Matrix functions and network analysis

Paola Boito, Federico Poloni

Pisa-Hokkaido-Roma2 Summer School, August-September 2018

Linear boundary-value problems

$$
\begin{aligned}
& \text { Linear BVPs } \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]:[0, \infty] \rightarrow \mathbb{R}^{n+m} ;} \\
& \qquad \frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right] \\
& \qquad x(0)=x_{0} \in \mathbb{R}^{n}, \quad\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right] \text { bounded for } t \rightarrow \infty .
\end{aligned}
$$

Linear, constant-coefficient ODE + 'partial' boundary conditions at 0 and ∞.

Application: fluid queues

Ingredients:

- $(n+m)$-state continuous-time Markov chain with rate matrix $Q \in \mathbb{R}^{(n+m) \times(n+m)}$.
I.e., state transitions $i \rightarrow j$ may 'trigger' independently; $P[i \rightarrow j$ hasn't triggered yet after time $t]=\exp \left(-q_{i j} t\right)$.
- fluid that flows in/out of an infinite buffer at rate r_{i} in each state i.

Application: fluid queues [Rogers,'94]

Stationary distribution:
$u_{i}(x)=P$ [being in state i with fluid level $\left.\leq x\right]$ satisfies

$$
\begin{gathered}
\operatorname{diag}(r) \frac{\mathrm{d}}{\mathrm{~d} x} u(x)=Q^{T} u(x) \\
u_{i}(0)=0 \text { if } r_{i}>0 \\
u(x) \text { bounded for } x \rightarrow \infty \text { (must have sum } 1) .
\end{gathered}
$$

(Q here has diagonal elements chosen so that $Q e=0$, where e is the vector of all ones.)

Application: optimal control

Ingredients:

- Dynamical system $\frac{\mathrm{d}}{\mathrm{d} t} x(t)=A x(t)+M u(t)$ with $x(t) \in \mathbb{R}^{n}$ and input $u(t) \in \mathbb{R}^{n}$.
- Problem: choose $u(t)$ to 'reduce energy cost $x(t)^{T} Q x(t)$ ', but 'keeping $u(t)$ small':

$$
\min \int_{0}^{\infty}\left(x(t)^{T} Q x(t)+u(t)^{T} u(t)\right) \mathrm{d} t
$$

Optimal solution $x(t)$ and its Lagrange multiplier $\mu(t)$ satisfy

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{l}
x(t) \\
\mu(t)
\end{array}\right]= {\left[\begin{array}{cc}
A & -M M^{T} \\
-Q & -A^{T}
\end{array}\right]\left[\begin{array}{l}
x(t) \\
\mu(t)
\end{array}\right], } \\
& x(0) \text { given, } \\
& x(t), \mu(t) \text { bounded for } t \rightarrow \infty
\end{aligned}
$$

Analytic solution

$$
\begin{aligned}
{\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right] } & =\exp \left(t\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\right)\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right] \\
& =\exp \left(t S\left[\begin{array}{lll}
J_{1} & & \\
& \ddots & \\
& & J_{k}
\end{array}\right] S^{-1}\right)\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right] \\
& =S\left[\begin{array}{ccc}
\exp \left(t J_{1}\right) & & \\
& \ddots & \\
& & \exp \left(t J_{k}\right)
\end{array}\right] S^{-1}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]
\end{aligned}
$$

Which of these are bounded at ∞ ?
All entries of $S^{-1}\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$ which correspond to Jordan blocks with positive eigenvalues must be 0 .

Analytic solution

All entries of $S^{-1}\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$ which correspond to Jordan blocks with eigenvalues in the right half-plane

$$
R H P=\{\lambda \in \mathbb{C}: \operatorname{Re}(\lambda)>0\}
$$

must be 0 .
l.e., $\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right] \in \mathcal{U}$, where
$\mathcal{U}=\operatorname{span}($ Jordan chains with eigenvalues in LHP).
\mathcal{U} is known as stable invariant subspace.

Analytic solution

Let U be a basis matrix for \mathcal{U} :

$$
\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]=\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right] v_{0} \quad \text { for some vector } v_{0} .
$$

Recall: x_{0} given by initial conditions, y_{0} not.

The vector v_{0}, and hence the solution, is uniquely determined iff U_{1} is square invertible.
Consequence 1 For the problem to be well-posed, $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ must have the exactly n eigenvalues in the LHP.
Often, this holds automatically in our applications because of matrix structures.
Consequence 2 To solve the problem, it is sufficient to compute U, a basis matrix for the stable invariant subspace.

Invariant subspaces

\mathcal{U} known as invariant subspace because it is invariant:

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \mathcal{U} \subseteq \mathcal{U}
$$

If U is a basis matrix for \mathcal{U}, then

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] U=U K
$$

for a certain matrix K, whose eigenvalues are the stable eigenvalues of $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$.
Stable solutions of the differential equation

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=U \exp (K t) v_{0},
$$

$v_{0} \in \mathbb{R}^{n}$ chosen to satisfy initial condition.

Algorithms for the stable invariant subspace

Various families of algorithms, based on

- Manipulations of the Schur form, or
- Matrix functions such as $\operatorname{sign}(X)$, or
- Reformulation as a matrix equation.

The sign iteration [Higham, chapter 5]

Lemma

Suppose that $x_{0} \in \mathbb{C}$ is not on the imaginary axis. Then, the iteration

$$
x_{k+1}=\frac{1}{2}\left(x_{k}+x_{k}^{-1}\right)
$$

converges to 1 if $x \in R H P$, and -1 if $x \in L H P$.
Proof Define $y_{k}:=\frac{x_{k}+1}{x_{k}-1}$. Then,

$$
y_{k+1}=\frac{x_{k+1}+1}{x_{k+1}-1}=\frac{x_{k}+x_{k}^{-1}+2}{x_{k}+x_{k}^{-1}-2}=\frac{\left(x_{k}+1\right)^{2}}{\left(x_{k}-1\right)^{2}}=y_{k}^{2} .
$$

$x_{0} \in L H P \Longrightarrow\left|x_{0}-1\right|>\left|x_{0}+1\right| \Longrightarrow\left|y_{0}\right|<1 \Longrightarrow \lim y_{k}=0$
$\Longrightarrow \lim x_{k}=-1$.
$x_{0} \in R H P \Longrightarrow\left|y_{0}\right|>1 \Longrightarrow \lim y_{k}=\infty \Longrightarrow \lim x_{k}=+1$.

The matrix sign iteration

Lemma

Whenever X_{0} has no purely imaginary eigenvalues, the matrix iteration

$$
X_{k+1}=\frac{1}{2}\left(X_{k}+X_{k}^{-1}\right)
$$

converges to $\operatorname{sign}\left(X_{0}\right)$.
Not obvious - we need x_{k} to be 'smooth enough' (as a rational function in x_{0}), because matrix functions involve derivatives as well.
(Alternative: make an analogous argument for matrices, setting $\left.Y_{k}=\left(X_{k}-S\right)\left(X_{k}+S\right)^{-1}, S=\operatorname{sign}\left(X_{0}\right)\right)$.

Sign iteration — the algorithm

1. Run the sign iteration on $X_{0}=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ until convergence, obtaining S.
2. Compute $\mathcal{U}=\operatorname{ker}(S+I)$.

Caveat:

- It's best to rescale X_{0} such that $\left\|X_{0}\right\| \approx 1$, as the iteration is faster there. Otherwise, "it's just an expensive way to divide by 2 " [Higham].
- Need some care in the Markov chain application, because X_{0} there is always singular. Solution: either shift the eigenvalue zero away, or use a variant (see following).

Structure preservation

The sign iteration (and variants) work well on 'hard' problems because they preserve structures.

Example In the control theory application,
$X_{0}=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ is such that $J X_{0}$ is symmetric, where $J=\left[\begin{array}{cc}0 & I \\ -I & 0\end{array}\right]$.
(and actually that is the reason why it has the right number of stable eigenvalues).

Lemma

If $J X_{0}$ is symmetric, then in the sign iteration $J X_{k}$ is symmetric for each $k \geq 0$.
Proof follows from $J^{-1}=J^{T}=-J$.

Another view on the sign iteration

1. Compute $Y_{0}=\left(1+X_{0}\right)\left(1-X_{0}\right)^{-1}$
2. Square a sufficiently large number k of times:

$$
Y_{1}=Y_{0}^{2}, Y_{2}=Y_{1}^{2}, \ldots, Y_{k}=Y_{k-1}^{2}
$$

It is sort of a scaling and squaring algorithm to compute $\exp \left(2^{k} X_{0}\right)$.

$$
\lim _{k \rightarrow \infty} \exp \left(2^{k} x_{0}\right)= \begin{cases}\infty & x_{0} \in R H P \\ 0 & x_{0} \in L H P\end{cases}
$$

Y_{k} has the same eigenvectors of X_{0}; the eigenvalues of X_{0} in the RHP are mapped to very large eigenvalues, and those in the LHP to very small eigenvalues.

We cannot implement the iteration working with the Y_{i} for reasons of (numerical) stability: all these very large/small numbers are not a good idea.

Structured doubling algorithm

[Chu-Fan-Lin '05], [Bini-Iannazzo-Meini, Ch. 5]

Idea

Work with 'LU-like' factorizations

$$
Y_{k}=\left[\begin{array}{ll}
I & G_{k} \\
0 & F_{k}
\end{array}\right]^{-1}\left[\begin{array}{ll}
E_{k} & 0 \\
H_{k} & I
\end{array}\right] .
$$

Can we compute the factorization of Y_{k+1} from that of Y_{k} ? Yes!

$$
\begin{aligned}
E_{k+1} & =E_{k}\left(I-G_{k} H_{k}\right)^{-1} E_{k}, \\
F_{k+1} & =F_{k}\left(I-H_{k} G_{k}\right)^{-1} F_{k}, \\
G_{k+1} & =G_{k}+E_{k}\left(I-G_{k} H_{k}\right)^{-1} G_{k} F_{k}, \\
H_{k+1} & =H_{k}+F_{k}\left(I-H_{k} G_{k}\right)^{-1} H_{k} E_{k} .
\end{aligned}
$$

Convergence

It's a sort of orthogonal iteration (generalized power method):

$$
Y_{0}^{-2^{k}}\left[\begin{array}{l}
0 \\
I
\end{array}\right]=Y_{k}^{-1}\left[\begin{array}{l}
I \\
0
\end{array}\right]=\left[\begin{array}{c}
I \\
-H_{k}
\end{array}\right] E_{k}^{-1}
$$

so $\operatorname{Im}\left[\begin{array}{c}I \\ -H_{k}\end{array}\right] E_{k}^{-1}$ "converges" to the invariant subspace $\operatorname{Im}\left[\begin{array}{l}U_{1} \\ U_{2}\end{array}\right]$,
i.e., $-H_{k} \rightarrow U_{2} U_{1}^{-1}$.

Analogously, $\left[\begin{array}{c}-G_{k} \\ I\end{array}\right]$ converges to a basis of the anti-stable invariant subspace (eigenvalues in RHP).

Structure preservation

Again, this algorithm is great at preserving structures.

Lemma

If X_{0} is scaled suitably, then all the required inverses exist, at least one among E_{k} and F_{k} tends to zero, and

- In the control-theory problem, $E=F^{T}, G=G^{T}, H=H^{T}$; moreover $0 \preceq G_{0} \preceq G_{1} \preceq \ldots$ and $0 \succeq H_{0} \succeq H_{1} \succeq \ldots$ (positive definite ordering).
- In the queuing theory problem, $E, F \geq 0$; moreover, $0 \geq G_{0} \geq G_{1} \geq \ldots$ and $0 \geq H_{0} \geq H_{1} \geq \ldots$ (componentwise ordering).

Proof based on algebraic manipulations; we won't see it in full.

Reformulation as matrix equation

Another class of algorithms: via reformulation as a matrix equation.
Recall: $U=\left[\begin{array}{l}U_{1} \\ U_{2}\end{array}\right]$ basis for the invariant subspace, and we are
assuming that $U_{1} \in \mathbb{R}^{n \times n}$ is square invertible.
Hence we can change basis to $\left[\begin{array}{l}U_{1} \\ U_{2}\end{array}\right] U_{1}^{-1}=\left[\begin{array}{c}I \\ U_{2} U_{1}^{-1}\end{array}\right]$.
Set $X=U_{2} U_{1}^{-1} \in \mathbb{R}^{m \times n}$. Then, \mathcal{U} stable invariant subspace

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{c}
I \\
X
\end{array}\right]=\left[\begin{array}{l}
I \\
X
\end{array}\right] K
$$

for some K with eigenvalues in the LHP.

Algebraic Riccati equation

[Bini-lannazzo-Meini book], [CH Guo '01]

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{c}
I \\
X
\end{array}\right]=\left[\begin{array}{l}
I \\
X
\end{array}\right] K
$$

implies $A+B X=K$, and

$$
\begin{equation*}
C+D X-X A-X B X=0 \tag{*}
\end{equation*}
$$

(21) is known as algebraic Riccati equation.

Meta-theorem

In our two applications, many 'natural' matrix iterations converge monotonically when started from $X_{0}=0$.
(monotonically $=$ in the positive definite ordering, or in the componentwise ordering.)

Basic iteration

We can set up a fixed-point iteration to solve the ARE, e.g.,

$$
C+D X_{k+1}-X_{k+1} A-X_{k} B X_{k}=0
$$

X_{k+1} solves the Sylvester equation

$$
\begin{gathered}
D X_{k+1}-X_{k+1} A=X_{k} B X_{k}-C \\
\operatorname{vec}\left(X_{k+1}\right)=\left(I \otimes D-A^{T} \otimes I\right)^{-1} \operatorname{vec}\left(X_{k} B X_{k}-C\right)
\end{gathered}
$$

In the queuing theory application, we shall see that
$B \geq 0,-C \geq 0$, and $\left(I \otimes D-A^{T} \otimes I\right)^{-1} \geq 0$.
Under these conditions, one can prove by induction that $X_{k+1} \geq X_{k}$.
$\operatorname{vec}\left(X_{k+1}-X_{k}\right)=\left(I \otimes D-A^{T} \otimes I\right)^{-1} \operatorname{vec}\left(X_{k} B X_{k}-X_{k-1} B X_{k-1}\right)$.

Structure in the queuing theory application

Q is such that $q_{i j}>0$ for all $i \neq j . R=\left[\begin{array}{cc}R_{11} & 0 \\ 0 & R_{22}\end{array}\right]$ is diagonal and such that $\operatorname{diag}\left(R_{11}\right)>0, \operatorname{diag}\left(R_{2}\right)<0$.
Q, a continuous-time Markov chain, has an invariant measure, i.e., a vector $\pi=\left[\begin{array}{l}\pi_{1} \\ \pi_{2}\end{array}\right]>0$ such that $Q^{T} \pi=0$.
Because of these signs, in

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=R^{-1} Q^{T}
$$

- $B \geq 0, C \leq 0$
- D has $d_{i j}<0$ for $i \neq j$
- $C \pi_{1}+D \pi_{2}=0 \Longrightarrow D \pi_{2} \geq 0$, so D is an M-matrix
- $-A$ is an M -matrix (similarly).

M-matrices

Lemma

Let $M \in \mathbb{R}^{n \times n}$ be a matrix such that $m_{i j}<0$ when $i \neq j$. Suppose that there is a vector $v>0$ such that $M v \geq 0$ (and $\neq 0$). Then, $M^{-1} \geq 0$.

Proof: write $M=s l-P$, with $P \geq 0$. By the Perron-Frobenius theorem, P the largest eigenvalue of P has a positive left eigenvector z^{T}. Then, $z^{T} P v \leq z^{T} s v$, hence $s \geq \rho(P)$ and we can use the Neumann series

$$
(s l-P)^{-1}=s^{-1}\left(I-\frac{1}{s} P\right)^{-1}=s^{-1} \sum_{i \geq 0} s^{-i} P^{i} \geq 0
$$

Matrices M that satisfy this lemma are called (nonsingular) M -matrices.

Boundedness

Since the iteration $\left(X_{k}\right)_{k=0,1,2, \ldots}$ is monotonic, it is sufficient to prove boundedness to get convergence.

Lemma

$X_{k} \pi_{1} \leq \pi_{2}$ for $k=0,1,2, \ldots$.
Proof Induction! Multiply the iteration by π_{1} :

$$
D X_{k+1} \pi_{1}-X_{k+1} A \pi_{1}=X_{k} B X_{k} \pi_{1}-C \pi_{1}
$$

Rearrange, use $X_{k+1} \geq X_{k}$ and the blocks of $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]\left[\begin{array}{l}\pi_{1} \\ \pi_{2}\end{array}\right]=0$:

$$
D X_{k+1} \pi_{1} \leq X_{k} B \pi_{2}+D \pi_{2}-X_{k+1} B \pi_{2} \leq D \pi_{2}
$$

then multiply by $D^{-1} \geq 0$.

Further results

From here it is easy to show that $-K=-A-B X$ is an M-matrix, hence K has all eigenvalues in the LHP.

A more performant iteration:

Newton's method

$X_{k+1}=X_{k}+H$, where the correction H is chosen to have

$$
C+D\left(X_{k}+H\right)-\left(X_{k}+H\right) A-\left(X_{k}+H\right) B\left(X_{k}+H\right)=O\left(\|H\|^{2}\right) .
$$

The correction H can be obtained by solving a Sylvester equation

$$
\left(D-X_{k} B\right) H+H\left(-A-B X_{k}\right)=-C-D X_{k}+X_{k} A+X_{k} B X_{k}
$$

Converges quadratically if the root is simple, and has the same monotonicity properties.

