On Computing the Diameter of Real World Graphs

Andrea Marino

University of Pisa

Pisa, March 2015

Andrea Marino On Computing the Diameter of Real World Graphs

- 4 同 ト 4 三 ト 4 三 ト

SQC

Small world effect

The small average distance observed in the complex networks is referred as small world effect:

• If the size of the network is *n*, the average distance and the diameter have at most the order of magnitude of log(*n*).

同下 イヨト イヨト

DQ P

The average distance of Facebook (721.1M nodes and 68.7G edges) is 4.7 and the diameter is 41.

By JOHN MARKOFF and SOMINI SENGUPTA Published: November 21, 2011

- Average distance has been computed by applying HyperANF tool.
 - Boldi, Rosa, and Vigna. Hyperanf: approximating the neighbourhood function of very large graphs on a budget. In WWW 2011.
- Diameter has been computed by applying *i*FUB.
 - Crescenzi, Grossi, Habib, Lanzi, and Marino. On computing the diameter of real-world undirected graphs. Theoretical Computer Science, 2012.

Given a graph G = (V, E) (strongly) connected.

Definition (Distance)

The distance d(u, v) is the number (sum of the weights) of edges along shortest path from u to v.

Definition (Diameter)

$$D = \max_{u,v \in V} d(u,v)$$

An Example Undirected Graph

Definition

 The eccentricity of a node u, ecc(u) = max_{v∈V} d(u, v): in how many hops u can reach any node?

 $D = \max_{u \in V} \operatorname{ecc}(u)$

	<i>v</i> ₁	<i>v</i> ₂	V3	<i>v</i> 4	v ₅	v ₆	<i>v</i> 7	v ₈	V9	ecc
v ₁	0	1	1	2	2	3	2	3	3	3
v2	1	0	1	1	2	3	1	3	2	3
<i>V</i> 3	1	1	0	2	1	2	2	2	3	3
<i>v</i> ₄	2	1	2	0	1	2	2	2	1	2
<i>v</i> 5	2	2	1	1	0	1	3	1	2	3
V ₆	3	3	2	2	1	0	4	1	3	4
V7	2	1	2	2	3	4	0	4	3	4
<i>v</i> 8	3	3	2	2	1	1	4	0	3	4
<i>V</i> 9	3	2	3	1	2	3	3	3	0	3

BFS [O(m) time]

For any *i*, $F_i(u)$ are the nodes at distance *i* from *u* (and vice versa).

・ロト ・回ト ・ヨト ・ヨト

Э

SQA

An Example Directed Graph

Definition

- Forward Eccentricity of *u*: in how many hops *u* can reach any node?
 - $\operatorname{ecc}_{\mathrm{F}}(u) = \max_{v \in V} d(u, v)$
- Backward Eccentricity of *u*: in how many hops *u* can be reached starting from any node?

•
$$\operatorname{ecc}_{\mathrm{B}}(u) = \max_{v \in V} d(v, u)$$

 $\bullet~$ Diameter: maximum $\mathrm{ecc}_{\mathrm{F}}$ or $\mathrm{ecc}_{\mathrm{B}}$

	<i>v</i> ₁	<i>v</i> ₂	<i>v</i> ₃	<i>v</i> ₄	<i>v</i> 5	v ₆	<i>v</i> 7	v ₈	Vg	v ₁₀	<i>v</i> ₁₁	v ₁₂	ecc _F
<i>v</i> ₁	0	2	1	3	1	3	2	3	2	4	1	2	4
V2	1	0	2	1	2	3	2	3	3	4	2	3	4
V3	2	1	0	2	3	2	1	2	4	3	3	4	4
<i>v</i> 4	1	3	2	0	2	2	1	2	3	3	2	3	3
<i>v</i> 5	3	2	1	2	0	3	2	2	1	3	4	5	5
v ₆	2	4	3	1	3	0	2	3	4	4	3	4	4
V7	3	4	3	2	2	1	0	1	3	2	4	5	5
v ₈	4	3	2	3	1	4	3	0	2	1	5	6	6
Vg	2	4	3	1	2	3	2	1	0	2	3	4	4
v10	5	4	3	4	2	5	4	1	3	0	6	7	7
v ₁₁	2	4	3	5	3	5	4	5	4	6	0	1	6
v ₁₂	1	3	2	4	2	4	3	4	3	5	2	0	5
ecc _B	5	4	3	5	3	5	4	5	4	6	6	7	

On Computing the Diameter of Real World Graphs

Forward BFS Tree [O(m) time]

For any *i*, the forward fringe, $F_i^F(u)$ (which nodes are at distance *i* from *u*)

Backward BFS Tree [O(m) time]

For any *i*, the backward fringe, $F_i^B(u)$ (from which nodes, *u* is at distance *i*).

i	$F_i^F(v_1)$	$F_i^B(v_1)$
1	v_3, v_5, v_{11}	v_2, v_4, v_{12}
2	v_2, v_7, v_9, v_{12}	<i>v</i> ₃ , <i>v</i> ₆ , <i>v</i> ₉ , <i>v</i> ₁₁
3	v_4, v_6, v_8	<i>v</i> ₅ , <i>v</i> ₇
4	<i>v</i> ₁₀	<i>v</i> ₈
5		<i>v</i> ₁₀

Communication: completion time of broadcast protocols based on flooding

- Social: how quickly information reaches every individual
 - Web: how quickly, in terms of mouse clicks, any page can be reached

イロト 不得 トイヨト イヨト 二日

SQA

- Textbook Algorithm (n = |V|, m = |E|). Too expensive.
 - Perform *n* BFS and return maximum ecc.
 - A BFS from x returns all the distances from x and takes O(m) time.
- Several other approaches (see [Zwick, 2001]) that solves all pairs shortest path. Still too expensive.
 - O(n^{(3+ω)/2} log n) where ω is the exponent of the matrix multiplication.
- Empirically finding lower bound L and upper bound U
 - That is, $L \le D \le U$
 - D found, when L = U

Part I

Computing lower and upper bound

Andrea Marino On Computing the Diameter of Real World Graphs

nar

Computing lower and upper bounds (undirected graph)

By using Single source (BFS) Shortest Path

Lower bound The eccentricity, ecc (height of the BFS tree) of a node. In the example 3: at least a pair is at distance 3.

Upper bound The double of the eccentricity ecc of a node. In the example 6: every node can reach another node going to v_1 by ≤ 3 edges and going to the destination in ≤ 3 edges.

> x: d(x, u) = i and $y: d(u, y) = j \Longrightarrow d(x, y) \le i + j$ i + j is the length of a path from x to y passing through u.

 Bounds by sampling but very often L < D < U (see SNAP experiments) In the example diameter is 4: d(v₇, v₈) = 4.

< ロ > < 同 > < 回 > < 回 >

Computing lower and upper bounds (directed graph)

- Lower Bound The forward eccentricity, ecc_F (height of the FBFS tree) of a node. In the example 4: at least a pair is at distance 4.
- Upper Bound The forward eccentricity plus the backward eccentricity ecc_B (height of the BBFS tree) of a node. In the example 9: every node can reach another node going to v_1 in ≤ 5 steps and going to the destination in ≤ 4 steps.
 - Very often: L < D < U (see SNAP experiments) In the example diameter is 7: d(v₁₀, v₁₂) = 7.

Good lower bounds in undirected graphs: 2-SWEEP

2-Sweep

- **1** Run a BFS from a random node r: let a be the farthest node.
- **2** Run a BFS from a: let b be the farthest node.
- 3 Return the length of the path from *a* to *b*.

Return d(a, b).

(4 同) (4 日) (4 日)

By starting from the highest degree node.

		2- <i>d</i> Swee	ep HdOut
Category	# of Net-	# of Net-	Maximum
	works	works in	error
		which <i>Ib</i>	
		is tight	
PROTEIN-PROTEIN INTERACTION	14	11	1
Collaboration	14	12	1
Undirected Social	4	4	0
Undirected Communication	36	34	2
Autonomous System	2	1	1
Road	3	1	14
Word Adjacency	7	4	1

・ 同 ト ・ ヨ ト ・ ヨ ト

SQC

Better lower bounds in directed graphs: directed 2-SWEEP

2-dSweep

- **Q** Run a forward BFS from a random node r: let a_1 be the farthest node.
- 2 Run a backward BFS from a_1 : let b_1 be the farthest node.
- 3 Run a backward BFS from r: let a_2 be the farthest node.
- **4** Run a forward BFS from a_2 : let b_2 be the farthest node.
- If ecc_B(a₁) > ecc_F(a₂), then return the length of the path from b₁ to a₁. Otherwise return the length of the path from a₂ to b₂.

Return the maximum between $d(a_2, b_2)$ and $d(b_1, a_1)$.

- 4 同 ト 4 目 ト

First time used in directed graph by Broder et al. to study Graph structure in the web.

Experiments: effectiveness of 2-*d*SWEEP

By starting from the highest out-degree or the highest in-degree node.

		2-dSwei	ep HdOut	2- <i>d</i> Swe	Eep HdIn
Category	# of	# of	Max er-	# of	Max er-
	Net-	Net-	ror	Net-	ror
	works	works in		works in	
		which		which	
		<i>lb</i> is		<i>lb</i> is	
		tight		tight	
Metabolic Bipartite	76	73	19	75	19
Metabolic Compound	76	73	9	75	9
Metabolic Reaction	76	73	10	75	10
Directed Social	10	10	0	10	0
Web	16	16	0	16	0
CITATION	2	2	0	2	0
Communication	3	3	0	2	1
P2P	9	8	1	7	1
Product co-Purchasing	5	5	0	5	0
WORD-ASSOCIATION	1	1	0	1	0

(4月) (3日) (3日) 日

Sac

More experiments

Network name	D	Numb. of runs (out of 10) in which LB = D	Worst <i>LB</i> found
Wiki-Vote	9	10	9
p2p-Gnutella08	19	9	18
p2p-Gnutella09	19	9	18
p2p-Gnutella06	19	10	19
p2p-Gnutella05	22	9	21
p2p-Gnutella04	25	7	22
p2p-Gnutella25	21	8	20
p2p-Gnutella24	28	10	28
p2p-Gnutella30	23	2	22
p2p-Gnutella31	30	9	29
s.s.Slashdot081106	15	10	15
s.s.Slashdot090216	15	10	15
s.s.Slashdot090221	15	10	15
soc-Epinions1	16	9	15
Email-EuAll	10	10	10
soc-sign-epinions	16	10	16
web-NotreDame	93	10	93
Slashdot0811	12	10	12
Slashdot0902	13	3	12
WikiTalk	10	9	9
web-Stanford	210	10	210
web-BerkStan	679	10	679
web-Google	51	10	51

Network name	D	Numb. of runs (out of 10) in which LB = D	Worst <i>LB</i> found
wordassociation-2011	10	9	9
enron	10	10	10
uk-2007-05@100000	7	10	7
cnr-2000	81	10	81
uk-2007-05@1000000	40	10	40
in-2004	56	10	56
amazon-2008	47	10	47
eu-2005	82	10	82
indochina-2004	235	10	235
uk-2002	218	10	218
arabic-2005	133	10	133
uk-2005	166	10	166
it-2004	873	10	873

◆ロ > ◆母 > ◆臣 > ◆臣 >

Э

990

(snap.stanford.edu and webgraph.dsi.unimi.it dataset)

Bad cases for $2\text{-}\mathrm{SWEEP}$

In this modified grid with k rows and 1 + 3k/2 columns. The algorithm can return k. The diameter of the network is instead 3k/2.

・ロト ・回ト ・ヨト ・ヨト

Э

SQC

Better lower bounds in undirected graphs: 4-SWEEP

• 4-SWEEP: apply 2-SWEEP pick the middle vertex of the path returned. Apply again 2-SWEEP.

Algorithm 1: 4-SWEEP

Input: A graph G

Output: A lower bound for the diameter of *G* and a node with (hopefully) low eccentricity

 $r_1 \leftarrow$ random node of G or node with the highest degree;

$$a_1 \leftarrow argmax_{v \in V} d(r_1, v);$$

$$b_1 \leftarrow argmax_{v \in V}d(a_1, v);$$

 $r_2 \leftarrow$ the node in the middle of the path between a_1 and b_1 ;

 $a_2 \leftarrow argmax_{v \in V}d(r_2, v);$

$$b_2 \leftarrow argmax_{v \in V}d(a_2, v);$$

 $u \leftarrow$ the node in the middle of the path between a_2 and b_2 ; lowerb $\leftarrow \max\{\text{ecc}(a_1), \text{ecc}(a_2)\};$

return lowerb and u;

・ロト ・四ト ・ヨト ・ヨ

A bad case for the 4-SWEEP algorithm

• For any two distinct nodes $v_{i,j,t}$ and $v_{i',j',t'}$,

$$d(v_{i,j,t}, v_{i',j',t'}) = \max\{|i - i'|, |j - j'|, |t - t'|\}$$

$$\leq \max\{x - 2, y - 2, z - 1\}.$$

• The diameter of G is $\max\{x-1, y, z-1\}$.

If x, y, and z are such that z > x > y + 1 > 3, then the diameter is equal to z - 1. If y - 1 > (z + 1)/2, y - 1 > (x + 1)/2, and x - 1 > (z + 1)/2, then the lower bound computed by the 4-SWEEP algorithm can be x - 1 instead of z - 1. (approximation ratio asymptotically close to 2)

computed is $\max\{x-1, y-1, y\} = x - 1$.

- Understand why 2-SWEEP both in the directed and in the undirected version, is so effective in finding tight lower bounds.
- It has been proved that in chordal graph the error of the $2\text{-}\mathrm{SWEEP}$ can be at most 1.
- Which is the topological underlying property that can lead us to these results? Might be related to some sort of chordality measure? Why real world graphs exhibit this property?

イロト 不得 トイヨト イヨト 二日

- Clemence Magnien, Matthieu Latapy, Michel Habib: Fast computation of empirically tight bounds for the diameter of massive graphs. ACM Journal of Experimental Algorithmics 13 (2008)
- Pierluigi Crescenzi, Roberto Grossi, Claudio Imbrenda, Leonardo Lanzi, Andrea Marino: Finding the Diameter in Real-World Graphs - Experimentally Turning a Lower Bound into an Upper Bound. ESA (1) 2010: 302-313

- 4 周 ト 4 月 ト 4 月 ト - 月

SOR

Part II

Computing exactly the diameter

Andrea Marino On Computing the Diameter of Real World Graphs

nar

Reminder

The *textbook* algorithm runs a $_{\rm BFS}$ for any node and return the maximum $\rm ecc$ found.

Main Schema of a new algorithm

- Perform the BFSes one after the other specifying the order in which the BFSes have to be executed, while doing this:
 - $\bullet\,$ refine a lower bound: that is the maximum ${\rm ecc}$ found until that moment.
 - upper bound the eccentricities of the remaining nodes.
 - stop when the remaining nodes cannot have eccentricity higher than our lower bound.

Good order can be inferred looking at some properties of BFS trees.

- 4 母 ト 4 き ト 4 きょ

- Let u be any node in V and let us denote the set
 {v | d(u, v) = ecc(u)} of nodes at maximum distance ecc(u)
 from u as F(u).
- Let F_i(u) be the fringe set of nodes at distance i from u (note that F(u) = F_{ecc(u)}(u))
- Let B_i(u) = max_{z∈Fi}(u) ecc(z) be the maximum eccentricity among these nodes.

All the nodes x above the level *i* in BFS(*u*) having ecc greater than 2(i-1) have a corresponding node y, whose ecc is greater or equal to ecc(x), below or on the level *i* in BFS(*u*).

→ Ξ →

DQ P

Theorem

For any $1 \le i < ecc(u)$ and $1 \le k < i$, and for any $x \in F_{i-k}(u)$ such that ecc(x) > 2(i-1), there exists $y \in F_j(u)$ such that d(x, y) = ecc(x) with $j \ge i$.

Andrea Marino On Computing the Diameter of Real World Graphs

- 3

DQ P

Observation

For any x and y in V such that $x \in F_i(u)$ or $y \in F_i(u)$, we have that $d(x, y) \leq B_i(u)$.

Indeed, $d(x, y) \leq \min\{\operatorname{ecc}(x), \operatorname{ecc}(y)\} \leq B_i(u)$.

Observation

For any $1 \le i, j \le ecc(u)$ and for any $x \in F_i(u)$ and $y \in F_j(u)$, we have $d(x, y) \le i + j \le 2 \max\{i, j\}$.

Theorem

For any $1 \le i < ecc(u)$ and $1 \le k < i$, and for any $x \in F_{i-k}(u)$ such that ecc(x) > 2(i-1), there exists $y_x \in F_j(u)$ such that $d(x, y_x) = ecc(x)$ with $j \ge i$.

Proof.

Since ecc(x) > 2(i-1), then there exists y_x whose distance from x is equal to ecc(x) and, hence, greater than 2(i-1). If y_x was in $F_j(u)$ with j < i, then from the previous observation it would follow that

$$d(x, y_x) \le 2 \max\{i - k, j\} \le 2 \max\{i - k, i - 1\} = 2(i - 1),$$

which is a contradiction.

Hence, y_x must be in $F_j(u)$ with $j \ge i$.

イロト イポト イヨト イヨト

Implication

Corollary

Let *lb* be the maximum eccentricity among all the eccentricities of the nodes in or below the level *i*. The eccentricities of all the nodes above the level *i* is bounded by $\max\{lb, 2(i-1)\}$.

Implication

Corollary

Let *lb* be the maximum eccentricity among all the eccentricities of the nodes in or below the level *i*. The eccentricities of all the nodes above the level *i* is bounded by $\max\{lb, 2(i-1)\}$.

Proof.

For any node x above the level *i*, there are two cases:

- $ecc(x) \le 2(i-1)$
- ecc(x) > 2(i 1). The Theorem applies: there is a node y below the level i whose eccentricity ecc(y) is greater than or equal to ecc(x).

$$lb \ge ecc(y) \ge ecc(x)$$

Perform the BFSes one after the others following the order induced by the BFS tree of a node u: starting from the nodes in F(u), go in a bottom-up fashion.

- At each level *i* compute the eccentricities of all its nodes: if the maximum eccentricity found *lb* is greater than 2(*i* - 1) then we can discard traversing the remaining levels, since the eccentricities of all their nodes cannot be greater than *lb*.
 - Since the eccentricity of the remaining nodes is bounded by $\max\{lb, 2(i-1)\}$

Given a node *u*.

- Set i = ecc(u) and $M = B_i(u)$.
- If M > 2(i 1), then return M; else, set i = i 1 and $M = \max\{M, B_i(u)\}$, and repeat this step.

イロト イポト イヨト イヨト

Algorithm 2: iFUB

Input: A graph G, a node u **Output**: The diameter D $i \leftarrow ecc(u);$ $lb \leftarrow ecc(u);$ $ub \leftarrow 2 \operatorname{ecc}(u);$ while ub > lb do if $\max\{lb, B_i(u)\} > 2(i-1)$ then **return** max{ $Ib, B_i(u)$ }; else $lb \leftarrow \max\{lb, B_i(u)\};$ $ub \leftarrow 2(i-1);$ end $i \leftarrow i - 1;$ end return lb

1

э

Two bad things can happen:

- The amount of nodes in F(u) is linear: for instance if the BFS tree of the starting node is a binary tree.
 - In special regular graphs [such as Moore graphs] no good choice is possible.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Bad cases (2)

- Cases in which nodes have close eccentricity or the BFS trees are isomorphic, like the Moore graph, but even simpler: a cycle.
 - A cycle with *n* nodes (*n* odd) has diameter $\frac{n-1}{2}$, and each node has the same BFS tree.
 - The loop is repeated until $2(i-1) \ge \frac{n-1}{2}$, that is $i \ge \frac{n+3}{4}$, and stops the first time that $2(i-1) < \frac{n-1}{2}$.
 - The total number of iterations is equal to $\frac{n-1}{2} \frac{n+3}{4} + 2 = \frac{n+3}{4}$.
 - The number of BFSes is $\frac{n+3}{2}$.

directed iterative fringe upper bound

Theorem (Sketch)

- **3** All the nodes x above the level i in BBFS(u) having ecc_F greater than 2(i-1) have a corresponding node y, whose ecc_B is greater or equal to $ecc_F(x)$, below or on the level i in FBFS(u).
- **3** All the nodes t above the level i in FBFS(u) having ecc_B greater than 2(i-1) have a corresponding node z, whose ecc_F is greater or equal to $ecc_B(t)$, below or on the level i in BBFS(u).

Corollary

- Let Ib be the maximum among all the ${\rm ecc}_{\rm B}$ of nodes y and among all the ${\rm ecc}_{\rm F}$ of nodes z.
- The ecc_B of nodes t and the ecc_F of nodes x are bounded by max{lb, 2(i − 1)}.

∰ ► < ∃ ►

MQ (P

For decreasing values of *i*

- At level *i* we have computed all the ecc_B of nodes *y* and the ecc_F of nodes *z*. The maximum is our lower bound *lb*.
- If *lb* is bigger than 2(i-1), *lb* is the diameter.
 - $\bullet\,$ No node to be examined can have ${\rm ecc}_{\rm F}$ or ${\rm ecc}_{\rm B}$ bigger than Ib.

More formally

$$B_j^F(u) = \begin{cases} \max_{x \in F_j^F(u)} \operatorname{ecc}_B(x) & \text{if } j \le \operatorname{ecc}_F(u), \\ 0 & \text{otherwise} \end{cases}$$
$$B_j^B(u) = \begin{cases} \max_{x \in F_j^B(u)} \operatorname{ecc}_F(x) & \text{if } j \le \operatorname{ecc}_B(u), \\ 0 & \text{otherwise.} \end{cases}$$

Algorithm 3: D*i*FUB

Input: A strongly connected di-graph G, a node u**Output**: The diameter D $i \leftarrow \max\{\operatorname{ecc}_F(u), \operatorname{ecc}_B(u)\};$ $lb \leftarrow \max\{\operatorname{ecc}_F(u), ecc_B(u)\};$ $ub \leftarrow 2i$: while $\mu b > lb$ do if $\max\{Ib, B_i^B(u), B_i^F(u)\} > 2(i-1)$ then return max{ $Ib, B_i^B(u), B_i^F(u)$ }; else $lb \leftarrow \max\{lb, B_i^B(u), B_i^F(u)\};$ $ub \leftarrow 2(i-1)$: end $i \leftarrow i - 1$: end return Ib:

E . E

Example

Andrea Marino

< 17 ▶ On Computing the Diameter of Real World Graphs

< E

E

If we choose $u = v_1$, the corresponding two breadth-first search trees are T_u^F and T_u^B .

i	$F_i^F(v_1)$	$F_i^B(v_1)$
1	v_3, v_5, v_{11}	v_2, v_4, v_{12}
2	v_2, v_7, v_9, v_{12}	<i>v</i> ₃ , <i>v</i> ₆ , <i>v</i> ₉ , <i>v</i> ₁₁
3	v_4, v_6, v_8	<i>v</i> ₅ , <i>v</i> ₇
4	<i>v</i> ₁₀	<i>v</i> ₈
5		<i>v</i> ₁₀

The main theorem says for instance:

if we choose i = 2, k = 1, and $x = v_4 \in F_1^B(v_1)$, then we have that $ecc_F(v_4) = 3 > 2 = 2(i - 1)$: the theorem is witnessed by node $y = v_2 \in F_2^F(v_1)$ (indeed, $d(v_4, v_2) = 3$).

Algorithm 4: D*i*FUB

Input: A strongly connected di-graph G, a node u Output: The diameter D $i \leftarrow \max\{ecc_F(u), ecc_B(u)\};$ $lb \leftarrow \max\{ecc_F(u), ecc_B(u)\};$ $ub \leftarrow 2i;$ while ub > lb do if $\max\{lb, B_i^B(u), B_i^F(u)\} > 2(i-1)$ then | return $\max\{lb, B_i^B(u), B_i^F(u)\};$ else $lb \leftarrow \max\{lb, B_i^B(u), B_i^F(u)\};$ $ub \leftarrow 2(i-1);$ end $i \leftarrow i-1;$ end b;

Invoke the algorithm with $u = v_1$.

- $i = lb = \max\{ ecc_F(v_1), ecc_B(v_1) \} = \max\{4, 5\} = 5, \text{ and } ub = 2i = 10.$
- 2 Since ub lb = 5 > 0, the algorithm enters the while loop with i = 5.
- Since $5 > \text{ecc}_F(u)$, $B_5^F(u) = 0$, and $B_5^B(u) = \text{ecc}_F(v_{10}) = 7$: since, 7 < 8 = 2(i-1), the algorithm enters the **else** branch and set *lb* equal to 7 and *ub* equal to 8.
- 4. ub lb = 1 > 0 and we enter again into the **while** loop with i = 4.
- Solution
 B₄^F(u) = ecc_B(v₁₀) = 6 and B₄^B(u) = ecc_F(v₈) = 6: hence, max{lb, B₄^B(u), B₄^F(u)} = 7 > 6 = 2(i 1).
- The algorithm enters the if branch and returns the value 7 which is the correct diameter value.

Same as for undirected graphs, replacing each edge by two opposite arcs.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ● ○○○

It heavily affects the performance (number of visits we will do).

Try to use a vertex with low eccentricity (i.e., central, well connected).

- High degree node (in-degree or out-degree).
- $\bullet\,$ The node in the middle of the diametral path returned by 2-SWEEP.

直 ト イヨト イヨト

Experiments for undirected graphs

The number of visits seems to be constant.

It has been used to compute the diameter of Facebook (721.1M nodes and 68.7G edges, Diameter 41) with just 17 BFSes.

Experiments for directed graphs

The number of visits seems to be constant.

Andrea Marino On Computing the Diameter of Real World Graphs

nar

More Experiments

Network name	n	т	Avg. Visits	Visits worst run
Wiki-Vote	1300	39456	17	17
p2p-Gnutella08	2068	9313	45.9	64
p2p-Gnutella09	2624	10776	202.1	230
p2p-Gnutella06	3226	13589	236.6	279
p2p-Gnutella05	3234	13453	60.4	94
p2p-Gnutella04	4317	18742	36.7	38
p2p-Gnutella25	5153	17695	85.1	161
p2p-Gnutella24	6352	22928	13	13
p2p-Gnutella30	8490	31706	255.4	516
p2p-Gnutella31	14149	50916	208.7	255
s.s.Slashdot081106	26996	337351	22.3	25
s.s.Slashdot090216	27222	342747	21.5	26
s.s.Slashdot090221	27382	346652	22.8	26
soc-Epinions1	32223	443506	6.1	7
Email-EuAll	34203	151930	6	6
soc-sign-epinions	41441	693737	6	6
web-NotreDame	53968	304685	7	7
Slashdot0811	70355	888662	40	40
Slashdot0902	71307	912381	32.9	40
WikiTalk	111881	1477893	13.6	19
web-Stanford	150532	1576314	6	6
web-BerkStan	334857	4523232	7	7
web-Google	434818	3419124	9.4	10

(snap.stanford.edu dataset)

→ ∃ → < ∃ →</p>

Э

More Experiments

Network name	n	m	Avg. Visits	Visits worst run
wordassociation-2011	4845	61567	412.5	423
enron	8271	147353	19	22
uk-2007-05@100000	53856	1683102	14	14
cnr-2000	112023	1646332	17	17
uk-2007-05@1000000	480913	22057738	6	6
in-2004	593687	7827263	14	14
amazon-2008	627646	4706251	136.3	598
eu-2005	752725	17933415	6	6
indochina-2004	3806327	98815195	8	8
uk-2002	12090163	232137936	6	6
arabic-2005	15177163	473619298	58	58
uk-2005	25711307	704151756	170	170
it-2004	29855421	938694394	87	87

(webgraph.dsi.unimi.it dataset)

The number of visits seems to be constant. \Rightarrow For any graph with more than 10000 nodes, D*i*FUB performs 0.001%*n* visits in stead of *n*.

・ 同 ト ・ ヨ ト ・ ヨ ト

DQ P

Suitable properties of the starting node u

- (1) u has to be the node with minimum eccentricity, called radius R.
- (2) Constant number of nodes in F(u).
- If you are able to infer the node u such that (1) and R = D/2 you will stop after one iteration.
 - High degree node is very often a good choice.
 - If the lower bound path returned by 2-SWEEP is tight and R = D/2, the node in the middle of this path make us stop after one iteration.
- Almost always in real-world graphs R = D/2 (the minimum possible, maximum heterogeneity) and (2) is true if u is central.

- D*i*FUB can be generalized to weighted graphs, using D*i*jkstra Algorithm instead of BFS and sorting the nodes according to their distance from *u*. It works well, but not for Road Networks.
- Further optimization allow to do better than this and to compute also the diameter of weakly connected graphs (Borassi et al., TCS 2015).
- It is possible to prove that for the configuration model fixing the power law the number of BFSes is almost constant.

(4 同) (4 日) (4 日)

- Why the *i*FUB method works so well in general.
 - Might be related to eccentricities distribution?

イロト イポト イヨト イヨト

Э

SQC

- Pierluigi Crescenzi, Roberto Grossi, Leonardo Lanzi, Andrea Marino: On Computing the Diameter of Real-World Directed (Weighted) Graphs. SEA 2012: 99-110
- Pilu Crescenzi, Roberto Grossi, Michel Habib, Leonardo Lanzi, Andrea Marino: On computing the diameter of real-world undirected graphs. Theor. Comput. Sci. 514: 84-95 (2013)
- Frank W. Takes, Walter A. Kosters: Determining the diameter of small world networks. CIKM 2011: 1191-1196
- Michele Borassi, Pierluigi Crescenzi, Michel Habib, Walter A. Kosters, Andrea Marino, Frank W. Takes: On the Solvability of the Six Degrees of Kevin Bacon Game - A Faster Graph Diameter and Radius Computation Method. FUN 2014: 52-63

SOR

Thanks

Andrea Marino On Computing the Diameter of Real World Graphs

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □