Lecture 2: Computing functions of dense matrices

Paola Boito and Federico Poloni

Università di Pisa

Pisa - Hokkaido - Roma2 Summer School Pisa, August 27 - September 8, 2018

Introduction

In this lecture we focus on the problem of computing functions of dense, small- or medium-sized matrices.

- Computations are performed in finite precision. Therefore:
 - we can only expect to compute an approximation to f(A),
 - error and conditioning analyses are generally required.
- We do not expect A to have any special structure or sparsity pattern.
- The size of A is such that we can store and work on all of its entries.
- Main reference: N. Higham, Functions of Matrices. Theory and Computation. SIAM 2008 (will be denoted in the following as [Higham]).
- Software/programming language: we will mostly use MATLAB.

Condition numbers measure the sensitivity of matrix functions to perturbation in the data.

Well-known example: conditioning of matrix inversion. Take

$$A = \left[\begin{array}{rrr} 1 + 10^{-6} & 1 \\ 1 & 1 \end{array} \right]$$

Then $\|\operatorname{inv}(A) - A^{-1}\| \approx 10^{-5}$.

Conditioning of scalar functions

The relative condition number for a scalar function f(x) is defined as

$$\operatorname{cond}_{\operatorname{rel}}(f,x) := \lim_{\epsilon \to 0} \sup_{|\Delta x| \le \epsilon |x|} \left| \frac{f(x + \Delta x) - f(x)}{\epsilon f(x)} \right|.$$

If f(x) is twice continuously differentiable, this can be rewritten as

$$\operatorname{cond}_{\operatorname{rel}}(f, x) = \left| \frac{xf'(x)}{f(x)} \right|$$

because

$$\frac{f(x+\Delta x)-f(x)}{f(x)}=\left(\frac{xf'(x)}{f(x)}\right)\frac{\Delta x}{x}+o(\Delta x)$$

Conditioning of matrix functions

For a matrix function $f : \mathbb{C}^{n \times n} \longrightarrow \mathbb{C}^{n \times n}$ evaluated at *X* we define the relative condition number:

$$\operatorname{cond}_{\operatorname{rel}}(f,X) := \lim_{\epsilon \to 0} \sup_{\|E\| \le \epsilon \|X\|} \frac{\|f(X+E) - f(X)\|}{\epsilon \|f(X)\|}$$

As a consequence we have a bound for small perturbations:

$$\frac{\|f(X+E) - f(X)\|}{\|f(X)\|} \le \operatorname{cond}_{\mathsf{rel}}(f, X) \frac{\|E\|}{\|X\|} + o(\|E\|).$$

The absolute condition number is

$$\operatorname{cond}_{\operatorname{abs}}(f,X) := \lim_{\epsilon \to 0} \sup_{\|E\| \le \epsilon} \frac{\|f(X+E) - f(X)\|}{\epsilon}$$

with the property

$$\operatorname{cond}_{\operatorname{rel}}(f, X) = \operatorname{cond}_{\operatorname{abs}}(f, X) \frac{\|X\|}{\|f(X)\|}.$$

The Fréchet derivative

The Fréchet derivative of f at X is a linear mapping

$$L_f(X): \mathbb{C}^{n \times n} \longrightarrow \mathbb{C}^{n \times n}$$
$$E \longrightarrow L_f(X, E)$$

such that for all $E \in \mathbb{C}^{n \times n}$

$$f(X + E) - f(X) - L_f(X, E) = o(||E||).$$

Examples:

$$(X+E)^2 - X^2 = XE + EX + E^2 \Rightarrow L_{X^2}(X,E) = XE + EX.$$

 $(X+E)^{-1} - X^{-1} = -X^{-1}EX^{-1} + \mathcal{O}(E^2) \Rightarrow L_{X^{-1}}(X,E) = -X^{-1}EX^{-1}.$

The Fréchet derivative

More properties:

- If it exists, the Fréchet derivative is unique.
- If f is 2n − 1 times continuously differentiable on D ⊂ C and X ∈ C^{n×n} has spectrum in D, then L_f(X, E) exists and is continuous in X and E.
- The norm of the Fréchet derivative is defined as

$$\|L_f(X)\| := \max_{Z \neq 0} \frac{\|L_f(X,Z)\|}{\|Z\|}.$$

Condition numbers

Theorem (Rice)

The absolute and relative condition numbers for f(X) are given by

$$cond_{abs}(f, X) = \|L_f(X)\|,$$

 $cond_{rel}(f, X) = \frac{\|L_f(X)\| \|X\|}{\|f(X)\|}$

Proof:

$$\operatorname{cond}_{\operatorname{abs}}(f, X) = \lim_{\epsilon \to 0} \sup_{\|E\| \le \epsilon} \frac{\|f(X + E) - f(X)\|}{\epsilon}$$
$$= \lim_{\epsilon \to 0} \sup_{\|E\| \le \epsilon} \left\| \frac{L_f(X, E) + o(\|E\|)}{\epsilon} \right\|$$
$$= \lim_{\epsilon \to 0} \sup_{\|E\| \le \epsilon} \|L_f(X, E/\epsilon) + o(\|E\|)/\epsilon\|$$
$$= \sup_{\|Z\| \le 1} \|L_f(X, Z)\| = \|L_f(X)\|.$$

Conditioning of the matrix exponential

As an example, consider $f(A) = e^A$. The Fréchet derivative is

$$L_{\exp}(A,E) = \int_0^1 e^{A(1-s)} E e^{As} ds$$

from which we deduce

$$\|A\| \leq \operatorname{cond}_{\mathsf{rel}}(\mathsf{exp}, A) \leq rac{e^{\|A\|} \|A\|}{\|e^A\|}$$

Proof:

•
$$\|L_{\exp}(A, E)\| \le \|E\| \int_0^1 e^{\|A\|(1-s)} e^{\|A\|s} ds = \|E\| \int_0^1 e^{\|A\|} ds = \|E\| e^{\|A\|}$$

•
$$||L_{\exp}(A)|| \ge ||L_{\exp}(A, I)|| = \left\| \int_0^1 e^A ds \right\| = ||e^A||.$$

Normal matrices have minimal condition number in 2-norm (Van Loan).

There are several ways to compute or estimate the Fréchet derivative of a matrix function – and therefore its condition number.

One useful property is:

Theorem (Mathias)

Let f be 2n - 1 times continuously differentiable on $\mathcal{D} \subset \mathbb{C}$. For $A \in \mathbb{C}^{n \times n}$ with spectrum contained in \mathcal{D} we have

$$f\left(\left[\begin{array}{cc}A & E\\0 & A\end{array}\right]\right) = \left[\begin{array}{cc}f(A) & L_f(A, E)\\0 & f(A)\end{array}\right].$$

Since L_f is a linear operator, there exists a matrix $K_f(A) \in \mathbb{C}^{n^2 \times n^2}$, known as Kronecker form of the Fréchet derivative, such that

 $\operatorname{vec}(L_f(A, E)) = K_f(A)\operatorname{vec}(E)$

Note that if (λ, V) is an eigenpair of $L_f(A)$, then $(\lambda, \text{vec}(V))$ is an eigenpair of $K_f(A)$.

Theorem

The eigenvalues of $L_f(A)$ are

$$f[\lambda_i, \lambda_j], \qquad i, j = 1, \dots n,$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A.

Here square brackets denote divided differences, i.e.,

$$f[\lambda,\mu] = \begin{cases} \frac{f(\lambda) - f(\mu)}{\lambda - \mu} & \text{if } \lambda \neq \mu, \\ f'(\lambda) & \text{if } \lambda = \mu. \end{cases}$$

Let λ be an eigenvalue of $L_f(A)$; then for all matrix norms it holds

 $\|L_f(A)\| \ge \lambda$

and therefore we have

Theorem

For any norm,

$$\operatorname{cond}_{\operatorname{abs}}(f, A) \geq \max_{\lambda, \mu \in \Lambda(A)} |f[\lambda, \mu]|.$$

Equality holds for normal A in the Frobenius norm.

We can compute the condition number in Frobenius norm using the Kronecker form of L_f :

$$\begin{split} \|L_{f}(A)\|_{F} &= \max_{E \neq 0} \frac{\|L_{f}(A, E)\|_{F}}{\|E\|_{F}} = \max_{E \neq 0} \frac{\|\operatorname{vec}(L_{f}(A, E))\|_{2}}{\|\operatorname{vec}(E)\|_{2}} \\ &= \max_{E \neq 0} \frac{\|K_{f}(A)\operatorname{vec}(E)\|_{2}}{\|\operatorname{vec}(E)\|_{2}} = \|K_{f}(A)\|_{2}. \end{split}$$

Since

$$\|K_f(A)\|_2 = \|K_f(A)^*K_f(A)\|_2^{1/2} = \lambda_{\max}(K_f(A)^*K_f(A))^{1/2},$$

we can also estimate the condition number of f(A) using, for instance, the power method.

Many techniques are available. Some of them work for general functions and matrices. Others are well-suited to treat certain functions and/or matrices with special properties.

Some general techniques are obtained directly from the definitions of f(A). For instance, suppose that A is diagonalisable. Then

- 1. compute the factorization $A = M^{-1} \wedge M$,
- 2. compute $f(A) = M^{-1}f(\Lambda)M$.

Works well numerically for A symmetric or Hermitian. See MATLAB function

F = funm(A, f).

Matrix powers

- A sequence of powers A², A³, A⁴... is computed in the obvious way (repeated multiplication by A).
- If we only need A^m, repeated squaring is more efficient. Let m = ∑^t_{i=0} β_i2ⁱ with β_t ≠ 0 and do the following:
 - 1 P = A2i - 03 while $\beta_i = 0$ 4 $P = P^2$ 5 i = i + 16 end 7 X - P 8 for i = i + 1 : t9 $P = P^2$ 10 if $\beta_j = 1$ 11 X = XP12 end 13 end

Cost bounded by $2 \lfloor \log_2 m \rfloor M$ flops (M cost of matrix multiplication).

Polynomials

Several competing methods are available to compute

$$p_m(A) = \sum_{k=0}^m b_k A^k, \qquad A \in \mathbb{C}^{n \times n}.$$

- Horner's method (nested multiplication); not suitable when m is not known from the start (e.g., truncated series).
- Explicit powers (it isn't more expensive than Horner in the matrix case).
- Factored form $p_m(A) = b_m(A \alpha_1 I_n) \dots (A \alpha_m I_n)$.
- Paterson and Stockmeyer's method, e.g.,

 $p_6(A) = b_6 I_n (A^3)^2 + (b_5 A^2 + b_4 A + b_3 I_n) A^3 + (b_2 A^2 + b_1^A + b_0 I_n).$

Computational cost is (m-1)M flops for the first three methods.

Taylor series

One strategy to approximate f(A) consists in applying a truncated Taylor expansion of f(x) to A. But first we need to make sure that the matrix series converges.

Theorem

Suppose that f(x) has a Taylor series expansion

$$f(x) = \sum_{k=0}^{\infty} a_k (x - \alpha)^k, \qquad a_k = \frac{f^{(k)}(\alpha)}{k!}$$

with radius of convergence r. If $A \in \mathbb{C}^{n \times n}$ then f(A) is defined and given by

$$f(A) = \sum_{k=0}^{\infty} a_k (A - \alpha I)^k$$

iff each (distinct) eigenvalue λ_i *of A satisfies:*

(i) |λ_i - α| < r, or
(ii) |λ_i - α| = r and the series for f^(n_i-1)(λ) is convergent at each λ_i.

Next question: where should we truncate the series?

An error bound is needed: see e.g., [Golub & Van Loan, *Matrix Computations*] or the following result [Mathias, *Approximation of matrix-valued functions*, SIMAX 1993]:

$$\left\|f(A)-\sum_{k=0}^{s}a_{k}(A-\alpha I)^{k}\right\|\leq \frac{1}{s!}\max_{0\leq t\leq 1}\|(A-\alpha I)^{s}f^{(s)}(\alpha I+t(A-\alpha I))\|.$$

An example

Consider the matrix

$$\mathbf{A} = \begin{bmatrix} \mathbf{0} & \alpha \\ -\alpha & \mathbf{0} \end{bmatrix}.$$

What is e^A ?

An example

Consider the matrix

$$\mathbf{A} = \left[\begin{array}{cc} \mathbf{0} & \alpha \\ -\alpha & \mathbf{0} \end{array} \right].$$

What is e^{A} ? It turns out that

$$\boldsymbol{e}^{\boldsymbol{A}} = \left[\begin{array}{cc} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{array} \right].$$

An example

Consider the matrix

$$\mathbf{A} = \left[\begin{array}{cc} \mathbf{0} & \alpha \\ -\alpha & \mathbf{0} \end{array} \right].$$

What is e^A ? It turns out that

$$\boldsymbol{e}^{\boldsymbol{A}} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}.$$

Now, take $\alpha = 25$ and compute e^{A} numerically via truncated Taylor expansion. What happens?

Rational approximation

• General idea: if $r(x) = p(x)/q(x) \approx f(x)$, take $f(A) \approx r(A)$.

What about approximation errors? Suppose A diagonalisable. Then:

$$f(A) \approx r(A) = M^{-1}r(\Lambda)M.$$

A good approximation of f on the spectrum of A is crucial.

• But this is not enough! Let e(x) := f(x) - r(x); we have

$$e(A) = M^{-1}e(\Lambda)M$$

and therefore

$$\|\boldsymbol{e}(\boldsymbol{A})\| \leq \kappa(\boldsymbol{M}) \|\boldsymbol{e}(\boldsymbol{\Lambda})\|.$$

If *M* is ill-conditioned, the approximation error can be large.

Rational approximation

Commonly used classes of rational approximations include

• Best L_{∞} (minimax, Chebyshev) approximations:

$$\|\mathbf{r}(\mathbf{x})-\mathbf{f}(\mathbf{x})\|_{\infty}=\min_{\mathbf{s}\in\mathcal{R}_{k,m}}\|\mathbf{s}(\mathbf{x})-\mathbf{f}(\mathbf{x})\|_{\infty},$$

where the norm is $||g(x)||_{\infty} = \max_{x \in [a,b]} |g(x)|$. Usually employed for Hermitian matrices (see previous bound).

▶ Padé approximations: $r_{k,m}(x) = p_{k,m}(x)/q_{k,m}(x)$ is a [k/m] Padé approximant of f if

$$r_{k,m} \in \mathcal{R}_{k,m}$$
 with $q_{k,m}(0) = 1$

and

$$f(x)-r_{k,m}(x)=\mathcal{O}(x^{k+m+1}).$$

Padé approximation

Some properties:

- if the [k/m] Padé approximant of *f* exists, it is unique;
- potential for lower computational cost w.r.t. polynomial/Taylor approximation;
- x should be close to 0 for good approximation,
- well-developed theory, Padé approximants known for several important functions (e.g., exponential),
- code available in Maple, Mathematica, MATLAB (Extended Symbolic Math Toolbox)...

The matrix exponential

- The most studied matrix function!
- Lots of applications, starting from differential equations (we'll see a different example in the fourth lecture).
- Many methods for its computation. Crucial reference:
 - C. B. Moler and C. F. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, SIAM Rev. 20(4):801-836, 1978.
 - C. B. Moler and C. F. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev. 45(1):3-49, 2003.
- Three candidates to "best method":
 - methods for ODEs,
 - scaling and squaring (implemented in MATLAB function expm),
 - use of Schur form.

This approach to the computation of e^A relies on the property

$$e^{\mathcal{A}} = (e^{\mathcal{A}/\sigma})^{\sigma}, \qquad ext{for} \quad \sigma \in \mathbb{C},$$

and on the fact that e^A is well approximated via Taylor or Padé for small ||A||.

The main idea goes as follows:

- 1. choose $\sigma = 2^s$ such that $||A/\sigma|| \approx 1$,
- approximate e^{A/σ} ≈ r(A/σ), where r is a Taylor or Padé approximant to the exponential,
- 3. take $e^A \approx r(A/\sigma)^{\sigma}$ via repeated squarings.

[k, m]-Padé approximants for e^x are known explicitly:

$$r_{km}(x) = p_{km}(x)/q_{km}(x)$$
 with

$$p_{km}(x) = \sum_{j=0}^{k} \frac{(k+m-j)!k!}{(k+m)!(k-j)!} \frac{x^{j}}{j!}, \quad q_{km}(x) = \sum_{j=0}^{m} \frac{(k+m-j)!m!}{(k+m)!(m-j)!} \frac{(-x)^{j}}{j!}$$

(Note that $q_m(x) = p_m(-x)$.)

How should we choose k and m (and the scaling parameter s)?

- ▶ Better take k = m (diagonal approximant), because r_{km} with k ≠ m is less accurate than r_{max(k,m),max(k,m)}, but evaluation at a matrix argument has the same cost;
- m and s should be such that the computation of e^A has backward error bounded by u and minimal cost.

A backward error bound is given as follows.

Theorem

Let r(x) be a rational approximation of e^x such that

$$e^{-2^{-s}A}r(2^{-s}A)=I+G$$

with ||G|| < 1 in any consistent matrix norm. Then

 $r(2^{-s}A)^{2^s}=e^{A+E},$

where E commutes with A and

$$\frac{\|E\|}{\|A\|} \le \frac{-\log(1 - \|G\|)}{\|2^{-s}A\|}$$

Now, let us take $r = r_m$ the *m*-th diagonal Padé approximant. By definition of Padé approximant, we have $e^x - r_m(x) = O(x^{2m+1})$. Therefore we can write the power series expansion

$$\rho(\mathbf{x}) := \mathbf{e}^{-\mathbf{x}} \mathbf{r}_m(\mathbf{x}) - 1 = \sum_{j=2m+1}^{\infty} \mathbf{c}_j \mathbf{x}^j$$

which converges absolutely for $|x| < \nu_m := \min\{|t| : q_m(t) = 0\}$. Hence

$$\|G\|=\|
ho(2^{-s}A)\|\leq \sum_{j=2m+1}^\infty |c_i| heta^j=:f(heta),$$

where $\theta = \|2^{-s}A\|$. Using the previous theorem we obtain the bound

$$\frac{\|E\|}{\|A\|} \leq \frac{-\log(1-f(\theta))}{\theta}.$$

For each *m* we compute $\theta_m := \max\{\theta : \frac{\|E\|}{\|A\|} < \mathbf{u}\}$ and determine *s*.

What is the cost of evaluating $r_m(A)$ for different values of *m*? (We will measure computational cost as the required number of matrix multiplications π_m .) We need to:

- 1. evaluate $p_m(A)$ and $q_m(A)$,
- 2. solve the matrix equation $q_m(A)r_m(A) = p_m(A)$.

Since $q_m(x) = p_m(-x)$, an efficient approach to item 1 relies on explicit computation of even powers of *A*. For instance, if $m = 2\ell$:

 $p_{2\ell}(A) = b_{2\ell}A^{2\ell} + \dots + b_2A^2 + b_0I + A(b_{2\ell-1}A^{2\ell-2} + \dots + b_3A^2 + b_1I) =: U + V.$

$$q_{2\ell}(A) = \frac{U}{V} - V.$$

This scheme can be improved for $m \ge 12$.

т	1	2	3	4	5	e	6	7
π_m	0	1	2	3	3	4	1	4
θ_m	3.7e-8	5.3e-4	1.5e-2	8.5e-2	2.5e	-1 5.4	e-1 9).5e-1
m	8	9	10	11	12	13	14	
π_m	5	5	6	6	6	6	7	
θ_m	1.5e0	2.1e0	2.8e0	3.6e0	4.5e0	5.4e0	6.3e0	
т	15	16	17	18	19	20	21	
π_m	7	7	7	8	8	8	8	
θ_m	7.3e0	8.4e0	9.4e0	1.1e1	1.2e1	1.3e1	1.4e1	

Table taken from [Higham].

Recall: π_m = computational cost, θ_m = bound on $2^{-s} ||A||$.

We can discard some cases by inspection of π_m .

т	1	2	3	5	7
πm	0	1	2	3	4
θ_m	3.7e-8	5.3e-4	1.5e-2	2.5e-1	9.5e-1
т	9		13		
π_m	5		6		
θ_m	2.1e0		5.4e0		
т	17		2	1	
π_m	7		3	3	
θ_m	9.4e0		1.4	e1	

Table taken from [Higham].

Recall: π_m = computational cost, θ_m = bound on $2^{-s} ||A||$.

If θ_m increases of a factor 2 this saves us one matrix multiplication... therefore m = 13 is the best choice.

Scaling and squaring algorithm

Input: matrix A. **Output**: $X \approx e^{A}$. 1 for m = [3, 5, 7, 9]2 if $\|A\|_1 < \theta_m$ evaluate U and V and solve (-U + V)X = U + V3 4 quit 5 end 6 end 7 $A \leftarrow A/2^s$ with s minimal integer such that $||A/2^s||_1 < \theta_{13}$ 8 $A_2 = A^2$, $A_4 = A_2^2$, $A_6 = A_2A_4$ 9 $U = A[A_6(b_{13}A_6 + b_{11}A_4 + b_9A_2) + b_7A_6 + b_5A_4 + b_3A_2 + b_1I]$ 10 $V = A_6(b_{12}A_6 + b_{10}A_4 + b_8A_2) + b_6A_6 + b_4A_4 + b_2A_2 + b_0I$ 11 solve (-U + V)Y = U + V12 compute $X = Y^{2^s}$ by repeated squaring.

Scaling and squaring algorithm

• Cost: $(\pi_m + \log_2 \lceil \|\boldsymbol{A}\|_1 / \theta_m) \rceil \mathcal{M} + \boldsymbol{D}.$

But there is more... we should also:

- check whether $\theta_k < \nu_k$ (it is!);
- study the effect of rounding errors on the evaluation of p_m(A) and q_m(A): errors turn out to be nicely bounded;
- estimate ||q_m(A)⁻¹||: it grows with m, but conditioning is very good for m up to 13;
- perform error analysis for the squaring steps. Although much has been done, this point is still unclear and, in principle, a potential source of instability. However, the algorithm is known to be forward stable if A is normal.

See [N. Higham, *The Scaling and Squaring Method for the Matrix Exponential Revisited*, SIAM Rev. 51(4), 747 – 764, 2009] for a detailed discussion.

General purpose algorithm for computing f(A), based on the Schur decomposition of $A \in \mathbb{C}^{n \times n}$:

 $A = QTQ^*$,

with $Q \in \mathbb{C}^{n \times n}$ unitary and $T \in \mathbb{C}^{n \times n}$ upper triangular. The Schur decomposition can be computed in a backward stable way via the QR algorithm.

The idea is:

- given A, compute its Schur decomposition $A = QTQ^*$,
- form $f(A) = Q f(T)Q^*$.

We have shifted the problem to computing functions of triangular matrices.

How to compute f(T)? Explicit formulas exist:

Function of a triangular matrix

Let
$$T = (t_{ij})_{i,j=1,...,n}$$
 and $F = f(T) = (f_{ij})_{i,j=1...n}$. Then:
 $f_{ii} = f(t_{ii}), \quad i = 1,...,n$
 $f_{ij} = \sum_{(s_0,...,s_k) \in S_{ij}} t_{s_0s_1} t_{s_1s_2} \dots t_{s_{k-1}s_k} f[\lambda_{s_0}, \dots, \lambda_{s_k}],$

where $\lambda_i = t_{ii}$ and $S_{i,j}$ denotes the set of all strictly increasing sequences of integers that start at *i* and end at *j*, whereas $f[\lambda_{s_0}, \ldots, \lambda_{s_k}]$ is the *k*-th order divided difference of *f* at $\lambda_{s_0}, \ldots, \lambda_{s_k}$.

But these formulas are computationally too expensive: $\mathcal{O}(2^n)$ flops.

Idea by Parlett:

- F = f(T) commutes with T (general property of matrix functions),
- diagonal entries of *F* are known $(f_{ii} = f(t_{ii}))$,
- therefore the equation TF = FT can be solved for off-diagonal entries of F.

Indeed we have

$$\sum_{k=i}^{j} t_{ik} f_{kj} = \sum_{k=i}^{j} f_{ik} t_{kj},$$

that is,

$$f_{ij}(t_{ii}-t_{jj}) = t_{ij}(f_{ii}-f_{jj}) + \sum_{k=i+1}^{j-1} (f_{ik}t_{kj}-t_{ik}f_{kj}).$$

If $t_{ii} \neq t_{jj}$:

$$f_{ij} = t_{ij} \frac{f_{ii} - f_{jj}}{t_{ii} - t_{jj}} + \sum_{k=i+1}^{j-1} \frac{f_{ik} t_{kj} - t_{ik} f_{kj}}{t_{ii} - t_{jj}}, \qquad i < j.$$

[B. N. Parlett, A recurrence among the elements of functions of triangular matrices, Linear Algebra Appl. 14:117–121, 1976]

Input: triangular matrix *T*. *Output*: F = f(T).

$$\begin{array}{ll} 1 & f_{ii} = f(t_{ii}), & i = 1:n \\ 2 & \text{for } j = 2:n \\ 3 & \text{for } i = j-1:-1:1 \\ 4 & f_{i,j} = t_{ij} \frac{t_{ii} - t_{ji}}{t_{ii} - t_{jj}} + \frac{\sum_{k=i+1}^{j-1} t_{ik} t_{kj} - t_{ik} t_{kj}}{t_{ii} - t_{jj}} \\ 5 & \text{end} \\ 6 & \text{end} \end{array}$$

Cost: $2n^3/3$ flops.

Main drawback: breaks down when $t_{ii} = t_{jj}$ for some i, j.

Schur-Parlett algorithm: block version

Idea: write the recurrence in block form.

- Suppose *T* has upper triangular block form $T = (T_{ij})$.
- Then $F = f(T) = (F_{ij})$ has the same block structure.
- For diagonal blocks we have $F_{ii} = f(T_{ii})$.
- For off-diagonal blocks (i.e., i < j), the block recurrence is

$$T_{ii}F_{ij} - F_{ij}T_{jj} = F_{ii}T_{ij} - T_{ij}F_{jj} + \sum_{k=i+1}^{j-1} (F_{ik}T_{kj} - T_{ik}F_{kj}).$$

This is a Sylvester equation in the unknown F_{ij} . It is nonsingular iff T_{ii} and T_{jj} have no eigenvalues in common.

Suitable reordering techniques should be applied beforehand. Note that we still have to compute $f(T_{ii})$.

Schur-Parlett algorithm: atomic blocks

Each atomic block T_{ii} is assumed to be an upper triangular matrix with clustered eigenvalues. Denote $T = T_{ii} \in \mathbb{R}^{m \times m}$. Here is an idea for computing f(T):

• Write $T = \sigma I + M$, $\sigma = \operatorname{trace}(T)/m$.

• Suppose
$$f(\sigma + z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(\sigma)}{k!} z^k$$
.

• Then
$$f(T) = \sum_{k=0}^{\infty} \frac{f^{(k)}(\sigma)}{k!} M^k$$
.

- After m 1 terms, the powers of M should decay quickly, so a suitable truncation of the series should be sufficiently accurate. (All of this can be made more precise!)
- Cost $\mathcal{O}(m^4)$ flops.
- Potential danger: cancellation.

Schur-Parlett algorithm: error analysis Back to TF - FT = 0. Let \hat{F} be the computed solution:

 $T\hat{F} - \hat{F}T = R$, R = residual.

Let $\hat{F} = F + \Delta F$. By subtraction:

 $T\Delta F - \Delta F T = R.$

Taking blocks:

$$T_{ii}\Delta F_{ij} - \Delta F_{ij}T_{jj} = R_{ij} + \Delta F_{ii}T_{ij} - T_{ij}\Delta F_{jj} + \sum_{k=i+1}^{j-1} (\Delta F_{ik}T_{kj} - T_{ik}\Delta F_{kj}) =: B_{ij}$$

from which we deduce

$$\|\Delta \mathcal{F}_{ij}\|_{\mathcal{F}} \leq \operatorname{sep}(\mathcal{T}_{ii},\mathcal{T}_{jj})^{-1}\|\mathcal{B}_{ij}\|_{\mathcal{F}}$$

where the separation of T_{ii} and T_{jj} is

$$\operatorname{sep}(T_{ii}, T_{jj}) = \min_{X \neq 0} \frac{\|T_{ii}X - XT_{jj}\|_F}{\|X\|_F}.$$

Schur-Parlett algorithm: error analysis

Some comments:

- The block R_{ij} represents the errors introduced during the computation of F_{ij}. These can lead to an error △F_{ij} of norm proportional to sep(T_{ii}, T_{jj})⁻¹ ||R_{ij}||.
- The blocks △*F_{ij}* in the rhs represent the errors introduced during previous computations of diagonal or off-diagonal blocks in the recurrence. These can be magnified by a factor sep(*T_{ii}*, *T_{jj}*)⁻¹.
- The separation of atomic blocks clearly plays a crucial role. However, error growth is also possible if some *T_{ii}* is large.
- Reordering applied prior to Schur-Parlett should maximize separation between atomic blocks while keeping block sizes reasonably small.