
Lectures 1-2-3

Gianna M. Del Corso

PhD-course Dipartimento di Informatica, Università di Pisa, Italy

January 16-18th 2019

Ax = b

Let A ∈ Rn×n be a nonsingular matrix then for any vector b ∈ Rn

there is a vector x ∈ Rn such that Ax = b

I In many applications A is non square or is singular.
I The typical situation is A ∈ Rm×n,m > n (overdetermined).

The problem Ax = b has in general no solution.
I Let r = b − Ax , we want to find vector x such that the

residual is made as small as possible.
I If we take the Euclidean norm we get the linear least square

problem
min

x
‖b − Ax‖2

Least Squares

I With geometrical considerations it is intuitive that the residual
should be orthogonal to the column space of A, the range
space of A, denoted by R(A).

I Imposing r ⊥ R(A) we get ∀z ∈ Rn

0 = (Az)T (b−Ax) = zT AT b−zT AT Ax = zT (AT b−AT Ax)

I A vector x ∈ Rn minimizes the residual norm
‖r‖2 = ‖b − Ax‖2 iff r ⊥ R(A) or equivalently

AT Ax = AT b

AT A is nonsingular and the normal equations have a unique
solution iff A has full rank.

Normal equations
A full rank then x = (AT A)−1AT b is the unique solution of the
normal equations

A+ = (AT A)−1AT , A+ ∈ Rn×m

is called the Moore-Penrose pseudoinverse
To solve normal equations

I In general we do not work with pseudoinverse!
I use factorizations instead

I Cholesky
I QR
I Singular Value decomposition

Each factorization requires O(n2m) to compute the factors and
O(nm) for the right hand side

Cholesky
if A is full rank, AT A is symmetric and positive definite, then we
can compute the Cholesky factorization of AT A = LLT with L
lower triangular, then

x = A+b = (LLT)−1AT b = L−T (L−1(AT b))

- Compute L such that AT A = LLT

- Let y = AT b, solve Lz = y
- Solve LT x = z

QR
In situations where it is important to separate informations from
noise is better to work with orthogonal vectors
Q ∈ Rn×n is orthogonal if QT Q = I, i.e. the columns of Q are
such that qT

i qj = 0, i 6= j and qT
i qi = 1.

I P,Q orthogonal =⇒ PQ orthogonal
I QQT = I
I Q1 ∈ Rn×k with orthogonal columns, there exists

Q2 ∈ Rn×(n−k) such that Q = [Q1|Q2] is orthogonal.
I Q orthogonal then ‖Qx‖2 = ‖x‖2
I U ∈ Rm×m, V ∈ Rn×n orthogonal ‖UAV ‖2 = ‖A‖2 and
‖UAV ‖F = ‖A‖F .

QR
Let A = QR where Q = [Q1|Q2] with Q1 ∈ Rm×n and

R =
[

R1
O

]
∈ Rm×n. A = Q1R1, we have

‖r‖22 = ‖b − QRx‖22 =

=
∥∥∥∥∥
[

QT
1 b

QT
2 b

]
−
[

R1x
O

]∥∥∥∥∥
2

2
= ‖QT

1 b − R1x‖22 + ‖QT
2 b‖22

If A is full rank x = R−1
1 QT

1 b minimizes ‖r‖2.

Backward stability
Let A ∈ Rm×n,m ≥ n be full rank, solving the least square problem
with with QR factorization (Householder transformations) the
computed solution x̂ is the exact least square solution of

min
x
‖(A + ∆A)x̂ − (b + δb)‖2

where ‖∆A‖F ≤ c1m n ε‖A‖F , ‖δb‖2 ≤ c2m n ‖b‖2 + O(ε2).

SVD
- QR based method provides an orthogonal basis only for R(A).
- with SVD we have an orthonormal basis also for the row space
of A.

Let A ∈ Rm×n, a singular value decomposition is a factorization

A = UΣV T

where U ∈ Rm×m, V ∈ Rn×n are orthogonal matrices,
Σ = diag(σ1, σ2, . . . , σmin(n,m)) is a “diagonal” matrix, with
σ1 ≥ σ2 ≥ · · · ≥ σmin(n,m) ≥ 0.

- σi are singular values
- ui are the left singular vectors, and vi are the right singular
vectors, Avi = σiui .

You might be already come across SVD with different names: PCA
or Karhunen-Loewe expansion.

Existance

A =

 U





σ1
. . . O

. . .
O σp

0



 V T



Solving LSP by SVD

m ≥ n, A = [U1|U2]
[

Σ
0

]
V T , U1 ∈ Rm×n

‖r‖22 = ‖b − UΣV T x‖22 =
∥∥∥∥∥
(

UT
1 b

UT
2 b

)
−
(

Σ
0

)
V T x

∥∥∥∥∥
2

2

The least square solution is given by

x = V Σ−1UT
1 b =

n∑
i=1

uT
i b
σi

vi

If A is full rank σi > 0 and the solution is unique.

Fundamental Subspaces
The SVD gives orthogonal bases of the four fundamental
subspaces of a matrix. Assume that A has rank r , then

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0

R(A) The left singular vectors u1, u2, . . . , ur are an
orthogonal basis for R(A). R(A) = span(u1, . . . , ur)
and rank(A) = r .

N(A) The right singular vectors vr+1, vr+2, . . . , vn are an
orthonormal basis for N(A), i.e. dim(N(A)) = n − r .

R(AT) The right singular vectors v1, v2, . . . , vr are an
orthogonal basis for R(AT).

N(AT) Le left singular vectors ur+1, ur+2, . . . , um are an
orthonormal basis for N(AT).

Changing basis b′ = UT b, x ′ = V T x we have

b = Ax ⇔ UT b = UT Ax ⇔ b′ = Σx ′

A reduces to diagonal form when the range is expressed in the basis
of columns of U and the domain in the basis of the column of V .

Matrix properties
If A ∈ Rn×n and there exists a complete set of eigenvectors then

A = SΛS−1.

The change of basis corresponds to b′ = S−1b, x ′ = S−1x and
b′ = Λx ′.

I SVD uses two different basis while eigendecompostion only
one

I SVD orthonormal basis while only normal matrices are
diagonalizable by an orthogonal matrix

I All the matrices have SVD decomposition while only
diagonalizable matrices have an eigendecomposition.

Useful properties

I ‖A‖2 = σ1, ‖A‖F =
√
σ2

1 + σ2
2 + · · ·+ σ2

r

I 0 < σi =
√
λ(AT A) =

√
λ(AAT), for λ(AT A) 6= 0.

I If A = AT , σ = |λ(A)|
I A ∈ Rn×n, | det(A)| =

∏n
i=1 σi

I A =
∑r

i=1 σiuivT
i = σ1u1vT

1 + σ2u2vT
2 + · · ·σr ur vT

r

Low rank approximation

Eckart-Young-Mirsky Theorem
For any k, 0 ≤ k ≤ r let

Ak =
k∑

i=1
σiuivT

i

then
‖A− Ak‖2 = min

B:rank(B)≤k
‖A− B‖2 = σk+1

and

‖A− Ak‖F = min
B:rank(B)≤k

‖A− B‖F =
√
σ2

k+1 + · · ·+ σ2
r

Rank-deficient or underdetermined systems

A = [U1|U2]
[

Σ1 0
0 0

] [
V T

1
V T

2

]
where Σ1 = diag(σ1, . . . , σr) ∈ Rr×r . Setting y = V T x , and[

b1
b2

]
=
[

UT
1 b

UT
2 b

]

‖r‖22 = ‖Ax − b‖22 =
∥∥∥∥∥
[

Σ1 0
0 0

] [
y1
y2

]
−
[

b1
b2

]∥∥∥∥∥
2

2

= ‖Σ1y1 − b1‖22 + ‖b2‖22

The solutions are y =
[

Σ−1
1 b1
y2

]
, where y2 is arbitrary. The

minimal norm solution is given setting y2 = 0, and hence x = A+b,

A+ = V
[

Σ−1
1 0
0 0

]
UT . Same for undetermined systems.

Computing the SVD
There are stable algorithms for computing the SVD also when A is
rank-deficient.

I First reduce the matrix to bidiagonal form with Householder
transformations

I Find the SVD decomposition of the bidiagonal matrix
Cost O(mn2) flops.
The truncated SVD can be computed using a process employing
Lanczos method.

References
I Lloyd N. Trefethen, David Bau, III, Numerical Linear Algebra,

1997
I J. Demmel, Applied Numerical Linear Algebra, 1997.

Application of SVD

I Image compression
I Text mining
I Face recognition
I Recommender systems

Image compression with SVD
An m-by-n image is an m-by-n matrix X where Xij represents the
brightness of pixel (i , j). Storing X requires storing the mn entries

X = UΣV T

then
Xk = U(:, 1 : k)Σ(1 : k, 1 : k)V T (1 : k, :)

is the best rank-k approximation. To store Xk only (n + m)k
values needed.

Text mining with SVD

I Extract information from large collections of texts
I Examples: find relevant information from the web, from large

collection of scientific papers, etc
I Usually we have a query

The vector space model

I Documents and query are represented as vectors in Rm, m is
the size of our vocabulary

I Document preparation
I Elimination of the stop words
I Stemming: take only the roots of the words

I construction of the term-by-document matrix
I Find document vector close to query

The vector space model
The term-by-document matrix A, is as follows

Ai ,j 6= 0 if document j−th contains term i−th

Usually a weighting technique is used

Ai ,j = fij log(n/ni)

where fij is the frequency of term i in doc j , and ni is the number
of documents in which term i appears.

The vector space model
Typically a very sparse matrix
A toy example [Lars Eldén 2007]

T1 eigenvalue D1 The Google matrix P is a model of
T2 England the Internet
T3 FIFA D2 Pij is nonzero if there is a link
T4 Google from Web page j to i
T5 Internet D3 The Google matrix is used to rank
T6 link all Web pages
T7 matrix D4 The ranking is done by solving a matrix
T8 page eigenvalue problem
T9 rank D5 England dropped out of the top 10 in
T10 Web the FIFA ranking

The vector space model
Term-by-Document matrix

A =

D1 D2 D3 D4 D5
eigenvalue
England

FIFA
Google
Internet

link
matrix
page
rank
Web



0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
1 0 1 0 0
1 0 0 0 0
0 1 0 0 0
1 0 1 1 0
0 1 1 0 0
0 0 1 1 1
0 1 1 0 0


D1: The Google matrix P is a model of the Internet
D3: The Google matrix is used to rank all Web pages

The vector space model
Term-by-Document matrix

A =

D1 D2 D3 D4 D5
eigenvalue
England

FIFA
Google
Internet

link
matrix
page
rank
Web



0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
1 0 1 0 0
1 0 0 0 0
0 1 0 0 0
1 0 1 1 0
0 1 1 0 0
0 0 1 1 1
0 1 1 0 0


D1: The Google matrix P is a model of the Internet
D3: The Google matrix is used to rank all Web pages

Vector space model
Normalizing by column, i.e. dividing by ‖A(:, i)‖2 we get

A =



0 0 0 0.5774 0
0 0 0 0 0.5774
0 0 0 0 0.5774

0.5774 0 0.4472 0 0
0.5774 0 0 0 0

0 0.5774 0 0 0
0.5774 0 0.4472 0.5774 0

0 0.5774 0.4472 0 0
0 0 0.4472 0.5774 0.5774
0 0.5774 0.4472 0 0



Query matching
Each query is represented as well as a vector in the vector space. In
our example, queries are 10-entries vectors since we have 10 terms.
Query= Ranking of Web pages, that we represent with the vector

q = (0, 0, 0, 0, 0, 0, 0, 1, 1, 1)T ,

normalizing

q = (0, 0, 0, 0, 0, 0, 0, 0.5774, 0.5774, 0.5774)T

Which are the documents close to the query?

Query matching
A simple idea is to use cosine similarity which measures the cosine
of the angle between two vectors.

We compute the cosine similarity as qT A(:, i), obtaining the
following values

cos(θ) = (0, 0.6667, 0.7746, 0.3333, 0.3333)

Query= Ranking of Web pages,
D1: The Google matrix P is a model of the Internet
D2: Pij is nonzero if there is a link from Web page j to i
D3: The Google matrix is used to rank all Web pages
D4: The ranking is done by solving a matrix eigenvalue problem
D5: England dropped out of the top 10 in the FIFA ranking

Latent Semantic Indexing
We can have poor results or miss important documents

I Choice of the terms used in queries
I polysemy/synonymy
I errors

Texts seems to have latent semantic structure which is destroyed
by the variety of terms and synonyms in the text.

This hidden structure can be discovered by means of SVD, i.e.
projecting on a “reduced” space that can filter out some of the
“noise” of the language: this is the Latent semantic indexing

Low rank approximation
Using SVD we can project terms and document in a smaller space.
Let A be the term-by-document matrix, take SVD A = UΣV T ,
and choosing a small k

A ≈ Ak = UkΣkV T
k ,

Uk ≈document space, Vk ≈ terms space

Query matching
Compare q with documents projected in a k dimensional space, i.e.
the columns of Ak .
qT Ak = qT UkΣkV T

k = (UT
k q)T Hk ,Hk = ΣkV T

k .

cos(θj) = qT
k hj

‖qk‖ ‖hj‖
, qk = UT

k q.

We don’t need to explicitly compute Ak !
Vectors hk can be computed once and re-used for different queries.
With k = 2 in our toy example the cosines are

cos(θ) = (0.7928, 0.8408, 0.9652, 0.5011, 0.1852).

Query= Ranking of Web pages
D1: The Google matrix P is a model of the Internet
D2: Pij is nonzero if there is a link from Web page j to i
D3: The Google matrix is used to rank all Web pages
D4: The ranking is done by solving a matrix eigenvalue problem
D5: England dropped out of the top 10 in the FIFA ranking

Low rank approximation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
u1

-1

-0.5

0

0.5

u 2

Query

D5

D1

D2

D3

D4

SVD and Covariance
Let x1, . . . , xn ∈ Rm n vectors with zero average,
a = 1

n
∑n

j=1 xj = 0
How are those vectors correlated?
We seek for a direction that best approximates the distribution of
the vectors/ we look for the direction of greater variation

SVD, EIGENFACES, AND 3D RECONSTRUCTION 525

0 5 10 15 20 25 30 35 40
0

5

10

15

20

Width of a face (cm)

H
ei

gh
t o

f a
 fa

ce
 (c

m
) u1

u2

a

Fig. 2 The distribution of width and height measurements of a number of faces.

The reduced SVD, X = U+Σ+V T
+ , gives us the desired information. The two columns

of U+ give us the directions of maximum variation and the two singular values the
magnitudes of the standard deviations in these two directions,

U+ =
[

u1 u2

]
=

[
0.9778 −0.2095
0.2095 0.9778

]
,

Σ+ =

[
σ1 0
0 σ2

]
=

[
2.43 0
0 0.91

]
.(16)

The distribution described by U+ and Σ+ is illustrated by the ellipse shown in Fig-
ure 2. The ellipse is centered on the mean a and its principal axes are given by the
columns

[
u1 u2

]
of U+. Its principal semiaxes are 2σ1and 2σ2 in order to enclose

most of the measurements; a more detailed explanation follows below.
Let us now suppose that we are given the width and height measurements of an

object in an image and are asked to decide whether this object can possibly be a
face. It should be clear that one cannot simply use the distance from the mean—the
shape of the ellipse clearly gives a better indication of the nature of the distribution.
Intuitively we understand that the further a measurement is away from the ellipse,
the less chance it has of being a face. One can be a little more precise by assuming
that the measurements are normally distributed, a quite reasonable assumption. For
our 2D measurements this means that we assume the distribution,

p(x) =
1

2π|C| 1
2

exp

(
−1

2
(x− a)T C−1(x− a)

)
,

where C = XXT is the covariance matrix we used before and |C| its determinant.
This means that the probability that a measurement falls inside a region denoted by
A is given by

P =

∫

A

p(x)dx.

In particular, if we want to find the probability of a measurement inside the k standard
deviation ellipse, we integrate over that ellipse centered at a. A change of variables

D
ow

nl
oa

de
d

01
/0

4/
19

 to
 1

31
.1

14
.2

.8
8.

 R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

find u such that

µ = max
‖u‖2=1

1
n

n∑
j=1

(uT xj)2.

SVD and Covariance
Introducing the covariance matrix

C = 1
n

n∑
j=1

xjxT
j ,

we have that C = UcΛcUT
c and

µ = max
‖u‖2=1

(uT Cu) = max
‖y‖2=1

(yT Λcy) = max
‖y‖2=1

n∑
j=1

λj |yj |2.

We get µ = λ1 and y = e1, meaning that u = Ucy = Uce1 = u1
the dominant eigenvector of the covariance matrix.
Let X = 1√

n [x1, . . . , xn], we have

X = UΣV T

and Uc = U and Σ2 = Λc .

Eigenfaces
Extract relevant information contained in facial images.

Compare the representation of the faces rather than the faces
directly!

I Do facial images occupy some lower-dimensional subspaces?
I Eigenfaces is a simple algorithm proposed in the ’80s

Eigenfaces
Objective: fast, simple and accurate method

I Previous approach: concentrate on facial characteristics such
as shape of eyes, mouth, nose

I The naïve approach is not working! Heads can be flexed,
shades and lights, glasses...

I faces should be normalized with respect to position, size and
intensity

Distance between images

Distance between images

immagine da riconoscere

50 100 150 200 250 300

50

100

150

200

immagine riconosciuta

50 100 150 200 250 300

50

100

150

200

Idea: we need encoding/decoding techniques to reveal the
informative content emphasizing local and global features of a face.

The algorithm
Inizialization: acquire the training set :Faces Space

I1, I2, · · · , IM training set

In our case 15 persons wearing 11 different facial expressions,
M = 165.

Centering

Ψ = 1
M

M∑
i=1

Ii “average” face

Φi = Ii −Ψ difference with the average face

All the “shifted faces” have zero mean.
Vectorize each image and form the matrix

X = [Φ1(:),Φ2(:), · · · ,ΦM(:)]

We want to construct and orthogonal basis for the space spanned
by the faces

After centering
The “shifted” training set becomes

Eigenfaces
The eigenvalues of the covariance matrix C = XXT are called
eigenfaces

Computational issues

I C has size N2 × N2, if images are N × N....it can be a huge
full matrix
In our example, N2 = 77760

I Consider instead L = AT A which is only M ×M, in our
example M = 165.

I The eigenvectors C are related to those of L

(AT A)vi = µivi ,

A (AT A) vi = µiA vi ,

(AAT)Avi = µiA vi ,

substituting Avi = ui , the unscaled eigenvectors of C .
ui =

∑M
k=1 vikΦk .

The algorithm

I Compute the M eigenvectors vi of L = AT A and then
compute the eigenvectors ui

I Actually, find directly ui and vi with SVD of A!!
I

A = UΣV H ,

and we can even consider the reduced SVD.
U ∈ RN2×M ,Σ ∈ RM×M ,V ∈ RM×M .

The algorithm
The columns of U are the Eigenfaces

The algorithm
We can consider only k << M eigenfaces corresponding to the
dominant k singular values σi !

span{u1,u2, . . . ,uk} is the face space

Facial recognition
Ωi = U(:, 1 : k)T Φi is the projection of the i-th face in the
reduced face space.

Recognition: Given a query image IQ not in our training set,
I Compute the “shifted face” Γ = IQ −Ψ
I Project Γ on the space of the faces, we get Ω = U(:, 1 : k)T Γ.

Classifier
Given Ω how can I find its closest image Ii?

I Compute the distance to all the projected images
εi = ‖Ω− Ωi‖2

I If mini εi < θε then IQ is similar to Ij , j : mini εi = εj
I If, for every i , εi > θε, the image is classified as “unknown”

Summary
Recap:

I Collect a set of M faces. More effective if we have a number
of images for each person, with variation in expression and
lighting

I Build the matrix with the vectorized images as columns, and
subtract to it the average face

I Compute reduced SVD of A taking k << M terms
I The k left singular vectors represent the eigenfaces
I Project each image into the face space
I If mini ‖Ω− Ωi‖2 is sufficiently small we recognize the query

image.

Classification
A different application: Handwritten digits

book
2007/2/23
page 113

Chapter 10

Classification of
Handwritten Digits

Classification by computer of handwritten digits is a standard problem in pattern
recognition. The typical application is automatic reading of zip codes on envelopes.
A comprehensive review of different algorithms is given in [62].

10.1 Handwritten Digits and a Simple Algorithm
In Figure 10.1 we illustrate handwritten digits that we will use in the examples in
this chapter.

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Figure 10.1. Handwritten digits from the U.S. Postal Service database;
see, e.g., [47].

We will treat the digits in three different but equivalent formats:

1. As 16 × 16 gray scale images, as in Figure 10.1;

2. As functions of two variables, s = s(x, y), as in Figure 10.2; and

3. As vectors in R256.

In the classification of an unknown digit we need to compute the distance
to known digits. Different distance measures can be used, and perhaps the most
natural one to use is the Euclidean distance: stack the columns of the image in a

113

I Assume we have low resolution s × s images of handwritten
digits

I Vectorizing all the images corresponding to the same digit and
stacking them, we have for each digit d a matrix
A(d) ∈ Rm×nd , m = s2, m < nd .

I We expect rank(A(d)) < m, since otherwise the subspaces of
the different digits would intersect (all subsets of Rs2)

A(d) =
m∑

i=1
σiuivT

i

hence a(d)
j =

∑m
i=1(σivij)ui .

Classification

If an unknown digit can be better approximated in one particular
basis (say the basis of 3’s) of singular images than in the other
classes, then it is likely to be a 3.

Let z be the unknown digit, for each d = 0, 1, . . . , 9 compute the
least square solution of

min
α(d)
‖z − U(d)

k α(d)‖2

that is α(d) = (U(d)
k)T z , the solution is obtained projecting z onto

the image space of each digit.

min
α(d)
‖z − U(d)

k α(d)‖2 = ‖(I − U(d)
k (U(d)

k)T)z‖2.

Recommender systems
“A recommender system is a system which seeks to predict the
"rating" or "preference" a user would give to an item.”

Latent factor models: Explain the ratings by characterizing both
items and users on a few factors inferred from the ratings patterns
G.

Recommender systems

I Product-by-user matrix instead of the term-by document

u1

u2

u3

u4

u5

i1

i2

i3

i4

U

I

1

2

3

4

1

5

5

4

1

3

Associate the Utility matrix

A =


1 ? ? ?
2 3 ? ?
? 4 1 5
? ? 1 3
5 ? ? 4


The goal of a recommender system is to predict some of the ?

A Toy example

A =

HP1HP2HP3 TW SW 1SW 2SW 3
Alice
Bob
Carol
David


4 ? 5 1 ? ? 1
5 5 4 ? ? ? ?
? ? ? 2 4 5 ?
? 3 ? ? ? ? 3


Would Alice like SW2?

A Toy example
Fill in all of the empty cells with the average rating for that movie

Ã =

HP1HP2HP3 TW SW 1SW 2 SW 3
Alice
Bob
Carol
David


4 4 5 1 4 5 1
5 5 4 1.5 4 5 2
4.5 4 4.5 2 4 5 2
4.5 3 4.5 1.5 4 5 3


Compute SVD of Ã

A Toy example
Looking at the singular values of A, we can approximate A on the
? with what is predicted by the Ak .

A1 =


4.3853 3.9052 4.3694 1.4632 3.8910 4.8638 1.9473
4.6798 4.1673 4.6628 1.5615 4.1523 5.1903 2.0780
4.5378 4.0410 4.5214 1.5141 4.0263 5.0329 2.0150
4.4179 3.9341 4.4018 1.4741 3.9199 4.8998 1.9617



A Toy example
Substituting in A the unknown values with the predicted ones
(rounded) we get

Ã =

HP1HP2HP3TW SW 1SW 2SW 3
Alice
Bob
Carol
David


4 4 5 1 4 5 1
5 5 4 2 4 5 2
5 4 5 2 4 5 2
4 3 4 1 4 5 3



I Q:Would Alice like SW2?
I A:Mostly likely, yes! The value predicted is 5

A Toy example
Substituting in A the unknown values with the predicted ones
(rounded) we get

Ã =

HP1HP2HP3TW SW 1SW 2SW 3
Alice
Bob
Carol
David


4 4 5 1 4 5 1
5 5 4 2 4 5 2
5 4 5 2 4 5 2
4 3 4 1 4 5 3


I Q:Would Alice like SW2?

I A:Mostly likely, yes! The value predicted is 5

A Toy example
Substituting in A the unknown values with the predicted ones
(rounded) we get

Ã =

HP1HP2HP3TW SW 1SW 2SW 3
Alice
Bob
Carol
David


4 4 5 1 4 5 1
5 5 4 2 4 5 2
5 4 5 2 4 5 2
4 3 4 1 4 5 3


I Q:Would Alice like SW2?
I A:Mostly likely, yes! The value predicted is 5

References

I N. Muller, L.Magaia, B.M. Herbst. Singular Value
Decomposition, Eigenfaces, and 3D Reconstructions. SIAM
Review 2004.

I Lars Eldén. Matrix Methods in Data Mining and Pattern
Recognition 2007

Other factorizations
We seek to approximatelly factor data matrix A ∈ Rm×n as

A ≈ LMR, L ∈ Rm×r ,M ∈ Rr×r ,R ∈ Rr×n,

I symmetric eidecomposition A = QΛQT

I Singular value decomposition A = UΣV T

I Pivoted QR method, AΠ = QR, r11 ≥ r22 ≥ · · · ≥ rnn
I Interpolative decomposition AΠ ≈ C [I|T], where C is a subset

of the columns of A, and |tij | ≤ 2.
I CUR decomposition A ≈ CUR where C and R are subsets of

the columns and rows of A.
ID and CUR are easier to interpret because are expressed in terms
of factors in the original data set.

CUR factorization
Find C ,U,R, such that min ‖A− CUR‖F

I C is a subset of the columns of A
I R is a subset of the rows of A
I U is a small rank matrix

Motivations user-by-movie

 =

 users

U
(

movies
)

I C contains the most “important” users
I R contains the most “important” movies

Sparsity is preserved
Fundamental questions

I Which columns of A should go in C? Which rows of A should
go in R?

I Given C and R, how construct the best U?

Leverage scores:
Starting from A = UΣV T compute the row leverage score

`r ,j = ‖U(j , :)‖2

R is composed by the rows of A with the highest leverage score

To rank the importance of the columns, take the 2-norm of each
row of V :

`c,j = ‖V (j , :)‖2
C is composed by the columns of A with the highest leverage score
We can use some some random selection strategy based on
probability distribution {`r ,j/

∑m
j=1 `

2
r ,j}.

Constructing U
Once constructed C = A(:, q) and R = A(p, :),

I U = (A(p, q))−1. This choice recovers perfectly entries of A,
since

(CUR)(p, q) = A(p, q).
I U = C+AR+, optimal choice for the Frobenius norm

Given k < rank(A), and ε > 0, find
C ∈ Rm×c ,R ∈ Rr×n,U ∈ Rc×r such that

‖A− CUR‖2F ≤ (1 + ε)‖A− Ak‖2F ,

with c, r and rank(U) being as small as possible

Not always possible to have c, r = k.

Lower bound
For any A and CUR factorization such that

‖A− CUR‖2F ≤ (1 + ε)‖A− Ak‖2F .

Then for any k ≥ 1 and for any ε < 1/3,

c = Ω(k/ε)

r = Ω(k/ε)

and
rank(U) ≥ k/2.

Use randomizaed algorithm to have faster algorithms than SVD
Tipically c, r = O(k/eps),

References

I Drineas, Kannan, FOCS 2003
I Drineas, Kannan, , Mahoney, SIAM J on Computing 2006.

NMF
If A ∈ Rm×n

+ we seek for two nonnegative factors W ∈ Rm×k an
H ∈ Rk×n such that

A ≈WH.

Each column of A is a weigthed sum of the columns of W with
positive weights.
Example [Bindel 2018]
Meaning of columns of A Meaning of columns of W
Word in documents word in topics
images of faces images of facial features
connection of friends communities

More difficult to compute than SVD and with some problems
I Choice of k
I the optimization problem minW≥0,H≥0

1
2‖A−WH‖2F is

non-convex
I NMF is not incremental

NMF: Some algorithms
The problem is non convex =⇒ many local minima, in general an
iterative approach

I Coordinate descent method. R = A−WH, compute
wij = wij + s ≥ 0 where s minimizes the quadratic form

1
2‖A− (W + seieT

j)H‖2F
I ALS: Given A and Wi find

Hi = argmin
X∈Rk×n

‖A−WiX‖2F , make Hi ≥ 0

Wi+1 = argmin
X∈Rm×k

‖A− XHi‖2F make Wi+1 ≥ 0.

I ANLS:

Wi = argmin
X≥0

‖A− XHi‖2F ,Hi+1 = argmin
X≥0

‖A−WiX‖2F .

Independent convex problems but with nonnegative
constraints.

ANLS
Every limit point generated from the ANLS framework is a
stationary point for the non-convex original problem

To solve the least square problems inside the ANLS we can use
methods such as

I Active-set
I the projected gradient
I the projected quasi-Newton
I greedy coordinate descent

We can solve the problem also with normal equations

NMF: Facial Features extractions
As before a dataset of facial images

5 10 15

5

10

15

We compute NMF of the matrix, A ≈WH

NMF: Facial Features extractions
If we reshape and plot the columns of W

We can identify facial features such as eyes, mounts, mustaches,
etc.

NMF: Facial Features extractions

X(:, j)︸ ︷︷ ︸
jth facial image

≈
r∑

k=1

W (:, k)︸ ︷︷ ︸
facial features

H(k, j)︸ ︷︷ ︸
importance of features

in jth image

= WH(:, j)︸ ︷︷ ︸
approximation

of jth image

.

Figure 1: Decomposition of the CBCL face database, MIT Center For Biological and Computation Learning
(2429 gray-level 19-by-19 pixels images) using r = 49 as in [79].

images. In the case of facial images, the basis images are features such as eyes, noses, mustaches, and
lips (see Figure 1) while the columns of H indicate which feature is present in which image (see also
[79, 61]).

A potential application of NMF is in face recognition. It has for example been observed that NMF
is more robust to occlusion than PCA (which generates dense factors): in fact, if a new occluded
face (e.g., with sun glasses) has to be mapped into the NMF basis, the non-occluded parts (e.g., the
mustache or the lips) can still be well approximated [61].

2.2 Text Mining – Topic Recovery and Document Classification

Let each column of the nonnegative data matrix X correspond to a document and each row to a
word. The (i, j)th entry of the matrix X could for example be equal to the number of times the ith
word appears in the jth document in which case each column of X is the vector of word counts of a
document; in practice, more sophisticated constructions are used, e.g., the term frequency - inverse
document frequency (tf-idf). This is the so-called bag-of-words model: each document is associated
with a set of words with different weights, while the ordering of the words in the documents is not
taken into account (see, e.g., the survey [10] for a discussion). Note that such a matrix X is in general
rather sparse as most documents only use a small subset of the dictionary. Given such a matrix X
and a factorization rank r, NMF generates two factors (W,H) such that, for all 1 ≤ j ≤ n, we have

X(:, j)︸ ︷︷ ︸
jth document

≈
r∑

k=1

W (:, k)︸ ︷︷ ︸
kth topic

H(k, j)︸ ︷︷ ︸
importance of kth topic

in jth document

, with W ≥ 0 and H ≥ 0.

This decomposition can be interpreted as follows (see, also, e.g., [79, 101, 3]):

• Because W is nonnegative, each column of W can be interpreted as a document, that is, as a
bag of words.

3

[Gillis 2014]

NMF for clustering
If A is symmetric as when aij represent similarity between item i
and item j
If X = (x1, . . . , xn) is the data matrix, the A = XT X is a similarity
matrix.
A more used similarity measure is the following

eij = exp(−‖xi − xj‖2

µσ
), µ = max

ij
‖xi − xj‖2.

aij = d−1/2
i eijd−1/2

j , di =
n∑

j=1
eij .

I A is invariant under rotations or change of scale.

NMF for clustering
The symmetric NMF problem is

min
W≥0

‖A−WW T‖2F

can be solver with a penalty technique

min
W ,H≥0

‖A−WH‖2F + λ‖W − HT‖2F .

In the ideal case

A =



1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0
0 0 0 1 1 1 1 0 0
0 0 0 1 1 1 1 0 0
0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1


, w =



1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1


.

NMF for clustering
To extract clusters:

I normalize the rows of W with the infinity norm,
W̃ = WD−1,D = diag(‖W (i , :)‖∞)

I Bij = 0 if W̃ij < 1, Bij = 1 if W̃ij ≥ 1, element i is set in
cluster j .

I if W (i , :) = 0 element i cannot be assigned to any cluster
(very unlikely)

I
∑N

j=1 B(i , j) 6= 1 element i can be assigned to more than a
cluster (very unlikely)

I If all the columns of B have at least a nonzero entry then the
algorithm produced the correct number of clusters.

I if some columns of B are zero, the algorithm produced a lower
number of clusters

[Romani]

References

I Lars Eldén Matrix Methods in Data Mining and Pattern
Recognition 2007

I N.Gillis The Why and How of Nonnegative Matrix
Factorization, 2014. [arXiv]

