A componentwise accurate shift technique for *M*-matrix algebraic Riccati equations

E. Addis, B. Iannazzo, F. Poloni

ILAS Conference, Madrid, June 2023

Plan

- What is a fluid queue?
- What is doubling? (ADDA)
- What is componentwise accuracy?
- What is the shift technique?
- How do we combine them all together?

Fluid queues

Fluid queue: "infinite-size bucket" in which the fluid level X(t) changes with a rate which depends on the state $\varphi(t)$ of a continuous-time Markov chain with generator matrix Q.

[Moran '54, Mitra '88, Kulkarni '97, Ahn-Ramaswami '03, Bean-O'Reilly-Taylor '05, etc.]

In this talk: rates ± 1 ; states $S = S_+ \cup S_-$.

$$\Psi_{ij} = P[\text{first return to } X(t) = 0 \text{ in state } \varphi(t) = j \in S_- \mid \varphi(0) = i \in S_+].$$

Poloni Accurate shift ILAS23 3/23

M-matrix algebraic Riccati equation

M-matrix algebraic Riccati equation (MARE):

$$Q_{+-} + Q_{++} \Psi + \Psi Q_{--} + \Psi Q_{-+} \Psi = 0.$$

The matrix

$$M = -Q = - \begin{bmatrix} Q_{--} & Q_{-+} \\ Q_{+-} & Q_{++} \end{bmatrix}$$

is an irreducible, singular M-matrix.

$$Q\mathbf{1}=0,\ \pi Q=0$$
 for a row vector $\pi>0$.

Eigenvalues

The most important thing: eigenvalues.

Solving the MARE \leftrightarrow finding an invariant subspace:

$$\underbrace{\begin{bmatrix} -Q_{--} & -Q_{-+} \\ Q_{+-} & Q_{++} \end{bmatrix}}_{:=\mathcal{H}} \begin{bmatrix} I_{n_{-}} \\ \Psi \end{bmatrix} = \begin{bmatrix} I_{n_{-}} \\ \Psi \end{bmatrix} \underbrace{(-Q_{--} - Q_{-+} \Psi)}_{:=-U}.$$

$$\Lambda(\mathcal{H}) = \{\underbrace{\lambda_1, \lambda_2, \dots, \lambda_{n_+}}_{=\Lambda(V) \subset \mathsf{left half-plane}}, \underbrace{\lambda_{n_++1}, \lambda_{n_++2}, \dots, \lambda_{n_++n_-}}_{=\Lambda(-U) \subset \mathsf{right half-plane}}\}.$$

For simplicity we assume $\lambda_{n+1} = 0$: recurrent process.

Critical case: $\lambda_{n+} \approx 0$. Algorithms slow down.

Spectrum of \mathcal{H} – figure

Figure: $\Lambda(\mathcal{H})$ in the critical case where $\lambda_{n_+} = \lambda_{n_++1} = 0$

Poloni Accurate shift ILAS23

6/23

Alternating-direction doubling algorithm [Wang et al. 2012]

Choose rates

$$\alpha \geq \alpha_{\mbox{\scriptsize opt}} = \max_i |(Q_{++})_{ii}|, \ \beta \geq \beta_{\mbox{\scriptsize opt}} = \max_i |(Q_{--})_{ii}|.$$

Compute initial values

$$\begin{bmatrix} E_0 & G_0 \\ H_0 & F_0 \end{bmatrix} = \underbrace{-\begin{bmatrix} Q_{--} - \alpha I & Q_{-+} \\ Q_{+-} & Q_{++} - \beta I \end{bmatrix}}^{-1} \underbrace{\begin{bmatrix} Q_{--} + \beta I & Q_{-+} \\ Q_{+-} & Q_{++} + \alpha I \end{bmatrix}}_{\text{non-negative}}.$$

Iterate

$$P_{k} = \begin{bmatrix} E_{k} & G_{k} \\ H_{k} & F_{k} \end{bmatrix} \mapsto P_{k+1} = \begin{bmatrix} E_{k+1} & G_{k+1} \\ H_{k+1} & F_{k+1} \end{bmatrix},$$

$$E_{k+1} = E_{k}(I - G_{k}H_{k})^{-1}E_{k},$$

$$F_{k+1} = F(I - H_{k}G_{k})^{-1}F_{k},$$

$$G_{k+1} = G_{k} + E_{k}(I - G_{k}H_{k})^{-1}G_{k}F_{k},$$

$$H_{k+1} = H_{k} + F_{k}(I - H_{k}G_{k})^{-1}H_{k}E_{k}.$$

Poloni Accurate shift ILAS23 7/23

What is ADDA?

The algebra constructing a factorization

$$f(\mathcal{H})^{2^k} = \begin{bmatrix} I & -G_k \\ 0 & F_k \end{bmatrix}^{-1} \begin{bmatrix} E_k & 0 \\ -H_k & I \end{bmatrix}, \quad f(z) = \frac{z-\beta}{z+\alpha}.$$

The interpretation Constructing a "level-crossing" QBD associated to the queue

$$A_{-1} = \begin{bmatrix} 0 & 0 \\ 0 & F_0 \end{bmatrix}, \quad A_0 = \begin{bmatrix} 0 & G_0 \\ H_0 & 0 \end{bmatrix}, \quad A_1 = \begin{bmatrix} E_0 & 0 \\ 0 & 0 \end{bmatrix},$$

and applying Cyclic Reduction to it. [Bean-Nguyen-P. '18]

The practice Fastest iteration in literature for this problem.

Added benefit: componentwise accuracy.

Poloni Accurate shift ILAS23 8 / 23

Componentwise accuracy

An algorithm to compute a matrix/vector quantity Ψ is componentwise accurate if all entries, even tiny ones, are computed with small forward error

$$rac{|\Psi_{ij}^{computed} - \Psi_{ij}|}{\Psi_{ij}} pprox \iota$$

Very strict requirements:

- High condition numbers prevent forward stable computations.
- Often errors are proportional to $\|\Psi\|$ or $\max_{ij} \Psi_{ij}$. E.g., when computing

$$\Psi = \begin{bmatrix} 0.5 & 0.499999 & 0.000001 \end{bmatrix}$$

on the last component we expect ≈ 10 correct digits, not $\approx 16.$

Poloni Accurate shift ILAS23 9 / 23

Keys to componentwise accuracy

Triplet representations

Given an M-matrix M, we can compute M^{-1} with componentwise accuracy if we know (in addition to the entries of M) vectors $\mathbf{v} > 0$, $\mathbf{w} \ge 0$ such that $M\mathbf{v} = \mathbf{w}$.

GTH-like algorithm Modified Gaussian elimination, using the relation $M\mathbf{v} = \mathbf{w}$ to evaluate pivots more accurately. [Alfa, Xue, Ye '01]

Example In the ADDA initial values, we need $M_{\alpha,\beta}^{-1}$, where

$$M_{\alpha,\beta} = - \begin{bmatrix} Q_{--} - \alpha I & Q_{-+} \\ Q_{+-} & Q_{++} - \beta I \end{bmatrix}.$$

Solution Since $Q\mathbf{1}=\mathbf{0}$, we know that the M-matrix satisfies exactly $M_{\alpha,\beta}\mathbf{1}=\left[\begin{smallmatrix} \alpha\mathbf{1}\\ \beta\mathbf{1} \end{smallmatrix}\right]$.

Poloni Accurate shift ILAS23 10 / 23

Keys to componentwise accuracy

More generally:

No Inaccurate Cancellation (NIC) principle [Demmel-Dumitriu-Holtz-Koev '08]

To achieve componentwise accuracy, we must avoid subtractions a - b with $a \approx b$.

Example In the ADDA initial values, we need

$$Q_{++} + \alpha I$$
, where $\alpha \ge \alpha_{\mbox{opt}} = \max_i |(Q_{++})_{ii}|$.

Choosing
$$\alpha = \alpha_{\mbox{opt}}$$
 may lead to trouble if e.g. $\mbox{diag}(\mathit{Q}_{++}) = \begin{bmatrix} -1 \\ -0.99999 \end{bmatrix}$.

Solution choose α a bit larger, for instance $\alpha=1.25\alpha_{\mbox{\scriptsize opt}}.$ Convergence speed is slightly degraded, but we gain in accuracy.

Using these techniques, one can make ADDA componentwise accurate. [Xue-Xu-Li '12, Nguyen-P '15, Xue-Li '17]

Poloni Accurate shift ILAS23

11/23

Spectrum of $f(\mathcal{H})$

The most important thing: eigenvalues.

Recall that $f(z) = \frac{z-\beta}{z+\alpha}$. In ADDA we work with $f(\mathcal{H})$, with eigenvalues

- $\Lambda(f(-U))=\{f(\lambda_{n_++1}),f(\lambda_{n_++2}),\ldots,f(\lambda_{n_++n_-})\}\subset\{|z|\leq rac{\beta}{lpha}\}$ and
- $\Lambda(f(V)) = \{f(\lambda_1), f(\lambda_2), \dots, f(\lambda_{n_+})\} \subset \{|z| \geq \frac{\beta}{\alpha}\}.$

ADDA convergence depends on the parameter

$$\xi = \rho(f(-U))\,\rho(f(V)^{-1}) = \left|\frac{f(\lambda_{n_++1})}{f(\lambda_{n_+})}\right| \le 1:$$

- If $\xi < 1$, $||H_k \Psi|| \sim \xi^{2^k}$.
- If $\xi = 1$ (null recurrent queue), $||H_k \Psi|| \sim 2^{-k}$.

Problem

Slow convergence when $\xi = 1$ or $\xi \approx 1$: how to speed it up?

Poloni Accurate shift ILAS23 12 / 23

Spectrum of $f(\mathcal{H})$ – figure

Figure: $\Lambda(f(\mathcal{H}))$ in the critical case where $\lambda_{n_+} = \lambda_{n_++1} = 0$

Poloni Accurate shift ILAS23 13 / 23

Shift: from ${\cal H}$ to $\hat{{\cal H}}$ [Guo-lannazzo-Meini '07]

Shift technique: rank-1 modification to accelerate convergence in (near-)critical cases.

We choose $\eta > 0$ and $\mathbf{p} \geq 0$ such that $\mathbf{p}^T \mathbf{1} = 1$.

$$\begin{array}{c} \mathcal{H} \\ Q \\ Q_{+-} + Q_{++} \Psi + \\ \Psi Q_{--} + \Psi Q_{-+} \Psi = 0 \\ \Psi \\ \lambda_{n_{+}+1} = 0 \\ \Lambda(-U) = \{0, \lambda_{n_{+}+1}, \dots, \lambda_{n_{+}+n_{-}}\} \\ \xi \end{array} \begin{array}{c} \hat{\mathcal{H}} = \mathcal{H} + \eta \mathbf{1} \mathbf{p}^{T} \\ \hat{Q} = Q - \eta \begin{bmatrix} \mathbf{1}_{n_{-}} \\ -\mathbf{1}_{n_{+}} \end{bmatrix} \mathbf{p}^{T} \\ \hat{Q}_{+-} + \hat{Q}_{++} \Psi + \\ \Psi \hat{Q}_{--} + \Psi \hat{Q}_{-+} \Psi = 0 \\ \text{same } \Psi \\ \hat{\lambda}_{n_{+}+1} = \eta \\ \Lambda(-\hat{U}) = \{\eta, \lambda_{n_{+}+1}, \dots, \lambda_{n_{+}+n_{-}}\} \\ \hat{\xi} < \xi \text{ (at least when } \eta < \beta). \end{array}$$

The technique may decrease the number of steps dramatically.

Poloni Accurate shift ILAS23 14 / 23

Componentwise accurate construction of \hat{P}_0

In this talk: Can we combine the two improvements? Shift technique and componentwise accurate computations?

$$\hat{Q} = Q - \eta egin{bmatrix} \mathbf{1}_{n_-} \ -\mathbf{1}_{n_+} \end{bmatrix} \mathbf{p}^{T}$$

Problem: The sign properties may be lost, even for tiny values of $\eta!$

$$\begin{bmatrix} \hat{E}_0 & \hat{G}_0 \\ \hat{H}_0 & \hat{F}_0 \end{bmatrix} = \underbrace{- \begin{bmatrix} \hat{Q}_{--} - \hat{\alpha} I & \hat{Q}_{-+} \\ \hat{Q}_{+-} & \hat{Q}_{++} - \hat{\beta} I \end{bmatrix}}_{\text{M-matrix???}}^{-1} \underbrace{ \begin{bmatrix} \hat{Q}_{--} + \hat{\beta} I & \hat{Q}_{-+} \\ \hat{Q}_{+-} & \hat{Q}_{--} + \hat{\alpha} I \end{bmatrix}}_{\text{non-negative???}}^{-1} .$$

Poloni Accurate shift ILAS23 15 / 23

Delayed shift

Idea: When α, β are fixed, \hat{P}_0 is a rank-1 modification of P:

$$\hat{P}_{0} = P_{0} - \frac{\eta}{\eta} \underbrace{\left(\alpha + \beta\right) \frac{\mathbf{u} \mathbf{p}^{T} M_{\alpha, \beta}^{-1}}{1 + \frac{\eta}{\eta} \mathbf{p}^{T} \mathbf{u}}}_{=: \Sigma_{\eta}}, \quad \mathbf{u} = M_{\alpha, \beta}^{-1} \begin{bmatrix} \mathbf{1}_{n_{-}} \\ -\mathbf{1}_{n_{+}} \end{bmatrix}. \tag{*}$$

We can first compute $P_0 > 0$, then construct \hat{P}_0 by subtraction (delayed shift).

 $P_0 - \Sigma_{\eta}$ contains subtractions, but we can compute all the quantities in (*) and then choose η afterwards to satisfy two entrywise conditions:

- $\hat{P}_0 > 0$
- No Inaccurate Cancellation in $P_0 \Sigma_{\eta}$.

The range of allowed values for η is often much larger than when applying the regular "non-delayed" shift.

Poloni Accurate shift ILAS23 16 / 23

The missing steps

• Triplet representations: can be computed from the relation

$$\begin{bmatrix} \boldsymbol{\tau^{2^k}} \hat{E}_k & \hat{G}_k \\ \hat{H}_k & \boldsymbol{\tau^{-2^k}} \hat{F}_k \end{bmatrix} \mathbf{1} = \mathbf{1}, \quad \text{with } \boldsymbol{\tau} = \frac{\alpha + \eta}{\beta - \eta}. \tag{T}$$

- Positivity, applicability, convergence: can be proved by mimicking the original proofs in ADDA: the only assumptions they need are $\hat{P}_0 \geq 0$ and (T).
- Forward error bound: can be obtained, though worse than in the non-shifted case:

$$|\mathsf{computed}(\Sigma) - \Sigma| \leq \underbrace{\mathcal{O}(n^3 \mathsf{u})}_{\mathsf{machine prec.}} \underbrace{\frac{1 + \mathbf{p}^T M_{\alpha\beta}^{-1} \mathbf{1}}{(1 + \mathbf{p}^T \mathsf{u})^2} (\alpha + \beta) M_{\alpha\beta}^{-1} \mathbf{1} \mathbf{p}^T M_{\alpha\beta}^{-1}}_{\mathsf{not } \Sigma, \; \mathsf{possibly larger}}.$$

Poloni Accurate shift ILAS23 17 / 23

Example 1 [Nguyen-P '15, Example 5.1]

An example with Q with imbalanced entries.

$$\Lambda(\mathcal{H}) = \{-20.0000, -1.5625, -0.0100, 0.0000, 2.5575, 19.9800\}$$

$$\Lambda(f(\mathcal{H})) = \{-6.9970, -1.2314, -1.0003, -0.9990, -0.7078, 0.1428\}$$

- without shift: convergence rate $\xi = 0.9990$.
- non-accurate shift: $\hat{\xi} = 0.7078$. Optimal $\eta = \beta = 14.9850$, $\mathbf{p} = \frac{1}{n}\mathbf{1}$.
- accurate shift, imposing $\hat{P}_0 \ge 0$: $\hat{\xi} = 0.8575$. $\eta = 1.1429$, $f(\eta) = -0.8575$, $\mathbf{p} = \mathbf{e}_5$.
- accurate shift, imposing NIC in $\hat{P}_0 = P_0 \Sigma_{\eta}$: $\hat{\xi} = 0.9777$. $\eta = 0.1614$, $f(\eta) = -0.9777$, $\mathbf{p} = \mathbf{e}_5$.

Poloni Accurate shift ILAS23 18 / 23

Figure: Normwise relative error $||H_k - \Psi||/||\Psi||$ vs. iteration k.

Poloni Accurate shift ILAS23 19/23

Figure: Componentwise relative error $\max_{i,j} |(H_k)_{ij} - \Psi_{ij}|/\Psi_{ij}$ vs. iteration k.

 Poloni
 Accurate shift
 ILAS23
 20 / 23

21 / 23

22 / 23

Conclusions

- You can have your cake (shift) and eat it, too (componentwise accuracy). Se puede estar a la vez en la procesión y repicando las campanas
- In many examples, we can lower the number of iterations to match that of shift, while keeping the original high accuracy.
- Are there benefits in delaying the shift even further?

Reference Elena Addis's thesis at UNIFI, *Elementwise accurate algorithms* for nonsymmetric algebraic Riccati equations associated with M-matrices, https://hdl.handle.net/2158/1275470. Article version in preparation.

Conclusions

- You can have your cake (shift) and eat it, too (componentwise accuracy). Se puede estar a la vez en la procesión y repicando las campanas
- In many examples, we can lower the number of iterations to match that of shift, while keeping the original high accuracy.
- Are there benefits in delaying the shift even further?

Reference Elena Addis's thesis at UNIFI, *Elementwise accurate algorithms* for nonsymmetric algebraic Riccati equations associated with M-matrices, https://hdl.handle.net/2158/1275470. Article version in preparation.

Thanks for your attention!