ones, and thus Sα is expected to
be locally homogeneous. Hence we may exploit all the algorithmic machinery recently developed for
BW-based compressors to achieve high compression (see e.g. [15]). As far as the compressibility of
Slast is concerned, we note that it depends on the sorting of S and thus, we might exploit some proper
compressors for it too.

Our compression scheme for trees, as indicated in Figure 6, deploys the XBW-transform for turning
the sophisticated labeled-tree compression problem into an easier string compression problem. To this
aim, it uses two string compressors Cα and Clast to squeeze the two strings that compose xbw[T ], by
exploiting their fine specialties. Of course, many choices are possible for Clast and Cα, each having
implications on the algorithm time and compression bounds. The approach is left purposedly general.
In the following Theorem 4 we merely suggest a possible implementation, which will be investigated
experimentally in Section 5.2, and then comment on some more sophisticated tree-compressors like the
ones proposed in [16] and [29]. We have:

Theorem 4 Let Cα be a kth order string compressor that compresses any string w into |w|Hk(w) +
|w| + o(|w|) bits, in O(|w|) time (e.g., see [15]); and let Clast be an algorithm that stores Slast without
compression. With this instantiation, algorithm TreeCompress compresses the labeled tree T within
tHk(Sα) + 2t + o(t) bits and takes O(t) optimal time.

This simple solution is off from the lower bound of 2t−Θ(log t) bits (which does not even take into
account the node labels), by a factor (Hk(Sα) + 2)/2. Since Hk(Sα) ≤ log |Σ|, the above bound is never
worse than the log |Σ| factor obtained by encoding trivially the tree T . However it can be significantly
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better depending on the distribution of the labels among the tree nodes. Indeed the experiments in Section
5.2 will support this statement.

We can obviously aim for more by using two distinct compressors specialized on the features of
strings Slast and Sα. As an example, note that Sα may be partitioned into substrings s1, s2, . . . , sr such
that, si is formed by all symbols that descend from a k-long subpath labeled ρi in T . The local homogene-
ity property of Sα (see above) implies that each si is highly compressible, and the sorting of S implies
that Sα’s partitioning can be efficiently identified via a simple modification of algorithm PathSort. The
compression of Sα therefore may proceed in two steps [16]:

1. Partition Sα into substrings s1, s2, . . . , sr according to the r distinct subpaths of length k occurring
in T .

2. Compress individually each of these substrings si via any string-based compressor.

The compression performance of this algorithm has been evaluated in [16] by generalizing the notion
of kth order empirical entropy from strings to trees, and by adopting the boosting technique in [15] for
computing a partition of Sα which is optimal under some specific space-saving criteria. As far as the
compression of Slast is concerned, we may deploy the fact that this string is actually the concatenation
of unary encodings of node degrees, and thus we can use a 0th order compressor for them [29]. This
could achieve high space saving in the case of very regular trees (see [29] for details). We prefer not
to detail this approach which would require introducing and discussing new entropy notions and many
other technicalities. Also, we think that these novel entropy notions for trees, and the corresponding
sophisticated tree-compression algorithms, need further experimental evaluations to prove that they yield
significant improvements over the ones we present in the following sections. Recent experiments on the
boosting technique for strings [13], which underlies the tree-compressor of [16], have indeed shown that
such a technique is slow, and comparable results can be achieved by simpler approaches. We therefore
refer the interested reader to the seminal papers [16, 29] for further details and research issues.

Clearly TreeCompress may benefit from any advancement in string compression or (unlabeled) tree
compression, as it actually occurred with the results recently published in [14, 13, 4, 5, 29]. Moreover,
we point out that Slast is negligible in size with respect to Sα for most practical applications (see Section
5), so that any advancement in T ’s compression may mainly come from Sα’s squeezing. This is what
we will mainly address in Section 5.2, where we will instantiate the pseudocode of Figure 6 with PPM, a
very effective kth order compressors.

4 Indexing compressed labeled trees
Property 3 ensures that the two arrays 〈Slast,Sα〉 of xbw[T ] provide an equivalent and pointerless repre-
sentation of the labeled tree T which implicitly encodes its parent-child information. In this section we
make one step further, showing that it is possible to design a compressed representation of xbw[T ] that
efficiently (in fact, optimally) supports both navigational and sophisticated path-search operations over
the labeled tree T .

Let u be the node represented by the triplet S[i]; k be a positive integer at most equal to the maximum
node degree in T ; and c be a symbol of Σ. The following list summarizes the operations supported by
the compressed representation.

GetRankedChild(i, k) returns the position in S of the kth child of u; the output is −1 if this child does
not exist. As an example, GetChildren(2, 2) = 6 in Figure 1.
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GetCharRankedChild(i, c, k) returns the position in S of the triplet representing the kth child of u
among the ones whose label is c. The output is −1 if this child does not exist. As an example,
GetChildren(1, B, 2) = 4 in Figure 1.

GetDegree(i) returns the number of children of u.

GetCharDegree(i,c) returns the number of children of u labeled c.

GetParent(i) returns the position in S of the triplet representing the parent of u. The output is −1 if
i = 1 (the root). As an example, GetParent(8) = 4 in Figure 1.

GetSubtree(i) returns the node labels of the subtree rooted at u. Any possible order (i.e. pre, in, post)
may be implemented.

SubPathSearch(Π) Let Π be the labeled path c1c2 · · · ck. This operation determines the range
S[First, Last] of nodes which are immediate descendants of each occurrence of Π in T . Note that
all strings in Sπ[First, Last] are prefixed by ΠR. As an example, SubPathSearch(BD) = [12, 13]
and SubPathSearch(AB) = [5, 8] in Figure 1.

In the rest of this paper we will call the first six operations navigational, and the last one search
operation. We remark that SubPathSearch(Π) is the one that actually distinguishes the xbw[T ] from all
the other tree encodings proposed in the literature, like BP [43] and DFUDS or its variations [6, 23,
5, 29]. In section 5 we propose another search operation over xbw[T ] which is specialized to work on
XML data. This further strengthens the generality of our transform.

An important ingredient of our compressed-indexing solution is the use of rank and select primitives
over strings drawn from an arbitrary alphabet Σ. Given a string S[1, t] over alphabet Σ:

• rankc(S, q) is the number of times the symbol c ∈ Σ occurs in the prefix S[1, q].

• selectc(S, q) is the position of the q-th occurrence of the symbol c in S.

The algorithmic literature provides many efficient implementations for rank and select (e.g., see
[45, 5] and references therein). We shall use the best known results in this context as a black-box for
implementing our navigational and search operations. This actually shows that the xbw[T ] reduces the
sophisticated compressed indexing of labeled trees to the basic problem of compressed rank and select
queries over strings. As a result, any improvement to rank and select implementations would naturally
lead to an improvement of our solutions. The following Lemma 5 states the best known bounds in this
context.

Lemma 5 Let S be a string over the alphabet Σ. We have:

1. For |Σ| = O(polylog(|S|)), the generalized wavelet tree of [20] supports rank and select queries
in O(1) time using |S|H0(S) + o(|S|) bits of space, and supports the retrieval of any character of
S in the same time bound.

2. For general Σ, the data structure in [5] supports rank and select queries in o(log log3 |Σ|) time,
using |S|Hk(S) + o(|S| log |Σ|) bits of space, and supports the retrieval of any character of S in
the same time bound.4

4To be precise, rank takes O(log log2 |Σ| log log log |Σ|) time, and select takes O(log log |Σ| log log log |Σ|) time.
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Algorithm GetChildren(i)

1. if (Sα[i] ∈ ΣL) then return −1; { S[i] is a leaf }
2. c = Sα[i]; { S[i] is labeled c }
3. r = rankc(Sα, i);
4. y = select1(A, c); { y = F[c] }
5. z = rank1(Slast, y − 1);
6. First = select1(Slast, z+r− 1)+1;
7. Last = select1(Slast, z + r);
8. return (First, Last).

Figure 7: Algorithm for computing the block S[First, Last] of children of S[i], if any.

The compressed indexing of xbw[T ] will be based on three compressed data structures that support
rank and select queries over the two strings Sα and Slast, and over an auxiliary binary array A[1, t]
defined as: A[1] = 1, A[j] = 1 iff the first symbol of Sπ[j] differs from the first symbol of Sπ[j − 1]. It
easy to see that, by means of rank and select operations over A, we can succinctly implement the array
F deployed in the algorithms of figures 4 and 5.

In the next sections we detail the implementation of navigational and search operations over T , build-
ing them on rank and select data structures for arbitrary strings. This actually shows that the xbw[T ]
reduces the sophisticated compressed indexing of labeled trees to the basic problem of compressed rank
and select queries over strings.

4.1 Tree Navigation
We start this section by introducing a subroutine, called GetChildren(i), that returns the contiguous
range of positions in S representing the children of S[i]. The pseudocode is given in Figure 7. Given
the label c of node S[i] (Step 2), GetChildren determines the number r of occurrences of c in Sα[1, i]
(Step 3), and then the position F[c] through a select operation onA (Step 4). This operation exploits the
presence of all the symbols of Σ in Sα, where c is coded with an integer. By Property 3, the children of
S[i] are located at the rth block of children following position F[c]. Steps 5–7 compute this block. Note
that (Last− First + 1) provides the output of GetDegree(i).

The pseudocodes of GetRankedChild in Figure 8, and GetCharRankedChild in Figure 9, easily
follow from algorithm GetChildren. We just point out that the value (y2 − y1) computed in Step 4
of GetCharRankedChild provides the number of children of S[i] labeled with symbol c (hence the
result of GetCharDegree (i, c)). We also notice that algorithm GetSubtree(i) can be implemented by
invoking GetChildren over all nodes descending from S[i]. By varying the order in which we process
the children of every visited node, we can implement various kinds of tree visits– pre, in, post.

Example 1 Pick node u at entry S[2] of Figure 1. GetChildren(2) determines the label Sα[2] = B of u,
the starting position y = select1(A, 2) = F [B] = 5 of the π-strings prefixed by B (whose integer code
is 2), the rank k = rankB(Sα, 2) = 1 of u’s label in Sα, and z = rank1(Sα, 4) = 1. By Property 3,
the children of u are located at block k = 1 counting from S[5], or equivalently at block z + k = 2
counting from the beginning. The algorithm reports First = select1(Slast, 1) + 1 = 5 and Last =
select1(Slast, 2) = 7. Thus, u has Last− First + 1 = 3 children, located in the range S[5, 7].
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Algorithm GetRankedChild(i, k)

1. (First, Last) = GetChildren(i);
2. if (k > Last− First + 1) return −1;
3. else return First + k − 1.

Figure 8: Algorithm for computing the kth child of node S[i]. The output is −1 if the node is a leaf or k
is larger than its fan-out.

Algorithm GetCharRankedChild(i, c, k)

1. (First, Last) = GetChildren(i);
2. y1 = rankc(Sα, First− 1);
3. y2 = rankc(Sα, Last);
4. if (k > y2− y1) return −1;
5. else return selectc(Sα, y1 + k).

Figure 9: Algorithm for computing the kth c-labeled child of S[i], if any.

Algorithm GetParent is actually the inverse of GetChildren. It computes the symbol c that prefixes
the upward path leading to S[i]. This is actually the label of the parent of this node. As in GetChildren
step 2 implements this by taking advantage of array A and the presence of all Σ’s symbols in Sα. Then
the parent of S[i] is searched among the nodes labeled c in Sα. To do this we exploit Property 3 in a
reverse manner. Namely, we compute the number k of children-blocks in the range S[y, i] (Step 4), these
are children of nodes labeled c and preceding i in the stable sort of S. Then we select the kth occurrence
of c in Sα (Step 5), which is properly the parent of S[i].

Example 2 Consider Figure 1 and pick the child S[8] of node v in T . GetParent(8) should therefore
return 4, since v = S[4]. The algorithm GetParent computes v’s label c = 2 (i.e., B), y = 5 (i.e. Sπ[5, 8]
are strings prefixed by B) and k = 1 so S[i] belongs to the (k + 1) = 2nd group of children of nodes
labeled B. Finally p is correctly set to selectB(Sα, 2) = 4.

By using proper Rank/Select data structures over the arrays in xbw[T ] and A, we can prove the
following.

Algorithm GetParent(i)

1. if (i == 1) then return −1;
2. c = rank1(A, i);
3. y = select1(A, c);
4. k = rank1(Slast, i−1)−rank1(Slast, y−1);
5. p = selectc(Sα, k + 1);
6. return p.

Figure 10: Algorithm for computing the parent of S[i]. The output is −1 if S[i] is the root of T .
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Theorem 6 For any alphabet Σ, such that |Σ| = O(polylog(t)), there exists a succinct indexing of
xbw[T ] that takes at most tH0(Sα) + 2t + o(t) bits and supports all navigational operations listed at
the beginning of Section 4 in O(1) time. The original tree T , and any of its subtrees, can be recovered in
optimal linear time.

Proof: Use Lemma 5 (point 1) to implement rank and select data structures over Sα, Slast, andA. Since
arrays Slast,A are binary, we have H0(Slast) ≤ 1, H0(A) ≤ 1, and the upper bound 2t + o(t) easily
follows.

We note that H0(Sα) ≤ log |Σ|, hence we are indexing xbw[T ] in the same space of its plain repre-
sentation, up to lower order terms (cfr. Theorem 1). This also means that (1 + o(1)) log |Σ| bits per node
are enough to support navigational operations over T . In other words, this succinct index over xbw[T ]
is a pointerless representation of T with additional functionalities.

Theorem 7 For any alphabet Σ, there exists a compressed representation for xbw[T ] that takes at most
t(Hk(Sα) + Hk(Slast) + Hk(A)) + o(t log |Σ|) bits and supports all navigational operations listed at the
beginning of Section 4 in o(log log3 |Σ|) time. The original tree T can be recovered in optimal linear
time. A s-sized subtree of T can be recovered in o(s log log3 |Σ|) time.

Proof: Use Lemma 5 (point 2) to implement rank and select over the three strings Sα, Slast andA.

As we will show in Section 5 the string Sα is the most demanding to be compressed; so we can
crudely state the bound Hk(Slast)+Hk(A) ≤ 2. Then, from the above Theorem 7, we are able to index a
labeled tree T using at most 2 + Hk(Sα) bits per node, where Hk(Sα) ≤ H0(Sα) and it is possibly much
smaller. If we compare this bound with the plain storage of xbw[T ] (Theorem 1), we note that it is never
worse, but can be significantly better depending on the distribution of the node labels in T . Furthermore,
it offers navigational operations over tree T . Compared to the compressed storage of T in Theorem 4,
we note that our compressed-indexing bound is off of that one by just an additional tHk(A) term. This
latter may be o(t) in theory, and is usually negligible in practice as shown in Section 5.4.

4.2 Tree search
Given a labeled path Π = c1c2 · · · cl, the algorithm SubPathSearch given in figure 11 aims at finding
the nodes u which are immediate descendants of a subpath Π, anchored at any (internal) node of T .
Because of the sorting of S, the triplets corresponding to these nodes are contiguous in S, and their π-
components are prefixed by ΠR (since they denote upward paths in T ). Hereafter we will use the notation
[First, Last] to indicate this range of S’s entries. Given the range, we can easily count in constant time
the number of nodes descending from Π in T . A bit more tricky is the computation of the number of
times Π occurs in T (see below).

Algorithm SubPathSearch computes the range [First, Last] in |Π| = l phases, each one preserving
the following invariant:

Invariant of Phase i: At the end of the i-th phase, Sπ[First] is the first entry prefixed by Π[1, i]R, and
Sπ[Last] is the last entry prefixed by Π[1, i]R, where sR is the reversal of string s.

At the beginning (i.e. i = 1), First and Last are easily determined via the entries F[c1] and F[c1 + 1]− 1,
which point to the first and last entry of Sπ prefixed by c1 (by definition of array F). Since we do not have
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Algorithm SubPathSearch(Π)

1. First = F(c1); Last = F(c1 + 1)− 1; {Use A to compute F}
2. if (First > Last) then return “Π is not a subpath of T ”;
3. for i = 2, . . . , k do
4. k1 = rankci

(Sα, First− 1); z1 = selectci
(Sα, k1 + 1); { first entry in Sα[First, t] labeled ci }

5. k2 = rankci
(Sα, Last); z2 = selectci

(Sα, k2); { last entry in Sα[1, Last] labeled ci }
6. if (z1 > z2) then return “Π is not a subpath of T ”;
7. First = GetRankedChild(z1, 1); { get the first child of S[z1] }
8. Last = GetRankedChild(z2, GetDegree(z2)); { get the last child of S[z2] }
9. return (First, Last).

Figure 11: Compute the range of S’s entries whose upward path is prefixed by ΠR = clcl−1 · · · c1.

array F, we implement this operations via rank and select queries over array A. Let us assume that the
invariant holds for Phase i − 1, and prove that the ith iteration of the for-loop in algorithm SubPath-
Search preserves the invariant. More precisely, let Sπ[First, Last] be all entries prefixed by Π[1, i−1]R.
So S[First, Last] contains all nodes descending from Π[1, i − 1]. SubPathSearch determines S[z1]
(resp. S[z2]) as the first (resp. last) node in S[First, Last] that descends from Π[1, i − 1] and is labeled
ci, if any (Steps 4–6). Then it jumps to the first child of S[z1] and the last child of S[z2]. From Property
2 item 2, and the correctness of algorithms GetChildren and GetDegree, we infer that the positions of
these two children are exactly the first (resp. last) entry in S whose π-component is prefixed by Π[1, i]R.

If we compute Last − First + 1 we get the number of offsprings from Π. If, instead, we are in-
terested in the number of occurrences of path Π in T , then we have to compute: rank1(Slast, Last) −
rank1(Slast, First − 1) + 1. This operation actually counts the number of blocks of children (i.e. off-
springs) descending from Π (Property 2, item 3).

Example 3 Refer to Figure 1, and let Π = BD. SubPathSearch(Π) returns the range [12, 13] as follows.
At the beginning First = F[B] = 5 and Last = F[C] − 1 = 8. In fact, S[5, 8] are all nodes descending
from the subpath B. The next phase takes c2 = D, and computes k1 = 0 and k2 = 2. As a result z1 = 5
and z2 = 8, the first child of S[5] is at S[12] and the last child of S[8] is at S[13] (it is actually the only
child of S[8]). Then, SubPathSearch correctly returns the range [12, 13]. The number of offsprings of
subpath Π is 2, and the number of occurrences of subpath Π is also 2, as indeed we have two occurrences
of 1 in the range Slast[12, 13].

We are ready to state the main result of this section, which easily follows from the pseudocode of
Figure 11 and the use of the data structures described in Theorems 6 and 7.

Theorem 8 For any alphabet Σ, there exists a compressed representation of xbw[T ] that supports sub-
path searches of a string Π in:

• O(|Π|) time and at most tH0(Sα) + 2t + o(t) bits, if |Σ| = O(polylog(t));

• o(|Π| log log3 |Σ|) time and at most t(Hk(Sα) + Hk(Slast) + Hk(A)) + o(t log |Σ|) bits, if Σ =
Ω(polylog(t));
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<biblio>
<book id=1>
<author>J. Austin</author>
<title>Emma</title>

</book>
<book id=2>
<author>C. Bronte</author>
<title>Jane Eyre</title>

</article>
</biblio>

Figure 12: An XML document d (left) and its corresponding ordered labeled tree T (right).

Recently it has been shown in [29] how to design a compressed index for the binary array Slast that
achieves a better space bound than Hk(Slast). This data structure could be plugged into our algorithmic
scheme to obtain the same time bounds of Theorems 6–7–8, but with improved space occupancy. This
result further highlights the generality and elegance of our labeled-tree indexing approach based on
xbw[T ] and rank-select primitives on strings.

5 A relevant application to XML data
In 1996 the W3C5 started to work on XML as a way to enable data interoperability over the Internet;
today, XML is the standard for information representation, exchange and publishing over the Web, and
is getting embedded into many applications. XML is popular because it encodes a considerable amount
of metadata in its plain-text format (see Figure 12); as a result, applications can be more savvy about the
semantics of the items in the data source. This comes at a twofold cost. First, the XML representation
is verbose because the entire schema description of each data item is repeated at each of its occurrences.
Second, XML documents have a natural tree structure with mixed elements, with both text and attributes,
so that XML queries are richer than commonly used SQL queries in that they include path and content
searches on labeled trees.

In this section we address the basic problems of compression, navigation and searching of XML
documents by designing a compressor called XBZIP, and a compressed index called XBZIPINDEX,
whose algorithmic cores are based on the XBW-transform. We will also experimentally compare XBZIP

and XBZIPINDEX with other known indexing and compression tools for XML data. The net result will
be that XBZIP achieves comparable compression ratio to state-of-the-art XML compressors by simpler
means, while XBZIPINDEX achieves significantly improved compression ratio and query performance
with respect to known XML-compressed indexes.

5.1 The XBW-transform for XML data
As the relationships between elements in an XML document are defined by nested structures, XML
documents are often modeled as (DOM) trees whose nodes are labeled with strings of arbitrary length
drawn from a usually large alphabet. These strings are called tag or attribute names for the internal
nodes, and content data (shortly PCDATA) for the leaves. Given an XML document d, we build an
ordered labeled DOM tree T consisting of four types of nodes (see Figure 12):

5http://www.w3.org/XML/
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Slast Sα Sπ

1 <biblio empty string
0 <book <biblio
0 @id <book<biblio
1 = @id<book<biblio
1 01 =@id<book<biblio
0 <author <book<biblio
1 = <author<book<biblio
1 0J. Austin =<author<book<biblio
1 <title <book<biblio
1 = <title<book<biblio
1 0Emma =<title<book<biblio
1 <book <biblio
0 @id <book<biblio
1 = @id<book<biblio
1 02 =@id<book<biblio
0 <author <book<biblio
1 = <author<book<biblio
1 0C. Bronte =<author<book<biblio
1 <title <book<biblio
1 = <title<book<biblio
1 0Jane Eyre =<title<book<biblio

Stable sort
-

Rk Slast Sα Sπ

1 1 <biblio empty string
2 1 = <author<book<biblio
3 1 = <author<book<biblio
4 0 <book <biblio
5 1 <book <biblio
6 0 @id <book<biblio
7 0 <author <book<biblio
8 1 <title <book<biblio
9 0 @id <book<biblio

10 0 <author <book<biblio
11 1 <title <book<biblio
12 1 = <title<book<biblio
13 1 = <title<book<biblio
14 1 = @id<book<biblio
15 1 = @id<book<biblio
16 1 0J. Austin =<author<book<biblio
17 1 0C. Bronte =<author<book<biblio
18 1 0Emma =<title<book<biblio
19 1 0Jane Eyre =<title<book<biblio
20 1 01 =@id<book<biblio
21 1 02 =@id<book<biblio

Ŝlast = 111010010011111

Ŝα = <biblio==<book<book@id<author<title@id<author<title====

Ŝpcdata = 0J. Austin0C. Bronte0Emma0Jane Eyre0102

Figure 13: The set S computed from document d of Figure12 after the pre-order visit of T (left), and
after the stable sort (right). The arrays Ŝlast, Ŝα, Ŝpcdata, output of xbw[d], are show at the bottom.

1. each occurrence of an opening tag <t> originates a tag node labeled with the string <t;

2. each occurrence of an attribute name a originates an attribute node labeled with the string @a;

3. each occurrence of an attribute value or textual content of a tag, say ρ, originates two nodes: a
text-skip node labeled with the character =, and a content node labeled with the string 0ρ, where
0 is a special character not occurring elsewhere in d.

This encoding of the node labels allows us to easily distinguish between internal-node labels vs leaf
labels because the former are prefixed by {<, @, =} and the latter are prefixed by the special symbol 0
(cfr. ΣN and ΣL in Section 2).

The structure of the tree T is derived from the XML document d as follows. An XML well-formed
substring of d, say σ = <t a1="ρ1" . . . al="ρ1"> τ </t>, generates a subtree of T rooted at a
node labeled <t. This node has l children (subtrees) originating from t’s attribute names and values (i.e.
@ai → =→ ρi), plus other children (subtrees) originating by the recursive parsing of the string τ . Note
that attribute nodes and text-skip nodes have only one child. Tag nodes may have an arbitrary number of
children. Content nodes have no children and thus form the leaves of T .6

Given this labeled tree representation of an XML document, it is natural to use the XBW-transform
for compactly representing it and for supporting navigational and search operations over its tree structure.
We actually propose a slight variation of the XBW motivated by the features of the XML documents and
the XML queries. Let d be an XML document; T be the corresponding tree; and n be the number of
internal nodes of T . We pose:

6Document d may contain empty tags not including anything (i.e. <t/> or <t></t>). These tags are managed by
transforming them to <t>λ</t>, where λ is a special symbol not occurring elsewhere in d.

20



Definition 1 The XBW-transform of d consists of three arrays: xbw[d] = 〈Ŝlast, Ŝα, Ŝpcdata〉, where
Ŝlast = Slast[1, n], Ŝα = Sα[1, n], and Ŝpcdata = Sα[n + 1, t].

Note that we are still using the acronym xbw for this slight variation of the XBW-transform, but
we are adopting the argument d instead of T . An illustrative example for xbw[d] is given in Figure 13.
Notice that Ŝα contains the labels of the internal nodes only, whereas Ŝpcdata contains the labels of the
leaves, that is, the PCDATA. This is because if u is a leaf, the first symbol of its upward path π[u] is =
which we assume be lexicographically larger than the characters < and @ that prefix the upward path of
internal nodes. Since leaves have no children, Slast[n + 1, t] consists of just 1s, and thus can be dropped.

Let us comment on some of our implementation choices for xbw[d]. Even if the symbols of Σ may
be very long strings, we do not need any additional information for recovering them from the strings Ŝα

and Ŝpcdata. In fact, characters {<, @, =} cannot appear inside a tag or attribute name because of the
XML syntax, and the special character 0 cannot appear inside PCDATA. Additionally, the use of the text-
skip nodes (labeled =) is crucial to separate PCDATA from internal-node labels, which otherwise would
be intermixed within Sα. These choices have a twofold advantage: (i) the two strings Ŝα and Ŝpcdata

are a fortiori homogeneous and hence highly compressible (see Sect. 5.2), (ii) search and navigational
operations over T are greatly simplified (see Sect. 5.3). Details will be given in the following subsections.

We conclude this section by observing that our compressor and index do need to construct xbw[d].
We did not implement the optimal algorithm of Section 2.1, but we followed a simpler approach moti-
vated by the fact that in practice the DOM trees are shallow. Our algorithm represents Sπ as an array
of pointers to T nodes and (indirectly) sorts this array by the standard C-procedure qsort. The time
required to build xbw[d] on few hundred MBs of XML data is a few tens of seconds. Of course, future
algorithmic engineering research might be devoted to make this algorithm scaling better on larger XML
collections!

5.2 Compressing XML data: the XBZIP tool
Most XML-conscious compressors— like XMILL [35], SCMPPM [1], XMLPPM [10]— are designed to
“compress together” the data enclosed in the same tag, or in a few immediately enclosing tags, since
such data usually have similar statistics. In Section 3 we called those enclosing tags: k-contexts. Those
compressors usually look at small k since it is much space (and time) consuming to maintain separate
statistics for all k-contexts as k grows. The XBW-transform provides a simple and efficient mecha-
nism to take advantage of the regularities occurring at large k, without incurring in their computational
drawbacks.

Suppose the XML fragment of Figure 12 is a part of a large bibliographic database for which we have
computed the XBW-transform. Consider the string =<author. The properties of the XBW-transform
ensure that the labels of the nodes whose upward path is prefixed by =<author are consecutive in
Sα. In other words, there is a substring of Sα consisting of all the data (immediately) enclosed in an
<author> tag. Similarly, another substring of Sα contains the labels of all nodes whose upward path
is prefixed by <book<biblio, and therefore this substring likely consists of <author, <title or
@id strings. This means that Sα, and therefore Ŝα and Ŝpcdata, likely have a strong local homogeneity
property, hence they are highly compressible.

If we are only interested in a compressed (non-searchable) representation of d, we simply need to
compress the arrays Ŝlast, Ŝα and Ŝpcdata. This is done by the XBZIP tool whose pseudocode is given
in Figure 14. Experimentally we found that, instead of compressing Ŝlast and Ŝα separately, it is more
convenient to merge them in a unique array Ŝ ′α obtained from Ŝα adding a label </ in correspondence of
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Algorithm XBZIP

1. Compute xbw[d] = 〈Ŝlast, Ŝα, Ŝpcdata〉;
2. Merge Ŝα and Ŝlast into Ŝ ′α;

3. Compress separately the strings Ŝ ′α and Ŝpcdata.

Figure 14: Pseudocode of XBZIP. Our implementation uses PPMDI in Step 3.

bits equal to 1 in Ŝlast. This is exactly what Step 2 does in XBZIP. For example, merging the arrays Ŝlast

and Ŝα of Figure 13 yields:

Ŝ ′α = <biblio</=</=</<book<book</@id<author

<title</@id<author<title</=</=</=</=</

This simple strategy captures the repetitiveness in the tree structure, so that, somewhat surprisingly, it
yields compression ratios close to sophisticated state-of-the-art compressors. Theoretical and algorithmic
engineering research is needed to further investigate the efficiency and efficacy of the other sophisticated
strategies based on the XBW-transform, discussed in Section 3 and detailed in [16, 29].

5.3 Indexing compressed XML data: the XBZIPINDEX tool
In Section 4 we showed that navigation and search operations over a labeled tree can be implemented with
the XBW transform by means of rank and select queries over strings. In this section we provide practical
implementations for these operations, and introduce the following content-based query motivated by
XML applications.

ContentSearch(Π, β). Let Π be a labeled path and β be a string of arbitrary length. This operation
retrieves all leaves of T that (immediately) descend from Π and contain β as a substring of their
labels.

We remark that the leaves considered by ContentSearch must have Π as immediately enclosing context,
and thus cannot be arbitrary descendant of Π in T . We will comment on such a variation in Section 6.

As an example, let Π = < title and β = Jane in the XML document in Figure 12. The query
ContentSearch(Π, β) returns the leaf containing the PCDATA: 0Jane Eyre. We notice that the oper-
ation SubPathSearch corresponds to an XPATH query having the form //Π, whereas the operation
ContentSearch corresponds to an XPATH query of the form //Π[contains(.,β)].

Text book solutions to represent XML documents for navigation use a mixture of pointers and hash
arrays. These representations constitute the standard for DOM tree encodings, but unfortunately are
space consuming and practical only for small XML documents. Benchmarks show that DOM tree en-
codings need at least 4 times the original XML file size. This can be understood as follows: the simplest
(empty) tag <a/> requires 4 bytes in the XML document, but at least 16 bytes as tree node: a name
pointer plus three node pointers to the parent, the first child, and the next sibling. Of course, there exist
more compact DOM tree encodings, e.g. Galax [12], but they use yet more memory than the original
XML document and are very slow on SubPathSearch and ContentSearch queries because they need
scanning the whole DOM tree.
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Algorithm XBZIPINDEX

1. Compute xbw[d] = 〈Ŝlast, Ŝα, Ŝpcdata〉;
2. Store Ŝlast using a compressed representation supporting rank/select queries (see text);

3. Store Ŝα using a compressed representation supporting rank/select queries (see text);

4. Split Ŝpcdata into buckets, such that two elements are in the same bucket if they have the same
upward path;

5. Build a compressed (full-text) index on each bucket (see text).

Figure 15: Pseudocode of XBZIPINDEX.

If SubPathSearch is a key concern, we may use any summary index data structure [9] that repre-
sents all paths of the tree document in an index (two famous examples are Dataguide [24], and 1- or
2-indexes [38]). This significantly increases the space needed by the index, and yet, it does not support
ContentSearch queries efficiently. If ContentSearch queries are the prime concern, we need to resort
to more sophisticated approaches— like XML-native search engines, e.g. XQUEC [2], F&B-INDEX

[51], etc.. All these engines need space several times larger than the size of the indexed XML document.
At the other extreme, if space is a primary concern we may use any XML-queryable compressors, like
[49, 39, 11, 8], but we would still incur into the scan of the whole compressed XML file and need the
decompression of large parts of it in the worst case.

We now show that xbw[d] can be combined with proper compressed indexing data structures for
rank, select, and substring search operations [19], to resolve the dichotomy of time-efficient vs space-
efficient solutions for XML compressed indexing. To this end we design a tool, called XBZIPINDEX,
that supports on a compressed representation of the XML document efficient tree navigation (forward
and backward), SubPathSearch and ContentSearch operations. The pseudocode for XBZIPINDEX

is given in Figure 15. Note that this tool has additional features and may find other applications besides
XML compressed searching. For example it could be used within native XML search engines for provid-
ing either subpath statistics for XML-query optimizations or as a document-collection storage system. Or
it could be used within an XML visualizer for compressing an XML document, still supporting efficient
subtree decompression and visualization. Details on the implementation of XBZIPINDEX follow.

The array Ŝlast. To implement rank1 and select1 operations over Ŝlast we use a simple one-level bucket-
ing storage scheme. We choose a constant L (default is L = 1000), and partition Ŝlast into variable-length
blocks containing L bits set to 1. For each block we store:

• the number of 1’s preceding this block in Ŝlast (called 1-blocked rank);
• a compressed image of the block obtained by GZIP;7

• a pointer to the compressed block and its 1-blocked rank.

It is easy to see that rank1 and select1 operations over Ŝlast can be implemented by decompressing and
scanning a single block, plus a binary search over the (small) table of 1-blocked ranks.

The array Ŝα. Recall that Ŝα contains only the labels of the internal nodes of T . We represent it using
again a one-level bucketing storage scheme. We partition Ŝα into fixed-length blocks (default is 8Kb),
and for each block we store:

7We experimented other approaches, e.g. Elias coding on the distances between 1s [52] or better string compressors than
GZIP, but they were not competitive in terms of time-space performance. In fact, the size of Ŝlast is negligible with respect to
Sα, see Table 1.
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• a compressed image of the block (obtained using GZIP). Note that single blocks are usually highly
compressible because of the local homogeneity of Ŝα;8

• a table containing for each internal-node label c the number of its occurrences in the preceding
prefix of Ŝα (called c-blocked ranks);
• a pointer to the compressed block and its c-blocked rank.

Since the number of distinct internal-node labels is usually small with respect to the document size,
c-blocked ranks can be stored without adopting any sophisticated solution. The implementation of
rankc(Ŝα, i) and selectc(Ŝα, i) easily derives from the information we have stored.

The array Ŝpcdata. This array is usually the largest component of xbw[d] (see the last column of Table 1).
Recall that Ŝpcdata consists of the PCDATA items of d, ordered according their upward paths. Note that the
procedures for navigating and searching T do not require rank/select operations over Ŝpcdata. Therefore
we use a representation of Ŝpcdata that efficiently supports SubPathSearch and ContentSearch opera-
tions. To this end we use a bucketing scheme where buckets are induced by the upward paths. Formally,
let Sπ[i, j] be a maximal interval of equal strings in Sπ. We form one bucket of Ŝpcdata by concatenating
the strings in Ŝpcdata[i, j]. In other words, two elements of Ŝpcdata are in the same bucket iff they have
the same upward path. Each block will likely be highly compressible, since is formed by homogeneous
strings having the same full-context.9 For each bucket we store the following information:
• an FM-index [18, 19] of the bucket.10 The FM-index is a compressed full-text index that supports

efficient substring searches which access only a tiny portion of the compressed bucket. This portion
is proportional to the length of the searched string, and not to the length of the bucket itself (see
[19] for details);
• a counter of the number of PCDATA items preceding the current bucket in Ŝpcdata;
• a pointer to the FM-indexed block and its counter.

Using this representation of Ŝpcdata, we can answer the query //Π[contains(.,β)] as follows
(pseudocode in Figure 16). The procedure SubPathSearch identifies the nodes whose leading path is
Π, being internal nodes or leaves. Since ContentSearch looks for leaves only, we identify the substring
Ŝpcdata[F, L] that contains the labels of the leaves whose leading path is Π=. Note that Ŝpcdata[F, L]
consists of an integral number of buckets, say b, because of our partitioning strategy of Ŝpcdata. To
answer the query, we then search for β in these b buckets using their FM-indexes. The time cost of
ContentSearch is efficient for selective queries.

Lemma 9 The compressed index XBZIPINDEX identifies the buckets of Ŝpcdata containing β’s occur-
rences in time proportional to |Π| + b|β|, where b is the number of distinct upward paths prefixed by Π
in T . Solving the operation ContentSearch(Π, β) takes additional occ · polylog(N) time, where occ is
the number of occurrences of β in those b buckets, and N is the total length of PCDATA in T .

Proof: Recall that algorithm SubPathSearch takes time proportional to |Π| (Theorem 8) to identify
the range of nodes whose leading path is Π. Furthermore, the FM-index [19] takes O(|β|) time to count
the number occ of occurrences of β in each indexed bucket. Retrieving those occurrences and thus
determining the leaves output of ContentSearch takes additional occ · polylog(N) time [19].

8Other trade-offs could be possible by using compressors offering different time vs. compression ratios trade-offs, like
PPMDI or BZIP2. We preferred GZIP because of its time efficiency and reasonable compression performance on Ŝα.

9Notice that XCQ [34] uses a similar partitioning of the PCDATA, however, subsequent queries are supported by fully
scanning the tree structure.

10We used the following parameter settings for the FM-index (cfr [18]): b = 2Kb, B = 32Kb and f = 0.05. These
parameters can be tuned for trading space usage for query time.
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Algorithm ContentSearch(Π, β)

1. (First, Last)← SubPathSearch(Π);

2. F← rank=(Ŝα, First− 1) + 1;

3. L← rank=(Ŝα, Last);

4. Let B[i, j] be the range of buckets covering Ŝpcdata[F, L];
5. Search for β in the FM-INDEX of the bucket B[h], for h = i, i + 1, . . . , j;
6. Return the indexes of the buckets that contain at least one occurrence of β.

Figure 16: Returning the leaves of T whose leading (sub)path is Π and whose label contains β.

DATASET SIZE (BYTES) TREE SIZE #LEAVES TREE DEPTH #TAG AND ATTR |Ŝα| |Ŝpcdata|
MAX/AVG (DISTINCT) in bytes in bytes

PATHWAYS 79,054,143 9,338,092 5,044,682 10 / 3.6 4,293,410 (49) 24,249,238 36,415,927
DBLP 133,856,133 10,804,342 7,067,935 7 / 3.4 3,736,407 (40) 24,576,759 75,258,733
SWISSPROT 114,820,211 13,310,810 8,143,919 6 / 3.9 5,166,891 (99) 30,172,233 51,511,521
NEWS 244,404,983 8,446,199 4,471,517 3 / 2.8 3,974,682 (9) 28,319,613 176,220,422

Table 1: XML documents used in our experiments.

5.4 Some experimental results
The results of our paper are mainly theoretical. Nevertheless, we comment in this section on some of
the experimental results published in [17], for highlighting the impact of the XBW-transform on XML
compression and indexing. The reader interested in a much deeper experimental analysis may refer to
the cited paper.

The tools XBZIP and XBZIPINDEX are packaged in a library, called XBZIPLIB, consisting of about
4000 lines of C-code and running under Linux and Windows. This library can be either included in
another software or it can be directly used at the command-line with a full set of options for compressing,
indexing and searching XML documents. We have tested it on a PC running Linux with two P4 CPUs at
2.6Ghz, 512Kb cache, and 1.5Gb internal memory. Table 1 reports the characteristics of the four XML
files used in our experiments. They cover a range of XML data formats, both data centric or text centric,
and deep or shallow tree structures.11

We have evaluated the real advantages of XBZIP with respect to state-of-the-art XML-conscious
compressors like XMILL [35] and SCMPPM [1], as well as against general-purpose string compressors
like GZIP, BZIP2, and PPMDI. The experiments, summarized in Table 2, show two opposite facts.
As expected, XML-conscious compressors are better than commodity compressors; but the absolute
difference in their compression ratio is within a 5% (cfr. PPMDI), which is surprisingly low. Actually,
XBZIP and SCMPPM are the best compressors on the experimented data and achieve about the same
compression ratio ranging from 1.84% of PATHWAYS to 10.61% of SWISSPROT. The time efficiency
of XML-conscious compressors must be significantly improved. Profiling shows that 90% of XBZIP

running time is spent for the computation of the XBW-transform (see Section 5.1 for comments on this
issue). The decompression time of XBZIP is comparable to others.

Our experimental results show that XML-conscious compressors are still far from being a clearly
advantageous alternative to general-purpose compressors. Nevertheless, the best performance achieved

11Source data: PATHWAYS is at www.genome.jp/kegg/xml/; DBLP and SWUISSPROT are at
www.cs.washington.edu/research/xmldatasets/; and NEWS is at www.di.unipi.it/˜gulli/.
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DATASET GZIP BZIP2 PPMDI XMILL SCMPPM XBZIP

PATHWAYS 7,78 4,70 3,93 10,07 3,13 1,84
DBLP 17,90 11,94 10,53 10,79 8,67 9,69
SWISSPROT 11,97 7,60 6,73 5,68 5,21 4,66
NEWS 22,94 15,06 12,62 11,54 10,71 10,71

Table 2: Comparison of XML compressors: XMILL, SCMPPM and XBZIP use PPMDI as their base
compressor.

DATASET HUFFWORD XPRESS XQZIP XBZIPINDEX XBZIP

PATHWAYS 33.68 – – 3.62 1.84
DBLP 44.00 48 30 14.13 9.69
SWISSPROT 43.10 42 38 7.87 4.66
NEWS 45.15 – – 13.52 10.61

Table 3: Compression ratio achieved by XML-queryable compressors over the files in our dataset. For
XPRESS and XQZIP we report results taken from [39, 11] (the symbol – indicates a result not available
in these papers). Note that we can trade space usage for query time by tuning the parameters of the
FM-index [18].

by XBZIP lead us to think favorably about the XBW-compression paradigm in that XBZIP has not yet
fully deployed it: we are simply applying PPMDI on xbw[d]’s arrays without fully taking advantage of
their local homogeneity properties (see Section 5.2 and comments therein).

A much more positive scenario arises when dealing with the practical performance of our compressed
index XBZIPINDEX. In Table 3 we compare our XBZIPINDEX against the best known XML-queryable
compressors. Some figures are missing because some software is either no longer available, or is unable
to run on our XML files. However, whenever possible we report on the performance of these tools as
stated in their reference papers. We point out that HUFFWORD [40] is not an XML-queryable compressor,
but a typical storage scheme of (Web) search engines and Information Retrieval tools. Therefore we use
its compression performance as a lower bound to the storage complexity of these approaches (see e.g.
[31]).

Looking at Table 3 we observe that XBZIPINDEX significantly improves the compression ratio of
the known XML-queryable compressors from 20% to 35% of the original document size. Table 4 details
the space required by the various indexing data structures present in XBZIPINDEX, and its last two
columns highlight the additional cost of storing the indexing information upon XBZIP. As expected, the
indexing of Ŝlast and Ŝα requires negligible space, thus proving again that these two strings are highly
compressible and even a simple compressed-indexing approach, as the one we adopted in XBZIPINDEX,
pays off. Conversely, Ŝpcdata takes most of the space and a fine tuning of the FM-index parameters might
further improve the performance of XBZIPINDEX (see Section 5.3). This also shows that the reduction
from labeled-tree indexing to text indexing, induced by the XBW-transform, strengthens the interest
toward the design of this string-based indexing tools [21, 45].

As far as query and navigation operations are concerned, the large set of experiments in [17] showed
that navigational and subpath searches are pretty much insensitive to the document size, as theoretically
predicted, and indeed require few milliseconds. Conversely, all the others XML-queryable compressors
require tens of seconds per query because they need scanning the whole set of compressed data.
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DATASET % INDEX Ŝlast % INDEX Ŝα INDEX Ŝpcdata AUXILIARY BYTES PER NODE

PATHWAYS 1.7 0.8 6.0 9.7 0.31
DBLP 4.9 2.3 32.3 8.1 1.75
SWISSPROT 2.2 2.5 14.0 8.0 0.68
NEWS 1.0 0.5 18.5 0.6 3.91

Table 4: Space occupancy. Percentage of each index part with respect to the corresponding indexed
string. Auxiliary info includes all the prefix-counters mentioned in Section 5.3, and it is expressed as
a percentage of the total index size. The last column gives an estimate of the average number of bytes
spent for each tree node.

6 Conclusions
We have introduced the XBW-transform as a new approach to compress and index tree-shaped data. This
transform allows to reduce the compressed indexing of labeled trees to the basic problem of compressed
rank and select queries over strings. Consequently, any improvement to rank and select implemen-
tations would naturally lead to an improvement of our solutions for the labeled-tree compression and
indexing problem.

Compared to other tree encodings proposed in the literature, like BP [43] and DFUDS or its varia-
tions [6, 23, 5, 29], the XBW-transform is the only one supporting subpath search operations, which have
applications to XML data, as we largely commented in Section 5. In this paper we have also proposed
an implementation of the XBW-transform and tested its practical performance on some real datasets.
The experimental results are promising and show that there is still much room for improvement at the
software level.

For the theory, we list three data structural and compression problems whose solution, combined with
the XBW-transform, would extend our results even more.

Problem 1. In our approach, each label l of a node u has been treated as an element of given alphabet Σ.
However in some applications, of which XML is just one example, labels are in fact strings of arbitrary
length drawn from a different alphabet Γ. In this case two notions of context seem to be relevant, together
with the corresponding entropy measurement. A “vertical” context for l as considered in Section 3, given
by the labeled sequence π[u] ∈ Σ∗ in the path from u’s parent to the tree root; and a “horizontal” context
for each character c of l, given by the sequence σ(c) ∈ Γ∗ of the characters preceding c in l. We leave
open the problem of defining a new notion of entropy that takes into account both contexts, and designing
an efficient compression algorithm that achieves optimality under this new notion.

Problem 2. Motivated by XML applications, we would like to extend operation ContentSearch(Π, β)
to searching for all leaves that descend from a subpath Π and whose label contains β as a substring.
ContentSearch is now limited to leaves whose leading path is Π. Even in this simpler setting, our
solution of Section 5.3 is sub-optimal in space and time because of the use of the bucketing of Ŝpcdata.
From the implementation of ContentSearch, it seems that improving this solution requires the avoid-
ance of the bucketing scheme, and thus the design of a compressed full-text index that supports a sort of
position-restricted substring search operation. Known compressed indexes[45] cannot restrict the search
to a substring of the indexed text. Some known full-text indexes [36] do support this restriction but they
are not compressed.

Problem 3. Is it possible to design a unique transform that combines the navigational and search op-
erations of the XBW, with the sophisticated ancestor, descending and subtree-size queries of DFUDS-
encoding ?
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