
Lecture 2:
Computing functions of dense matrices

Paola Boito and Federico Poloni

Università di Pisa

Pisa - Hokkaido - Roma2 Summer School
Pisa, August 27 - September 8, 2018

Introduction

In this lecture we focus on the problem of computing functions of
dense, small- or medium-sized matrices.
I Computations are performed in finite precision. Therefore:

I we can only expect to compute an approximation to f (A),
I error and conditioning analyses are generally required.

I We do not expect A to have any special structure or sparsity
pattern.

I The size of A is such that we can store and work on all of its
entries.

I Main reference: N. Higham, Functions of Matrices. Theory and
Computation. SIAM 2008 (will be denoted in the following as
[Higham]).

I Software/programming language: we will mostly use MATLAB.

Conditioning

Condition numbers measure the sensitivity of matrix functions to
perturbation in the data.

Well-known example: conditioning of matrix inversion. Take

A =

[
1 + 10−6 1

1 1

]
Then ‖inv(A)− A−1‖ ≈ 10−5.

Conditioning of scalar functions

The relative condition number for a scalar function f (x) is defined as

condrel(f , x) := lim
ε→0

sup
|∆x|≤ε|x|

∣∣∣∣ f (x + ∆x)− f (x)

εf (x)

∣∣∣∣ .
If f (x) is twice continuously differentiable, this can be rewritten as

condrel(f , x) =

∣∣∣∣xf ′(x)

f (x)

∣∣∣∣
because

f (x + ∆x)− f (x)

f (x)
=

(
xf ′(x)

f (x)

)
∆x
x

+ o(∆x)

Conditioning of matrix functions
For a matrix function f : Cn×n −→ Cn×n evaluated at X we define the
relative condition number:

condrel(f ,X) := lim
ε→0

sup
‖E‖≤ε‖X‖

‖f (X + E)− f (X)‖
ε‖f (X)‖

.

As a consequence we have a bound for small perturbations:

‖f (X + E)− f (X)‖
‖f (X)‖

≤ condrel(f ,X)
‖E‖
‖X‖

+ o(‖E‖).

The absolute condition number is

condabs(f ,X) := lim
ε→0

sup
‖E‖≤ε

‖f (X + E)− f (X)‖
ε

with the property

condrel(f ,X) = condabs(f ,X)
‖X‖
‖f (X)‖

.

The Fréchet derivative

The Fréchet derivative of f at X is a linear mapping

Lf (X) : Cn×n −→ Cn×n

E −→ Lf (X ,E)

such that for all E ∈ Cn×n

f (X + E)− f (X)− Lf (X ,E) = o(‖E‖).

Examples:

(X + E)2 − X 2 = XE + EX + E2 ⇒ LX 2 (X ,E) = XE + EX .

(X +E)−1−X−1 = −X−1EX−1 +O(E2)⇒ LX−1 (X ,E) = −X−1EX−1.

The Fréchet derivative

More properties:
I If it exists, the Fréchet derivative is unique.
I If f is 2n − 1 times continuously differentiable on D ⊂ C and

X ∈ Cn×n has spectrum in D, then Lf (X ,E) exists and is
continuous in X and E .

I The norm of the Fréchet derivative is defined as

‖Lf (X)‖ := max
Z 6=0

‖Lf (X ,Z)‖
‖Z‖

.

Condition numbers

Theorem (Rice)

The absolute and relative condition numbers for f (X) are given by

condabs(f ,X) = ‖Lf (X)‖,

condrel(f ,X) =
‖Lf (X)‖ ‖X‖
‖f (X)‖

.

Proof:

condabs(f ,X) = lim
ε→0

sup
‖E‖≤ε

‖f (X + E)− f (X)‖
ε

= lim
ε→0

sup
‖E‖≤ε

∥∥∥∥Lf (X ,E) + o(‖E‖)
ε

∥∥∥∥
= lim

ε→0
sup
‖E‖≤ε

‖Lf (X ,E/ε) + o(‖E‖)/ε‖

= sup
‖Z‖≤1

‖Lf (X ,Z)‖ = ‖Lf (X)‖.

Conditioning of the matrix exponential

As an example, consider f (A) = eA. The Fréchet derivative is

Lexp(A,E) =

∫ 1

0
eA(1−s)E eAsds

from which we deduce

‖A‖ ≤ condrel(exp,A) ≤ e‖A‖‖A‖
‖eA‖

.

Proof:
I ‖Lexp(A,E)‖ ≤ ‖E‖

∫ 1
0 e‖A‖(1−s)e‖A‖sds = ‖E‖

∫ 1
0 e‖A‖ds = ‖E‖e‖A‖

I ‖Lexp(A)‖ ≥ ‖Lexp(A, I)‖ =
∥∥∥∫ 1

0 eAds
∥∥∥ = ‖eA‖.

Normal matrices have minimal condition number in 2-norm (Van
Loan).

Estimating the Fréchet derivative

There are several ways to compute or estimate the Fréchet derivative
of a matrix function – and therefore its condition number.

One useful property is:

Theorem (Mathias)

Let f be 2n − 1 times continuously differentiable on D ⊂ C. For
A ∈ Cn×n with spectrum contained in D we have

f
([

A E
0 A

])
=

[
f (A) Lf (A,E)

0 f (A)

]
.

Estimating the Fréchet derivative

Since Lf is a linear operator, there exists a matrix Kf (A) ∈ Cn2×n2
,

known as Kronecker form of the Fréchet derivative, such that

vec(Lf (A,E)) = Kf (A)vec(E)

Note that if (λ,V) is an eigenpair of Lf (A), then (λ, vec(V)) is an
eigenpair of Kf (A).

Theorem
The eigenvalues of Lf (A) are

f [λi , λj], i , j = 1, . . .n,

where λ1, . . . , λn are the eigenvalues of A.

Here square brackets denote divided differences, i.e.,

f [λ, µ] =

{
f (λ)−f (µ)

λ−µ
if λ 6= µ,

f ′(λ) if λ = µ.

Estimating the Fréchet derivative

Let λ be an eigenvalue of Lf (A); then for all matrix norms it holds

‖Lf (A)‖ ≥ λ

and therefore we have

Theorem
For any norm,

condabs(f ,A) ≥ max
λ,µ∈Λ(A)

|f [λ, µ]|.

Equality holds for normal A in the Frobenius norm.

Estimating the Fréchet derivative

We can compute the condition number in Frobenius norm using the
Kronecker form of Lf :

‖Lf (A)‖F = max
E 6=0

‖Lf (A,E)‖F

‖E‖F
= max

E 6=0

‖vec(Lf (A,E))‖2

‖vec(E)‖2

= max
E 6=0

‖Kf (A)vec(E)‖2

‖vec(E)‖2
= ‖Kf (A)‖2.

Since

‖Kf (A)‖2 = ‖Kf (A)∗Kf (A)‖1/2
2 = λmax(Kf (A)∗Kf (A))1/2,

we can also estimate the condition number of f (A) using, for instance,
the power method.

How to compute f (A)?

Many techniques are available. Some of them work for general
functions and matrices. Others are well-suited to treat certain
functions and/or matrices with special properties.

Some general techniques are obtained directly from the definitions of
f (A). For instance, suppose that A is diagonalisable. Then

1. compute the factorization A = M−1ΛM,
2. compute f (A) = M−1f (Λ)M.

Works well numerically for A symmetric or Hermitian. See MATLAB
function
F = funm(A,f).

Matrix powers
I A sequence of powers A2, A3, A4 . . . is computed in the obvious

way (repeated multiplication by A).
I If we only need Am, repeated squaring is more efficient.

Let m =
∑t

i=0 βi2i with βt 6= 0 and do the following:
1 P = A
2 i = 0
3 while βi = 0
4 P = P2

5 i = i + 1
6 end
7 X = P
8 for j = i + 1 : t
9 P = P2

10 if βj = 1
11 X = XP
12 end
13 end

Cost bounded by 2 blog2 mcM flops (M cost of matrix
multiplication).

Polynomials

Several competing methods are available to compute

pm(A) =
m∑

k=0

bk Ak , A ∈ Cn×n.

I Horner’s method (nested multiplication); not suitable when m is
not known from the start (e.g., truncated series).

I Explicit powers (it isn’t more expensive than Horner in the matrix
case).

I Factored form pm(A) = bm(A− α1In) . . . (A− αmIn).
I Paterson and Stockmeyer’s method, e.g.,

p6(A) = b6In(A3)2 + (b5A2 + b4A + b3In)A3 + (b2A2 + bA
1 + b0In).

Computational cost is (m − 1)M flops for the first three methods.

Taylor series
One strategy to approximate f (A) consists in applying a truncated
Taylor expansion of f (x) to A. But first we need to make sure that the
matrix series converges.

Theorem
Suppose that f (x) has a Taylor series expansion

f (x) =
∞∑

k=0

ak (x − α)k , ak =
f (k)(α)

k !

with radius of convergence r . If A ∈ Cn×n then f (A) is defined and
given by

f (A) =
∞∑

k=0

ak (A− αI)k

iff each (distinct) eigenvalue λi of A satisfies:
(i) |λi − α| < r , or
(ii) |λi − α| = r and the series for f (ni−1)(λ) is convergent at each λi .

Taylor series

Next question: where should we truncate the series?

An error bound is needed: see e.g., [Golub & Van Loan, Matrix
Computations] or the following result [Mathias, Approximation of
matrix-valued functions, SIMAX 1993]:∥∥∥∥∥f (A)−

s∑
k=0

ak (A− αI)k

∥∥∥∥∥ ≤ 1
s!

max
0≤t≤1

‖(A− αI)sf (s)(αI + t(A− αI))‖.

An example

Consider the matrix

A =

[
0 α
−α 0

]
.

What is eA?

It turns out that

eA =

[
cosα sinα
− sinα cosα

]
.

Now, take α = 25 and compute eA numerically via truncated Taylor
expansion. What happens?

An example

Consider the matrix

A =

[
0 α
−α 0

]
.

What is eA? It turns out that

eA =

[
cosα sinα
− sinα cosα

]
.

Now, take α = 25 and compute eA numerically via truncated Taylor
expansion. What happens?

An example

Consider the matrix

A =

[
0 α
−α 0

]
.

What is eA? It turns out that

eA =

[
cosα sinα
− sinα cosα

]
.

Now, take α = 25 and compute eA numerically via truncated Taylor
expansion. What happens?

Rational approximation

I General idea: if r(x) = p(x)/q(x) ≈ f (x), take f (A) ≈ r(A).
I What about approximation errors? Suppose A diagonalisable.

Then:
f (A) ≈ r(A) = M−1r(Λ)M.

A good approximation of f on the spectrum of A is crucial.
I But this is not enough! Let e(x) := f (x)− r(x); we have

e(A) = M−1e(Λ)M

and therefore
‖e(A)‖ ≤ κ(M)‖e(Λ)‖.

If M is ill-conditioned, the approximation error can be large.

Rational approximation

Commonly used classes of rational approximations include
I Best L∞ (minimax, Chebyshev) approximations:

‖r(x)− f (x)‖∞ = min
s∈Rk,m

‖s(x)− f (x)‖∞,

where the norm is ‖g(x)‖∞ = maxx∈[a,b] |g(x)|.
Usually employed for Hermitian matrices (see previous bound).

I Padé approximations:
rk,m(x) = pk,m(x)/qk,m(x) is a [k/m] Padé approximant of f if

rk,m ∈ Rk,m with qk,m(0) = 1

and
f (x)− rk,m(x) = O(xk+m+1).

Padé approximation

Some properties:
I if the [k/m] Padé approximant of f exists, it is unique;
I potential for lower computational cost w.r.t. polynomial/Taylor

approximation;
I x should be close to 0 for good approximation,
I well-developed theory, Padé approximants known for several

important functions (e.g., exponential),
I code available in Maple, Mathematica, MATLAB (Extended

Symbolic Math Toolbox)...

The matrix exponential

I The most studied matrix function!
I Lots of applications, starting from differential equations (we’ll see

a different example in the fourth lecture).
I Many methods for its computation. Crucial reference:

I C. B. Moler and C. F. Van Loan, Nineteen dubious ways to compute
the exponential of a matrix, SIAM Rev. 20(4):801-836, 1978.

I C. B. Moler and C. F. Van Loan, Nineteen dubious ways to compute
the exponential of a matrix, twenty-five years later, SIAM Rev.
45(1):3-49, 2003.

I Three candidates to “best method”:
I methods for ODEs,
I scaling and squaring (implemented in MATLAB function expm),
I use of Schur form.

Scaling and squaring

This approach to the computation of eA relies on the property

eA = (eA/σ)σ, for σ ∈ C,

and on the fact that eA is well approximated via Taylor or Padé for
small ‖A‖.
The main idea goes as follows:

1. choose σ = 2s such that ‖A/σ‖ ≈ 1,
2. approximate eA/σ ≈ r(A/σ), where r is a Taylor or Padé

approximant to the exponential,
3. take eA ≈ r(A/σ)σ via repeated squarings.

Scaling and squaring

[k ,m]-Padé approximants for ex are known explicitly:

rkm(x) = pkm(x)/qkm(x)with

pkm(x) =
k∑

j=0

(k + m − j)!k !

(k + m)!(k − j)!

x j

j!
, qkm(x) =

m∑
j=0

(k + m − j)!m!

(k + m)!(m − j)!

(−x)j

j!

(Note that qm(x) = pm(−x).)
How should we choose k and m (and the scaling parameter s)?
I Better take k = m (diagonal approximant), because rkm with

k 6= m is less accurate than rmax(k,m),max(k,m), but evaluation at a
matrix argument has the same cost;

I m and s should be such that the computation of eA has backward
error bounded by u and minimal cost.

Scaling and squaring

A backward error bound is given as follows.

Theorem
Let r(x) be a rational approximation of ex such that

e−2−sAr(2−sA) = I + G

with ‖G‖ < 1 in any consistent matrix norm. Then

r(2−sA)2s
= eA+E ,

where E commutes with A and

‖E‖
‖A‖

≤ − log(1− ‖G‖)
‖2−sA‖

.

Scaling and squaring

Now, let us take r = rm the m-th diagonal Padé approximant. By
definition of Padé approximant, we have ex − rm(x) = O(x2m+1).
Therefore we can write the power series expansion

ρ(x) := e−x rm(x)− 1 =
∞∑

j=2m+1

cix i

which converges absolutely for |x | < νm := min{|t | : qm(t) = 0}.
Hence

‖G‖ = ‖ρ(2−sA)‖ ≤
∞∑

j=2m+1

|ci |θi =: f (θ),

where θ = ‖2−sA‖. Using the previous theorem we obtain the bound

‖E‖
‖A‖

≤ − log(1− f (θ))

θ
.

For each m we compute θm := max{θ : ‖E‖‖A‖ < u} and determine s.

Scaling and squaring

What is the cost of evaluating rm(A) for different values of m? (We will
measure computational cost as the required number of matrix
multiplications πm.)
We need to:

1. evaluate pm(A) and qm(A),
2. solve the matrix equation qm(A)rm(A) = pm(A).

Since qm(x) = pm(−x), an efficient approach to item 1 relies on
explicit computation of even powers of A. For instance, if m = 2`:

p2`(A) = b2`A2`+· · ·+b2A2+b0I+A(b2`−1A2`−2 + · · ·+ b3A2 + b1I) =: U+V .

q2`(A) = U − V .

This scheme can be improved for m ≥ 12.

Scaling and squaring

m 1 2 3 4 5 6 7
πm 0 1 2 3 3 4 4
θm 3.7e-8 5.3e-4 1.5e-2 8.5e-2 2.5e-1 5.4e-1 9.5e-1

m 8 9 10 11 12 13 14
πm 5 5 6 6 6 6 7
θm 1.5e0 2.1e0 2.8e0 3.6e0 4.5e0 5.4e0 6.3e0

m 15 16 17 18 19 20 21
πm 7 7 7 8 8 8 8
θm 7.3e0 8.4e0 9.4e0 1.1e1 1.2e1 1.3e1 1.4e1

Table taken from [Higham].
Recall: πm = computational cost, θm = bound on 2−s‖A‖.

We can discard some cases by inspection of πm.

Scaling and squaring

m 1 2 3 5 7
πm 0 1 2 3 4
θm 3.7e-8 5.3e-4 1.5e-2 2.5e-1 9.5e-1

m 9 13
πm 5 6
θm 2.1e0 5.4e0

m 17 21
πm 7 8
θm 9.4e0 1.4e1

Table taken from [Higham].
Recall: πm = computational cost, θm = bound on 2−s‖A‖.

If θm increases of a factor 2 this saves us one matrix multiplication...
therefore m = 13 is the best choice.

Scaling and squaring algorithm

Input : matrix A. Output : X ≈ eA.
1 for m = [3, 5, 7, 9]

2 if ‖A‖1 ≤ θm

3 evaluate U and V and solve (−U + V)X = U + V
4 quit
5 end
6 end
7 A← A/2s with s minimal integer such that ‖A/2s‖1 ≤ θ13

8 A2 = A2, A4 = A2
2, A6 = A2A4

9 U = A[A6(b13A6 + b11A4 + b9A2) + b7A6 + b5A4 + b3A2 + b1I]
10 V = A6(b12A6 + b10A4 + b8A2) + b6A6 + b4A4 + b2A2 + b0I
11 solve (−U + V)Y = U + V
12 compute X = Y 2s

by repeated squaring.

Scaling and squaring algorithm

I Cost: (πm + log2 d‖A‖1/θm)eM+ D.

But there is more... we should also:
I check whether θk < νk (it is!);
I study the effect of rounding errors on the evaluation of pm(A) and

qm(A): errors turn out to be nicely bounded;
I estimate ‖qm(A)−1‖: it grows with m, but conditioning is very

good for m up to 13;
I perform error analysis for the squaring steps. Although much has

been done, this point is still unclear and, in principle, a potential
source of instability. However, the algorithm is known to be
forward stable if A is normal.

See [N. Higham, The Scaling and Squaring Method for the Matrix
Exponential Revisited, SIAM Rev. 51(4), 747 – 764, 2009] for a
detailed discussion.

Schur-Parlett algorithm

General purpose algorithm for computing f (A), based on the Schur
decomposition of A ∈ Cn×n:

A = QTQ∗,

with Q ∈ Cn×n unitary and T ∈ Cn×n upper triangular. The Schur
decomposition can be computed in a backward stable way via the QR
algorithm.
The idea is:
I given A, compute its Schur decomposition A = QTQ∗,
I form f (A) = Q f (T)Q∗.

We have shifted the problem to computing functions of triangular
matrices.

Schur-Parlett algorithm

How to compute f (T)? Explicit formulas exist:

Function of a triangular matrix

Let T = (tij)i,j=1,...,n and F = f (T) = (fij)i,j=1...n. Then:

fii = f (tii), i = 1, . . . ,n

fij =
∑

(s0,...,sk)∈Sij

ts0s1 ts1s2 . . . tsk−1sk f [λs0 , . . . , λsk],

where λi = tii and Si,j denotes the set of all strictly increasing
sequences of integers that start at i and end at j , whereas
f [λs0 , . . . , λsk] is the k -th order divided difference of f at λs0 , . . . , λsk .

But these formulas are computationally too expensive: O(2n) flops.

Schur-Parlett algorithm

Idea by Parlett:

I F = f (T) commutes with T (general property of matrix functions),
I diagonal entries of F are known (fii = f (tii)),
I therefore the equation TF = FT can be solved for off-diagonal

entries of F .
Indeed we have

j∑
k=i

tik fkj =

j∑
k=i

fik tkj ,

that is,

fij (tii − tjj) = tij (fii − fjj) +

j−1∑
k=i+1

(fik tkj − tik fkj).

If tii 6= tjj :

fij = tij
fii − fjj
tii − tjj

+

j−1∑
k=i+1

fik tkj − tik fkj

tii − tjj
, i < j.

[B. N. Parlett, A recurrence among the elements of functions of triangular matrices,
Linear Algebra Appl. 14:117–121, 1976]

Schur-Parlett algorithm

Input : triangular matrix T . Output : F = f (T).

1 fii = f (tii), i = 1 : n
2 for j = 2 : n
3 for i = j − 1 : −1 : 1

4 fi,j = tij
fii−fjj
tii−tjj

+
∑j−1

k=i+1 fik tkj−tik fkj

tii−tjj

5 end
6 end

Cost: 2n3/3 flops.

Main drawback: breaks down when tii = tjj for some i , j .

Schur-Parlett algorithm: block version

Idea: write the recurrence in block form.
I Suppose T has upper triangular block form T = (Tij).
I Then F = f (T) = (Fij) has the same block structure.
I For diagonal blocks we have Fii = f (Tii).
I For off-diagonal blocks (i.e., i < j), the block recurrence is

TiiFij − FijTjj = FiiTij − TijFjj +

j−1∑
k=i+1

(Fik Tkj − Tik Fkj).

This is a Sylvester equation in the unknown Fij . It is nonsingular
iff Tii and Tjj have no eigenvalues in common.

I Suitable reordering techniques should be applied beforehand.
Note that we still have to compute f (Tii).

Schur-Parlett algorithm: atomic blocks

Each atomic block Tii is assumed to be an upper triangular matrix
with clustered eigenvalues. Denote T = Tii ∈ Rm×m. Here is an idea
for computing f (T):
I Write T = σI + M, σ = trace(T)/m.

I Suppose f (σ + z) =
∑∞

k=0
f (k)(σ)

k! zk .

I Then f (T) =
∑∞

k=0
f (k)(σ)

k! Mk .
I After m − 1 terms, the powers of M should decay quickly, so a

suitable truncation of the series should be sufficiently accurate.
(All of this can be made more precise!)

I Cost O(m4) flops.
I Potential danger: cancellation.

Schur-Parlett algorithm: error analysis
Back to TF − FT = 0. Let F̂ be the computed solution:

T F̂ − F̂T = R, R = residual.

Let F̂ = F + ∆F . By subtraction:

T ∆F −∆F T = R.

Taking blocks:

Tii ∆Fij−∆FijTjj = Rij + ∆Fii Tij − Tij ∆Fjj +

j−1∑
k=i+1

(∆Fik Tkj − Tik ∆Fkj) =: Bij

from which we deduce

‖∆Fij‖F ≤ sep(Tii ,Tjj)
−1‖Bij‖F

where the separation of Tii and Tjj is

sep(Tii ,Tjj) = min
X 6=0

‖TiiX − XTjj‖F

‖X‖F
.

Schur-Parlett algorithm: error analysis

Some comments:
I The block Rij represents the errors introduced during the

computation of Fij . These can lead to an error ∆Fij of norm
proportional to sep(Tii ,Tjj)

−1‖Rij‖.
I The blocks ∆Fij in the rhs represent the errors introduced during

previous computations of diagonal or off-diagonal blocks in the
recurrence. These can be magnified by a factor sep(Tii ,Tjj)

−1.
I The separation of atomic blocks clearly plays a crucial role.

However, error growth is also possible if some Tii is large.
I Reordering applied prior to Schur-Parlett should maximize

separation between atomic blocks while keeping block sizes
reasonably small.

