CHAPTER

CRAWLING THE WEB

The World Wide Web, or the Web for short, is a collection of billions of doc-
uments written in a way that enables them to cite each other using hyperlinks,
which is why they are a form of hypertext. These documents, or Web pages, are
typically a few thousand characters long, written in a diversity of languages, and
cover essentially all topics of human endeavor. Web pages are served through the
Internet using the hypertext transport protocol (Http) to client computers, where they
can be viewed using browsers. Htip is built on top of the transport control protocol
(TCP), which provides reliable data streams to be transmitted from one computer
to another across the Internet.

Throughout this book, we shall study how automatic programs can analyze
hypertext documents and the networks induced by the hyperlinks that connect
them. To do so, it is usually necessary to fetch the pages to the computer where
those programs will be run. This is the job of a crawler (also called a spider, robot,
or bot). In this chapter we will study in detail how crawlers work. If you are more
interested in how pages are indexed and analyzed, you can skip this chapter with
hardly any loss of continuity.

I will assume that you have basic familiarity with computer networking using
TCP, to the extent of writing code to open and close sockets and read and write
data using a socket. We will focus on the organization of large-scale crawlers,
which must handle millions of servers and billions of pages.

17

18 CHAPTER 2 Crawling the Web

2.1 HTML and HTTP Basics

Web pages are written in a tagged markup language called the hypertext markup
language (HTML). HTML lets the author specify layout and typeface, embed
diagrams, and create hyperlinks. A hyperlink is expressed as an anchor tag with an
href attribute, which names another page using a uniform resource locator (URL),
like this:

The IIT Bombay
Computer Science Department

In its simplest form, the target URL contains a protocol field (http), a server
hostname (www:cse.dith.ac.in), and a file path (/, the “root” of the published file
systemn).

A Web browser such as Netscape Communicator or Internet Explorer will
let the reader click the computer mouse on the hyperlink. The click is translated
transparently by the browser into a network request to fetch the target page using
Http.

A browser will fetch and display a Web page given a complete URL like
the one above, but to reveal the underlying network protocol, we will (abjuse
the telnet command available on UNIX machines, as shown in Figure 2.1. First
the telnet client (as well as any Web browser) has to resolve the server hostname
wunw.csedith.ac.in to an Internet address of the form 144.16.111.14 (called an IP
address, 1P standing for Internet protocol) to be able to contact the server using
TCP. The mapping from name to address is done using the Domain Name Service
(DNS), a distributed database of name-to-IP mappings maintained at known
servers [202]. Next, the client connects to port 80, the default Http port, on the
server. The underlined text is entered by the user (this is transparently provided
by Web browsers). The slanted text is called the MIME header. (MIME stands for
multipurpose Internet mail extensions, and is a metadata standard for email and Web
content transfer.) The ends of the request and response headers are indicated by
the sequence CR-LF-CR-LF (double newline, written in C/C++ code as "\rin\r\n"
and shown as the blank lines).

Browsing is a useful but restrictive means of finding information. Given a
page with many links to follow, it would be unclear and painstaking to explore
them in search of a specific information need. A better option is to index all the
text so that information needs may be satisfied by keyword searches (as in library
catalogs). To perform indexing, we need to fetch all the pages to be indexed using

a crawler.

i
i
4
i

2.2 Crawling Basics 19

% telnet www.cse.iitb.ac.in 80
Trying 144.16.111.14...
Connected to www.cse.iitb.ac.in.
Escape character is ;3.

GET / Http/1.0

Http/1.1 200 OK

Dote: Sat, 13 Jan 2001 09:01:02 GMT

Server: Apache/1.3.0 (Unix) PHP/3.0.4
Last-Modified: Wed, 20 Dec 2000 13:18:38 GMT
ETag: "5c248-153d-3a40blge”

Accept-Ranges: bytes

Content-Length: 5437

Connection: close

Content-Type: text/html

X-Pad: avoid browser bug

<htmi>

<head><title>IIT Bombay CSE Department Home Page</title></head>
<body>...IIT Bombay...
</body></htmi>

Connection closed by foreign host.

[
%

FIGURE 2.1 Fetching a Web page using telnet and Hitp.

2.2 Crawling Basics

How does a crawler fetch “all” Web pages? Before the advent of the Web,
traditional text collections such as bibliographic databases and journal abstracts
were provided to the indexing system directly, say, on magnetic tape or disk. In
contrast, there is no catalog of all accessible URLs on the Web. The only way to
collect URLs is to scan collected pages for hyperlinks to other pages that have
not been collected yet. This is the basic principle of crawlers. They start from a
given set of URLs, progressively fetch and scan them for new URLs (outlinks),
and then fetch these pages in turn, in an endless cycle. New URLs found thus
represent potentially pending work for the crawler. The set of pending work
expands quickly as the crawl proceeds, and implementers prefer to write this data
to disk to relieve main memory as well as guard against data loss in the event of a
crawler crash. There is no guarantee that all accessible Web pages will be located in

20 CHAPTER 2 Crawling the Web

this fashion; indeed, the crawler may never halt, as pages will be added continually
even as it 15 running. Apart from outlinks, pages contain text; this is submitted to
a text indexing system (described in Section 3.1) to enable information retrieval
using keyword searches.

It is quite simple to write a basic crawler, but a great deal of engineering goes
into industry-strength crawlers that fetch a substantial fraction of all accessible
Web documents. Web search companies like AltaVista, Northern Light, Inktomi,
and the like do publish white papers on their crawling technologies, but piecing
together the technical details is not easy. There are only a few documents in the
public domain that give some detail, such as a paper about AltaVista’s Mercator
crawler [108] and a description of Google’s first-generation crawler [26]. Based
partly on such information, Figure 2.2 should be a reasonably accurate block
diagram of a large-scale crawler.

The central function of a crawler is to fetch many pages at the same time, in

order to overlap the delays involved in

1. Resolving the hostname in the URL to an IP address using DNS
2. Connecting a socket to the server and sending the request

3. Receiving the requested page in response

together with time spent in scanning pages for outlinks and saving pages to a
local document repository. Typically, for short pages, DNS lookup and socket
connection take 2 large portion of the processing time, which depends on round-
trip times on the Internet and is generally unmitigated by buying more bandwidth.

The entire life cycle of a page fetch, as listed above, is managed by a logical
thread of control. This need not be a thread or process provided by the operating
system, but may be specifically programmed for this purpose for higher efficiency.
In Figure 2.2 this is shown as the “Page fetching context/thread,” which starts
with DNS resolution and finishes when the entire page has been fetched via
Http (or some error condition arises). After the fetch context has completed
its task, the page is usually stored in compressed form to disk or tape and
also scanned for outgoing hyperlinks (hereafter called “outlinks”). Qutlinks are
checked into a work pool. A load manager checks out enough work from the pool
to maintain network utilization without overloading it. This process continues
untl the crawler has collected a “sufficient” number of pages. It is difficult to
define “sufficient” in general. For an intranet of moderate size, a complete crawl
may well be possible. For the Web, there are indirect estimates of the number

b i i o i

M
m
|

2.3 Engineering Large-Scale Crawlers 21

Caching DNS Async CUm.fﬂ
(slack about DNS prefetch
expiration dates) % client - 1‘

Text indexing

DNS resolver d oth Text
‘ client (UDP) and other repository
analyses .
and index

Relative links, links
embedded in scripts, images

: =3

Wait Hyperlink
Wait until Http extractor and

for Http send and [normalizer

DNS socket receive
available
Per-server . 3
queues .»’ Page fetching context/thread isPageKnown?

Crawl
metadata

Load monitor Persistent URL
and work-thread global work isUrlVisited? approval
manager pool of URLs guard

FIGURE 2.2 Typical anatomy of a large-scale crawler.

Fresh work
Handles spider traps
robots.txt

of publicly accessible pages, and a crawler may be run until a substantial fraction
is fetched. Organizations with less networking or storage resources may need to
stop the crawl for lack of space, or to build indices frequently enough to be useful.

2.3 Engineering Large-Scale Crawlers

In the previous section we discussed a basic crawler. Large-scale crawlers that send
requests to millions of Web sites and collect hundreds of millions of pages need
a great deal of care to achicve high performance. In this section we will discuss
the important performance and reliability considerations for a large-scale crawler.

Before we dive into the details, it will help to list the main concerns:

22 CHAPTER 2 Crawling the Web

¢ Because a single page fetch may involve several seconds of network latency; it
is essential to fetch many pages (typically hundreds to thousands) at the same
time to utilize the network bandwidth available.

+ Many simultaneous fetches are possible only if the DNS lookup is streamlined
to be highly concurrent, possibly replicated on a few DNS servers.

¢ Multiprocessing or multithreading provided by the operating system is not the
best way to manage the multiple fetches owing to high overheads. The best
bet is to explicitly encode the state of a fetch context in a data structure and
use asynchronous sockets, which do not block the process/thread using it, but
can be polled to check for completion of network transfers.

¢ Care is needed to extract URLs and eliminate duplicates to reduce redundant
fetches and to avoid “spider traps”’—hyperlink graphs constructed carelessly
or malevolently to keep a crawler trapped in that graph, fetching what can
potentially be an infinite set of “fake” URLs.

2.3.1 DNS Caching, Prefetching, and Resolution

Address resolution is a significant bottleneck that needs to be overlapped with
other activities of the crawler to maintain throughput. In an ordinary local area
network, a DNS server running on a modest PC can perform name mappings for
hundreds of workstations. A crawler is much more demanding as it may generate
dozens of mapping requests per second. Moreover, many crawlers avoid fetching
too many pages from one server, which might overload it; rather, they spread their
access over many servers at a time. This lowers the locality of access to the DNS
cache. For all these reasons, large-scale crawlers usually include a customized DNS
component for better performance. This comprises a custom client for address
resolution and possibly a caching server and a prefetching client.

First, the DNS caching server should have a large cache that should be
persistent across DNS restarts, but residing largely in memory if possible. A desktop
PC with 256 MB of RAM and a disk cache of a few GB will be adequate for a
caching DNS, but it may help to have a few (say, two to three) of these. Normally,
a DINS cache has to honor an expiration date set on mappings provided by its
upstream DNS server or peer. For a crawler, strict adherence to expiration dates
1s not too important. (However, the DNS server should try to keep its mapping
as up to date as possible by remapping the entries in cache during relatively
idle time intervals.) Second, many clients for DNS resolution are coded poorly.
Most UNIX systemns provide an implementation of gethostbyname (the DNS client

2.3 Engineering Large-Scale Crawlers 23

API—application program interface), which cannot concurrently handle multiple
outstanding requests. Therefore, the crawler cannot issue many resolution requests
together and poll at a later time for completion of individual requests, which is
critical for acceptable performance. Furthermore, if the system-~provided client
is used, there is no way to distribute load among a number of DNS servers. For
all these reasons, many crawlers choose to include their own custom client for
DNS name resolution. The Mercator crawler from Compaq System Reesearch
Center reduced the time spent in DNS from as high as 87% to a modest 25% by
implementing a custom client. The ADNS asynchronous DNS client library! is
idea] for use in crawlers.

In spite of these optimizations, a large-scale crawler will spend a substantial
fraction of its network time not waiting for Http data transfer, but for address
resolution. For every hostname that has not been resolved before (which happens
frequently with crawlers), the local DNS may have to go across many network
hops to fillits cache for the first time. To overlap this unavoidable delay with useful
work, prefetching can be used. When a page that has just been fetched is parsed,
a stream of HREFs is extracted. Right at this time, that is, even before any of the
corresponding URLs are fetched, hostnames are extracted from the HREF targets,
and DNS resolution requests are made to the caching server. The prefetching
client is usually implemented using UDP (user datagram protocol, a connectionless,
packet-based communication protocol that does not guarantee packet delivery)
instead of TCP, and it does not wait for resolution to be completed. The request
serves only to fill the DNS cache so that resolution will be fast when the page is
actually needed later on.

2.3.2 Multiple Concurrent Fetches

Research-scale crawlers fetch up to hundreds of pages per second. Web-scale
crawlers fetch hundreds to thousands of pages per second. Because a single down-
load may take several seconds, crawlers need to open many socket connections to
different Http servers at the same rime. There are two approaches to managing
multiple concurrent connections: using multithreading and using nonblocking
sockets with event handlers. Since crawling performance is usually limited by
network and disk, multi-CPU machines generally do not help much.

I, See wunvchiark. greenend.org.uk /~ian /adns /

24 CHAPTER 2 Crawling the Web

Muitithreading

After name resolution, each logical thread creates a client socket, connects the
socket to the Hittp service on a server, sends the Hetp request header, then reads
the socket (by calling recv) until no more characters are available, and finally
closes the socket. The simplest programming paradigm is to use blocking system
calls, which suspend the client process until the call completes and data is available
in user-specified buffers.

This programming paradigm remains unchanged when each logical thread
is assigned to a physical thread of control provided by the operating system, for
example, through the pthreads multithreading library available on most UNIX
systems [164]. When one thread is suspended waiting for a connect, send, or recv
to complete, other threads can execute. Threads are not generated dynamically
for each request; rather, a fixed number of threads is allocated in advance. These
threads use a shared concurrent work-queue to find pages to fetch. Each thread
manages its own control state and stack, but shares data areas. Therefore, some
implementers prefer to use processes rather than threads so that a disastrous crash
of one process does not corrupt the state of other processes.

There are two problems with the concurrent thread/process approach. First,
mutual exclusion and concurrent access to data structures exact some performance
penalty. Second, as threads/processes complete page fetches and start modifying
the document repository and index concurrently, they may lead to a great deal of
interleaved, random input-output on disk, which results in slow disk seeks.

The second performance problem may be severe. To choreograph disk access
and to transfer URLs and page buffers between the work pool, threads, and the
repository writer, the numerous fetching threads/processes must use one of shared
memory buffers, interprocess communication, semaphores, locks, or short files.
The exclusion and serialization overheads can become serious bottlenecks.

Nonblocking sockets and event handlers

Another approach is to use nonblocking sockets. With nonblocking sockets, a
connect, send, or recv call returns immediately without waiting for the network
operation to complete. The status of the network operation may be polled
separately. In particular, a nonblocking socket provides the select system call,
which lets the application suspend and wait until more data can be read from or
written to the socket, timing out after a prespecified deadline. select can in fact
monitor several sockets at the same time, suspending the calling process until any
one of the sockets can be read or written.

2.3 Engineering Large-Scale Crawlers 25

Each active socket can be associated with a data structure that maintains the
state of the logical thread waiting for some operation to complete on that socket,
and callback routines that complete the processing once the fetch is completed.
When a select call returns with a socket identifier, the corresponding state record is
used to continue processing. The data structure also contains the page in memory
as it is being fetched from the network. This is not very expensive in terms of
RAM. One thousand concurrent fetches on 10 KB pages would still use only
10 MB of RAM.

Why is using select more efficient? The completion of page fetching threads
is serialized, and the code that completes processing the page (scanning for outlinks,
saving to disk) is not interrupted by other completions (which may happen but
are not detected until we explicitly select again). Consider the pool of freshly
discovered URLs. If we used threads or processes, we would need to protect this
pool against simultaneous access with some sort of mutual exclusion device. With
selects, there is no need for locks and semaphores on this pool. With processes or
threads writing to a sequential dump of pages, we need to make sure disk wri tes
are not interleaved. With select, we only append complete pages to the log, again
without the fear of interruption.

2.3.3 Link Extraction and Normalization

It 1s straightforward to search an HTML page for hyperlinks, but URLs extracted
from crawled pages must be processed and filtered in a number of ways before
throwing them back into the work pool. It is important to clean up and canon-
icalize URLs so that pages known by different URLs are not fetched multiple
times. However, such duplication cannot be eliminated altogether, because the
mapping between hostnames and [P addresses is many-to-many, and a “site” is
not necessarily the same as a “host.”

A computer can have many IP addresses and many hostnames. The reply to
a DNS request includes an IP address and a canonical hostname. For large sites,
many IP addresses may be used for load balancing. Content on these hosts will
be mirrors, or may even come from the same file system or database. On the
other hand, for organizations with few IP addresses and a need to publish many
logical sites, virtual hosting or proxy pass may be used? to map many different sites
(hostnames) to a single IP address (but a browser will show different content for

2. See the documentation for the Apache Web server at wwiw.apache.org/.

26 CHAPTER 2 Crawling the Web

the different sites). The best bet is to avoid IP mapping for canonicalization and
stick to the canonical hostname provided by the DNS response.

Extracted URLs may be absolute or relative. An example of an absolute
URL is http://www.iitb.ac.in/faculty/, whereas a relative URL may look like
photo.jpg or /~soumen/. Relative URLs need to be interpreted with reference to
an absolute base URL. For example, the absolute form of the second and third
URLs with regard to the first are http://www.iitb.ac.in/facuity/photo.jpg and
http://waw.iitb.ac.in/~soumen/ (the starting “/” in /~soumen/ takes you back to
the root of the Http server’s published file system). A completely canonical form
including the default Http port (number 80) would be http://www.iitb.ac.in:80/
faculty/photo.jpg.

Thus, a canonical URL is formed by the following steps:

1. Astandard string is used for the protocol (most browsers tolerate Http, which
should be converted to lowercase, for example).

2. The hostname is canonicalized as mentioned above.
3. An explicit port number is added if necessary.

4. The path is normalized and cleaned up, for example, /books/../papers
/s1gmod1999.ps simplifies to /papers/sigmod1999.ps.

2.3.4 Robot Exclusion

Another necessary step is to check whether the server prohibits crawling a
normalized URL using the robots. txt mechanism. This file is usually found in the
Hittp root directory of the server (such as http://www.iitb.ac.i n/robots.txt). This
file specifies a list of path prefixes that crawlers should not attempt to fetch. The
robots. txt file 3s meant for crawlers only and does not apply to ordinary browsers.
This distinction is made based on the User-agent specification that clients send
to the Http server (but this can be easily spoofed). Figure 2.3 shows a sample
robots. txt file.

2.3.5 Eliminating Already-Visited URLs

Before adding a new URL to the work pool, we must check if it has already been
fetched at least once, by invoking the isUrl Visited? module, shown in Figure 2.2.
(Refreshing the page contents is discussed in Section 2.3.11.) Many sites are quite
densely and redundantly linked, and a page is reached via many paths; hence, the
isUrlVisited? check needs to be very quick. This is usually achieved by computing
a hash function on the URL.

2.3 Engineering Large-Scale Crawlers 27

AltaVista Search
User-agent: AltaVista Intranet V2.0 W3C Webreg

Disallow: /Out-Of-Date

exciude some access-controlled areas
User-agent: *

Disallow: /Team

Disallow: /Project

Disallow: /Systems

FIGURE 2.3 A sample robots.txt file.

For compactness and uniform size, canonical URLs are usually hashed using
a hash function such as MD5. (The MD5 algorithm takes as input a message of
arbitrary length and produces as output a 128-bit fingerprint or message digest of the
input. It is conjectured that it is computationally hard to produce two messages
having the same message digest, or to produce any message having a prespecified
message digest value. See wuww rsasecurity.com/rsalabs/faq/3-6-6.html for details.)
Depending on the number of distinct URLs that must be supported, the MD5
may be collapsed into anything between 32 and 128 bits, and a database of these
hash values is maintained. Assuming each URL costs just 8 bytes of hash value
(ignoring search structure costs), a billion URLs will still cost 8 GB, a substantial
amount of storage that usually cannot fit in main memory.

Storing the set of hash values on disk unfortunately makes the isUr Visited?
check slower, but luckily, there is some locality of access on URLs. Some
URLs (such as www.netscape.com/) seem to be repeatedly encountered no matter
which part of the Web the crawler is traversing. Thanks to relative UR Ls within
sites, there is also some spatiotemporal locality of access: once the crawler starts
exploring a site, URLs within the site are frequently checked for a while.

To exploit locality, we cannot hash the whole URL to a single hash value,
because a good hash function will map the domain strings uniformly over the
range. This will jeopardize the second kind of locality mentioned above, because
paths on the same host will be hashed over the range uniformly. This calls for
a two-block or two-level hash function. The most significant bits (say, 24 bits)
are derived by hashing the hostname plus port only, whereas the lower-order
bits (say, 40 bits) are derived by hashing the path. The hash values of URLs on
the same host will therefore match in the 24 most significant bits. Therefore, if

28 CHAPTER 2 Crawling the Web

the concatenated bits are used as a key in a B-tree that is cached at page level,
spatiotemporal locality is exploited.

Finally, the qualifying URLs (i.e., those whose hash values are not found in
the B-tree) are added to the pending work set on disk, also called the frontier of
the crawl. The hash values are also added to the B-tree.

2.3.6 Spider Traps

Because there is no editorial control on Web content, careful attention to coding
details is needed to render crawlers immune to inadvertent or malicious quirks
in sites and pages. Classic lexical scanning and parsing tools are almost useless. I
have encountered a page with 68 KB of null characters in the middle of a URL
that crashed a lexical analyzer generated by flex.® Hardly any page follows the
HTML standard to a level where a context-free parser like yacc or bison can
parse it well. Commercial crawlers need to protect themselves from crashing on
ill-formed HTML or misleading sites. HTML scanners have to be custom-built
1o handle errors in a robust manner, discarding the page summarily if necessary.

Using soft directory links and path remapping features in an Http server, it is
possible to create an infinitely “deep” Web site, in the sense that there are paths
of arbitrary depth (in terms of the number of slashes in the path or the number
of characters). CGI (common gateway interface) scripts can be used to generate an
infinite number of pages dynamically (e.g., by embedding the current time or a
random number). A simple check for URL length (or the number of slashes in
the URL) prevents many “infinite site” problems, but even at finite depth, Hetp
servers can generate a large number of dummy pages dynamically. The following
are real URLs encountered in a recent crawl:

* www.troutbums.com/ Flyfactory /hatchline /hatchline /hatchline /flyfactory /flyfactory
/hatchline /flyfactory /flyfactory /flyfactory / flyfactory / flyfactory /flyfactory / flyfactory
/flyfactory /hatchline/hatchline /flyfactory /flyfactory /hatchline/

s www.troutbums.com/ Flyfactory /flyfactory /flyfactory /hatchline /hatchline /flyfactory
/hatchline /flyfactory /hatchline /flyfactory /flyfactory /flyfactory /hatchline /flyfactory
/hatchline/

s unpw troutbums.com /Flyfactory /hatchline /hatchline / flyfactory /flyfactory / flyfactory

/flyfactory /hatchline /flyfactory /flyfactory /flyfaciory /flyfactory /flyfactory /flyfactory
/hatchline/

3. Available online at wuwuw gnu.org/software/flex/.

]
|
:

2.3 Engineering Large-Scale Crawlers 29

Certain classes of traps can be detected (see the following section), but no
automatic technique can be foolproof. The best policy is to prepare regular
statistics about the crawl. If a site starts dominating the collection, it can be added
to the guard module shown in Figure 2.2, which will remove from consideration
any URL from that site. Guards may also be used to disable crawling active content
such as CGI form queries, or to eliminate URLs whose data types are clearly not
textual (e.g., not one of HTML, plain text, PostScript, PDE, or Microsoft Word).

2.3.7 Avoiding Repeated Expansion of Links on Duplicate Pages

It is desirable to avoid fetching a page multiple times under different names (e.g. ,
#; and), not only to reduce redundant storage and processing costs but also
to avoid adding a relative outlink v multiple times to the work pool as /v and
up/v. Even if uy and u, have been fetched already, we should control the damage
at least at this point. Otherwise there could be quite a bit of redundancy in the
crawl, or worse, the crawler could succumb to the kind of spider traps illustrated
in the previous section.

Duplicate detection is essential for Web crawlers owing to the practice of
mirroring Web pages and sites—that is, copying them to a different host to speed
up access to a remote user community. If #; and i, are exact duplicates, this can
be detected easily. When the page contents are stored, a digest (e.g., MD5) is also
stored in an index. When a page is crawled, its digest is checked against the index
(shown as isPageKnown? in Figure 2.2). This can be implemented to cost one seek
per test. Another way to catch such duplicates is to take the contents of pages 1
and u,, hash them to h(u,) and h(uy), and represent the relative link v as tuples
(h(uy), v) and (h(u,), v). If uy and u, are aliases, the two outlink representations
will be the same, and we can avoid the isPageKnown? implementation.

Detecting exact duplicates this way is not always enough, because mirrors may
have minor syntactic differences, for example, the date of update, or the name
and email of the site administrator may be embedded in the page. Unfortunately,
even a single altered character will completely change the digest. Shingling, 2 more
complex and robust way to detect near duplicates, is described in Section 3.3.2.
Shingling is also useful for eliminating annoying duplicates from search engine

Iresponses.

2.3.8 Load Monitor and Manager

Network requests are orchestrated by the load monitor and thread manager shown
in Figure 2.2. The load monitor keeps track of various system statistics:

30 CHAPTER 2 Crawling the Web

* Recent performance of the wide area network (WAN) connection, say, latency
and bandwidth estimates. Large crawlers may need WAN connections from
multiple Internet service providers (ISPs); in such cases their performance param-
eters are individually monitored.

¢ An operator-provided or estimated maximum number of open sockets that
the crawler should not exceed.

+ The current number of active sockets.

The load manager uses these statistics to choose units of work from the pending
work pool or frontier, schedule the issue of network resources, and distribute
these requests over multiple ISPs if appropriate.

2.3.9 Per-Server Work-Queues

Many commercial Http servers safeguard against denial of service (DoS) attacks.
DosS attackers swamp the target server with frequent requests that prevent it from
serving requests from bona fide clients. A common first line of defense is to limit
the speed or frequency of responses to any fixed client IP address (to, say, at most
three pages per second). Servers that have to execute code in response to requests
(e.g., search engines) are even more sensitive; frequent requests from one IP
address are in fact actively penalized.

As an Http client, a crawler needs to avoid such situations, not only for
high performance but also to avoid legal action. Well-written crawlers limit the
number of active requests to a given server IP address at any time. This is done
by maintaining a queue of requests for each server (see Figure 2.2). Requests are
removed from the head of the queue, and network activity is initiated at a specified
maximum rate. This technique also reduces the exposure to spider traps: no matter
how large or deep a site is made to appear, the crawler fetches pages from it at
some maximum rate and distributes its attention relatively evenly between a large
number of sites.

From version 1.1 onward, Http has defined a mechanism for opening one
connection to a server and keeping it open for several requests and responses in
succession. Per-server host queues are usually equipped with Htep version 1.1
persistent socket capability. This reduces overheads of DNS access and Http
connection setup. On the other hand, to be polite to servers (and also because
servers protect themselves by closing the connection after some maximum number
of transfers), the crawler must move from server to server often. This tension

2.3 Engineering Large-Scale Crawlers 31

between access locality and politeness (or protection against traps) is inherent in
designing crawling policies.

2.3.10 Text Repository

The crawler’s role usually ends with dumping the contents of the pages it fetches
into a repository. The repository can then be used by a variety of systems and
services which may, for instance, build a keyword index on the documents
(see Chapter 3), classify the documents into a topic directory like Yahoo! (see
Chapter 5), or construct a hyperlink graph to perform link-based ranking and
social network analysis (see Chapter 7). Some of these functions can be initiated
within the crawler itself without the need for preserving the page contents, but
implementers often prefer to decouple the crawler from these other functions for
efficiency and reliability, provided there is enough storage space for the pages.
Sometimes page contents need to be stored to be able to provide, along with
responses, short blurbs from the matched pages that contain the query terms.

Page-related information is stored in two parts: metadata and page contents.
The metadata includes fields like content type, last modified date, content length,
Http status code, and so on. The metadata is relational in nature but is usually
managed by custom software rather than a relational database. Conventional rela-
tional databases pay some overheads to support concurrent updates, transactions,
and recovery. These features are not needed for a text index, which is usually
managed by bulk updates with permissible downtime.

HTML page contents are usually stored compressed using, for example, the
popular compression library zlib. Since the typical text or HTML Web page is
10 KB long®* and compresses down to 2 to 4 KB, using one file per crawled page
is ruled out by file block fragmentation (most file systems have a 4 to 8 KB file
block size). Consequently, page storage is usually relegated to a custom storage
manager that provides simple access methods for the crawler to add pages and for
programs that run subsequently (e.g., the indexer) to retrieve documents.

For small-scale systems where the repository is expected to fit within the
disks of a single machine, one may use the popular public domain storage
manager Berkeley DB (available from www sleepycat.com/), which manages disk-
based databases within a single file. Berkeley DB provides several access methods.
If pages need to be accessed using a key such as their URLs, the database can

4. Graphic files may be longer.

32 CHAPTER 2 Crawling the Web

Internet service A . Storage
. N/w interface ; B
provider # server
N .
N/w interface
Storage
Internet service N server
) N/w interface
provider #
s S Storage
_ N/w interface server
Internet service
provider #3 Crawler Fast local network

e

FIGURE 2.4 Large-scale crawlers often use multiple ISPs and a bank of local storage servers to
store the pages crawled.

be configured as a hash table or a B-tree, but updates will involve expensive disk
seeks, and a fragmentation loss between 15% and 25% will accrue. If subsequent
page processors can handle pages in any order, which is the case with search engine
indexing, the database can be configured as a sequential log of page records. The
crawler only appends to this log, which involves no seek and negligible space
overhead. It is akso possible to first concatenate several pages and then compress
them for a better compression factor.

For larger systems, the repository may be distributed over a number of storage
servers connected to the crawler through a fast local network (such as gigabit
Ethernet), as shown in Figure 2.4. The crawler may hash each URL to a specific
storage server and send it the URL and the page contents. The storage server
simply appends it to its own sequential repository, which may even be a tape
drive, for archival. High-end tapes can transfer over 40 GB per hour,” which is
about 10 million pages per hour, or about 200 hours for the whole Web (about 2
billion pages) at the time of writing. This is comparable to the time it takes today
for the large Web search companies to crawl a substantial portion of the Web.
Obviously, to complete the crawl in as much time requires the aggregate network
bandwidth to the crawler to match the 40 GB per hour number, which is about
100 Mb per second, which amounts to about two T3-grade leased lines.

5. Tuse B for byte and b for bit.

2.3 Engineering Large-Scale Crawlers 33

% telnet www.cse.iith.ac.in 80

Trying 144.16.111.14..,

Connected to surya.cse.iitb.ac.in.

Escape character is 'J'.

GET / HTTP/1.0

If-modified-since: Sat, 13 Jan 2001 09:01:02 GMT

HTTP/1.1 304 Not Modified

Date: Sat, 13 Jon 2001 10:48:58 GMT
Server: Apache/1.3.0 (Unix) PHP/3.0.4
Connection: close

ETag: "5c248-153d-3040blae”
Connection closed by foreign host.

%

FIBURE 2.5 Using the If-modified-since request header to check if a page needs to be crawled
again. In this specific case it does not.

2.3.11 Refreshing Crawled Pages

Ideally, a search engine’s index should be fresh—that is, it should reflect the most
recent version of all documents crawled. Because there is no general mechanism
of updates and notifications, the ideal cannot be attained in practice. In fact, a
Web-scale crawler never “completes” its job; it is simply stopped when it has
collected “enough” pages. Most large search engines then index the collected
pages and start a fresh crawl. Depending on the bandwidth available, 2 round of
crawling may run up to a few weeks. Many crawled pages do not change during
a round—or ever, for that matter—but some sites may change many times.

Figure 2.5 shows how to use the Http protocol to check if a page changed
since a specified time and, if so, to fetch the page contents. Otherwise the server
sends a “not modified” response code and does not send the page. For a browser
this may be useful, but for a crawler it is not as helpful, because, as [have noted,
resolving the server address and connecting a TCP socket to the server already
take a large chunk of crawling time.

When a new crawling round starts, it would clearly be ideal to know which
pages have changed since the last crawl and refetch only those pages. This is
possible in a very small number of cases, using the Expires Http response header
(see Figure 2.6). For each page that did not come with an expiration date, we
have to guess if revisiting that page will yield a modified version. If the crawler

34 CHAPTER 2 Crawling the Web

% telnet vancouver-webpages.com 80

Trying 216.13.169.244...

Connected to vancouver-webpages.com (216.13.169.244).

Escape character is ‘~]'.
HEAD/cgi-pub/cache-test.pl/exp=in+1+minutedmod=Last+Night&rfc=1123 HTTP/1.0

HTTP/1.1 200 OK

Date: Tue, 26 Feb 2002 04:56:09 GMT

Server: Apache/1.3.6 (Unix) (Red Hat/Linux) mod _peri/1.19
Expires: Tue, 26 Feb 2002 04:57:10 GMT

Last-Modified: Tue, 26 Feb 2002 04:56:10 GMT

Connection: close

Content-Type: text/html

FIGURE 2.6 Some sites with time-sensitive information send an Expires attribute in the Hetp

response header.

had access to some sort of score reflecting the probability that each page has been
modified, it could simply fetch URLs in decreasing order of that score. Even a
crawler that runs continuously would benefit from an estimate of the expiration
date of each page that has been crawled.

We can build such an estimate by assuming that the recent update rate will
remain valid for the next crawling round—that is, that the recent past predicts the
future. If the average interval at which the crawler checks for changes is smaller
than the intermodification times of a page, we can build a reasonable estimate of
the time to the next modification. The estimate could be way off, however, if the
page is changed more frequently than the poll rate: we might have no idea how
many versions successive crawls have missed. Another issue is that in an expanding
Web, more pages appear young as time proceeds. These issues are discussed by
Brewington and Cybenko [24], who also provide algorithms for maintaining a
crawl in which most pages are fresher than a specified epoch. Cho [50] has also
designed incremental crawlers based on the same basic principle.

Most search engines cannot afford to wait for a full new round of crawling
to update their indices. Between every two complete crawling rounds, they run
a crawler at a smaller scale to monitor fast-changing sites, especially related to
current news, weather, and the like, so that results from this index can be patched
into the master index. This process is discussed in Section 3.1.2.

2.4 Putting Together a Crawler 35

2.4 Putting Together a Crawler

The World Wide Web Consortium (www.w3c.org/) has published a reference
implementation of the Http client protocol in a package called w3c-11bwww. It is
written in C and runs on most operating systems. The flexibility and consequent
complexity of the API may be daunting, but the package greatly facilitates the
writing of reasonably high-performance crawlers. Commercial crawlers probably
resemble crawlers written using this package up to the point where storage
management begins.

Because the details of commercial crawlers are carefully guarded, T will focus
on the design and use of the w3c-1ibwww library instead. This section has two parts.
In the first part, | will discuss the internals of a crawler built along the same
style as w3c-1ibwww. Since w3c-1ibwww is large, general, powerful, and complex, I
will abstract its basic structure through pseudocode that uses C++ idioms for
concreteness. In the second part, I will give code fragments that show how to use

w3c-11bwww.

2.4.1 Design of the Core Components

It is easiest to start building a crawler with a core whose only responsibility is to
copy bytes from network sockets to storage media: this is the Crawler class. The
Crawler’s contract with the user is expressed in these methods:

class Crawler {
void setDnsTimeout{int milliSeconds);
void setHttpTimeout(int milliSeconds);
void fetchPush(const string& url);
virtual boolean fetchPull(string& url); // set url, return success
virtual void fetchDone(const stringd url,
const ReturnCode returnCode, // timeout, server not found, ...
const int httpStatus, // 200, 404, 302, ...
const hash_map<string, string>& mimeHeader,
// Content-type = text/htmi
// Last-modified = ...
const unsigned char * pageBody,
const size_t pageSize);

The user can push a URL to be fetched to the Crawler. The crawler im-
plementation will guarantee that within a finite time (preset by the user using

36 CHAPTER 2 Crawling the Web

setDnsTimeout and setHttpTimeout) the termination callback handler fetchDone will
be called with the same URL and associated fields as shown. (I am hiding many
more useful arguments for simplicity.) fetchPush inserts the URL into a memory
buffer: this may waste too much memory for a Web-scale crawler and is volatile.
A better option is to check new URLs into a persistent database and override
fetchPull to extract new work from this database. The user also overrides the
(empty) fetchDone method to process the document, usually storing page data
and metadata from the method arguments, scanning pageBody for outlinks, and
recording these for later fetchPulls. Other functions are implemented by extend-
ing the Crawler class. These include retries, redirections, and scanning for outlinks.
In a way, “Crawler” is a misnomer for the core class; it just fetches a given list of
URULs concurrently.

Let us now turn to the implementation of the Crawler class. We will need two
helper classes called DNS and Fetch. Crawler is started with a fixed set of DNS servers.
For each server, a DNS object is created. Each DNS object creates a UDP socket with
its assigned DNS server as the destination. The most important data structure
included in a DNS object is a list of Fetch contexts waiting for the corresponding
DNS server to respond:

class DNS {
list<Fetch*> waitForDns;

- //other members

A Fetch object contains the context required to complete the fetch of one
URL using asynchronous sockets. waitForDns is the list of Fetches waiting for this
particular DNS server to respond to their address-resolution requests.

Apart from members to hold request and response data and methods to deal
with socket events, the main member in a Fetch object is a state variable that
records the current stage in retrieving a page:

typedef enum {

STATE_ERROR = -1, STATE_INIT = 0,

STATE_DNS_RECEIVE, STATE_HTTP_SEND, STATE_HTTP_RECEIVE, STATE FINAL
} State;
State state;

2.4 Putting Together a Crawler 37

For completeness I also list a set of useful ReturnCodes. Most of these are self-
explanatory; others have to do with the innards of the DNS and Hittp protocols.

typedef enum {
SUCCESS = 0,

DNS_SERVER_UNKNOWN,

DNS_SOCKET, DNS_CONNECT, DNS_SEND, DNS_RECEIVE, DNS_CLOSE, DNS_TIMEOUT,
// and a variety of error codes DNS_PARSE ... if the DNS response

// cannot be parsed properly for some reason

HTTP_BAD_URL_SYNTAX, HTTP_SERVER UNKNOWN,
HTTP_SOCKET, HTTP_CONNECT, HTTP_SEND, HTTP RECEIVE,
HTTP_TIMEOUT, HTTP PAGE_TRUNCATED,

MIME_MISSING, MIME_PAGE EMPTY, MIME NO STATUS LINE,
MIME_UNSUPPORTED HTTP VERSION, MIME BAD CHUNK_ ENCODING
} ReturnCode;

The remaining important data structures within the Crawler are given below.

class Crawler {

deque<string> waitForIssue;
// Requests wait here to limit the number of network connections.
// When resources are available, they go to...

hash_map<SocketID, DNS*> dnsSockets;
// There is one entry for each DNS socket, i.e., for each DNS server.
// New Fetch record entries join the shortest list.
// Once addresses are resolved, Fetch records go to...

deque<Fetch*> waitForHttp;
// When the system can take on a new Http connection, Fetch records
// move from waitForHttp to...

hash_map<SocketID, Fetch*> httpSockets;
// A Fetch record completes its lifetime while attached to an Http socket.
// To avoid overloading a server, we keep a set of IP addresses that
// we are nominally connected to at any given time

hash_set<IPAddr> busyServers;

//rest of Crawler definition

38 CHAPTER 2 Crawling the Web

1: Crawler::start

2: while event loop has not been stopped do

3 if not enough active Fetches to keep system busy then

4: try a fetchPull to replenish the system with more work
5: if no pending Fetches in the system then
6

7

8

9

stop the event loop
end if
end if
if not enough Http sockets busy and
there is a Fetch f in waitForHttp whose server IP address ¢ busyServers then
10: remove f from waitForHttp

11: lock the IP address by adding an entry to busyServers (to be polite
to the server)

12: change f.state to STATE_HTTP_SEND

13: allocate an Http socket s to start the Http protocol

14: set the Http timeout for f

15: set httpSockets[s] to the Fetch pointer

16: continue the outermost event loop

17: end if

18: if the shortest waitForDns is “too short” then

19: remove a URL from the head of waitForIssue

20: create a Fetch object f with this URL

21: issue the DNS request for f

22: set f.state to STATE_DNS_RECEIVE

23: set the DNS timeout for f

24: put f on the laziest DNS’s waitForDns

25: continue the outermost event loop

26: endif

27: collect open SocketIDs from dnsSockets and httpSockets

28: also collect the earliest deadline over all active Fetches

29: perform the select call on the open sockets with the earliest deadline
as timeout

FIGURE 2.7 The Crawler’s event loop. For simplicity, the normal workfiow is shown, hiding many
conditions where the state of a Fetch ends in an error.

The heart of the Crawter is a method called Crawler::start(), which starts
its event loop. This is the most complex part of the Crawler and is given as a
pseudocode in Figure 2.7. Each Fetch object passes through a workflow. It first

2.4 Putting Together a Crawler 39

30: if select returned with a timeout then

31: for each expired Fetch record f in dnsSockets and httpSockets do
32: remove f

33: invoke f.fetchDone(...) with suitable timeout error codes
34: remove any locks held in busyServers

35: end for

36: else

37: find a SocketID s that is ready for read or write

38: locate a Fetch record f in dnsSockets or httpSockets that was waiting on s
39: if a DNS request has been completed for f then

40: move f from waitForDns to waitForHttp

41: else

42: if socket is ready for writing then

43: send request

44: change f.state to STATE_HTTP_RECEIVE

45: else

46: receive more bytes

47: if receive completed then

48: invoke f.fetchDone(...) with successful status codes
49: remove any locks held in busyServers

50: remove f from waitForlittp and destroy f

51: end if

52: end if

53: end if

54: endif

55: end while

FIGURE 2.7 (continued)

joins the waitForDNS queue on some DNS object. When the server name resolution
step is completed, it goes into the waitForHttp buffer. When we can afford another
Http connection, it leaves waitForHttp and joins the httpSockets pool, where there
are two major steps: sending the Hetp request and filling up a byte buffer with the
response. Finally, when the page content is completely received, the user callback
function fetchDone is called with suitable status information. The user has to extend
the Crawler class and redefine fetchDone to parse the page and extract outlinks to

make it a real crawler.

40 CHAPTER 2 Crawling the Web

2.4.2 Case Study: Usingw3c-T1ibwww

So far we have seen a simplified account of how the internals of a package like
w3c-Tibwww 1s designed; now we will see how to use it. The w3c-1ibwww API is
extremely flexible and therefore somewhat complex, because it 1s designed not
only for writing crawlers but for general, powerful manipulation of distributed
hypertext, including text-mode browsing, composing dynamic content, and so
on. Here we will sketch a simple application that issues a batch of URLs to fetch
and installs a fetchDone callback routine that just throws away the page contents.
We start with the main routine in Figure 2.8.

Unlike the simplified design presented in the previous section, w3c-11bwww
can process responses as they are streaming in and does not need to hold them
in 2 memory buffer. The user can install various processors through which
the incoming stream has to pass. For example, we can define a handler called
hrefHandler to extract HREFs, which would be useful in a real crawler. It is
registered with the w3c-1ibwww system as shown in Figure 2.8. Many other objects
are mentioned in the code fragment below, but most of them are not key to
understanding the main idea. hrefHandler is shown in Figure 2.9.

The method fetchDone, shown in Figure 2.10, is quite trivial in our case. It
checks if the number of outstanding fetches is enough to keep the system busy;
if not, it adds some more work. Then it just frees up resources associated with
the request that has just completed and returns. Each page fetch is associated with
an HTRequest object, similar to our Fetch object. At the very least, a termination
handler should free this request object. If there is no more work to be found, it

stops the event loop.

2.5 Bibliographic Notes

Details of the TCP/IP protocol and its implementation can be found in the
classic work by Stevens [202]. Precise specifications of hypertext-related and older
network protocols are archived at the World Wide Web Consortium (W3C Web
site. www.w3c.org/). Web crawling and indexing companies are rather protective
about the engineering details of their software assets. Much of the discussion of
the typical anatomy of large crawlers is guided by an early paper discussing the
crawling system [26] for Google, as well as a paper about the design of Mercator,
a crawler written in Java at Compaq Research Center [108]. There are many
public-domain crawling and indexing packages, but most of them do not handle

2.5 Bibliographic Notes 41

vector<string> todo;
int tdx = 0;
//...global variables storing all the URLs to be fetched..
int inProgress=0;
//-..keep track of active requests to exit the event ltoop properly...
int main(int ac, char ** av) {
HTProfile newRobot ("CSE@IITBombay", "1.,0");
HTNet_setMaxSocket(64); // ...keep at most 64 sockets open at a time
HTHost_setEventTimeout (40000); //...Http timeout is 40 seconds
//...install the hrefHandler...
Iquﬁ|ﬂmmﬂmnm1r¢:xmmgacmnxﬂz1mﬁ:m=admﬁvu
//-..install our fetch termination handler...
qumwlmaa>wﬁm1ﬂﬁmnn:cozm. NULL, NULL, HT_ALL, HT_FILTER LAST);
//...read URL list from file... .
ifstream ufp("urlset.txt");
string url;
while (ufp.good() 8& (ufp >> url) 8& url.size() > 0)
todo.push_back(url});
ufp.close();
//...start off the first fetch...
if { todo.empty()) return;
++inProgress;
HTRequest * request = HTRequest new(});
HTAnchor * anchor = HTAnchor_findAddress(todo[tdx++].c_str()};
if { YES == HTLoadAnchor(anchor, request)) {
//...and enter the event loop...
HTEventList_newloop();
}

//...control returns here when event loop is stopped

}

FIGURE 2.8 Sketch of the main routine for a crawler using w3c-11bwww.

the scale that commercial crawlers do. w3c-11bwww is an open implementation suited
for applications of moderate scale.

Estimating the size of the Web has fascinated Web users and researchers alike.
Because the Web includes dynamic pages and spider traps, it is not easy to even
define its size. Some well-known estimates were made by Bharat and Broder
[16] and Lawrence and Lee Giles [133]. The Web continues to grow, but not

void hrefHandler(HText * text,
int element_number,
int attribute_number,
HTChildAnchor * anchor,
const BOOL * present,
const char ** value)

if (lanchor) return;

HTAnchor * childAnchor = _._;:n:o_ﬁﬁod_ozzﬂ.:C.:xﬁz;snro_}vm:nrolu
if { lchildAnchor) return;

char * childUrl = HTAnchor address({HTAnchor*) childAnchor);
//...add childUr? to work pool, or issue a fetch right now...
I.ﬂlmxmm?:in:_‘,:w

FIGURE 2.9 A handler that is triggered by w3c-1ibwww whenever an HREF token is detected in the
incoming stream.

#define LIBWWW_BATCH_SIZE 16
//-..oumber of concurrent fetches...
int fetchDone(HTRequest * request, HTResponse * response,
void * param, int status)

if { request == NULL) return -1;
//...replenish concurrent fetch pool if needed...
while (inProgress < LIBWWW_BATCH_SIZE && tdx < todo.size()) {
++inProgress;
string newUrl (todo[tdx]);
++tdx;
HTRequest * nrq = HTRequest new(});
HTAnchor * nax = HTAnchor_findAddress(newUrl.c_str());
(void) HTLoadAnchor(nax, nrg);
}
//...process the just-completed fetch here...
inProgress--;
const bool noMoreWork = (inProgress <= 0);
HTRequest_delete(request);
if (noMoreWork)
HTEventList stopLoop();
return 0;

FIGURE 2.10 Page fetch completion handler for the w3c-7ibwww—based crawler.

2.5 Bibliographic Notes 43

at as heady a pace as in the late 1990s. Nevertheless, some of the most accessed
sites change frequently. The Internet Archive (wuww:archive.org/) started to archive
large portions of the Web in October 1996, in a bid to prevent most of it from
disappearing into the past [120]. At the time of this writing, the archive has
about 11 billion pages, taking up over 100 terabytes. Storage at such a scale is
not unprecedented: a music radio station holds about 10,000 records, or about 5
terabytes of uncompressed data, and the U.S. Library of Congress contains about
20 million volumes, or an estimated 20 terabytes of text. The Internet Archive is
available to researchers, historians, and scholars. An interface called the Wayback
Machine lets users access old versions of archived Web pages.

