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Ax=b

Let A € R™" be a nonsingular matrix then for any vector b € R"
there is a vector x € R" such that Ax = b

» In many applications A is non square or is singular.

» The typical situation is A € R™*" m > n (overdetermined).
The problem Ax = b has in general no solution.

> Let r = b — Ax, we want to find vector x such that the
residual is made as small as possible.

» If we take the Euclidean norm we get the linear least square

problem
min ||b — Ax||2




Least Squares

» With geometrical considerations it is intuitive that the residual
should be orthogonal to the column space of A, the range
space of A, denoted by R(A).

» Imposing r L R(A) we get Vz € R"”
0=(Az)"(b—Ax)=zTATb—2zTATAx = zT (ATh— AT Ax)

» A vector x € R" minimizes the residual norm
lrll2 = [|b — Ax||2 iff r L R(A) or equivalently

ATAx = ATh

AT A is nonsingular and the normal equations have a unique
solution iff A has full rank.




Normal equations

A full rank then x = (AT A)"1AT b is the unique solution of the
normal equations

AT = (ATA)TIAT AT c R

is called the Moore-Penrose pseudoinverse
To solve normal equations

> In general we do not work with pseudoinverse!

> use factorizations instead
» Cholesky
» QR
» Singular Value decomposition
Each factorization requires O(n?m) to compute the factors and
O(nm) for the right hand side




Cholesky

if Ais full rank, AT A is symmetric and positive definite, then we
can compute the Cholesky factorization of ATA = LLT with L
lower triangular, then

x=Atb=(LLT) TATh =L~ T(L7Y(AT b))
- Compute L such that ATA=LLT

- Let y =ATh, solve Lz =y

- Solve LTx =z




QR

In situations where it is important to separate informations from
noise is better to work with orthogonal vectors

Q € R™" is orthogonal if QT Q =/, i.e. the columns of Q are
such that g q; = 0,i # j and ¢/ q; = 1.

» P, Q orthogonal — PQ orthogonal
> QQT =1

» @ € R™k with orthogonal columns, there exists
Q, € R™(n=K) guch that Q = [Q1]@2] is orthogonal.

Q orthogonal then ||Qx||2 = [|x]|2

U e R™™ V e R™" orthogonal ||UAV ||, = ||A]|2 and
|UAV|[e = [|All¢.
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QR

Let A= QR where Q = [Q1|Q2] with Q; € R™*" and

R = l 'gl ] e R™" A= Q1R;, we have

1718 = I~ QRx] =
2
Qb Rix
[ A ] _ [ v ] = Q] b — Rix|3 + 1QF b3
2

If Ais full rank x = R * @/ b minimizes ||r||2.

Backward stability

Let A€ R™*" m > n be full rank, solving the least square problem
with with QR factorization (Householder transformations) the
computed solution X is the exact least square solution of

min |[(A+ AA)X — (b+ db)]|2

where [|AA|F < comnel||A|lg,  [|0b]l2 < camn||b|l2 + O(£?).




SvD

- QR based method provides an orthogonal basis only for R(A).
- with SVD we have an orthonormal basis also for the row space
of A.

Let A € R™*" a singular value decomposition is a factorization
A=UxVvT

where U € R™™ V € R™" are orthogonal matrices,
Y = diag(01,02, - -, Tmin(n,m)) is @ “diagonal” matrix, with
0120222 Omin(n,m) > 0.

- o; are singular values
- uj are the left singular vectors, and v; are the right singular
vectors, Av; = oju;.
You might be already come across SVD with different names: PCA
or Karhunen-Loewe expansion.




Existance
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Solving LSP by SVD

m>n, A= [U]_‘UQ] l % ] VT, Up € Rmxn

X
|78 = 16— UV Tx Hz—H(UTb> (O)WX

The least square solution is given by

2

2

c=VE W= u'b,
i=1 i

If Ais full rank o; > 0 and the solution is unique.




Fundamental Subspaces

The SVD gives orthogonal bases of the four fundamental
subspaces of a matrix. Assume that A has rank r, then

01202220, >0p41="=0,=0

R(A) The left singular vectors uy, up, ..., u, are an
orthogonal basis for R(A). R(A) = span(uy, ..., u,)
and rank(A) = r.
N(A) The right singular vectors v,41, Vry2,..., Vv, are an
orthonormal basis for N(A), i.e. dim(N(A)) =n—r.
R(AT) The right singular vectors vi, vo,..., v, are an
orthogonal basis for R(AT).
N(AT) Le left singular vectors u, .1, U412, ..., U are an
orthonormal basis for N(AT).
Changing basis b’ = UT b, x’ = VT x we have

b=Ax=UTb=U"TAx = b = TX

A reduces to diagonal form when the range is expressed in the basis
of columns of U and the domain in the basis of the column of V.




Matrix properties

If A€ R™" and there exists a complete set of eigenvectors then
A=SAS7L.

The change of basis corresponds to b’ = S~!h, x' = S~1x and
b = AX'.
» SVD uses two different basis while eigendecompostion only
one
» SVD orthonormal basis while only normal matrices are
diagonalizable by an orthogonal matrix

> All the matrices have SVD decomposition while only
diagonalizable matrices have an eigendecomposition.




Useful properties

> ||All2 = o1, |AllF = \/o—f Y oR4 -t o2
0<o= \/)\(ATA) = \/)\(AAT), for \(ATA) # 0.
If A= AT, 7 = ]\A)
A€ R, |det(A)| = [T o
.
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Low rank approximation

Eckart-Young-Mirsky Theorem

For any k,0 < k < r let

Ax = zkja,-u,-v,-r
i=1
then
A= All2 = i |A = Bll2 = 0441
and

_ — ; _ — 2 2
1A= Adlr = min 1A= Blr=\fof,y - 402




Rank-deficient or underdetermined systems

T
w3 2] ]

where ¥ = diag(o1,...,0,) € R™*". Setting y = VTx, and

HEFA
AR

[r[|3 = || Ax — b||3 = H[ 0 0
= |Z1y1 — b1 |3 + || b2)3

Y 'b
Y2
minimal norm solution is given setting y» = 0, and hence x = AT b,

-1
A+:Vlzl 0

2

2

The solutions are y = [ 1 ] , where y» is arbitrary. The

0 0 ] UT. Same for undetermined systems.



Computing the SVD

There are stable algorithms for computing the SVD also when A is
rank-deficient.

» First reduce the matrix to bidiagonal form with Householder
transformations

» Find the SVD decomposition of the bidiagonal matrix

Cost O(mn?) flops.
The truncated SVD can be computed using a process employing
Lanczos method.

References

» Lloyd N. Trefethen, David Bau, Ill, Numerical Linear Algebra,
1997

> J. Demmel, Applied Numerical Linear Algebra, 1997.




Application of SVD

> Image compression
» Text mining
» Face recognition

» Recommender systems




Image compression with SVD

An m-by-n image is an m-by-n matrix X where Xj; represents the
brightness of pixel (i,/). Storing X requires storing the mn entries

X=Uzv’

then
Xe=U(G1:kZ(1: k1 k)VT(1:k,:)

is the best rank-k approximation. To store Xy only (n+ m)k
values needed.




Text mining with SVD

» Extract information from large collections of texts
» Examples: find relevant information from the web, from large
collection of scientific papers, etc

> Usually we have a query




The vector space model

» Documents and query are represented as vectors in R™, m is
the size of our vocabulary

» Document preparation

» Elimination of the stop words
» Stemming: take only the roots of the words

» construction of the term-by-document matrix

» Find document vector close to query




The vector space model

The term-by-document matrix A, is as follows

Aij # 0 if document j—th contains term /—th

Usually a weighting technique is used
Aij = filog(n/nj)

where f;; is the frequency of term i in doc j, and n; is the number
of documents in which term i appears.




The vector space model

Typically a very sparse matrix
A toy example [Lars Eldén 2007]

T1o

eigenvalue
England
FIFA
Google
Internet
link
matrix
page

rank

Web

Dy

The Google matrix P is a model of

the Internet

Pj; is nonzero if there is a link

from Web page j to i

The Google matrix is used to rank

all Web pages

The ranking is done by solving a matrix

eigenvalue problem
England dropped out of the top 10 in

the FIFA ranking




The vector space model

Term-by-Document matrix

Di D, D3 Dy Ds

eigenvalue [ 0 0 0 1 0
England 0 0 0 0 1
FIFA 0 0 0 0 1
Google 1 0 1 0 0
A= Internet 1 0 0 0 0
link 0 1 0 0 0
matrix 1 0 1 1 0
page 0 1 1 0 0
rank 0 0 1 1 1
Web | 0 1 1 0 0 |

D;: The Google matrix P is a model of the Internet
D3: The Google matrix is used to rank all Web pages




The vector space model

Term-by-Document matrix

Di D, D3 Dy Ds

eigenvalue [ 0 0 0 1 0
England 0 0 0 0 1
FIFA 0 0 0 0 1
Google 1 0 1 0 0
A= Internet 1 0 0 0 0
link 0 1 0 0 0
matrix 1 0 1 1 0
page 0 1 1 0 0
rank 0 0 1 1 1
Web | 0 1 1 0 0 |

Dy: The Google matrix P is a model of the Internet
D3: The Google matrix is used to rank all Web pages




Vector space model

Normalizing by column, i.e. dividing by ||A(:,/)||2 we get

0 0 0 0.5774 0

0 0 0 0 0.5774

0 0 0 0 0.5774
0.5774 0 0.4472 0 0
A 0.5774 0 0 0 0
0 0.5774 0 0 0
0.5774 0 0.4472 0.5774 0
0 0.5774 0.4472 0 0

0 0 0.4472 0.5774 0.5774
0 0.5774 0.4472 0 0




Query matching

Each query is represented as well as a vector in the vector space. In
our example, queries are 10-entries vectors since we have 10 terms.
Query= Ranking of Web pages, that we represent with the vector

g =(0,0,0,0,0,0,0,1,1,1)",
normalizing

q=(0,0,0,0,0,0,0,0.5774,0.5774,0.5774) "

Which are the documents close to the query?




Query matching

A simple idea is to use cosine similarity which measures the cosine
of the angle between two vectors.

We compute the cosine similarity as g A(:, i), obtaining the
following values

cos(f) = (0,0.6667, 0.7746,0.3333, 0.3333)

Query= Ranking of Web pages,

Dli
D2:
Ds:
D4Z
D5Z

The Google matrix P is a model of the Internet

Pjj is nonzero if there is a link from Web page j to i

The Google matrix is used to rank all Web pages

The ranking is done by solving a matrix eigenvalue problem

England dropped out of the top 10 in the FIFA ranking




Latent Semantic Indexing

We can have poor results or miss important documents
» Choice of the terms used in queries
» polysemy/synonymy
> errors

Texts seems to have latent semantic structure which is destroyed
by the variety of terms and synonyms in the text.

This hidden structure can be discovered by means of SVD, i.e.
projecting on a “reduced” space that can filter out some of the
“noise” of the language: this is the Latent semantic indexing




Low rank approximation

Using SVD we can project terms and document in a smaller space.
Let A be the term-by-document matrix, take SVD A= ULV,
and choosing a small k

Ax A= U V],

U ~document space, Vi ~ terms space




Query matching

Compare q with documents projected in a k dimensional space, i.e.
the columns of Ag.
qTAc = q" U V)] = (U] q)T Hi, Hi = iV,

I hj

IquH I1hjll”

We don’t need to explicitly compute A!
Vectors hy can be computed once and re-used for different queries.
With k = 2 in our toy example the cosines are

cos(ty) — g = U a

cos(6) = (0.7928,0.8408, 0.9652, 0.5011, 0.1852).

Query= Ranking of Web pages

D1: The Google matrix P is a model of the Internet

D2: Pj; is nonzero if there is a link from Web page j to i

D3: The Google matrix is used to “to rank all Web pages

D4: The ranking is done by solving a matrix eigenvalue problem
D5: England dropped out of the top 10 in the FIFA ranking
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rank approximation
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SVD and Covariance

Let x1,...,x, € R™ n vectors with zero average,
1
a=152j%=0
How are those vectors correlated?
We seek for a direction that best approximates the distribution of
the vectors/ we look for the direction of greater variation

find u such that

1 n
= max —Z(UTXJ-)Z.
lull=1 17 5=




SVD and Covariance

Introducing the covariance matrix
1 n
-
C=12 %%
n“
j=1
we have that C = UC/\CUCT and

n
p= max (u” Cu) = max (y Acy) = max Ajlyj

|2
lulla=1 llyll=1 Iyll=15=3

We get © = A1 and y = e, meaning that u = U,y = Ucer = 11
the dominant eigenvector of the covariance matrix.
Let X = %[Xl, ..., Xn], we have

X=UzVv'’

and U. = U and £? = A..




Eigenfaces

Extract relevant information contained in facial images.

Compare the representation of the faces rather than the faces
directly!

» Do facial images occupy some lower-dimensional subspaces?

» Eigenfaces is a simple algorithm proposed in the '80s




Eigenfaces

Objective: fast, simple and accurate method

» Previous approach: concentrate on facial characteristics such
as shape of eyes, mouth, nose

» The naive approach is not working! Heads can be flexed,
shades and lights, glasses...

» faces should be normalized with respect to position, size and
intensity




Distance between images

%ﬁﬁ




Distance between images

immagine da riconoscere immagine riconosciuta

Idea: we need encoding/decoding techniques to reveal the
informative content emphasizing local and global features of a face.




The algorithm

Inizialization: acquire the training set :Faces Space

lh,b,--- Iy training set

In our case 15 persons wearing 11 different facial expressions,
M = 165.




Centering

1M
V= u Z I;  "average” face
i=1

$; = [; — VU difference with the average face

All the “shifted faces” have zero mean.
Vectorize each image and form the matrix

X = [01(:), ®2(), - -, Dm(:)]

We want to construct and orthogonal basis for the space spanned
by the faces




After centering

The “shifted” training set becomes




Eigenfaces

The eigenvalues of the covariance matrix C = XX are called
eigenfaces




Computational issues

» C has size N2 x N2, if images are N x N....it can be a huge
full matrix
In our example, N2 = 77760

» Consider instead L = AT A which is only M x M, in our
example M = 165.

» The eigenvectors C are related to those of L

(ATA)v; = pivi,

(ATAYv; = piAv;,

(AAT)Avi = piAv;,

substituting Av; = u;, the unscaled eigenvectors of C.
M
Ui = Y k=1 VikPk.




The algorithm

» Compute the M eigenvectors v; of L = AT A and then
compute the eigenvectors u;

» Actually, find directly u; and v; with SVD of All

>
A= UzVH,

and we can even consider the reduced SVD.
U e RVXM 5 c RMXM '\ ¢ RMXM,




The algorithm

The columns of U are the Eigenfaces




The algorithm

We can consider only k << M eigenfaces corresponding to the
dominant k singular values o;!

span{uy, uy,...,ux} is the face space

r
u,

N{O
9
spm-o-----
o




Facial recognition

Q; = U(:,1: k)T ®; is the projection of the i-th face in the
reduced face space.

Recognition: Given a query image /g not in our training set,
» Compute the “shifted face”" [ = lg — V¥
» Project I on the space of the faces, we get Q = U(:,1: k)" T.




Classifier

Given Q how can | find its closest image /;?

» Compute the distance to all the projected images
ei = Q- Qi
> If min;e; < 0. then Ig is similar to /;, j : minj&; = ¢;

> If, for every i, €; > 6., the image is classified as “unknown”




Summary

Recap:

>

Collect a set of M faces. More effective if we have a number
of images for each person, with variation in expression and
lighting

Build the matrix with the vectorized images as columns, and
subtract to it the average face

Compute reduced SVD of A taking k << M terms

The k left singular vectors represent the eigenfaces

Project each image into the face space

If min; || — Q]| is sufficiently small we recognize the query
image.




Classification

A different application: Handwritten digits

| 2345
©7210

> Assume we have low resolution s x s images of handwritten
digits

» Vectorizing all the images corresponding to the same digit and
stacking them, we have for each digit d a matrix
Ald) c RMXna m — 2 < ng.

> We expect rank(A(9)) < m, since otherwise the subspaces of
the different digits would intersect (all subsets of RS")

m
A(d) = ZJ,'U,'V,-T
i=1

(d) m
hence a = it 1(oivij)u;.




Classification

If an unknown digit can be better approximated in one particular
basis (say the basis of 3's) of singular images than in the other
classes, then it is likely to be a 3.

Let z be the unknown digit, for each d =0,1,...,9 compute the
least square solution of

: _ ) _(d)
minllz = U2

that is o{9) = (U,((d))Tz, the solution is obtained projecting z onto
the image space of each digit.

min|z — U@l = [[(1 = U (U ]l




Recommender systems

“A recommender system is a system which seeks to predict the
"rating" or "preference" a user would give to an item.”

Latent factor models: Explain the ratings by characterizing both

items and users on a few factors inferred from the ratings patterns
G.




Recommender systems

» Product-by-user matrix instead of the term-by document

Associate the Utility matrix

>

Il
(6, IEEESIEEEEN I o I
S S N CC IR
N =Y
S W O v

The goal of a recommender system is to predict some of the 7



A Toy example

HP1 HP2 HP3 TW SW1SW2SW3

Alice 4 5 1 1
A= Bob 5 5 4

Carol 2 4 5

David 3 3

Would Alice like SW27?




A Toy example

Fill in all of the empty cells with the average rating for that movie

HP1HP2 HP3 TW SW1SW?2 SW3

Alice 4 5 1 1
A= Bob 5 5 4

Carol 2 4 5

David 3 3

Compute SVD of A




A Toy example

Looking at the singular values of A, we can approximate A on the
7 with what is predicted by the A.

A1

4.3853
4.6798
4.5378
4.4179

3.9052
4.1673
4.0410
3.9341

4.3694
4.6628
4.5214
4.4018

1.4632
1.5615
1.5141
1.4741

3.8910
4.1523
4.0263
3.9199

4.8638
5.1903
5.0329
4.8998

1.9473
2.0780
2.0150
1.9617




A Toy example

Substituting in A the unknown values with the predicted ones
(rounded) we get

HP1HP2 HP3 TW SW1SW25W3

Alice 4 5 1 1
A= Bob 5 5 4
Carol 2 4 5

David 3 3




A Toy example

Substituting in A the unknown values with the predicted ones
(rounded) we get

HP1HP2 HP3 TW SW1SW25W3

Alice 4 5 1 1
A= Bob 5 5 4

Carol 2 4 5

David 3 3

» Q:Would Alice like SW27?




A Toy example
Substituting in A the unknown values with the predicted ones
(rounded) we get

HP1HP2 HP3 TW SW1SW25W3

Alice 4 5 1 1
A= Bob 5 5 4

Carol 2 4 5

David 3 3

» Q:Would Alice like SW27?
> A:Mostly likely, yes! The value predicted is 5




References

» N. Muller, L.Magaia, B.M. Herbst. Singular Value
Decomposition, Eigenfaces, and 3D Reconstructions. SIAM
Review 2004.

» Lars Eldén. Matrix Methods in Data Mining and Pattern
Recognition 2007




Other factorizations

We seek to approximatelly factor data matrix A € R™*" as

AxIMR, LeR™'" MecR™* RecR™",

» symmetric eidecomposition A = QAQT
» Singular value decomposition A= ULV T
» Pivoted QR method, Al1 = QR, n1 > ro >+ >ty

» Interpolative decomposition Al = C[/| T], where C is a subset
of the columns of A, and |t;| < 2.

» CUR decomposition A =~ CUR where C and R are subsets of
the columns and rows of A.

ID and CUR are easier to interpret because are expressed in terms
of factors in the original data set.




CUR factorization
Find C, U, R, such that min||A — CUR||

» C is a subset of the columns of A
» R is a subset of the rows of A
» U is a small rank matrix

Motivations

user-by-movie | = users U( movies )

» C contains the most “important” users
» R contains the most “important” movies
Sparsity is preserved
Fundamental questions
» Which columns of A should go in C? Which rows of A should
go in R?
» Given C and R, how construct the best U?




Leverage scores:

Starting from A = UL VT compute the row leverage score

ey = 1UG, )2

R is composed by the rows of A with the highest leverage score

To rank the importance of the columns, take the 2-norm of each
row of V:

lej=1VU, )l

C is composed by the columns of A with the highest leverage score
We can use some some random selection strategy based on

probability distribution {£,;/>>"4 Ef,j}.




Constructing U

Once constructed C = A(:,q) and R = A(p, :),

» U= (A(p,q))~L. This choice recovers perfectly entries of A,
since

(CUR)(p, q) = A(p, q)-

» U= CTAR™, optimal choice for the Frobenius norm




Given k < rank(A), and € > 0, find
CeR™C ReR™ U e R such that

IA— CUR|[: < (1+¢€)[lA— AxllZ,
with ¢, r and rank(U) being as small as possible

Not always possible to have ¢, r = k.




Lower bound
For any A and CUR factorization such that

IA — CUR||E < (1 +¢)[lA~ Akll?.
Then for any k > 1 and for any € < 1/3,
c = Q(k/e)

r=Q(k/e)
and

rank(U) > k/2.

Use randomizaed algorithm to have faster algorithms than SVD
Tipically ¢, r = O(k/eps),




References

» Drineas, Kannan, FOCS 2003
» Drineas, Kannan, , Mahoney, SIAM J on Computing 2006.




NMF

If A€ RT*" we seek for two nonnegative factors W € R™*k an
H € R¥*" such that
A~ WH.

Each column of A is a weigthed sum of the columns of W with
positive weights.
Example [Bindel 2018]

Meaning of columns of A ‘ Meaning of columns of W

Word in documents word in topics
images of faces images of facial features
connection of friends communities
More difficult to compute than SVD and with some problems
» Choice of k
> the optimization problem miny >0 H>0 %HA — WH||% is
non-convex

» NMPF is not incremental




NMF: Some algorithms

The problem is non convex = many local minima, in general an
iterative approach
» Coordinate descent method. R = A — WH, compute
wjj = wjj + s > 0 where s minimizes the quadratic form

1
SIA— (W + seie] YA
» ALS: Given A and W; find

H; = argmin ||A — W;X||%, make H; >0
XEeRkxn

Wi, 1 = argmin |[A — XH;||# make W; ;1 > 0.
XeRmxk

> ANLS:
W; = argmin ||A — XH;||%, Hi11 = argmin ||A — W, X||%.
X>0 X>0

Independent convex problems but with nonnegative
constraints.




ANLS

Every limit point generated from the ANLS framework is a
stationary point for the non-convex original problem

To solve the least square problems inside the ANLS we can use
methods such as

> Active-set

> the projected gradient

> the projected quasi-Newton
> greedy coordinate descent

We can solve the problem also with normal equations




NMF: Facial Features extractions

As before a dataset of facial images

T

5 10 15

We compute NMF of the matrix, A ~ WH




NMF: Facial Features extractions

If we reshape and plot the columns of W

We can identify facial features such as eyes, mounts, mustaches,
etc.




NMF: Facial Features extractions

s
NEIEEDY W k) Hkj) = WHG)
N———r Pt N—— N—— ————

Jjth facial image facial features importance of features approximation

— e P in jth image of jth image
T = A9 " ¥ -
L i B )\
i e el B ! - u | . -
— )‘h—. - |
- 2. [
s e ‘ T
> ——
—
- - - 7 -

[Gillis 2014]




NMF for clustering

If Ais symmetric as when aj; represent similarity between item i

and item j
If X = (x1,...,Xp) is the data matrix, the A= X7 X is a similarity

matrix.
A more used similarity measure is the following

Ixi — xilI?

ejj = exp(— o

o = maxlx - X2

n

_ g2, 412 _

ajj = d,- e,JdJ s d,' = Z €ij-
Jj=1

» A is invariant under rotations or change of scale.




NMF for clustering
The symmetric NMF problem is
min 1A — ww Tz
can be solver with a penalty technique

i — WH||? W — HT|%.
ery,gollA £+ Al I3

In the ideal case
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NMF for clustering

To extract clusters:

» normalize the rows of W with the infinity norm,
W = WD, D = diag(||W(i, )|l o0)
» B =0if W; <1, Bj=1if W; > 1, element / is set in
cluster .
» if W(i,:) =0 element i cannot be assigned to any cluster
(very unlikely)
> ZJN:1 B(i,j) # 1 element i can be assigned to more than a
cluster (very unlikely)
» If all the columns of B have at least a nonzero entry then the
algorithm produced the correct number of clusters.
» if some columns of B are zero, the algorithm produced a lower
number of clusters

- - -
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