## Vectorization

Goal represent images, and 'linear functions of their pixels', in a linear algebra framework.

Image $\Longleftrightarrow$ rectangular array (matrix) of intensity values of pixels, e.g. in $[0,1]$.

In this context, a $m \times n$ image $=$ a vector of data in $\mathbb{R}^{m n}$.
Vectorization gives an explicit way to map it to a vector.

## Vectorization: definition



## Vectorization: comments

Column-major order: leftmost index 'changes more often'. Matches Fortran, Matlab standard (C/C++ prefer row-major instead).
Converting indices in the matrix into indices in the vector:

$$
\begin{array}{rlr}
(X)_{i j} & =(\operatorname{vec} X)_{i+m j} & \text { 0-based } \\
(X)_{i j} & =(\operatorname{vec} X)_{i+m(j-1)} & \text { 1-based }
\end{array}
$$

## $\operatorname{vec}(A X B)$

First, we will work out the representation of a simple linear map, $X \mapsto A X B$ (for fixed matrices $A, B$ of compatible dimensions).
If $X \in \mathbb{R}^{m \times n}, A X B \in \mathbb{R}^{p \times q}$, we need the $p q \times m n$ matrix that maps vec $X$ to $\operatorname{vec}(A X B)$.

$$
\begin{aligned}
& (A X B)_{h l}=\sum_{j}(A X)_{h j}(B)_{j l}=\sum_{j} \sum_{i} A_{h i} X_{i j} B_{j l} \\
& =\left[\begin{array}{lllll}
A_{h 1} B_{1 /} & A_{h 2} B_{1 /} & \ldots & \left.A_{h m} B_{1 /} \left\lvert\, \begin{array}{llll}
A_{h 1} B_{2 l} & A_{h 2} B_{2 /} & \ldots & A_{h m} B_{2 \mid} \mid \ldots
\end{array}\right.\right]
\end{array}\right. \\
& \left.\begin{array}{llll}
A_{h 1} B_{n 1} & A_{h 2} B_{n 1} & A_{h m} B_{n 1}
\end{array}\right] \operatorname{vec} X
\end{aligned}
$$

## Kronecker product: definition

$$
\operatorname{vec}(A X B)=\left[\begin{array}{cccc}
b_{11} A & b_{21} A & \ldots & b_{n 1} A \\
b_{12} A & b_{22} A & \ldots & b_{n 2} A \\
\vdots & \vdots & \ddots & \vdots \\
b_{1 q} A & b_{2 q} A & \ldots & b_{n q} A
\end{array}\right] \operatorname{vec} X
$$

Each block is a multiple of $A$, with coefficient given by the corresponding entry of $B^{T}$.

## Definition

$$
X \otimes Y:=\left[\begin{array}{cccc}
x_{11} Y & x_{12} Y & \ldots & x_{1 n} Y \\
x_{21} Y & x_{22} Y & \ldots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
x_{m 1} Y & x_{m 2} Y & \ldots & x_{m n} Y
\end{array}\right]
$$

so the matrix above is $B^{T} \otimes A$.

## Properties of Kronecker products

$$
X \otimes Y=\left[\begin{array}{cccc}
x_{11} Y & x_{12} Y & \ldots & x_{1 n} Y \\
x_{21} Y & x_{22} Y & \ldots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
x_{m 1} Y & x_{m 2} Y & \ldots & x_{m n} Y
\end{array}\right]
$$

- vec $A X B=\left(B^{T} \otimes A\right)$ vec $X$. (Warning: not $B^{*}$, if complex).
- $(A \otimes B)(C \otimes D)=(A C \otimes B D)$, when dimensions are compatible. Proof: $B\left(D X C^{T}\right) A^{T}=(B D) X(A C)^{T}$.
- $(A \otimes B)^{T}=A^{T} \otimes B^{T}$.
- orthogonal $\otimes$ orthogonal $=$ orthogonal.
- upper triangular $\otimes$ upper triangular $=$ upper triangular.
- One can "factor out" several decompositions, e.g.,

$$
A \otimes B=\left(U_{1} S_{1} V_{1}^{T}\right) \otimes\left(U_{2} S_{2} V_{2}^{T}\right)=\left(U_{1} \otimes U_{2}\right)\left(S_{1} \otimes S_{2}\right)\left(V_{1} \otimes V_{2}\right)^{T}
$$

## Examples

