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Motivation
Functions of matrices: allow to study in the same framework
objects such as
I Matrix power series, e.g., exp(A) = I + A + 1

2A2 + 1
3!A

3 + . . . ;
I Maps on eigenvalues, e.g.,

A = V ΛV−1 7→ V

f (λ1)
. . .

f (λn)

V−1;

I Matrix rational iterations, e.g., Xk+1 = 1
2Xk + 1

2X−1
k ;

I Solutions to matrix equations, e.g., X 2 = A.

Many objects that appear in applications can be naturally
described as functions of matrices — you have probably already
encountered exp(A) and A1/2, for instance.



Motivation
On top of this, an overview of two interesting applications:
I Solving certain boundary-value problems / matrix equations

appearing in control and queuing theory.
I Discovering ‘important’ vertices in a graph (centrality

measures).

Reference books

I N. Higham, Functions of matrices. SIAM 2008.
I Golub, Meurant Matrices, moments, and quadrature.

Princeton 2010 (for the centrality application).
I Bini, Iannazzo, Meini, Numerical solution of algebraic Riccati

equations. SIAM 2012. (for the other application).



Polynomials of matrices
Take a scalar polynomial, and evaluate it in a (square) matrix, e.g.,

p(x) = 1 + 3x − 5x2 =⇒ p(A) = I + 3A− 5A2.

Lemma
If A = S blkdiag(J1, J2, . . . , Js)S−1 is a Jordan form, then
p(A) = S blkdiag(p(J1), p(J2), . . . , p(Js))S−1, and

p(Ji ) =


p(λi ) p′(λi ) . . . 1

k!p
(k)(λi )

p(λi )
. . . ...
. . . p′(λi )

p(λi )

 .

Proof Taylor expansion of p at λi and powers of shift matrix.



Functions of matrices [Higham book, ’08]

We can extend the same definition to arbitrary scalar functions:

Definition
If A = S blkdiag(J1, J2, . . . , Js)S−1 is a Jordan form, then
f (A) = S blkdiag(f (J1), f (J2), . . . , f (Js))S−1, where

f (Ji ) =


f (λi ) f ′(λi ) . . . 1

k! f
(k)(λi )

f (λi )
. . . ...
. . . f ′(λi )

f (λi )

 .

Given f : U ⊆ C→ C, we say that f is defined on A if f is defined
and differentiable at least ni − 1 times on each eigenvalue λi of A.
(ni = max. size of a Jordan block with eigenvalue λi .)

Reasonable doubt: is it independent of the choice of S?



Alternate definition: via Hermite interpolation

Definition
f (A) = p(A), where p is a polynomial such that
f (λi ) = p(λi ), f ′(λi ) = p′(λi ), . . . , f ni−1)(λi ) = pni−1)(λi ) for each
i .

We may use this as a definition of f (A):
I Does not depend on S;
I Does not depend on p.

Obvious from the definitions that it coincides with the previous
one.

Remark: be careful when you say “all matrix functions are
polynomials”, because p depends on A.



Some properties

I If the eigenvalues of A are λ1, . . . , λs , the eigenvalues of f (A)
are f (λ1), . . . , f (λs). (geometric multiplicities may decrease)

I f (A)g(A) = g(A)f (A) = (fg)(A) (since they are all
polynomials in A).

I If fn → f together with ‘enough derivatives’ (for instance
because they are analytic and the convergence is uniform),
then fn(A)→ f (A).

I continuity If An → A, then f (An)→ f (A).
Proof let pn be the (Hermite) interpolating polynomial on the
eigenvalues of An. Interpolating polynomials are continuous in
the nodes, so pn → p (coefficient by coefficient). Then
‖pn(An)−p(A)‖ ≤ ‖pn(An)−pn(A)‖+‖pn(A)−p(A)‖ ≤ . . . .



Example: square root

A =


4 1

4 1
4

0

 , f (x) =
√

x

We look for an interpolating polynomial with

p(0) = 0, p(4) = 2, p′(4) = f ′(4) = 1
4 , p′′(4) = f ′′(4) = − 1

32 .

I.e., 
0 0 0 1
43 42 4 1

3 · 42 2 · 4 1 0
6 · 4 2 0 0




p3
p2
p1
p0

 =


0
2
1
4
− 1

32

 ,
p(x) = 3

256x3 − 5
32x2 + 15

16x .



Example – continues

p(A) = 3
256A3 − 5

32A2 + 15
16A =


2 1

4 − 1
64

2 1
4
2

0

 .
One can check that f (A)2 = A.



Example – square root

A =
[
0 1
0 0

]
, f (x) =

√
x

does not exist (because f ′(0) is not defined).

(Indeed, there is no matrix such that X 2 = A.)



Example – matrix exponential

A = S


−1

0
1 1

1

S−1, f (x) = exp(x).

exp(A) = S


e−1

1
e e

e

S−1

Can also be obtained as I + A + 1
2A2 + 1

6A3 + . . .
(not so obvious, for Jordan blocks. . . )



Example – matrix sign

A = S


−3

−2
1 1

1

S−1, f (x) = sign(x) =
{
1 Re x > 0,
−1 Re x < 0.

f (A) = S


−1

−1
1

1

S−1.

Not a multiple of I, in general.

Instead, we can recover stable / unstable invariant subspaces of A
as ker(f (A)± I).

If we found a way to compute f (A) without diagonalizing, we
could use it to compute eigenvalues via bisection. . .



Example – complex square root

A =
[
0 1
−1 0

]
, f (x) =

√
x

We can choose branches arbitrarily: let us say f (i) = 1√
2(1 + i),

f (−i) = 1√
2(1− i).

Polynomial: p(x) = 1√
2(1 + x).

p(A) = 1√
2

[
1 1
−1 1

]
.

(This is the so-called principal square root: we have chosen the
values of f (±i) in the right half-plane — other choices are
possible).

(We get a non-real square root of A if we choose non-conjugate
values for f (i) and f (−i))



Example – nonprimary square root
With our definition, if we have

A = S

1 1
2

S−1, f (x) =
√

x

we cannot get

f (A) = S

1 −1 √
2

S−1 :

either f (1) = 1, or f (1) = −1. . .
This would also be a solution of X 2 = A, though. This is called a
nonprimary square root of A. We get nonprimary roots/functions if
we choose different branches for Jordan blocks with the same
eigenvalue.
Not functions of matrices, with our definition. Also, they are not
polynomials in A.



Cauchy integrals

If f is analytic on and inside a contour Γ that encloses the
eigenvalues of A,

f (A) = 1
2πi

∫
Γ

f (z)(zI − A)−1dz .

Generalizes the analogous scalar formula.

Proof If A = V ΛV−1 ∈ Cm×m is diagonalizable, the integral equals

V


1

2πi
∫

Γ
f (z)
z−λ1

dz . . .
1

2πi
∫

Γ
f (z)

z−λm
dz

V−1 = V

f (λ1)
. . .

f (λm)

V−1.

By continuity, the equality holds also for non-diagonalizable A.



Methods
Matrix functions arise in several areas: solving ODEs (e.g.
exp(A)), matrix analysis (square roots), physics, . . .

Main methods to compute them:
I Factorizations (eigendecompositions, Schur. . . ),
I Matrix versions of scalar iterations (e.g., Newton on x2 = a),
I Interpolation / approximation,
I Complex integrals.

We will study them in this course. But, first, a detour.



Vectorization
Matrix functions are maps Rn×n → Rn×n (or Cn×n → Cn×n). We
introduce some terminology / notation to study linear maps
between these spaces.

Definition
For A ∈ Cm×n, v = vec(A) is the vector v ∈ Cmn obtained by
concatenating the columns of A.

vec
[
1 3 5
2 4 6

]
=



1
2
3
4
5
6


.



Kronecker products

Definition
Given M = (mij) ∈ Cm1×m2 ,N ∈ Cn1×n2 , the Kronecker product
M ⊗ N ∈ Cm1n1×m2n2 is the matrix with blocks mijN.

[
1 2
3 4

]
⊗
[
1 2
0 1

]
=


1 2 2 4
0 1 0 2
3 6 4 8
0 3 0 4

 .

Lemma

vec(AXB) = (BT ⊗ A) vec(X ),

i.e., BT ⊗ A is the matrix that represents the linear map
X 7→ AXB.

Warning: this is BT , not B∗ (no conjugation).



Properties of Kronecker product

1. Linear in both factors:
(λL + µM)⊗ N = λ(L⊗ N) + µ(M ⊗ N).

2. M∗ ⊗ N∗ = (M ⊗ N)∗.
3. LM ⊗ NP = (L⊗ N)(M ⊗ P), if the dimensions are

compatible. Follows from (AB)X (CD) = A(BXC)D.
4. (M ⊗ N)−1 = M−1 ⊗ N−1.
5. Q1,Q2 unitary =⇒ Q1 ⊗ Q2 unitary.
6. If M = V1Λ1V−1

1 , N = V2Λ2V−1
2 are eigendecompositions,

then M ⊗ N = (V1 ⊗ V2)(Λ1 ⊗ Λ2)(V1 ⊗ V2)−1 is an
eigendecomposition.

7. Analogously for SVD, Schur factorization, . . .
8. The eigenvalues (singular values) of M ⊗ N are the pairwise

products of the eigenvalues (singular values) of M and N.



Example: Sylvester equations

Given A,B,C ∈ Cn×n, find X ∈ Cn×n that solves the matrix
equation AX − XB = C .
When does it have a unique solution?

It is a linear system in Cn2 .

AX − XB = C ⇐⇒ (I ⊗ A− BT ⊗ I) vec(X ) = vec(C).

If A = QATAQ∗A, BT = QBTBQ∗B are Schur decompositions, then

I ⊗ A− BT ⊗ I = (QA ⊗ QB)(I ⊗ TA − TB ⊗ I)(QA ⊗ QB)∗

is a Schur decomposition.
Hence, Λ(I ⊗ A− BT ⊗ I) = (αi − βj : i , j = 1, . . . , n), where
Λ(A) = (α1, . . . , αn), Λ(B) = (β1, . . . , βn).



Solution of Sylvester equations
We have proved

Lemma
AX − XB = C has a unique solution iff A and B have no common
eigenvalues.

Corollary: AX − XB = C is ill-conditioned if A,B have two close
eigenvalues. (It’s an iff when they are normal.)

Numerical solution: can we beat the naive O(n6) algorithm “form
I ⊗ A− BT ⊗ I and treat it as a n2 × n2 linear system”?

Yes! [Bartels-Stewart algorithm, 1972].
Idea: invert that Schur decomposition.
I (QA ⊗ QB)∗ vec(C) equals vec(Q∗BCQA)
 product in O(n3).

I I ⊗ TA − TB ⊗ I has O(n) nonzeros per row
 back-substitution in O(n3).



Extensions

I A ∈ Cm×m, X ∈ Cm×n, B ∈ Cn×n: everything works without
changes.

I Stein’s equation X − AXB = C : works analogously. Solvable
iff αiβj 6= 1 for all i , j .

I AXB − CXD = E (generalized Sylvester’s equation): works
analogously, using generalized Schur factorization
schur(A,C) and schur(D.’, B.’).



Lyapunov equations

AX + XA∗ = C . (*)

They are simply Sylvester equations with B = −A∗ (and C = C∗).
They have a few notable properties.

Lemma
Suppose A has all its eigenvalues in the right half-plane
RHP = {z ∈ C : Re(z) > 0}. Then,
1. (*) has a unique solution.
2. X =

∫∞
0 exp(−tA)C exp(−tA∗) dt.

3. X � 0 if C � 0. (positive definite ordering)



Proof
With X =

∫∞
0 e−tACe−tA∗ dt, one has

AX + XA∗ =
∫ ∞

0

(
Ae−tACe−tA∗ + e−tACe−tA∗A∗

)
dt

= [−e−tACe−tA∗ ]∞0 = 0− (−C).

The converse holds, too:

Lemma
If (*) holds with C � 0 and X � 0, then A has all its eigenvalues
in the RHP.

Proof Let A∗v = λv ; then,

v∗Cv = v∗(AX + XA∗)v = λv∗Xv + λv∗Xv = 2Re(λ)v∗Xv .



Lyapunov’s use of these equations
Proving that certain dynamical systems are stable!

Let y(t) : [0,∞]→ Cn be the solution of d
dt y(t) = −Ay(t).

If I can find X � 0 and C � 0 such that AT X + XAT = C , then

d
dt y(t)∗Xy(t) = y(t)∗(−A∗X − XA)y(t) = −y(t)∗Cy(t) < 0.

=⇒ The ‘energy’ y(t)∗Xy(t) decreases.


