On Computing the Diameter of Real World Graphs

Andrea Marino
University of Pisa

Pisa, March 2015

Small world effect

The small average distance observed in the complex networks is referred as small world effect:

- If the size of the network is n, the average distance and the diameter have at most the order of magnitude of $\log (n)$.

The average distance of Facebook (721.1 M nodes and 68.7 G edges) is 4.7 and the diameter is 41 .

EThe Alcu Hork Eimes Business Day

Technology

WORLD	U.S.	N.Y./REGION	BUSINESS	TECHNOLOGY	SCIENCE	HEALTH

M-CON

Separating You and Me? 4.74 Degrees
By JOHN MARKOFF and SOMINI SENGUPTA
Published: November 21, 2011

- Average distance has been computed by applying HyperANF tool.
- Boldi, Rosa, and Vigna. Hyperanf: approximating the neighbourhood function of very large graphs on a budget. In WWW 2011.
- Diameter has been computed by applying ifUB.
- Crescenzi, Grossi, Habib, Lanzi, and Marino. On computing the diameter of real-world undirected graphs. Theoretical Computer Science, 2012.

Definitions

Given a graph $G=(V, E)$ (strongly) connected.

Definition (Distance)

The distance $d(u, v)$ is the number (sum of the weights) of edges along shortest path from u to v.

Definition (Diameter)

$$
D=\max _{u, v \in V} d(u, v)
$$

An Example Undirected Graph

Definition

- The eccentricity of a node $u, \operatorname{ecc}(u)=\max _{v \in V} d(u, v)$: in how many hops u can reach any node?

$$
D=\max _{u \in V} \operatorname{ecc}(u)
$$

| | v_{1} | v_{2} | v_{3} | v_{4} | v_{5} | v_{6} | v_{7} | v_{8} | v_{9} | ecc |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| v_{1} | 0 | 1 | 1 | 2 | 2 | 3 | 2 | 3 | 3 | 3 |
| v_{2} | 1 | 0 | 1 | 1 | 2 | 3 | 1 | 3 | 2 | 3 |
| v_{3} | 1 | 1 | 0 | 2 | 1 | 2 | 2 | 2 | 3 | 3 |
| v_{4} | 2 | 1 | 2 | 0 | 1 | 2 | 2 | 2 | 1 | 2 |
| v_{5} | 2 | 2 | 1 | 1 | 0 | 1 | 3 | 1 | 2 | 3 |
| v_{6} | 3 | 3 | 2 | 2 | 1 | 0 | 4 | 1 | 3 | 4 |
| v_{7} | 2 | 1 | 2 | 2 | 3 | 4 | 0 | 4 | 3 | 4 |
| v_{8} | 3 | 3 | 2 | 2 | 1 | 1 | 4 | 0 | 3 | 4 |
| v_{9} | 3 | 2 | 3 | 1 | 2 | 3 | 3 | 3 | 0 | 3 |

BFS [O(m) time]

For any $i, F_{i}(u)$ are the nodes at distance i from u (and vice versa).

An Example Directed Graph

Definition

- Forward Eccentricity of u : in how many hops u can reach any node?
- $\operatorname{ecc}_{F}(u)=\max _{v \in V} d(u, v)$
- Backward Eccentricity of u : in how many hops u can be reached starting from any node?
- $\operatorname{ecc}_{\mathrm{B}}(u)=\max _{v \in V} d(v, u)$
- Diameter: maximum ecce or ecc_{B}

	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}	v_{11}	v_{12}	ecc_{F}
V_{1}	0	2	1	3	1	3	2	3	2	4	1	2	4
v_{2}	1	0	2	1	2	3	2	3	3	4	2	3	4
v_{3}	2	1	0	2	3	2	1	2	4	3	3	4	4
v_{4}	1	3	2	0	2	2	1	2	3	3	2	3	3
V_{5}	3	2	1	2	0	3	2	2	1	3	4	5	5
v_{6}	2	4	3	1	3	0	2	3	4	4	3	4	4
v_{7}	3	4	3	2	2	1	0	1	3	2	4	5	5
v_{8}	4	3	2	3	1	4	3	0	2	1	5	6	6
v_{9}	2	4	3	1	2	3	2	1	0	2	3	4	4
v_{10}	5	4	3	4	2	5	4	1	3	0	6	7	7
v_{11}	2	4	3	5	3	5	4	5	4	6	0	1	6
v_{12}	1	3	2	4	2	4	3	4	3	5	2	0	5

Forward BFS Tree [O(m) time]

For any i, the forward fringe, $F_{i}^{F}(u)$ (which nodes are at distance i from u)

Backward BFS Tree [O(m) time]

For any i, the backward fringe, $F_{i}^{B}(u)$ (from which nodes, u is at distance i).

Motivations

Communication: completion time of broadcast protocols based on flooding
Social: how quickly information reaches every individual
Web: how quickly, in terms of mouse clicks, any page can be reached

- Textbook Algorithm $(n=|V|, m=|E|)$. Too expensive.
- Perform n BFS and return maximum ecc.
- A bFS from x returns all the distances from x and takes $O(m)$ time.
- Several other approaches (see [Zwick, 2001]) that solves all pairs shortest path. Still too expensive.
- $O\left(n^{(3+\omega) / 2} \log n\right)$ where ω is the exponent of the matrix multiplication.
- Empirically finding lower bound L and upper bound U
- That is, $L \leq D \leq U$
- D found, when $L=U$

Part I

Computing lower and upper bound

Computing lower and upper bounds (undirected graph)

By using Single source (bFS) Shortest Path

Lower bound The eccentricity, ecc (height of the BFS tree) of a node. In the example 3: at least a pair is at distance 3.

Upper bound The double of the eccentricity ecc of a node. In the example 6: every node can reach another node going to v_{1} by ≤ 3 edges and going to the destination in ≤ 3 edges.

$$
\begin{aligned}
& x: d(x, u)=i \text { and } y: d(u, y)=j \Longrightarrow d(x, y) \leq i+j \\
& i+j \text { is the length of a path from } x \text { to } y \text { passing through } u .
\end{aligned}
$$

- Bounds by sampling but very often $L<D<U$ (see SNAP experiments) In the example diameter is 4: $d\left(v_{7}, v_{8}\right)=4$.

Computing lower and upper bounds (directed graph)

By using Single source (FBFS) and Single target (bBFS) Shortest Path

Lower Bound The forward eccentricity, ecc_{F} (height of the FBFS tree) of a node. In the example 4: at least a pair is at distance 4.

Upper Bound The forward eccentricity plus the backward eccentricity ecc_{B} (height of the bBFS tree) of a node.
In the example 9: every node can reach another node going to v_{1} in ≤ 5 steps and going to the destination in ≤ 4 steps.

- Very often: $L<D<U$ (see SNAP experiments)

In the example diameter is 7 : $d\left(v_{10}, v_{12}\right)=7$.

Good lower bounds in undirected graphs: 2-SWEEP

2-Sweep

(1) Run a BFS from a random node r : let a be the farthest node.
(2) Run a BFS from a : let b be the farthest node.
(3) Return the length of the path from a to b.

Return $d(a, b)$.

Experiments: effectiveness of 2-SWEEP

By starting from the highest degree node.

Category	\# of Net- works	2-dSWEEPHdOut 	
PROTEIN-PROTEIN INTERACTION	14	11	1
COLLABORATION	14	12	1
UNDIRECTED Social	4	4	0
UNDIRECTED COMMUNICATION	36	34	2
AUTONOMOUS SYSTEM	2	1	1
ROAD	3	1	14
WORD ADJACENCY	7	4	1

Better lower bounds in directed graphs: directed 2-SWEEP

2-dSweep

(1) Run a forward BFS from a random node r : let a_{1} be the farthest node.
(2) Run a backward BFS from a_{1} : let b_{1} be the farthest node.
(3) Run a backward BFS from r : let a_{2} be the farthest node.
(4) Run a forward BFS from a_{2} : let b_{2} be the farthest node.
(5) If $\operatorname{ecc}_{B}\left(a_{1}\right)>\operatorname{ecc}_{F}\left(a_{2}\right)$, then return the length of the path from b_{1} to a_{1}. Otherwise return the length of the path from a_{2} to b_{2}.

Return the

 maximum between $d\left(a_{2}, b_{2}\right)$ and $d\left(b_{1}, a_{1}\right)$.First time used in directed graph by Broder et al. to study Graph structure in the web.

Experiments: effectiveness of $2-d$ SWEEP

By starting from the highest out-degree or the highest in-degree node.

Category		2-dSweep HdOut		2-dSWEEP Hdln	
		\# of Net- works in which lb is tight	Max error	\# of Networks in which $l b \quad$ is tight	Max error
Metabolic Bipartite	76	73	19	75	19
Metabolic Compound	76	73	9	75	9
Metabolic Reaction	76	73	10	75	10
Directed Social	10	10	0	10	0
Web	16	16	0	16	0
Citation	2	2	0	2	0
Communication	3	3	0	2	1
P2P	9	8	1	7	1
Product co-Purchasing	5	5	0	5	0
Word-association	1	1	0	1	0

More experiments

Network name	D	Numb. of runs (out of 10) in which $L B=D$	Worst LB found				
Wiki-Vote	9	10	9			Numb.	
p2p-Gnutella08	19	9	18			of runs	
p2p-Gnutella09	19	9	18	Network name	D		
p2p-Gnutella06	19	10	19			$\begin{aligned} & \text { in which } \\ & L B=D \end{aligned}$	
p2p-Gnutella 05	22	9	21				
p2p-Gnutella04	25	7	22	wordassociation-2011	10	9	9
p2p-Gnutella25	21	8	20	enron	10	10	10
p2p-Gnutella24	28	10	28	uk-2007-05@100000	7	10	7
p2p-Gnutella30	23	2	22	cnr-2000	81	10	81
p2p-Gnutella31	30	9	29	uk-2007-05@1000000	40	10	40
s.s.Slashdot081106	15	10	15	in-2004	56	10	56
s.s.Slashdot090216	15	10	15	amazon-2008	47	10	47
s.s.Slashdot090221	15	10	15	eu-2005	82	10	82
soc-Epinions1	16	9	15	indochina-2004	235	10	235
Email-EuAll	10	10	10	uk-2002	218	10	218
soc-sign-epinions	16	10	16	arabic-2005	133	10	133
web-NotreDame	93	10	93	uk-2005	166	10	166
Slashdot0811	12	10	12	it-2004	873	10	873
Slashdot0902	13	3	12				
WikiTalk	10	9	9				
web-Stanford	210	10	210				
web-BerkStan	679	10	679				
web-Google	51	10	51				

Slashdot0902
WikiTalk
web-Stanford
web-BerkStan
web-Google
(snap.stanford.edu and webgraph.dsi.unimi.it dataset)

In this modified grid with k rows and $1+3 k / 2$ columns. The algorithm can return k. The diameter of the network is instead $3 k / 2$.

Better lower bounds in undirected graphs: 4-SWEEP

- 4-Sweer: apply 2-Sweep pick the middle vertex of the path returned. Apply again 2-SWEEP.

Algorithm 1: 4-SWEEP

Input: A graph G
Output: A lower bound for the diameter of G and a node with (hopefully) low eccentricity
$r_{1} \leftarrow$ random node of G or node with the highest degree;
$a_{1} \leftarrow \operatorname{argmax}_{v \in V} d\left(r_{1}, v\right) ;$
$b_{1} \leftarrow \operatorname{argmax}_{v \in V} d\left(a_{1}, v\right) ;$
$r_{2} \leftarrow$ the node in the middle of the path between a_{1} and b_{1};
$a_{2} \leftarrow \operatorname{argmax}_{v \in V} d\left(r_{2}, v\right) ;$
$b_{2} \leftarrow \operatorname{argmax}_{v \in V} d\left(a_{2}, v\right) ;$
$u \leftarrow$ the node in the middle of the path between a_{2} and b_{2};
lowerb $\leftarrow \max \left\{\operatorname{ecc}\left(a_{1}\right), \operatorname{ecc}\left(a_{2}\right)\right\}$;
return lowerb and u;

A bad case for the 4-SWEEP algorithm

- For any two distinct nodes $v_{i, j, t}$ and $v_{i^{\prime}, j^{\prime}, t^{\prime}}$,

$$
\begin{gathered}
d\left(v_{i, j, t}, v_{i^{\prime}, j^{\prime}, t^{\prime}}\right)=\max \left\{\left|i-i^{\prime}\right|,\left|j-j^{\prime}\right|,\left|t-t^{\prime}\right|\right\} \\
\leq \max \{x-2, y-2, z-1\} .
\end{gathered}
$$

- The diameter of G is $\max \{x-1, y, z-1\}$.

If x, y, and z are such that $z>x>y+1>3$, then the diameter is equal to $z-1$. If $y-1>(z+1) / 2, y-1>(x+1) / 2$, and $x-1>(z+1) / 2$, then the lower bound computed by the 4 -Sweep algorithm can be $x-1$ instead of $z-1$. (approximation ratio asymptotically close to 2)

- $r_{1}=v_{x-1,1,(z+1) / 2}$.
- $a_{1}=w$ since $x-1>(z+1) / 2-1$ and $x-1>y-1$.
- $b_{1}=v_{x-1,1,(z+1) / 2}$ since $x-1>(z+1) / 2$ and $x-1>y$.
- $r_{2}=v_{(x-1) / 2,1,(z+1) / 2}$, that is the node opposite to q with respect to the x axis.
- $a_{2}=q$ since $y-1>(z+1) / 2-1$ and $y-1>(x-1) / 2$.
- $b_{2}=w$, since $y>(z+1) / 2$ and $y>(x+1) / 2$.

Thus ecc $\left(r_{1}\right)=\operatorname{ecc}\left(a_{1}\right)=x-1, \operatorname{ecc}\left(r_{2}\right)=y-1$, and $\operatorname{ecc}\left(a_{2}\right)=y$. The lower bound computed is $\max \{x-1, y-1, y\}=x-1$.

Open problems

- Understand why 2-SwEEP both in the directed and in the undirected version, is so effective in finding tight lower bounds.
- It has been proved that in chordal graph the error of the 2-SWEEP can be at most 1 .
- Which is the topological underlying property that can lead us to these results? Might be related to some sort of chordality measure? Why real world graphs exhibit this property?

嗇 Clemence Magnien, Matthieu Latapy, Michel Habib: Fast computation of empirically tight bounds for the diameter of massive graphs. ACM Journal of Experimental Algorithmics 13 (2008)

R Pierluigi Crescenzi, Roberto Grossi, Claudio Imbrenda, Leonardo Lanzi, Andrea Marino: Finding the Diameter in Real-World Graphs - Experimentally Turning a Lower Bound into an Upper Bound. ESA (1) 2010: 302-313

Part II

Computing exactly the diameter

Bound Refinement: iterative fringe upper bound

Reminder

The textbook algorithm runs a BFS for any node and return the maximum ecc found.

Main Schema of a new algorithm

- Perform the BFSes one after the other specifying the order in which the BFSes have to be executed, while doing this:
- refine a lower bound: that is the maximum ecc found until that moment.
- upper bound the eccentricities of the remaining nodes.
- stop when the remaining nodes cannot have eccentricity higher than our lower bound.

Good order can be inferred looking at some properties of BFS trees.

- Let u be any node in V and let us denote the set $\{v \mid d(u, v)=\operatorname{ecc}(u)\}$ of nodes at maximum distance ecc (u) from u as $F(u)$.
- Let $F_{i}(u)$ be the fringe set of nodes at distance i from u (note that $F(u)=F_{\text {ecc }(u)}(u)$)
- Let $B_{i}(u)=\max _{z \in F_{i}(u)} \operatorname{ecc}(z)$ be the maximum eccentricity among these nodes.

All the nodes x above the level i in $\operatorname{BFS}(u)$ having ecc greater than $2(i-1)$ have a corresponding node y, whose ecc is greater or equal to ecc (x), below or on the level i in $\operatorname{BFS}(u)$.

Theorem

For any $1 \leq i<\operatorname{ecc}(u)$ and $1 \leq k<i$, and for any $x \in F_{i-k}(u)$ such that $\operatorname{ecc}(x)>2(i-1)$, there exists $y \in F_{j}(u)$ such that $d(x, y)=\operatorname{ecc}(x)$ with $j \geq i$.

Observation

For any x and y in V such that $x \in F_{i}(u)$ or $y \in F_{i}(u)$, we have that $d(x, y) \leq B_{i}(u)$.

Indeed, $d(x, y) \leq \min \{\operatorname{ecc}(x), \operatorname{ecc}(y)\} \leq B_{i}(u)$.

Observation

For any $1 \leq i, j \leq \operatorname{ecc}(u)$ and for any $x \in F_{i}(u)$ and $y \in F_{j}(u)$, we have $d(x, y) \leq i+j \leq 2 \max \{i, j\}$.

Theorem

For any $1 \leq i<\operatorname{ecc}(u)$ and $1 \leq k<i$, and for any $x \in F_{i-k}(u)$ such that $\operatorname{ecc}(x)>2(i-1)$, there exists $y_{x} \in F_{j}(u)$ such that $d\left(x, y_{x}\right)=\operatorname{ecc}(x)$ with $j \geq i$.

Proof.

Since $\operatorname{ecc}(x)>2(i-1)$, then there exists y_{x} whose distance from x is equal to $\operatorname{ecc}(x)$ and, hence, greater than $2(i-1)$.
If y_{x} was in $F_{j}(u)$ with $j<i$, then from the previous observation it would follow that

$$
d\left(x, y_{x}\right) \leq 2 \max \{i-k, j\} \leq 2 \max \{i-k, i-1\}=2(i-1)
$$

which is a contradiction.
Hence, y_{x} must be in $F_{j}(u)$ with $j \geq i$.

Implication

Corollary
Let lb be the maximum eccentricity among all the eccentricities of the nodes in or below the level i. The eccentricities of all the nodes above the level i is bounded by $\max \{I b, 2(i-1)\}$.

Implication

Corollary

Let lb be the maximum eccentricity among all the eccentricities of the nodes in or below the level i. The eccentricities of all the nodes above the level i is bounded by $\max \{I b, 2(i-1)\}$.

Proof.

For any node x above the level i, there are two cases:

- $\operatorname{ecc}(x) \leq 2(i-1)$
- ecc $(x)>2(i-1)$. The Theorem applies: there is a node y below the level i whose eccentricity ecc (y) is greater than or equal to $\operatorname{ecc}(x)$.

$$
l b \geq e c c(y) \geq e c c(x)
$$

Back to the main schema

Perform the BFSes one after the others following the order induced by the BFS tree of a node u : starting from the nodes in $F(u)$, go in a bottom-up fashion.

- At each level i compute the eccentricities of all its nodes: if the maximum eccentricity found $l b$ is greater than $2(i-1)$ then we can discard traversing the remaining levels, since the eccentricities of all their nodes cannot be greater than lb.
- Since the eccentricity of the remaining nodes is bounded by $\max \{l b, 2(i-1)\}$

Given a node u.

- Set $i=\operatorname{ecc}(u)$ and $M=B_{i}(u)$.
- If $M>2(i-1)$, then return M; else, set $i=i-1$ and $M=\max \left\{M, B_{i}(u)\right\}$, and repeat this step.

More formally

```
Algorithm 2: iFUB
Input: A graph G, a node u
Output: The diameter D
i}\leftarrow\operatorname{ecc}(u)
lb}\leftarrow\operatorname{ecc}(u)
ub}\leftarrow2\operatorname{ecc}(u)
while }ub>lb\mathrm{ do
```



```
        return max{lb, Bi(u)};
        else
            lb}\leftarrow\operatorname{max}{lb,\mp@subsup{B}{i}{}(u)}
            ub}\leftarrow2(i-1)
    end
    i\leftarrowi-1;
end
return lb
```

Two bad things can happen:

- The amount of nodes in $F(u)$ is linear: for instance if the BFS tree of the starting node is a binary tree.
- In special regular graphs [such as Moore graphs] no good choice is possible.

- Cases in which nodes have close eccentricity or the BFS trees are isomorphic, like the Moore graph, but even simpler: a cycle.
- A cycle with n nodes (n odd) has diameter $\frac{n-1}{2}$, and each node has the same BFS tree.
- The loop is repeated until $2(i-1) \geq \frac{n-1}{2}$, that is $i \geq \frac{n+3}{4}$, and stops the first time that $2(i-1)<\frac{n-1^{2}}{2}$.
- The total number of iterations is equal to $\frac{n-1}{2}-\frac{n+3}{4}+2=\frac{n+3}{4}$.
- The number of BFSes is $\frac{n+3}{2}$.

directed iterative fringe upper bound

Theorem (Sketch)

(1) All the nodes x above the level i in $\operatorname{BBFS}(u)$ having ecc_{F} greater than 2(i-1) have a corresponding node y, whose ессв is greater or equal to $\operatorname{ecc}_{F}(x)$, below or on the level i in $\operatorname{FBFS}(u)$.
(2) All the nodes t above the level i in $\operatorname{FBFS}(u)$ having $\operatorname{ecc}_{\mathrm{B}}$ greater than $2(i-1)$ have a corresponding node z, whose ecc ${ }_{F}$ is greater or equal to $\operatorname{ecc}_{\mathrm{B}}(t)$, below or on the level i in $\operatorname{BBFS}(u)$.

Corollary

- Let lb be the maximum among all the ecc $_{\mathrm{B}}$ of nodes y and among all the ecc ${ }_{F}$ of nodes z.
- The ecc. $\max \{l b, 2(i-1)\}$.

For decreasing values of i

- At level i we have computed all the $\operatorname{ecc}_{\mathrm{B}}$ of nodes y and the ecc $_{F}$ of nodes z. The maximum is our lower bound $l b$.
- If $l b$ is bigger than $2(i-1), I b$ is the diameter.
- No node to be examined can have ecc ${ }_{F}$ or ecce bigger than $l b$.

$$
\begin{aligned}
& B_{j}^{F}(u)= \begin{cases}\max _{x \in F_{j}^{F}(u)} \operatorname{ecc}_{B}(x) & \text { if } j \leq \operatorname{ecc}_{F}(u), \\
0 & \text { otherwise }\end{cases} \\
& B_{j}^{B}(u)= \begin{cases}\max _{x \in F_{j}^{B}(u)} \operatorname{ecc}_{F}(x) & \text { if } j \leq \operatorname{ecc}_{B}(u), \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

```
Algorithm 3: DiFUB
Input: A strongly connected di-graph \(G\), a node \(u\)
Output: The diameter \(D\)
\(i \leftarrow \max \left\{\operatorname{ecc}_{F}(u), \operatorname{ecc}_{B}(u)\right\}\);
\(l b \leftarrow \max \left\{\operatorname{ecc}_{F}(u), \operatorname{ecc}_{B}(u)\right\} ;\)
\(u b \leftarrow 2 i\);
while \(u b>l b\) do
    if \(\max \left\{l b, B_{i}^{B}(u), B_{i}^{F}(u)\right\}>2(i-1)\) then
        return \(\max \left\{l b, B_{i}^{B}(u), B_{i}^{F}(u)\right\} ;\)
    else
        \(l b \leftarrow \max \left\{l b, B_{i}^{B}(u), B_{i}^{F}(u)\right\} ;\)
        \(u b \leftarrow 2(i-1) ;\)
    end
    \(i \leftarrow i-1 ;\)
end
return \(l b\);
```


Example

If we choose $u=v_{1}$, the corresponding two breadth-first search trees are T_{u}^{F} and T_{u}^{B}.

\boldsymbol{l}	$F_{i}^{F}\left(v_{1}\right)$	$F_{i}^{B}\left(v_{1}\right)$
1	v_{3}, v_{5}, v_{11}	v_{2}, v_{4}, v_{12}
2	$v_{2}, v_{7}, v_{9}, v_{12}$	$v_{3}, v_{6}, v_{9}, v_{11}$
3	v_{4}, v_{6}, v_{8}	v_{5}, v_{7}
4	v_{10}	v_{8}
5		v_{10}

The main theorem says for instance:
if we choose $i=2, k=1$, and $x=v_{4} \in F_{1}^{B}\left(v_{1}\right)$, then we have that $\operatorname{ecc}_{F}\left(v_{4}\right)=3>2=2(i-1)$: the theorem is witnessed by node $y=v_{2} \in F_{2}^{F}\left(v_{1}\right)$ (indeed, $d\left(v_{4}, v_{2}\right)=3$).

Algorithm 4: DiFUB

Input: A strongly connected di-graph G, a node u
Output: The diameter D
$i \leftarrow \max \left\{\operatorname{ecc}_{F}(u), \operatorname{ecc}_{B}(u)\right\}$;
$l b \leftarrow \max \left\{\operatorname{ecc}_{F}(u), \operatorname{ecc}_{B}(u)\right\} ;$
$u b \leftarrow 2 i$;
while $u b>l b$ do
if $\max \left\{l b, B_{i}^{B}(u), B_{i}^{F}(u)\right\}>2(i-1)$ then return $\max \left\{l b, B_{i}^{B}(u), B_{i}^{F}(u)\right\}$;
else $l b \leftarrow \max \left\{l b, B_{i}^{B}(u), B_{i}^{F}(u)\right\} ;$ $u b \leftarrow 2(i-1) ;$
end
$i \leftarrow i-1 ;$
end
return $l b$;

Invoke the algorithm with $u=v_{1}$.
(1) $i=l b=\max \left\{\operatorname{ecc}_{F}\left(v_{1}\right), \operatorname{ecc}_{B}\left(v_{1}\right)\right\}=\max \{4,5\}=5$, and $u b=2 i=10$.
(2) Since $u b-l b=5>0$, the algorithm enters the while loop with $i=5$.
(3) Since $5>\operatorname{ecc} F(u), B_{5}^{F}(u)=0$, and $B_{5}^{B}(u)=\operatorname{ecc}_{F}\left(v_{10}\right)=7$: since, $7<8=2(i-1)$, the algorithm enters the else branch and set $l b$ equal to 7 and $u b$ equal to 8 .
(4) $u b-l b=1>0$ and we enter again into the while loop with $i=4$.
(5) $B_{4}^{F}(u)=\operatorname{ecc}_{B}\left(v_{10}\right)=6$ and $B_{4}^{B}(u)=\operatorname{ecc}_{F}\left(v_{8}\right)=6$: hence, $\max \left\{l b, B_{4}^{B}(u), B_{4}^{F}(u)\right\}=7>6=2(i-1)$.
(6) The algorithm enters the if branch and returns the value 7 which is the correct diameter value.

Same as for undirected graphs, replacing each edge by two opposite arcs.

The choice of the starting node

It heavily affects the performance (number of visits we will do).
Try to use a vertex with low eccentricity (i.e., central, well connected).

- High degree node (in-degree or out-degree).
- The node in the middle of the diametral path returned by 2-SwEEP.

Experiments for undirected graphs

The number of visits seems to be constant.

It has been used to compute the diameter of Facebook (721.1M nodes and 68.7G edges, Diameter 41) with just 17 BFSes.

Experiments for directed graphs

The number of visits seems to be constant.

More Experiments

Network name	n	m	Avg. Visits	Visits worst run
Wiki-Vote	1300	39456	17	17
p2p-Gnutella08	2068	9313	45.9	64
p2p-Gnutella09	2624	10776	202.1	230
p2p-Gnutella06	3226	13589	236.6	279
p2p-Gnutella05	3234	13453	60.4	94
p2p-Gnutella04	4317	18742	36.7	38
p2p-Gnutella25	5153	17695	85.1	161
p2p-Gnutella24	6352	22928	13	13
p2p-Gnutella30	8490	31706	255.4	516
p2p-Gnutella31	14149	50916	208.7	255
s.s.Slashdot081106	26996	337351	22.3	25
s.s.Slashdot090216	27222	342747	21.5	26
s.s.Slashdot090221	27382	346652	22.8	26
soc-Epinions1	32223	443506	6.1	7
Email-EuAll	34203	151930	6	6
soc-sign-epinions	41441	693737	6	6
web-NotreDame	53968	304685	7	7
Slashdot0811	70355	888662	40	40
Slashdot0902	71307	912381	32.9	40
WikiTalk	111881	1477893	13.6	6
web-Stanford	150532	1576314	79	
web-BerkStan	334857	4523232	7	7
web-Google	434818	3419124	9.4	10

(snap.stanford.edu dataset)

More Experiments

Network name	n	m	Avg. Visits	Visits worst run
wordassociation-2011	4845	61567	412.5	423
enron	8271	147353	19	22
uk-2007-05@100000	53856	1683102	14	14
cnr-2000	112023	1646332	17	17
uk-2007-05@1000000	480913	22057738	6	6
in-2004	593687	7827263	14	14
amazon-2008	627646	4706251	136.3	598
eu-2005	752725	17933415	6	6
indochina-2004	3806327	98815195	8	8
uk-2002	12090163	232137936	6	6
arabic-2005	15177163	473619298	58	58
uk-2005	25711307	704151756	170	170
it-2004	29855421	938694394	87	87

(webgraph.dsi.unimi.it dataset)
The number of visits seems to be constant.
\Rightarrow For any graph with more than 10000 nodes, DifuB performs $0.001 \% n$ visits in stead of n.

Why so well?

Suitable properties of the starting node u

(1) u has to be the node with minimum eccentricity, called radius R.
(2) Constant number of nodes in $F(u)$.

- If you are able to infer the node u such that (1) and $R=D / 2$ you will stop after one iteration.
- High degree node is very often a good choice.
- If the lower bound path returned by 2-Sweep is tight and $R=D / 2$, the node in the middle of this path make us stop after one iteration.
- Almost always in real-world graphs $R=D / 2$ (the minimum possible, maximum heterogeneity) and (2) is true if u is central.
- DiFUB can be generalized to weighted graphs, using Dijkstra Algorithm instead of BFS and sorting the nodes according to their distance from u. It works well, but not for Road Networks.
- Further optimization allow to do better than this and to compute also the diameter of weakly connected graphs (Borassi et al., TCS 2015).
- It is possible to prove that for the configuration model fixing the power law the number of BFSes is almost constant.

Open questions

- Why the iFUB method works so well in general.
- Might be related to eccentricities distribution?

R Pierluigi Crescenzi, Roberto Grossi, Leonardo Lanzi, Andrea Marino: On Computing the Diameter of Real-World Directed (Weighted) Graphs. SEA 2012: 99-110

圊 Pilu Crescenzi, Roberto Grossi, Michel Habib, Leonardo Lanzi, Andrea Marino: On computing the diameter of real-world undirected graphs. Theor. Comput. Sci. 514: 84-95 (2013)
围 Frank W. Takes, Walter A. Kosters: Determining the diameter of small world networks. CIKM 2011: 1191-1196
E Michele Borassi, Pierluigi Crescenzi, Michel Habib, Walter A. Kosters, Andrea Marino, Frank W. Takes: On the Solvability of the Six Degrees of Kevin Bacon Game - A Faster Graph Diameter and Radius Computation Method. FUN 2014: 52-63

Thanks

