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Motivation
Functions of matrices: allow to study in the same framework
objects such as
» Matrix power series, e.g., exp(A) =+ A+ %Az + %A"’ 4+

> Maps on eigenvalues, e.g.,
f(A1)

A= VAV 15V V-1
f(An)
» Matrix rational iterations, e.g., Xx+1 = %Xk + %Xk_l;
» Solutions to matrix equations, e.g., X? = A.
Many objects that appear in applications can be naturally

described as functions of matrices — you have probably already
encountered exp(A) and A2, for instance.



Motivation

On top of this, an overview of two interesting applications:
» Solving certain boundary-value problems / matrix equations
appearing in control and queuing theory.

» Discovering ‘important’ vertices in a graph (centrality
measures).

Reference books

» N. Higham, Functions of matrices. SIAM 2008.

» Golub, Meurant Matrices, moments, and quadrature.
Princeton 2010 (for the centrality application).

» Bini, lannazzo, Meini, Numerical solution of algebraic Riccati
equations. SIAM 2012. (for the other application).



Polynomials of matrices

Take a scalar polynomial, and evaluate it in a (square) matrix, e.g.,
p(x) =14 3x —5x> = p(A) =/ +3A—5A%

Lemma

If A= Sblkdiag(J1,J2,...,Js)S~ 1 is a Jordan form, then
p(A) = Sblkdiag(p(h1), p(h2), - -, p(Js))S~*, and

p(h) P(A) - PR

p(Ji) = p(N) -
p'(Ai)

p(Ai)

Proof Taylor expansion of p at A; and powers of shift matrix.



Functions of matrices [Higham book, '08]
We can extend the same definition to arbitrary scalar functions:
Definition

If A= Sblkdiag(J1, h,..., JS)S_1 is a Jordan form, then
f(A) = Sblkdiag(f(h), (), ..., f(Js))S, where

fO) ') o HFOW)
F(J;) = FON) f/('x)
)

Given f : U C C — C, we say that f is defined on A if f is defined
and differentiable at least n; — 1 times on each eigenvalue \; of A.
(n;i = max. size of a Jordan block with eigenvalue \;.)

Reasonable doubt: is it independent of the choice of 57



Alternate definition: via Hermite interpolation

Definition
f(A) = p(A), where p is a polynomial such that
F(N) = p(A), F'(A) = P'(A), .. 7D (A;) = pm= D () for each
I.
We may use this as a definition of f(A):
» Does not depend on S;
» Does not depend on p.

Obvious from the definitions that it coincides with the previous
one.

Remark: be careful when you say “all matrix functions are
polynomials”, because p depends on A.



Some properties

>

>

If the eigenvalues of A are A1,..., s, the eigenvalues of f(A)
are f(A1),...,f(XAs). (geometric multiplicities may decrease)
f(A)g(A) = g(A)f(A) = (fg)(A) (since they are all
polynomials in A).

If f, — f together with ‘enough derivatives’ (for instance
because they are analytic and the convergence is uniform),
then f,(A) — f(A).

continuity If A, — A, then f(A,) — f(A).

Proof let p, be the (Hermite) interpolating polynomial on the
eigenvalues of A,. Interpolating polynomials are continuous in
the nodes, so p, — p (coefficient by coefficient). Then

10(An) — PA)]| < [[2a(An) — pa(A)I + a(A) — p(A)] < ...



Example: square root

1 1
p(0) =0, p(4) =2, p'(4) = F'(4) = 7., P"(4) = F"(4) = — 55
le.,
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Example — continues

3 5 15
A=A —A+ A=
P(A) = 356 27 T 16

One can check that f(A)? = A.
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Example — square root

01
A:[O O]’ f(x)=+v/x

does not exist (because f'(0) is not defined).

(Indeed, there is no matrix such that X2 = A.)



Example — matrix exponential

-1
0 -1
A=S 11 ST, f(x) = exp(x).
1
o1
1 —1
exp(A) =S e e
e

Can also be obtained as [ + A + %Az + %A3 + ...
(not so obvious, for Jordan blocks. .. )



Example — matrix sign

-2

1 R 0
A=S ST f(x)=sign(x>={ e

—1 Rex <0.

Not a multiple of /, in general.

Instead, we can recover stable / unstable invariant subspaces of A
as ker(f(A) £ /).

If we found a way to compute f(A) without diagonalizing, we
could use it to compute eigenvalues via bisection. ..



Example — complex square root

0 1
We can choose branches arbitrarily: let us say 7(i) = 7(1 +1),

f(—i) = %(1 —i).

Polynomial: p(x) = (1 + x).

1 11 1
p(A) = 2 [_1 1] :
(This is the so-called principal square root: we have chosen the

values of (i) in the right half-plane — other choices are
possible).

%\

(We get a non-real square root of A if we choose non-conjugate
values for (i) and f(—i))



Example — nonprimary square root

With our definition, if we have

we cannot get

either f(1) =1, or (1) =—1...

This would also be a solution of X? = A, though. This is called a
nonprimary square root of A. We get nonprimary roots/functions if
we choose different branches for Jordan blocks with the same
eigenvalue.

Not functions of matrices, with our definition. Also, they are not
polynomials in A.



Cauchy integrals

If f is analytic on and inside a contour I" that encloses the
eigenvalues of A,

1 -1
f(A) = 5 /r F(2)(2l — A)ldz.
Generalizes the analogous scalar formula.

Proof If A= VAV~ € C™*™ is diagonalizable, the integral equals

= I Z) - dz f(A1)

z—

v vl=v v—L
271'/ fr z— Z) dZ f(Am)

By continuity, the equality holds also for non-diagonalizable A.




Methods

Matrix functions arise in several areas: solving ODEs (e.g.
exp(A)), matrix analysis (square roots), physics, . ..

Main methods to compute them:

» Factorizations (eigendecompositions, Schur. . .),
» Matrix versions of scalar iterations (e.g., Newton on x? = a),
» Interpolation / approximation,

> Complex integrals.

We will study them in this course. But, first, a detour.



Vectorization

Matrix functions are maps R"*" — R"*" (or C"™" — C"*"). We
introduce some terminology / notation to study linear maps
between these spaces.

Definition

For A€ C™*", v = vec(A) is the vector v € C™" obtained by
concatenating the columns of A.




Kronecker products

Definition
Given M = (my) € C™*™m N € C™*", the Kronecker product
M & N e CmMmxm2n2 js the matrix with blocks m;; V.

Lemma

vec(AXB) = (BT ® A)vec(X),

i.e., BT ® A is the matrix that represents the linear map
X — AXB.

Warning: this is BT, not B* (no conjugation).



Properties of Kronecker product

1.

Linear in both factors:
AL+ uM)@ N =XL® N)+ p(Mx N).

2. M*@ N* = (M® N)*.
3. IM® NP = (L® N)(M & P), if the dimensions are

compatible. Follows from (AB)X(CD) = A(BXC)D.

4. (Mo N)t=M1e N
5. @1, @ unitary = Q1 ® Q> unitary.
6. If M= ViAL VL, N = VuAr Vit are eigendecompositions,

then M@ N = (Vl ® V2)(/\1 X /\2)(\/1 ® \/2)_1 is an
eigendecomposition.

Analogously for SVD, Schur factorization, ...

. The eigenvalues (singular values) of M ® N are the pairwise

products of the eigenvalues (singular values) of M and N.



Example: Sylvester equations

Given A, B, C € C™" find X € C"™" that solves the matrix
equation AX — XB = C.
When does it have a unique solution?

It is a linear system in c.
AX —XB=C < (I®A— BT @1)vec(X) = vec(C).
If A= QaTaQ; BT = QsTgQj are Schur decompositions, then
I@A-B"@1=(Qu®Q)(/® Ta~Te@1)(Qa® Q)"

is a Schur decomposition.
Hence, A\0® A— BT ®@ 1) = (a; — Bj : i,j = 1,...,n), where
ANA) = (a1,...,ap), NB) = (B1,...,05n)-



Solution of Sylvester equations
We have proved

Lemma

AX — XB = C has a unique solution iff A and B have no common
eigenvalues.

Corollary: AX — XB = C is ill-conditioned if A, B have two close
eigenvalues. (It's an iff when they are normal.)

Numerical solution: can we beat the naive O(n®) algorithm “form
I®A— BT ® I and treat it as a n?> x n? linear system”?

Yes! [Bartels-Stewart algorithm, 1972].
Idea: invert that Schur decomposition.

> (Qa® Qg)*vec(C ) equals vec(Q5CQa)
~~ product in O(n).

» | ® Ta— Tg® I has O(n) nonzeros per row
~~ back-substitution in O(n).



Extensions

> AcCm™m X e C™" B e C"™": everything works without
changes.

> Stein's equation X — AXB = C: works analogously. Solvable
iff o;B; # 1 for all i, j.

» AXB — CXD = E (generalized Sylvester’s equation): works
analogously, using generalized Schur factorization
schur(A,C) and schur(D.’, B.’).



Lyapunov equations

AX + XA* = C. *)
They are simply Sylvester equations with B = —A* (and C = C*).
They have a few notable properties.

Lemma

Suppose A has all its eigenvalues in the right half-plane
RHP = {z € C: Re(z) > 0}. Then,

1. (*) has a unique solution.
2. X = [5° exp(—tA)C exp(—tA*) dt.
3. X = 0if C > 0. (positive definite ordering)



Proof

With X = [5° e " Ce™ " dt, one has

o0
AX + XA* = / (Ae_tACe—tA* + e_tACe_tA*A*) dt
0
= [—e_tACe_tA*]go =0—(-0).
The converse holds, too:

Lemma

If (*) holds with C > 0 and X = 0, then A has all its eigenvalues
in the RHP.

Proof Let A*v = Av; then,

v¥Cv = v (AX 4+ XA*)v = Av* Xv + Av* Xv = 2 Re(\)v* Xv.



Lyapunov's use of these equations
Proving that certain dynamical systems are stable!

Let y(t) : [0, 00] — C" be the solution of Sy(t) = —Ay(t).
If I can find X = 0 and C = 0 such that AT X + XAT = C, then

%y(t)*xy(t) = y(t)" (=A"X = XA)y(t) = —y(t)"Cy(t) < 0.

= The ‘energy’ y(t)*Xy(t) decreases.



