
Matrix functions and network analysis

Paola Boito, Federico Poloni

Pisa–Hokkaido–Roma2 Summer School, August–September
2018

Linear boundary-value problems

Linear BVPs[
x
y

]
: [0,∞]→ Rn+m;

d
dt

[
x(t)
y(t)

]
=
[

A B
C D

] [
x(t)
y(t)

]
,

x(0) = x0 ∈ Rn,

[
x(t)
y(t)

]
bounded for t →∞.

Linear, constant-coefficient ODE + ‘partial’ boundary conditions
at 0 and ∞.

Application: fluid queues
Ingredients:
I (n + m)-state continuous-time Markov chain with rate matrix

Q ∈ R(n+m)×(n+m).
I.e., state transitions i → j may ‘trigger’ independently;
P[i → j hasn’t triggered yet after time t] = exp(−qijt).

I fluid that flows in/out of an infinite buffer at rate ri in each
state i .

0 10 20 30 40 50 60
0
2
4
6
8

time

flu
id

lev
el

Application: fluid queues [Rogers,’94]

Stationary distribution:
ui(x) = P[being in state i with fluid level ≤ x] satisfies

diag(r) d
dx u(x) = QT u(x),

ui(0) = 0 if ri > 0,
u(x) bounded for x →∞ (must have sum 1).

(Q here has diagonal elements chosen so that Qe = 0, where e is
the vector of all ones.)

Application: optimal control
Ingredients:
I Dynamical system d

dt x(t) = Ax(t) + Mu(t) with x(t) ∈ Rn

and input u(t) ∈ Rn.
I Problem: choose u(t) to ‘reduce energy cost x(t)T Qx(t)’,

but ‘keeping u(t) small’:

min
∫ ∞

0
(x(t)T Qx(t) + u(t)T u(t))dt.

Optimal solution x(t) and its Lagrange multiplier µ(t) satisfy

d
dt

[
x(t)
µ(t)

]
=
[

A −MMT

−Q −AT

] [
x(t)
µ(t)

]
,

x(0) given,
x(t), µ(t) bounded for t →∞.

Analytic solution

[
x(t)
y(t)

]
= exp

(
t
[

A B
C D

])[
x0
y0

]

= exp

tS

J1
. . .

Jk

S−1

[x0
y0

]

= S

exp(tJ1)
. . .

exp(tJk)

S−1
[
x0
y0

]

Which of these are bounded at ∞?
All entries of S−1

[
x0
y0

]
which correspond to Jordan blocks with

positive eigenvalues must be 0.

Analytic solution

All entries of S−1
[
x0
y0

]
which correspond to Jordan blocks with

eigenvalues in the right half-plane

RHP = {λ ∈ C : Re(λ) > 0}

must be 0.

I.e.,
[
x0
y0

]
∈ U , where

U = span(Jordan chains with eigenvalues in LHP).

U is known as stable invariant subspace.

Analytic solution
Let U be a basis matrix for U :[

x0
y0

]
=
[
U1
U2

]
v0 for some vector v0.

Recall: x0 given by initial conditions, y0 not.

The vector v0, and hence the solution, is uniquely determined iff
U1 is square invertible.

Consequence 1 For the problem to be well-posed,
[

A B
C D

]
must

have the exactly n eigenvalues in the LHP.
Often, this holds automatically in our applications because of
matrix structures.
Consequence 2 To solve the problem, it is sufficient to compute U,
a basis matrix for the stable invariant subspace.

Invariant subspaces
U known as invariant subspace because it is invariant:[

A B
C D

]
U ⊆ U .

If U is a basis matrix for U , then[
A B
C D

]
U = UK

for a certain matrix K , whose eigenvalues are the stable

eigenvalues of
[

A B
C D

]
.

Stable solutions of the differential equation

[
x(t)
y(t)

]
= U exp(Kt)v0,

v0 ∈ Rn chosen to satisfy initial condition.

Algorithms for the stable invariant subspace
Various families of algorithms, based on
I Manipulations of the Schur form, or
I Matrix functions such as sign(X), or
I Reformulation as a matrix equation.

The sign iteration [Higham, chapter 5]

Lemma
Suppose that x0 ∈ C is not on the imaginary axis. Then, the
iteration

xk+1 = 1
2(xk + x−1

k)

converges to 1 if x ∈ RHP, and −1 if x ∈ LHP.

Proof Define yk := xk+1
xk−1 . Then,

yk+1 = xk+1 + 1
xk+1 − 1 = xk + x−1

k + 2
xk + x−1

k − 2
= (xk + 1)2

(xk − 1)2 = y2
k .

x0 ∈ LHP =⇒ |x0 − 1| > |x0 + 1| =⇒ |y0| < 1 =⇒ lim yk = 0
=⇒ lim xk = −1.

x0 ∈ RHP =⇒ |y0| > 1 =⇒ lim yk =∞ =⇒ lim xk = +1.

The matrix sign iteration

Lemma
Whenever X0 has no purely imaginary eigenvalues, the matrix
iteration

Xk+1 = 1
2(Xk + X−1

k)

converges to sign(X0).

Not obvious — we need xk to be ‘smooth enough’ (as a rational
function in x0), because matrix functions involve derivatives as well.
(Alternative: make an analogous argument for matrices, setting
Yk = (Xk − S)(Xk + S)−1, S = sign(X0)).

Sign iteration — the algorithm

1. Run the sign iteration on X0 =
[

A B
C D

]
until convergence,

obtaining S.
2. Compute U = ker (S + I).

Caveat:
I It’s best to rescale X0 such that ‖X0‖ ≈ 1, as the iteration is

faster there. Otherwise, “it’s just an expensive way to divide
by 2” [Higham].

I Need some care in the Markov chain application, because X0
there is always singular. Solution: either shift the eigenvalue
zero away, or use a variant (see following).

Structure preservation
The sign iteration (and variants) work well on ‘hard’ problems
because they preserve structures.

Example In the control theory application,

X0 =
[

A B
C D

]
is such that JX0 is symmetric, where J =

[
0 I
−I 0

]
.

(and actually that is the reason why it has the right number of
stable eigenvalues).

Lemma
If JX0 is symmetric, then in the sign iteration JXk is symmetric for
each k ≥ 0.

Proof follows from J−1 = JT = −J .

Another view on the sign iteration

1. Compute Y0 = (1 + X0)(1− X0)−1

2. Square a sufficiently large number k of times:
Y1 = Y 2

0 , Y2 = Y 2
1 , . . . , Yk = Y 2

k−1

It is sort of a scaling and squaring algorithm to compute
exp(2kX0).

lim
k→∞

exp(2kx0) =
{
∞ x0 ∈ RHP,
0 x0 ∈ LHP,

Yk has the same eigenvectors of X0; the eigenvalues of X0 in the
RHP are mapped to very large eigenvalues, and those in the LHP
to very small eigenvalues.

We cannot implement the iteration working with the Yi for reasons
of (numerical) stability: all these very large/small numbers are not
a good idea.

Structured doubling algorithm
[Chu-Fan-Lin ’05], [Bini-Iannazzo-Meini, Ch. 5]

Idea
Work with ‘LU-like’ factorizations

Yk =
[

I Gk
0 Fk

]−1 [
Ek 0
Hk I

]
.

Can we compute the factorization of Yk+1 from that of Yk? Yes!

Ek+1 = Ek(I − GkHk)−1Ek ,

Fk+1 = Fk(I − HkGk)−1Fk ,

Gk+1 = Gk + Ek(I − GkHk)−1GkFk ,

Hk+1 = Hk + Fk(I − HkGk)−1HkEk .

Convergence
It’s a sort of orthogonal iteration (generalized power method):

Y−2k

0

[
0
I

]
= Y−1

k

[
I
0

]
=
[

I
−Hk

]
E−1

k ,

so Im
[

I
−Hk

]
E−1

k “converges” to the invariant subspace Im
[
U1
U2

]
,

i.e., −Hk → U2U−1
1 .

Analogously,
[
−Gk

I

]
converges to a basis of the anti-stable

invariant subspace (eigenvalues in RHP).

Structure preservation
Again, this algorithm is great at preserving structures.

Lemma
If X0 is scaled suitably, then all the required inverses exist, at least
one among Ek and Fk tends to zero, and
I In the control-theory problem, E = F T , G = GT , H = HT ;

moreover 0 � G0 � G1 � . . . and 0 � H0 � H1 � . . .
(positive definite ordering).

I In the queuing theory problem, E ,F ≥ 0; moreover,
0 ≥ G0 ≥ G1 ≥ . . . and 0 ≥ H0 ≥ H1 ≥ . . . (componentwise
ordering).

Proof based on algebraic manipulations; we won’t see it in full.

Reformulation as matrix equation
Another class of algorithms: via reformulation as a matrix
equation.

Recall: U =
[
U1
U2

]
basis for the invariant subspace, and we are

assuming that U1 ∈ Rn×n is square invertible.

Hence we can change basis to
[
U1
U2

]
U−1

1 =
[

I
U2U−1

1

]
.

Set X = U2U−1
1 ∈ Rm×n. Then, U stable invariant subspace ⇐⇒[

A B
C D

] [
I
X

]
=
[

I
X

]
K

for some K with eigenvalues in the LHP.

Algebraic Riccati equation
[Bini-Iannazzo-Meini book], [CH Guo ’01][

A B
C D

] [
I
X

]
=
[

I
X

]
K

implies A + BX = K , and

C + DX − XA− XBX = 0. (*)

(21) is known as algebraic Riccati equation.

Meta-theorem
In our two applications, many ‘natural’ matrix iterations converge
monotonically when started from X0 = 0.

(monotonically = in the positive definite ordering, or in the
componentwise ordering.)

Basic iteration
We can set up a fixed-point iteration to solve the ARE, e.g.,

C + DXk+1 − Xk+1A− XkBXk = 0.

Xk+1 solves the Sylvester equation

DXk+1 − Xk+1A = XkBXk − C .

vec(Xk+1) = (I ⊗ D − AT ⊗ I)−1 vec(XkBXk − C).

In the queuing theory application, we shall see that
B ≥ 0,−C ≥ 0, and (I ⊗ D − AT ⊗ I)−1 ≥ 0.

Under these conditions, one can prove by induction that
Xk+1 ≥ Xk .

vec(Xk+1 − Xk) = (I ⊗ D − AT ⊗ I)−1 vec(XkBXk − Xk−1BXk−1).

Structure in the queuing theory application

Q is such that qij > 0 for all i 6= j . R =
[
R11 0
0 R22

]
is diagonal

and such that diag(R11) > 0, diag(R2) < 0.

Q, a continuous-time Markov chain, has an invariant measure, i.e.,

a vector π =
[
π1
π2

]
> 0 such that QTπ = 0.

Because of these signs, in[
A B
C D

]
= R−1QT

I B ≥ 0, C ≤ 0
I D has dij < 0 for i 6= j
I Cπ1 + Dπ2 = 0 =⇒ Dπ2 ≥ 0, so D is an M-matrix
I −A is an M-matrix (similarly).

M-matrices

Lemma
Let M ∈ Rn×n be a matrix such that mij < 0 when i 6= j . Suppose
that there is a vector v > 0 such that Mv ≥ 0 (and 6= 0).
Then, M−1 ≥ 0.

Proof: write M = sI − P, with P ≥ 0. By the Perron-Frobenius
theorem, P the largest eigenvalue of P has a positive left
eigenvector zT . Then, zT Pv ≤ zT sv , hence s ≥ ρ(P) and we can
use the Neumann series

(sI − P)−1 = s−1(I − 1
s P)−1 = s−1∑

i≥0
s−iP i ≥ 0.

Matrices M that satisfy this lemma are called (nonsingular)
M-matrices.

Boundedness
Since the iteration (Xk)k=0,1,2,... is monotonic, it is sufficient to
prove boundedness to get convergence.

Lemma
Xkπ1 ≤ π2 for k = 0, 1, 2,

Proof Induction! Multiply the iteration by π1:

DXk+1π1 − Xk+1Aπ1 = XkBXkπ1 − Cπ1.

Rearrange, use Xk+1 ≥ Xk and the blocks of
[

A B
C D

] [
π1
π2

]
= 0:

DXk+1π1 ≤ XkBπ2 + Dπ2 − Xk+1Bπ2 ≤ Dπ2

then multiply by D−1 ≥ 0.

Further results
From here it is easy to show that −K = −A− BX is an M-matrix,
hence K has all eigenvalues in the LHP.

A more performant iteration:

Newton’s method
Xk+1 = Xk + H, where the correction H is chosen to have

C + D(Xk + H)− (Xk + H)A− (Xk + H)B(Xk + H) = O(‖H‖2).

The correction H can be obtained by solving a Sylvester equation

(D − XkB)H + H(−A− BXk) = −C − DXk + XkA + XkBXk .

Converges quadratically if the root is simple, and has the same
monotonicity properties.

