Positive matrices

We write $P \geq Q$ if $P_{i j} \geq Q_{i j}$ for all i, j.
We write $P>Q$ if $P_{i j}>Q_{i j}$ for all i, j.
(Also, $P \geq 0, P>0$.)
If $A \geq 0, B \geq 0$, then $A B \geq 0$.

Strict positivity trick

If $A>0, \mathbf{v} \geq \mathbf{0}$, then $A \mathbf{v}>\mathbf{0}$, unless $\mathbf{v}=\mathbf{0}$.
If $A>0, \mathbf{u} \geq \mathbf{w}$, then $A \mathbf{u}>A \mathbf{w}$, unless $\mathbf{u}=\mathbf{w}$.
(Proof: set $\mathbf{v}=\mathbf{u}-\mathbf{w}$ above.)

Perron-Frobenius theorem

Theorem

Let $P>0$ be a square matrix. Then,

1. P has an eigenvalue $\lambda>0$ with eigenvector $\mathbf{v}>0$, i.e., $P \mathbf{v}=\lambda \mathbf{v}$.
2. λ is the largest eigenvalue in absolute value.
3. λ has multiplicity 1 , and it is the only eigenvalue with eigenvector $\mathbf{v}>0$ (up to multiples).
If $P \geq 0,1$., 2 ., 4 . hold with \geq instead of $>$, but in many cases also the original statement holds (unless P is associated to a 'disconnected' or 'periodic' graph - we'll see it later.)
$\lambda=\rho(P), \mathbf{v}$ are called 'the Perron eigenvalue/eigenvector' of P. Also,
4. (monotonicity) If $0 \leq P \leq Q$, then $0 \leq \rho(P) \leq \rho(Q)$.

Proof (just a sketch while you are still awake)

We say that P stretches a vector $\mathbf{v} \geq \mathbf{0}$ by a factor $k>0$ if $P \mathbf{v} \geq k \mathbf{v}$ (and k is the largest possible).
Example

$$
P=\left[\begin{array}{lll}
0.2 & 0.7 & 0.1 \\
0.3 & 0.4 & 0.5 \\
0.1 & 0.7 & 0.2
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad P \mathbf{v}=\left[\begin{array}{l}
1.9 \\
2.6 \\
2.1
\end{array}\right]
$$

P stretches \mathbf{v} by a factor $\min \left(\frac{1.9}{1}, \frac{2.6}{2}, \frac{2.1}{3}\right)=0.7$.
Indeed, $0.7\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \leq\left[\begin{array}{l}1.9 \\ 2.6 \\ 2.1\end{array}\right]$.

Proof (cont.)

By the strict positivity trick,

$$
k \mathbf{v} \leq P \mathbf{v} \Longrightarrow k P \mathbf{v}<P(P \mathbf{v})
$$

i.e., P stretches $P \mathbf{v}$ by strictly more than it stretches \mathbf{v}; unless $k \mathbf{v}=P \mathbf{v}$.

Hence if we take the vector $\mathbf{v}_{\text {max }}$ which has the maximum stretch factor $k_{\text {max }}$, then it must be the case that $k_{\max } \mathbf{v}_{\max }=P \mathbf{v}_{\max }$. This proves 1.
2. can be proved by taking another eigenvector \mathbf{w} and considering the stretch factor of $|\mathbf{w}|$.

Proof (cont.)

3. can be proved by contradiction: assume P has another eigenpair $P \mathbf{w}=\mu \mathbf{w}$ with $\mathbf{w}>\mathbf{0}$ in addition to the Perron one $P \mathbf{v}=\lambda \mathbf{v}$.
The transposed matrix P^{T} has the same eigenvalue $\lambda: P^{T} \mathbf{u}=\lambda \mathbf{u}$, i.e., $\mathbf{u}^{T} P=\lambda \mathbf{u}^{T}$. (This is called sometimes a left eigenvector of $P)$. By Part 1 of the theorem, $\mathbf{u}>\mathbf{0}$.

Compute in two ways:

$$
\lambda \mathbf{u}^{T} \mathbf{w}=\left(\mathbf{u}^{T} P\right) \mathbf{w}=\mathbf{u}^{T} P \mathbf{w}=\mathbf{u}^{T}(P \mathbf{w})=\mu \mathbf{u}^{T} \mathbf{w} .
$$

4. follows by the fact that Q stretches the Perron vector \mathbf{v} of P by a factor at least λ.

M-matrices

Similarly, matrices with sign pattern

$$
\left[\begin{array}{llll}
+ & - & - & - \\
- & + & - & - \\
- & - & + & - \\
- & - & - & +
\end{array}\right]
$$

(possibly with zeros) can be seen as $s l-P$, for some scalar $s \geq 0$ and matrix $P \geq 0$, and some results on their eigenvalues can be derived from this (just a heads-up).

Markov chains

TL;DR: finite state automaton + transition probabilities.

At every (discrete) 'time step', we follow an arrow exiting from the current state.

Markov property: transition probabilities do not depend on 'what happened earlier / where I am coming from'.
$\mathbb{P}\left[s_{k}=j \mid s_{1}=i_{1}, s_{2}=i_{2}, \ldots, s_{k-1}=i_{k-1}\right]=\mathbb{P}\left[s_{k}=j \mid s_{k-1}=i_{k-1}\right]$.
Homogeneity: transition probabilities do not change with step k.

Markov chains

Transition probability matrix: $P_{i j}=\mathbb{P}[$ transition $i \rightarrow j]$, e.g.,

$$
P=\left[\begin{array}{ll}
0.4 & 0.6 \\
0.7 & 0.3
\end{array}\right]
$$

P is row-stochastic, i.e., $\sum_{j} P_{i j}=1$ for each row i. Or, in other words, $P \mathbf{1}=\mathbf{1}$ for the vector $\mathbf{1}$ of all ones (Perron vector with eigenvalue 1!)

Markov chain and linear algebra

Key idea: computing transition probabilities $=$ matrix multiplication.
If $\boldsymbol{\pi}=\left[\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right]$ (often with $\boldsymbol{\pi} \cdot \mathbf{1}=1$) contains probabilities of being in each state at a certain time t, then πP contains the probabilities at time $t+1$.
Proof:

$$
\mathbb{P}\left[s_{t+1}=j\right]=\sum_{i} \mathbb{P}\left[s_{t}=i\right] P_{i j}=\pi P
$$

Markov chain and matrix products

Starting from a certain initial probability π, the probability of observing a transition with probability P_{1} first, then one with probability P_{2}, \ldots, then one with probability P_{k}, is

$$
\pi P_{1} P_{2} \ldots P_{k}
$$

This is true not only when $\pi, P_{1}, \ldots, P_{k}$ are scalar, but also when they are vectors / matrices.

Hitting probabilities

Example: hitting probabilities.
Markov chain with a set of n_{B} 'bad' states, and n_{G} 'good' states.
Start out in a good state (with probabilities
resp. $\left.\pi=\left[\pi_{1}, p_{2}, \ldots, p_{n_{G}}\right]\right)$; what is the probability of reaching
('hitting') a bad state? Which one of them is reached first?

$$
P=\left[\begin{array}{ll}
P_{G G} & P_{G B} \\
P_{B G} & P_{B B}
\end{array}\right]
$$

To reach a bad state, we can either:

- transition directly to a bad state, with probability $\pi P_{G B}$;
- transition to a good state once, then to a bad state, $\pi P_{G G} P_{G B}$;
- transition through 2 good states, then to a bad state, $\pi P_{G G}^{2} P_{G B}$; etc.
Total probability:

$$
\boldsymbol{\pi}\left(I+P_{G G}+P_{G G}^{2}+P_{G G}^{3}+\ldots\right) P_{G B}=\boldsymbol{\pi}\left(I-P_{G G}\right)^{-1} P_{G B}
$$

Hitting probabilities

$$
F_{G B}=\left(I+P_{G G}+P_{G G}^{2}+P_{G G}^{3}+\ldots\right) P_{G B}=\left(I-P_{G G}\right)^{-1} P_{G B}
$$

$\left(F_{G B}\right)_{i j}$ gives the probabilities that the Markov chain first enters the set of bad states B in its j th state, starting from the i th good state.
Remarks:

- The formula $\left(I+M+M^{2}+M^{3}+\ldots\right)=(I-M)^{-1}$ holds for each square matrix M with $\rho(M)<1$.
- $P_{G G}$ satisfies $P_{G G} \mathbf{1} \leq \mathbf{1}$, and the \leq is not an equal (unless $\left.P_{G B}=0\right)$. So by monotonicity $\rho\left(P_{G G}\right)<1$.
Also, one can prove that the 'mean hitting time' is $\left(I-P_{G G}\right)^{-1} \mathbf{1}$.

Example: a game with coins

We toss a coin repeatedly. I win if three consecutive tosses give THH, you win if you get HHT first. Who is at an advantage?

Set up transition matrix over all 8 possible sequences of 3 tosses, compute hitting probabilities for the set of bad states THH, HHT.

From the initial set $\pi=[1 / 8,1 / 8, \ldots, 1.8]$, we get

$$
\pi_{B}+\pi_{G} F_{G B}=\ldots
$$

Censoring

Censoring: rewrite transition history 'pretending the set G does not exist'.

$$
b_{1}, g_{1}, b_{2}, b_{2}, g_{2}, g_{3}, g_{1}, g_{2}, b_{1}, b_{3}, g_{1}, g_{2}, b_{2}, \ldots
$$

becomes

$$
b_{1}, b_{2}, b_{2}, b_{1}, b_{3}, b_{2}, \ldots
$$

Transition matrix of the censored chain $n_{B} \times n_{B}$:

$$
P_{B B}+P_{B G}\left(I-P_{G G}\right)^{-1} P_{G B}
$$

Interpretation: we either transition from B to B directly, or we transition to G, stay inside it for $0,1,2, \ldots$ time steps, and then get back out to B.

Interesting interpretation: Gaussian elimination on $I-P$ \qquad censoring states $1,2,3, \ldots$ in sequence.

Stationary probabilities

Suppose $P>0$ for now (we'll see what changes if there are zero entries).

Theorem

For any initial probabilities π, the probabilities
$\boldsymbol{\pi} P, \boldsymbol{\pi} P^{2}, \ldots, \pi P^{k}, \ldots$ of being in each state after k steps converge to a fixed vector $\boldsymbol{\mu}$ when $k \rightarrow \infty$.
This vector is the left eigenvector with eigenvalue $\rho(P)=1$, i.e., the Perron vector of P^{T}.

Proof 1: this is simply the power method on P^{T}.
Proof 2: if $P=V \wedge V^{-1}$ is diagonalizable, recall that all other eigenvalues apart from $1=\lambda_{1}=\rho(P)$ have modulus $\left|\lambda_{i}\right|<1$, hence (cont.)

$$
\pi\left(V \wedge V^{-1}\right)^{k}=\pi V\left[\begin{array}{cccc}
\lambda_{1}^{k} & & & \\
& \lambda_{2}^{k} & & \\
& & \ddots & \\
& & & \lambda_{n}^{k}
\end{array}\right] V^{-1}
$$

which converges when $k \rightarrow \infty$ to

$$
\pi\left(V \wedge V^{-1}\right)^{k}=\pi V\left[\begin{array}{llll}
1 & & & \\
& 0 & & \\
& & \ddots & \\
& & & 0
\end{array}\right] V^{-1}
$$

which is a multiple of the first row of V^{-1}.
One can prove directly that the first row of V^{-1} is a left eigenvector, exactly like one proves that the columns of V are the right eigenvectors. Otherwise, take limits in both sides of $\left(\pi P^{k}\right) P=\pi P^{k+1}$.

What happens if there are zeros

Some states (called transient states) are visited only a few times and then 'abandoned forever', e.g.,

Key to understand it: doubly connected components of the graph with adjacency matrix P.
If a DCC has outgoing edges, eventually they will be taken with probability $1 \Longrightarrow$ the DCC will be abandoned with probability 1 .

Each DCC without outgoing nodes is a possible final class.

Periodic chains

Another edge case: periodic chains. Suppose P is irreducible, but all closed paths have lengths that are multiple of a certain integer $d>1$; e.g.,

In general, their transition matrices can be written as

$$
\left[\begin{array}{cccc}
& P_{12} & & \\
& & P_{23} & \\
& & & \ddots
\end{array}\right]
$$

(These may be blocks.)

General Perron-Frobenius

Periodic chains do not have a limit distribution (easy to see also in the example; starting from state 1 one 'loops indefinitely').
Another characterization: a chain is aperiodic if $P^{k}>0$ for some k.
Periodic chains have d eigenvalues with modulus 1 (at the d th roots of 1). In particular, 'Perron-Frobenius with strict inequalities' does not hold for them.

The missing hypothesis

The Perron-Frobenius theorem 'with strict inequalities' holds for matrices $P \geq 0$ that have a doubly-connected graph (irreducible chains/matrices) and are aperiodic.

References

Meyer, Matrix Analysis and Applied Linear Algebra, chapter 8. gentler introduction

Berman, Plemmons, Nonnegative matrices in the mathematical sciences - more technical; includes a whopping " 50 equivalent conditions for a matrix to be a nonsingular M-matrix" (!)

