1 QBD Processes

1.1 Birth-death processes

We wish to model the evolution of a queue of people waiting in line. At each moment, there is a probability c that an additional customer arrives and the queue length increases, a probability a that a customer (if there is one) is served and leaves the queue, and a probability b that no one arrives or is served and the queue length stays the same. Clearly one must have a + b + c = 1. We assume $a \neq 0, c \neq 0$.

This situation is modelled by a Markov chain with state the number of people in the queue; hence the state set is \mathbb{N} . It is a Markov chain with an infinite number of states, which is a new concept for us.

We can write the transition probabilities in an infinite matrix

$$\begin{bmatrix} a+b & a & & & \\ c & b & a & & \\ & c & b & a & \\ & & \ddots & \ddots & \ddots \end{bmatrix}.$$
 (1)

1.2 Transient or recurrent?

All the states belong to the same class. Are they transient or recurrent? Note that this is not a most question: one can have Markov chains with infinite states in which each state is transient: for instance, take model (1) with a = b = 0, c = 1.

To answer this question, we need $\mathbb{P}[x_k = 0 \text{ for some } k > 0 \mid x_0 = 0]$. Clearly, in view of the first transition, this is equal to a+b+cg, where $g = \mathbb{P}[x_k = 0 \text{ for some } k > 1 \mid x_1 = 1]$, that is, the probability of *eventually* returning to level 0 starting from level 1.

0

Let us divide on the different things that can happen at time 1: we have

g =	\leq	ı L	+		\underbrace{bg}	+		cg^2	,
	return	imm	e-	x_1	= 1, t	hen	go u	p1l	evel,
	diately	to	0,	eve	entually	re-	ther	go d	lown
	$x_1 = 0$			tur	n to 0		(eve	ntual	ly)
							twic	е	

This equation has two solutions. One is 1, for a + b + c = 1. The other is $\frac{a}{c}$. The following result holds.

Lemma 1. The quantity $g = \mathbb{P}[x_k = 0 \text{ for some } k > 1 | x_1 = 1]$ is the smallest solution of the equation $a + bx + cx^2 = x$.

Proof. (sketch, not a real proof). Let h be this smallest solution, and $g_i = \mathbb{P}[x_k = 0 \text{ for some } k \text{ with } 1 \le k \le i \mid x_1 = 1]$. Clearly, g_i is increasing and its limit is g. One can prove by induction that $g_i \le h$.

Hence if $\frac{a}{c} < 1$ ("more people arrive than leave the queue"), then g < 1, a + b + cg < 1, and the queue is transient. Intuitively, with probability 1 the number of people in the queue grows indefinitely. If $\frac{a}{c} \geq 1$ ("more people leave"), then g = 1, and the queue is recurrent. The in-between case, a = c, is known as *null recurrent*. The queue returns to lower states with probability 1,

but takes infinitely long time to do so. In contrast, when $\frac{a}{c} < 1$ we say that the queue is *positive recurrent*.

1.3 Steady-state probability

When the queue is recurrent, it makes sense to compute an invariant measure, that will be the steady-state limit distribution.

The stationary probability vector π must satisfy

$$(a+b)\pi_0 + a\pi_1 = \pi_0 \tag{2}$$

$$c\pi_k + b\pi_{k+1} + a\pi_{k+2} = \pi_{k+1} \qquad k \ge 0. \tag{3}$$

Equation (3) falls under the general theory for linear recurrence sequences, i.e., all solutions of (3) are of the form $\alpha x_1^k + \beta x_2^k$, where x_1 and x_2 are the solutions of the equation $c + bx + ax^2 = x$. These solutions are $x_1 = 1$ and $x_2 = r := \frac{c}{a}$ (it's the reversal of the equation that we considered above). To get a vector with $\sum_{k=1}^{\infty} \pi_k = 1$, one must have $\alpha = 0$. Then $\beta = (\sum_{k=0}^{\infty} x_2^k)^{-1}$. Luckily for us, this (only) solution satisfies (2) as well.

So we get the following:

Theorem 2. The steady-state distribution of (1) (when it is positive recurrent, *i.e.*, c < a) is given by $\pi_k = (1 - r)^{-1} r^k$, with $r = \frac{c}{a}$.

1.4 Now with matrices

A very quick description of what happens if we consider a "block case" of this problem.

Suppose that we have a Markov chain that models the arrival rate. For instance (very simple case), we have two states, "congestioned" and "not congestioned". Their transition matrix might look like this:

$$P = \begin{bmatrix} 0.9 & 0.3\\ 0.1 & 0.7 \end{bmatrix},$$

i.e., \mathbb{P} [not congestioned \rightarrow congestioned] = 0.1, \mathbb{P} [congestioned \rightarrow not congestioned] = 0.3, and so on. Depending on the state, we may have different arrival probabilities. In general, there are three matrices A, B, C, with A+B+C = P, with $A_{ij} = \mathbb{P}$ [one person leaves the queue, and $j \rightarrow i$], $B_{ij} = \mathbb{P}$ [the queue stays the same length, and $j \rightarrow i$], $C_{ij} = \mathbb{P}$ [one person joins the queue, and $j \rightarrow i$].

The transition matrix is now the infinite block tridiagonal matrix

$$\begin{bmatrix} A+B & A & & \\ C & B & A & \\ & C & B & A \\ & & \ddots & \ddots & \ddots \end{bmatrix}$$
(4)

This model is called *QBD* (quasi-birth-death).

An argument similar to the one in scalar case yields $A + BG + CG^2 = G$, where G is the matrix so that $G_{ij} = \mathbb{P}$ [we return from level 1 to level 0 for the first time, and $j \to i$] (first return probabilities). G is the smallest solution (componentwise) to the matrix equation $A + BX + CX^2 = X$. There is no easy closed-form formula, but it can be determined using several matrix iterations (simplest of all: $X_{k+1} = A + BX_k + CX_k^2$, with $X_0 = 0$, converges monotonically to G). The model is positive recurrent if $\rho(G) = 1$. Similarly, there is a matrix R which is the minimal solution to $AY^2 + BY + C = Y$, and the invariant measure is of the form $\pi_k = w^T R^k$ for some vector w^T

Similarly, there is a matrix R which is the minimal solution to $AY^2 + BY + C = Y$, and the invariant measure is of the form $\pi_k = w^T R^k$ for some vector w^T (note that π_k , probabilities of being at level k, is a vector with n states, where n is the dimension of the "environment" queue). Matrix analysis is a powerful tool to study these equations. For instance, the 2n zeros of $f(z) = \det(A+Bz+Cz^2)$ are the eigenvalues of G and those of R^{-1} .