Lecture 2:
 Computing functions of dense matrices

Paola Boito and Federico Poloni

Università di Pisa

Pisa - Hokkaido - Roma2 Summer School
Pisa, August 27 - September 8, 2018

Introduction

In this lecture we focus on the problem of computing functions of dense, small- or medium-sized matrices.

- Computations are performed in finite precision. Therefore:
- we can only expect to compute an approximation to $f(A)$,
- error and conditioning analyses are generally required.
- We do not expect A to have any special structure or sparsity pattern.
- The size of A is such that we can store and work on all of its entries.
- Main reference: N. Higham, Functions of Matrices. Theory and Computation. SIAM 2008 (will be denoted in the following as [Higham]).
- Software/programming language: we will mostly use MATLAB.

Conditioning

Condition numbers measure the sensitivity of matrix functions to perturbation in the data.

Well-known example: conditioning of matrix inversion. Take

$$
A=\left[\begin{array}{cc}
1+10^{-6} & 1 \\
1 & 1
\end{array}\right]
$$

Then $\left\|\operatorname{inv}(\mathrm{A})-A^{-1}\right\| \approx 10^{-5}$.

Conditioning of scalar functions

The relative condition number for a scalar function $f(x)$ is defined as

$$
\operatorname{cond}_{\mathrm{rel}}(f, x):=\lim _{\epsilon \rightarrow 0} \sup _{|\Delta x| \leq \epsilon|x|}\left|\frac{f(x+\Delta x)-f(x)}{\epsilon f(x)}\right|
$$

If $f(x)$ is twice continuously differentiable, this can be rewritten as

$$
\operatorname{cond}_{\mathrm{rel}}(f, x)=\left|\frac{x f^{\prime}(x)}{f(x)}\right|
$$

because

$$
\frac{f(x+\Delta x)-f(x)}{f(x)}=\left(\frac{x f^{\prime}(x)}{f(x)}\right) \frac{\Delta x}{x}+o(\Delta x)
$$

Conditioning of matrix functions

For a matrix function $f: \mathbb{C}^{n \times n} \longrightarrow \mathbb{C}^{n \times n}$ evaluated at X we define the relative condition number:

$$
\operatorname{cond}_{\mathrm{rel}}(f, X):=\lim _{\epsilon \rightarrow 0} \sup _{\|E\| \leq \epsilon\|X\|} \frac{\|f(X+E)-f(X)\|}{\epsilon\|f(X)\|}
$$

As a consequence we have a bound for small perturbations:

$$
\frac{\|f(X+E)-f(X)\|}{\|f(X)\|} \leq \operatorname{cond}_{\mathrm{rel}}(f, X) \frac{\|E\|}{\|X\|}+o(\|E\|) .
$$

The absolute condition number is

$$
\operatorname{cond}_{\text {abs }}(f, X):=\lim _{\epsilon \rightarrow 0} \sup _{\|E\| \leq \epsilon} \frac{\|f(X+E)-f(X)\|}{\epsilon}
$$

with the property

$$
\operatorname{cond}_{\mathrm{rel}}(f, X)=\operatorname{cond}_{\mathrm{abs}}(f, X) \frac{\|X\|}{\|f(X)\|}
$$

The Fréchet derivative

The Fréchet derivative of f at X is a linear mapping

$$
\begin{array}{r}
L_{f}(X): \mathbb{C}^{n \times n} \longrightarrow \mathbb{C}^{n \times n} \\
E \longrightarrow L_{f}(X, E)
\end{array}
$$

such that for all $E \in \mathbb{C}^{n \times n}$

$$
f(X+E)-f(X)-L_{f}(X, E)=o(\|E\|)
$$

Examples:

$$
\begin{gathered}
(X+E)^{2}-X^{2}=X E+E X+E^{2} \Rightarrow L_{X^{2}}(X, E)=X E+E X \\
(X+E)^{-1}-X^{-1}=-X^{-1} E X^{-1}+\mathcal{O}\left(E^{2}\right) \Rightarrow L_{X-1}(X, E)=-X^{-1} E X^{-1}
\end{gathered}
$$

The Fréchet derivative

More properties:

- If it exists, the Fréchet derivative is unique.
- If f is $2 n-1$ times continuously differentiable on $\mathcal{D} \subset \mathbb{C}$ and $X \in \mathbb{C}^{n \times n}$ has spectrum in \mathcal{D}, then $L_{f}(X, E)$ exists and is continuous in X and E.
- The norm of the Fréchet derivative is defined as

$$
\left\|L_{f}(X)\right\|:=\max _{Z \neq 0} \frac{\left\|L_{f}(X, Z)\right\|}{\|Z\|}
$$

Condition numbers

Theorem (Rice)

The absolute and relative condition numbers for $f(X)$ are given by

$$
\begin{aligned}
& \operatorname{cond}_{\mathrm{abs}}(f, X)=\left\|L_{f}(X)\right\|, \\
& \operatorname{cond}_{\mathrm{rel}}(f, X)=\frac{\left\|L_{f}(X)\right\|\|X\|}{\|f(X)\|}
\end{aligned}
$$

Proof:

$$
\begin{aligned}
\operatorname{cond}_{\mathrm{abs}}(f, X) & =\lim _{\epsilon \rightarrow 0} \sup _{\|E\| \leq \epsilon} \frac{\|f(X+E)-f(X)\|}{\epsilon} \\
& =\lim _{\epsilon \rightarrow 0} \sup _{\|E\| \leq \epsilon}\left\|\frac{L_{f}(X, E)+o(\|E\|)}{\epsilon}\right\| \\
& =\lim _{\epsilon \rightarrow 0} \sup _{\|E\| \leq \epsilon}\left\|L_{f}(X, E / \epsilon)+o(\|E\|) / \epsilon\right\| \\
& =\sup _{\|Z\| \leq 1}\left\|L_{f}(X, Z)\right\|=\left\|L_{f}(X)\right\|
\end{aligned}
$$

Conditioning of the matrix exponential

As an example, consider $f(A)=e^{A}$. The Fréchet derivative is

$$
L_{\exp }(A, E)=\int_{0}^{1} e^{A(1-s)} E e^{A s} d s
$$

from which we deduce

$$
\|A\| \leq \operatorname{cond}_{\text {rel }}(\exp , A) \leq \frac{e^{\|A\|}\|A\|}{\left\|e^{A}\right\|}
$$

Proof:

- \|Lexp $(A, E)\|\leq\| E\left\|\int_{0}^{1} e^{\|A\|(1-s)} e^{\|A\| s} d s=\right\| E\left\|\int_{0}^{1} e^{\|A\|} d s=\right\| E \| e^{\|A\|}$
- $\left\|L_{\exp }(A)\right\| \geq\left\|L_{\exp }(A, I)\right\|=\left\|\int_{0}^{1} e^{A} d s\right\|=\left\|e^{A}\right\|$.

Normal matrices have minimal condition number in 2-norm (Van Loan).

Estimating the Fréchet derivative

There are several ways to compute or estimate the Fréchet derivative of a matrix function - and therefore its condition number.

One useful property is:

Theorem (Mathias)

Let f be $2 n-1$ times continuously differentiable on $\mathcal{D} \subset \mathbb{C}$. For $A \in \mathbb{C}^{n \times n}$ with spectrum contained in \mathcal{D} we have

$$
f\left(\left[\begin{array}{cc}
A & E \\
0 & A
\end{array}\right]\right)=\left[\begin{array}{cc}
f(A) & L_{f}(A, E) \\
0 & f(A)
\end{array}\right] .
$$

Estimating the Fréchet derivative

Since L_{f} is a linear operator, there exists a matrix $K_{f}(A) \in \mathbb{C}^{n^{2} \times n^{2}}$, known as Kronecker form of the Fréchet derivative, such that

$$
\operatorname{vec}\left(L_{f}(A, E)\right)=K_{f}(A) \operatorname{vec}(E)
$$

Note that if (λ, V) is an eigenpair of $L_{f}(A)$, then $(\lambda, \operatorname{vec}(V))$ is an eigenpair of $K_{f}(A)$.

Theorem

The eigenvalues of $L_{f}(A)$ are

$$
f\left[\lambda_{i}, \lambda_{j}\right], \quad i, j=1, \ldots n,
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A.
Here square brackets denote divided differences, i.e.,

$$
f[\lambda, \mu]= \begin{cases}\frac{f(\lambda)-f(\mu)}{\lambda-\mu} & \text { if } \lambda \neq \mu, \\ f^{\prime}(\lambda) & \text { if } \lambda=\mu .\end{cases}
$$

Estimating the Fréchet derivative

Let λ be an eigenvalue of $L_{f}(A)$; then for all matrix norms it holds

$$
\left\|L_{f}(A)\right\| \geq \lambda
$$

and therefore we have

Theorem

For any norm,

$$
\operatorname{cond}_{\mathrm{abs}}(f, A) \geq \max _{\lambda, \mu \in \Lambda(A)}|f[\lambda, \mu]| .
$$

Equality holds for normal A in the Frobenius norm.

Estimating the Fréchet derivative

We can compute the condition number in Frobenius norm using the Kronecker form of L_{f} :

$$
\begin{aligned}
\left\|L_{f}(A)\right\|_{F} & =\max _{E \neq 0} \frac{\left\|L_{f}(A, E)\right\|_{F}}{\|E\|_{F}}=\max _{E \neq 0} \frac{\left\|\operatorname{vec}\left(L_{f}(A, E)\right)\right\|_{2}}{\|\operatorname{vec}(E)\|_{2}} \\
& =\max _{E \neq 0}^{\left\|K_{f}(A) \operatorname{vec}(E)\right\|_{2}} \frac{\|\operatorname{vec}(E)\|_{2}}{\left\|K_{f}(A)\right\|_{2} .}
\end{aligned}
$$

Since

$$
\left\|K_{f}(A)\right\|_{2}=\left\|K_{f}(A)^{*} K_{f}(A)\right\|_{2}^{1 / 2}=\lambda_{\max }\left(K_{f}(A)^{*} K_{f}(A)\right)^{1 / 2}
$$

we can also estimate the condition number of $f(A)$ using, for instance, the power method.

How to compute $f(A)$?

Many techniques are available. Some of them work for general functions and matrices. Others are well-suited to treat certain functions and/or matrices with special properties.

Some general techniques are obtained directly from the definitions of $f(A)$. For instance, suppose that A is diagonalisable. Then

1. compute the factorization $A=M^{-1} \wedge M$,
2. compute $f(A)=M^{-1} f(\Lambda) M$.

Works well numerically for A symmetric or Hermitian. See MATLAB function
$\mathrm{F}=\mathrm{funm}(\mathrm{A}, \mathrm{f})$.

Matrix powers

- A sequence of powers $A^{2}, A^{3}, A^{4} \ldots$ is computed in the obvious way (repeated multiplication by A).
- If we only need A^{m}, repeated squaring is more efficient.

Let $m=\sum_{i=0}^{t} \beta_{i} 2^{i}$ with $\beta_{t} \neq 0$ and do the following:
$1 P=A$
$2 i=0$
3 while $\beta_{i}=0$
$4 \quad P=P^{2}$
$5 \quad i=i+1$
6 end
$7 X=P$
8 for $j=i+1: t$
$9 \quad P=P^{2}$
10 if $\beta_{j}=1$
$11 \quad X=X P$
12 end
13 end
Cost bounded by $2\left\lfloor\log _{2} m\right\rfloor \mathcal{M}$ flops (\mathcal{M} cost of matrix multiplication).

Polynomials

Several competing methods are available to compute

$$
p_{m}(A)=\sum_{k=0}^{m} b_{k} A^{k}, \quad A \in \mathbb{C}^{n \times n}
$$

- Horner's method (nested multiplication); not suitable when m is not known from the start (e.g., truncated series).
- Explicit powers (it isn't more expensive than Horner in the matrix case).
- Factored form $p_{m}(\boldsymbol{A})=b_{m}\left(A-\alpha_{1} I_{n}\right) \ldots\left(A-\alpha_{m} I_{n}\right)$.
- Paterson and Stockmeyer's method, e.g.,

$$
p_{6}(A)=b_{6} I_{n}\left(A^{3}\right)^{2}+\left(b_{5} A^{2}+b_{4} A+b_{3} I_{n}\right) A^{3}+\left(b_{2} A^{2}+b_{1}^{A}+b_{0} I_{n}\right)
$$

Computational cost is $(m-1) \mathcal{M}$ flops for the first three methods.

Taylor series

One strategy to approximate $f(A)$ consists in applying a truncated Taylor expansion of $f(x)$ to A. But first we need to make sure that the matrix series converges.

Theorem

Suppose that $f(x)$ has a Taylor series expansion

$$
f(x)=\sum_{k=0}^{\infty} a_{k}(x-\alpha)^{k}, \quad a_{k}=\frac{f^{(k)}(\alpha)}{k!}
$$

with radius of convergence r. If $A \in \mathbb{C}^{n \times n}$ then $f(A)$ is defined and given by

$$
f(A)=\sum_{k=0}^{\infty} a_{k}(A-\alpha l)^{k}
$$

iff each (distinct) eigenvalue λ_{i} of A satisfies:
(i) $\left|\lambda_{i}-\alpha\right|<r$, or
(ii) $\left|\lambda_{i}-\alpha\right|=r$ and the series for $f^{\left(n_{i}-1\right)}(\lambda)$ is convergent at each λ_{i}.

Taylor series

Next question: where should we truncate the series?
An error bound is needed: see e.g., [Golub \& Van Loan, Matrix Computations] or the following result [Mathias, Approximation of matrix-valued functions, SIMAX 1993]:

$$
\left\|f(A)-\sum_{k=0}^{s} a_{k}(A-\alpha I)^{k}\right\| \leq \frac{1}{s!} \max _{0 \leq t \leq 1}\left\|(A-\alpha I)^{s} f^{(s)}(\alpha I+t(A-\alpha I))\right\| .
$$

An example

Consider the matrix

$$
A=\left[\begin{array}{cc}
0 & \alpha \\
-\alpha & 0
\end{array}\right] .
$$

What is e^{A} ?

An example

Consider the matrix

$$
A=\left[\begin{array}{cc}
0 & \alpha \\
-\alpha & 0
\end{array}\right] .
$$

What is e^{A} ? It turns out that

$$
e^{A}=\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right] .
$$

An example

Consider the matrix

$$
A=\left[\begin{array}{cc}
0 & \alpha \\
-\alpha & 0
\end{array}\right]
$$

What is e^{A} ? It turns out that

$$
e^{A}=\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right]
$$

Now, take $\alpha=25$ and compute e^{A} numerically via truncated Taylor expansion. What happens?

Rational approximation

- General idea: if $r(x)=p(x) / q(x) \approx f(x)$, take $f(A) \approx r(A)$.
- What about approximation errors? Suppose A diagonalisable. Then:

$$
f(A) \approx r(A)=M^{-1} r(\Lambda) M
$$

A good approximation of f on the spectrum of A is crucial.

- But this is not enough! Let $e(x):=f(x)-r(x)$; we have

$$
e(A)=M^{-1} e(\Lambda) M
$$

and therefore

$$
\|e(A)\| \leq \kappa(M)\|e(\Lambda)\|
$$

If M is ill-conditioned, the approximation error can be large.

Rational approximation

Commonly used classes of rational approximations include

- Best L_{∞} (minimax, Chebyshev) approximations:

$$
\|r(x)-f(x)\|_{\infty}=\min _{s \in \mathcal{R}_{k, m}}\|s(x)-f(x)\|_{\infty}
$$

where the norm is $\|g(x)\|_{\infty}=\max _{x \in[a, b]}|g(x)|$.
Usually employed for Hermitian matrices (see previous bound).

- Padé approximations:
$r_{k, m}(x)=p_{k, m}(x) / q_{k, m}(x)$ is a $[k / m]$ Padé approximant of f if

$$
r_{k, m} \in \mathcal{R}_{k, m} \quad \text { with } \quad q_{k, m}(0)=1
$$

and

$$
f(x)-r_{k, m}(x)=\mathcal{O}\left(x^{k+m+1}\right)
$$

Padé approximation

Some properties:

- if the $[k / m]$ Padé approximant of f exists, it is unique;
- potential for lower computational cost w.r.t. polynomial/Taylor approximation;
- x should be close to 0 for good approximation,
- well-developed theory, Padé approximants known for several important functions (e.g., exponential),
- code available in Maple, Mathematica, MATLAB (Extended Symbolic Math Toolbox)...

The matrix exponential

- The most studied matrix function!
- Lots of applications, starting from differential equations (we'll see a different example in the fourth lecture).
- Many methods for its computation. Crucial reference:
- C. B. Moler and C. F. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, SIAM Rev. 20(4):801-836, 1978.
- C. B. Moler and C. F. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev. 45(1):3-49, 2003.
- Three candidates to "best method":
- methods for ODEs,
- scaling and squaring (implemented in MATLAB function expm),
- use of Schur form.

Scaling and squaring

This approach to the computation of e^{A} relies on the property

$$
e^{A}=\left(e^{A / \sigma}\right)^{\sigma}, \quad \text { for } \quad \sigma \in \mathbb{C},
$$

and on the fact that e^{A} is well approximated via Taylor or Padé for small $\|A\|$.
The main idea goes as follows:

1. choose $\sigma=2^{s}$ such that $\|A / \sigma\| \approx 1$,
2. approximate $e^{A / \sigma} \approx r(A / \sigma)$, where r is a Taylor or Padé approximant to the exponential,
3. take $e^{A} \approx r(A / \sigma)^{\sigma}$ via repeated squarings.

Scaling and squaring

[$k, m]$-Padé approximants for e^{x} are known explicitly:

$$
r_{k m}(x)=p_{k m}(x) / q_{k m}(x) \text { with }
$$

$p_{k m}(x)=\sum_{j=0}^{k} \frac{(k+m-j)!k!}{(k+m)!(k-j)!} \frac{x^{j}}{j!}, \quad q_{k m}(x)=\sum_{j=0}^{m} \frac{(k+m-j)!m!}{(k+m)!(m-j)!} \frac{(-x)^{j}}{j!}$
(Note that $q_{m}(x)=p_{m}(-x)$.)
How should we choose k and m (and the scaling parameter s)?

- Better take $k=m$ (diagonal approximant), because $r_{k m}$ with $k \neq m$ is less accurate than $r_{\max (k, m), \max (k, m)}$, but evaluation at a matrix argument has the same cost;
- m and s should be such that the computation of e^{A} has backward error bounded by u and minimal cost.

Scaling and squaring

A backward error bound is given as follows.

Theorem

Let $r(x)$ be a rational approximation of e^{x} such that

$$
e^{-2^{-s} A} r\left(2^{-s} A\right)=I+G
$$

with $\|G\|<1$ in any consistent matrix norm. Then

$$
r\left(2^{-s} A\right)^{2^{s}}=e^{A+E}
$$

where E commutes with A and

$$
\frac{\|E\|}{\|A\|} \leq \frac{-\log (1-\|G\|)}{\left\|2^{-s} A\right\|}
$$

Scaling and squaring

Now, let us take $r=r_{m}$ the m-th diagonal Padé approximant. By definition of Padé approximant, we have $e^{x}-r_{m}(x)=\mathcal{O}\left(x^{2 m+1}\right)$. Therefore we can write the power series expansion

$$
\rho(x):=e^{-x} r_{m}(x)-1=\sum_{j=2 m+1}^{\infty} c_{i} x^{i}
$$

which converges absolutely for $|x|<\nu_{m}:=\min \left\{|t|: q_{m}(t)=0\right\}$. Hence

$$
\|G\|=\left\|\rho\left(2^{-s} A\right)\right\| \leq \sum_{j=2 m+1}^{\infty}\left|c_{i}\right| \theta^{i}=: f(\theta),
$$

where $\theta=\left\|2^{-s} A\right\|$. Using the previous theorem we obtain the bound

$$
\frac{\|E\|}{\|A\|} \leq \frac{-\log (1-f(\theta))}{\theta} .
$$

For each m we compute $\theta_{m}:=\max \left\{\theta: \frac{\|E\|}{\|A\|}<\mathbf{u}\right\}$ and determine s.

Scaling and squaring

What is the cost of evaluating $r_{m}(A)$ for different values of m ? (We will measure computational cost as the required number of matrix multiplications π_{m}.)
We need to:

1. evaluate $p_{m}(A)$ and $q_{m}(A)$,
2. solve the matrix equation $q_{m}(A) r_{m}(A)=p_{m}(A)$.

Since $q_{m}(x)=p_{m}(-x)$, an efficient approach to item 1 relies on explicit computation of even powers of A. For instance, if $m=2 \ell$:

$$
\begin{gathered}
p_{2 \ell}(A)=b_{2 \ell} A^{2 \ell}+\cdots+b_{2} A^{2}+b_{0} I+A\left(b_{2 \ell-1} A^{2 \ell-2}+\cdots+b_{3} A^{2}+b_{1} I\right)=: U+V . \\
q_{2 \ell}(A)=U-V .
\end{gathered}
$$

This scheme can be improved for $m \geq 12$.

Scaling and squaring

m	1	2	3	4	5	6	7
π_{m}	0	1	2	3	3	4	4
θ_{m}	$3.7 \mathrm{e}-8$	$5.3 \mathrm{e}-4$	$1.5 \mathrm{e}-2$	$8.5 \mathrm{e}-2$	$2.5 \mathrm{e}-1$	$5.4 \mathrm{e}-1$	$9.5 \mathrm{e}-1$
m	8	9	10	11	12	13	14
π_{m}	5	5	6	6	6	6	7
θ_{m}	1.5 e 0	2.1 e 0	2.8 e 0	3.6 e 0	4.5 e 0	5.4 e 0	6.3 e 0
m	15	16	17	18	19	20	21
π_{m}	7	7	7	8	8	8	8
θ_{m}	7.3 e 0	8.4 e 0	9.4 e 0	1.1 e 1	1.2 e 1	1.3 e 1	1.4 e 1

Table taken from [Higham].
Recall: $\pi_{m}=$ computational cost, $\theta_{m}=$ bound on $2^{-s}\|\boldsymbol{A}\|$.
We can discard some cases by inspection of π_{m}.

Scaling and squaring

m	1	2	3	5	7
π_{m}	0	1	2	3	4
θ_{m}	$3.7 \mathrm{e}-8$	$5.3 \mathrm{e}-4$	$1.5 \mathrm{e}-2$	$2.5 \mathrm{e}-1$	$9.5 \mathrm{e}-1$
m	9				
π_{m}	5	13			
θ_{m}	2.1 e 0	6			
m		17	5.4 e 0		
π_{m}	7	21			
θ_{m}		9.4 e 0	1.4 e 1		

Table taken from [Higham].
Recall: $\pi_{m}=$ computational cost, $\theta_{m}=$ bound on $2^{-s}\|A\|$.
If θ_{m} increases of a factor 2 this saves us one matrix multiplication... therefore $m=13$ is the best choice.

Scaling and squaring algorithm

Input: matrix A. Output: $X \approx e^{A}$.
1 for $m=[3,5,7,9]$
2 if $\|A\|_{1} \leq \theta_{m}$
3 evaluate U and V and solve $(-U+V) X=U+V$
4 quit
5 end
6 end
$7 A \leftarrow A / 2^{s}$ with s minimal integer such that $\left\|A / 2^{s}\right\|_{1} \leq \theta_{13}$
$8 A_{2}=A^{2}, A_{4}=A_{2}^{2}, A_{6}=A_{2} A_{4}$
$\left.9 U=A\left[A_{6}\left(b_{13} A_{6}+b_{11} A_{4}+b_{9} A_{2}\right)+b_{7} A_{6}+b_{5} A_{4}+b_{3} A_{2}+b_{1}\right]\right]$
$10 V=A_{6}\left(b_{12} A_{6}+b_{10} A_{4}+b_{8} A_{2}\right)+b_{6} A_{6}+b_{4} A_{4}+b_{2} A_{2}+b_{0} I$
11 solve $(-U+V) Y=U+V$
12 compute $X=Y^{2^{s}}$ by repeated squaring.

Scaling and squaring algorithm

- Cost: $\left(\pi_{m}+\log _{2}\left\lceil\|A\|_{1} / \theta_{m}\right)\right\rceil \mathcal{M}+D$.

But there is more... we should also:

- check whether $\theta_{k}<\nu_{k}$ (it is!);
- study the effect of rounding errors on the evaluation of $p_{m}(A)$ and $q_{m}(A)$: errors turn out to be nicely bounded;
- estimate $\left\|q_{m}(A)^{-1}\right\|$: it grows with m, but conditioning is very good for m up to 13;
- perform error analysis for the squaring steps. Although much has been done, this point is still unclear and, in principle, a potential source of instability. However, the algorithm is known to be forward stable if A is normal.
See [N. Higham, The Scaling and Squaring Method for the Matrix Exponential Revisited, SIAM Rev. 51(4), 747 - 764, 2009] for a detailed discussion.

Schur-Parlett algorithm

General purpose algorithm for computing $f(A)$, based on the Schur decomposition of $A \in \mathbb{C}^{n \times n}$:

$$
A=Q T Q^{*}
$$

with $Q \in \mathbb{C}^{n \times n}$ unitary and $T \in \mathbb{C}^{n \times n}$ upper triangular. The Schur decomposition can be computed in a backward stable way via the QR algorithm.
The idea is:

- given A, compute its Schur decomposition $A=Q T Q^{*}$,
- form $f(A)=Q f(T) Q^{*}$.

We have shifted the problem to computing functions of triangular matrices.

Schur-Parlett algorithm

How to compute $f(T)$? Explicit formulas exist:

Function of a triangular matrix

$$
\text { Let } T=\left(t_{i j}\right)_{i, j=1, \ldots, n} \text { and } F=f(T)=\left(f_{i j}\right)_{i, j=1 \ldots n .} \text {. Then: }
$$

$$
\begin{gathered}
f_{i j}=f\left(t_{i i}\right), \quad i=1, \ldots, n \\
f_{i j}=\sum_{\left(s_{0}, \ldots, s_{k}\right) \in \mathcal{S}_{i j}} t_{s_{0} s_{1}} t_{s_{1} s_{2}} \ldots t_{s_{k-1} s_{k}} f\left[\lambda_{s_{0}}, \ldots, \lambda_{s_{k}}\right],
\end{gathered}
$$

where $\lambda_{i}=t_{i j}$ and $S_{i, j}$ denotes the set of all strictly increasing sequences of integers that start at i and end at j, whereas $f\left[\lambda_{s_{0}}, \ldots, \lambda_{s_{k}}\right]$ is the k-th order divided difference of f at $\lambda_{s_{0}}, \ldots, \lambda_{s_{k}}$.

But these formulas are computationally too expensive: $\mathcal{O}\left(2^{n}\right)$ flops.

Schur-Parlett algorithm

Idea by Parlett:

- $F=f(T)$ commutes with T (general property of matrix functions),
- diagonal entries of F are known $\left(f_{i i}=f\left(t_{i j}\right)\right.$),
- therefore the equation $T F=F T$ can be solved for off-diagonal entries of F.

Indeed we have

$$
\sum_{k=i}^{j} t_{i k} f_{k j}=\sum_{k=i}^{j} f_{i k} t_{k j},
$$

that is,

$$
f_{i j}\left(t_{i i}-t_{j j}\right)=t_{i j}\left(f_{i j}-f_{j j}\right)+\sum_{k=i+1}^{j-1}\left(f_{i k} t_{k j}-t_{i k} f_{k j}\right)
$$

If $t_{i i} \neq t_{j j}$:

$$
f_{i j}=t_{i j} \frac{f_{i j}-f_{j j}}{t_{i j}-t_{j j}}+\sum_{k=i+1}^{j-1} \frac{f_{i k} t_{k j}-t_{i k} f_{k j}}{t_{i j}-t_{j j}}, \quad i<j
$$

[B. N. Parlett, A recurrence among the elements of functions of triangular matrices,
Linear Algebra Appl. 14:117-121, 1976]

Schur-Parlett algorithm

Input: triangular matrix T. Output: $F=f(T)$.
$1 f_{i i}=f\left(t_{i i}\right), \quad i=1: n$
2 for $j=2: n$
3 for $i=j-1:-1: 1$
$4 \quad f_{i, j}=t_{i j} \frac{t_{i j}-t_{j i}}{t_{i j}-t_{j j}}+\frac{\sum_{k=i+1}^{j-1} f_{i k} t_{j i}-t_{i k} t_{k j}}{t_{i j}-t_{j i}}$
5 end
6 end
Cost: $2 n^{3} / 3$ flops.
Main drawback: breaks down when $t_{i j}=t_{j j}$ for some i, j.

Schur-Parlett algorithm: block version

Idea: write the recurrence in block form.

- Suppose T has upper triangular block form $T=\left(T_{i j}\right)$.
- Then $F=f(T)=\left(F_{i j}\right)$ has the same block structure.
- For diagonal blocks we have $F_{i i}=f\left(T_{i i}\right)$.
- For off-diagonal blocks (i.e., $i<j$), the block recurrence is

$$
T_{i j} F_{i j}-F_{i j} T_{i j}=F_{i i} T_{i j}-T_{i j} F_{j j}+\sum_{k=i+1}^{j-1}\left(F_{i k} T_{k j}-T_{i k} F_{k j}\right)
$$

This is a Sylvester equation in the unknown $F_{i j}$. It is nonsingular iff $T_{i i}$ and $T_{j j}$ have no eigenvalues in common.

- Suitable reordering techniques should be applied beforehand.

Note that we still have to compute $f\left(T_{i i}\right)$.

Schur-Parlett algorithm: atomic blocks

Each atomic block $T_{i j}$ is assumed to be an upper triangular matrix with clustered eigenvalues. Denote $T=T_{i i} \in \mathbb{R}^{m \times m}$. Here is an idea for computing $f(T)$:

- Write $T=\sigma I+M, \quad \sigma=\operatorname{trace}(T) / m$.
- Suppose $f(\sigma+z)=\sum_{k=0}^{\infty} \frac{f^{(k)}(\sigma)}{k!} z^{k}$.
- Then $f(T)=\sum_{k=0}^{\infty} \frac{f^{(k)}(\sigma)}{k!} M^{k}$.
- After m - 1 terms, the powers of M should decay quickly, so a suitable truncation of the series should be sufficiently accurate. (All of this can be made more precise!)
- Cost $\mathcal{O}\left(m^{4}\right)$ flops.
- Potential danger: cancellation.

Schur-Parlett algorithm: error analysis

Back to $T F-F T=0$. Let \hat{F} be the computed solution:

$$
T \hat{F}-\hat{F} T=R, \quad R=\text { residual. }
$$

Let $\hat{F}=F+\Delta F$. By subtraction:

$$
T \Delta F-\Delta F T=R .
$$

Taking blocks:

$$
T_{i i} \Delta F_{i j}-\Delta F_{i j} T_{i j}=R_{i j}+\Delta F_{i j} T_{i j}-T_{i j} \Delta F_{j j}+\sum_{k=i+1}^{j-1}\left(\Delta F_{i k} T_{k j}-T_{i k} \Delta F_{k j}\right)=: B_{i j}
$$

from which we deduce

$$
\left\|\Delta F_{i j}\right\|_{F} \leq \operatorname{sep}\left(T_{i j}, T_{i j}\right)^{-1}\left\|B_{i j}\right\|_{F}
$$

where the separation of $T_{i j}$ and $T_{j j}$ is

$$
\operatorname{sep}\left(T_{i i}, T_{j j}\right)=\min _{X \neq 0} \frac{\left\|T_{i j} X-X T_{j j}\right\|_{F}}{\|X\|_{F}}
$$

Schur-Parlett algorithm: error analysis

Some comments:

- The block $R_{i j}$ represents the errors introduced during the computation of $F_{i j}$. These can lead to an error $\Delta F_{i j}$ of norm proportional to $\operatorname{sep}\left(T_{i i}, T_{j j}\right)^{-1}\left\|R_{i j}\right\|$.
- The blocks $\Delta F_{i j}$ in the rhs represent the errors introduced during previous computations of diagonal or off-diagonal blocks in the recurrence. These can be magnified by a factor $\operatorname{sep}\left(T_{i i}, T_{j j}\right)^{-1}$.
- The separation of atomic blocks clearly plays a crucial role. However, error growth is also possible if some $T_{i i}$ is large.
- Reordering applied prior to Schur-Parlett should maximize separation between atomic blocks while keeping block sizes reasonably small.

