Recap on complex numbers

Complex numbers: objects of the form $a+b i$, where $a, b \in \mathbb{R}$ and i stands for an 'imaginary' number such that $i^{2}=-1$.
Modulus of a complex number: $|a+b i|=\sqrt{a^{2}+b^{2}}$.
Complex numbers of modulus 1 can be written as $\cos \theta+i \sin \theta$ for a certain angle $\theta \in[0,2 \pi]$ (measured in radians!).
Alternative notation: $\cos \theta+i \sin \theta=e^{i \theta}$. Just a convenient notation, but it hides some nontrivial facts, for instance $e^{i\left(\theta_{1}+\theta_{2}\right)}=e^{i \theta_{1}} e^{i \theta_{2}}$ (follows from high-school trigonometry).

Geometric idea: Multiplication $=$ rotation on the unit circle.
For instance, $e^{i 0}=e^{i 2 \pi}=1$, and $e^{i \pi}=-1$.

Recap on interpolation

Evaluating a polynomial $a(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}$ on n given points $t_{0}, t_{1}, \ldots, t_{n-1}$: linear map (matrix) $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$.

$$
\underbrace{\left[\begin{array}{ccccc}
1 & t_{0} & t_{0}^{2} & \ldots & t_{0}^{n-1} \\
1 & t_{1} & t_{1}^{2} & \ldots & t_{1}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & t_{n-1} & t_{n-1}^{2} & \ldots & t_{n-1}^{n-1}
\end{array}\right]}_{:=V, \text { Vandermonde matrix }} \underbrace{\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1}
\end{array}\right]}_{\mathbf{a}}=\left[\begin{array}{c}
p\left(a_{0}\right) \\
p\left(a_{1}\right) \\
\vdots \\
p\left(a_{n-1}\right)
\end{array}\right]=\underbrace{\left[\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{n-1}
\end{array}\right]}_{\mathbf{b}}
$$

Evaluation: map coefficients \mapsto values, $\mathbf{b}=V \mathbf{a}$.
Interpolation: map values \mapsto coefficients, $\mathbf{a}=V^{-1} \mathbf{b}$.
Warning when n is large, often V is ill-conditioned.

Discrete Fourier transform

Let $z=e^{-i \frac{2 \pi}{n}}=\cos \frac{2 \pi}{n}-i \sin \frac{2 \pi}{n}$.
Discrete Fourier transform (DFT): evaluation on the n points $1=z^{0}, z, z^{2}, \ldots, z^{n-1}$.
Inverse DFT: interpolation on the same points.
Geometrically, these are n equispaced points on the unit circle; note that $z^{n}=1$.
Fourier matrix:

$$
V=F=\left[\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & z^{1} & z^{2} & \ldots & z^{n-1} \\
1 & z^{2} & z^{4} & \ldots & z^{2 n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & z^{n-1} & z^{2 n-2} & \ldots & z^{(n-1)^{2}}
\end{array}\right]
$$

Why is DFT interesting?

- It is perfectly well conditioned:

$$
\overline{F^{\top}} F=\bar{F} \overline{F^{T}}=n l
$$

(follows from $z^{n}=1+$ geometric progression formula).
hence $\frac{1}{\sqrt{n}} F$ is unitary (complex analogue of orthogonal, conjugate+transpose instead of transpose) and $\kappa(F)=1$.

- There is a specialized algorithm to compute F a and $F^{-1} \mathbf{b}=\frac{1}{n} \bar{F}^{T} \mathbf{b}$ in $O(n \log n)$, instead of $O\left(n^{2}\right)$ for a 'standard' matvec product.
- Applications: polynomial multiplication, structured matrix multiplication, time series analysis...

Fast Fourier Transform

We focus on evaluation, $\mathbf{b}=F \mathbf{a}$ (DFT). Interpolation (IDFT) is analogous, thanks to $F^{-1}=\frac{1}{n} \bar{F}^{T}$.
Divide-and-conquer: we will reduce one $\operatorname{IDFT}(2 n)$ to two $\operatorname{IDFT}(n)$.
Setup given a vector $\mathbf{a}=\left[a_{0}, a_{1}, \ldots a_{2 n-1}\right]$, we wish to evaluate

$$
a(x)=a_{0}+a_{1} x+\cdots+a_{2 n-1} x^{2 n-1}
$$

in $z=e^{i \frac{2 \pi}{2 n}}$ and its powers; we already know how to evaluate a polynomial of degree $<n$ in $e^{i \frac{2 \pi}{n}}=z^{2}$ and its powers.

Fast Fourier Transform: the recursion

$$
\begin{aligned}
a(x)= & a_{0}+a_{1} x+\cdots+a_{2 n-1} x^{2 n-1} \\
= & \left(a_{0}+a_{2} x^{2}+\cdots+a_{2 n-2} x^{2(n-1)}\right) \\
& \quad+x\left(a_{1}+a_{3} x^{2}+\cdots+a_{2 n-1} x^{2(n-1)}\right) \\
& =a_{e v}\left(x^{2}\right)+x a_{o d d}\left(x^{2}\right)
\end{aligned}
$$

where $a_{\text {ev }}, a_{\text {odd }}$ are the polynomials with coefficients taken from the vectors

$$
\begin{aligned}
\mathbf{a}_{e v} & =\left[a_{0}, a_{2}, \ldots, a_{2 n-2}\right] \\
\mathbf{a}_{o d d} & =\left[a_{1}, a_{3}, \ldots, a_{2 n-1}\right]
\end{aligned}
$$

Fast Fourier transform: wrap-up

Input: vector a of length $2 n$.

1. Using two DFTs of half the size n, compute

$$
\begin{aligned}
& \mathbf{c}=\operatorname{DFT}\left(\mathbf{a}_{e v}\right)=\left[a_{e v}(1), a_{e v}\left(z^{2}\right), a_{e v}\left(\left(z^{2}\right)^{2}\right), \ldots, a_{e v}\left(\left(z^{2}\right)^{n-1}\right)\right] \\
& \mathbf{d}=\operatorname{DFT}\left(\mathbf{a}_{o d d}\right)=\left[a_{o d d}(1), a_{o d d}\left(z^{2}\right), a_{o d d}\left(\left(z^{2}\right)^{2}\right), \ldots, a_{o d d}\left(\left(z^{2}\right)^{n-1}\right)\right]
\end{aligned}
$$

2. For each $k=1,2, \ldots, 2 n-1$, compute $a\left(z^{k}\right)=a_{\text {even }}\left(z^{2 k}\right)+z^{k} a_{\text {odd }}\left(z^{2 k}\right)$, i.e.,

$$
\mathbf{b}=[\mathbf{c}+\mathbf{z} \odot \mathbf{d}, \mathbf{c}-\mathbf{z} \odot \mathbf{d}],
$$

where $\mathbf{z}=\left[1, z, z^{2}, \ldots, z^{n-1}\right]$, and \odot is entry-by-entry product.

Remarks

- This gives rise naturally to an algorithm for $n=2^{k}$ nodes. Algorithms for non-powers-of-two are possible, but more cumbersome. Usually in applications one can get away by padding the vectors with zeros.
- Variants that use real arithmetic only are possible, but more cumbersome.
- Usually, roots of unity z^{k} are precomputed.
- Complexity: $\operatorname{DFT}(2 n)=2 \operatorname{DFT}(n)+4 n$. Standard application of the 'master theorem' gives $O(n \log n)$.

Applications of FFT

Application \#1: fast product of polynomials $(O(n \log n))$: Input vectors a and cont that contain the coefficients of

$$
\begin{aligned}
& a(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, \\
& c(x)=c_{0}+c_{1} x+\cdots+a_{m} x^{m},
\end{aligned}
$$

Output the vector of coefficients of $a(x) c(x)$, i.e.,
$\mathbf{e}=\left[a_{0} c_{0}, a_{1} c_{0}+a_{0} c_{1}, a_{2} c_{0}+a_{1} c_{1}+a_{0} c_{2}, \ldots, a_{n} c_{m-1}+a_{n-1} c_{m}, a_{n} c_{m}\right]$.

1. Choose a number of nodes $N \geq n+m$ for DFT (why?).
2. Evaluate $\mathbf{b}=\operatorname{DFT}(\mathbf{a})=\left[a\left(z^{0}\right), a\left(z^{1}\right), a\left(z^{2}\right), \ldots, a\left(z^{N-1}\right)\right]$ and $\mathbf{d}=D F T(\mathbf{c})$.
3. Compute $\mathbf{b} \odot \mathbf{d}=$ $\left[a\left(z^{0}\right) c\left(z^{0}\right), a\left(z^{1}\right) c\left(z^{1}\right), a\left(z^{2}\right) c\left(z^{2}\right), \ldots, a\left(z^{N-1}\right) c\left(z^{N-1}\right)\right]$.
4. Compute $\mathbf{e}=\operatorname{IDFT}(\mathbf{b} \odot \mathbf{d})$.

Applications of DFT

Application \#1b: fast convolution / moving averages: it's basically the same thing, i.e.,
$\left[a_{0} c_{0}, a_{1} c_{0}+a_{0} c_{1}, a_{2} c_{0}+a_{1} c_{1}+a_{0} c_{2}, \ldots, a_{n} c_{m-1}+a_{n-1} c_{m}, a_{n} c_{m}\right]$.
Application \#1c: product with a triangular Toeplitz matrix:

$$
\left[\begin{array}{cccc}
a_{0} & a_{1} & \ldots & a_{n-1} \\
& \ddots & \ddots & \vdots \\
& & a_{0} & a_{1} \\
& & & a_{0}
\end{array}\right]\left[\begin{array}{c}
c_{n-1} \\
\vdots \\
c_{1} \\
c_{0}
\end{array}\right]=\left[\begin{array}{c}
a_{0} c_{n-1}+\cdots+a_{n-1} c_{0} \\
\vdots \\
a_{0} c_{1}+a_{1} c_{0} \\
a_{0} c_{0}
\end{array}\right]
$$

(Non-triangular Toeplitz matrices can be seen as the sum of a lower + an upper triangular one.)

Signal processing

Quick derivation to connect our presentation with the usage of FFT in signal processing.

Problem: signal processing

Given n equispaced samples of a certain 'signal’ (for instance: a sound wave)

$$
\mathbf{b}=\left[b_{0}, b_{1}, b_{2}, \ldots, b_{n-1}\right]
$$

decompose this signal into a sum of sines/cosines.
Put these numbers along the points $z^{0}, z^{1}, \ldots, z^{n-1}$, where $z=e^{-i \frac{2 \pi}{n}}=\cos \frac{2 \pi}{n}-i \sin \frac{2 \pi}{n}$, and perform IDFT: this returns a polynomial $a(x)$ such that $b_{k}=a\left(z^{k}\right)$, i.e., the b_{k} are obtained by 'sampling' this polynomial on n equispaced points on the unit circle.

Signal processing

Actually, instead of a polynomial
$a(x)=a_{0}+a_{1} x+a_{1} x^{2}+\cdots+a_{\frac{n}{2}} x^{\frac{n}{2}}+a_{\frac{n}{2}+1} x^{\frac{n}{2}+1}+\cdots+a_{n-1} x^{n-1}$,
it's better to think about a rational function
$f(x)=a_{0}+a_{1} x+a_{1} x^{2}+\cdots+a_{\frac{n}{2}} x^{\frac{n}{2}}+a_{\frac{n}{2}+1} x^{-\left(\frac{n}{2}-1\right)}+\cdots+a_{n-1} x^{-1}$.
$a(x)$ and $f(x)$ take the same values on $x=z^{k}$ because $x^{n}=1$ on these values of x.

Signal processing

Now, make a change of variable: $x=e^{-i \theta}$. As θ ranges over $[0,2 \pi], x$ ranges over the unit circle. So the elements of \mathbf{b} are obtained by sampling at equispaced points on $[0,2 \pi]$ the function

$$
\begin{aligned}
& f\left(e^{i \theta}\right)=a_{0}+a_{1}(\cos \theta-i \sin \theta)+a_{2}(\cos 2 \theta-i \sin 2 \theta)+\ldots \\
& +a_{2 n-2}(\cos (-2 \theta)-i \sin (-2 \theta))+a_{2 n-1}(\cos (-\theta)-i \sin (-\theta))
\end{aligned}
$$

We can simplify this expression using $\cos (-\theta)=\cos (\theta)$, $\sin (-\theta)=-\sin (\theta)$; so the coefficient of $\cos (\theta)$ is $a_{1}+a_{2 n-1}$, that of $\sin (\theta)$ is $i\left(a_{2 n-1}-a_{1}\right), \ldots$

