
1 QBD Processes

1.1 Birth-death processes

We wish to model the evolution of a queue of people waiting in line. At each
moment, there is a probability c that an additional customer arrives and the
queue length increases, a probability a that a customer (if there is one) is served
and leaves the queue, and a probability b that no one arrives or is served and
the queue length stays the same. Clearly one must have a + b + c = 1. We
assume a 6= 0, c 6= 0.

This situation is modelled by a Markov chain with state the number of
people in the queue; hence the state set is N. It is a Markov chain with an
infinite number of states, which is a new concept for us.

We can write the transition probabilities in an infinite matrix
a+ b a
c b a

c b a
. . .

. . .
. . .

 . (1)

1.2 Transient or recurrent?

All the states belong to the same class. Are they transient or recurrent? Note
that this is not a moot question: one can have Markov chains with infinite states
in which each state is transient: for instance, take model (1) with a = b = 0, c =
1.

To answer this question, we need P [xk = 0 for some k > 0 | x0 = 0]. Clearly,
in view of the first transition, this is equal to a+b+cg, where g = P [xk = 0 for some k > 1 | x1 = 1],
that is, the probability of eventually returning to level 0 starting from level 1.

Let us divide on the different things that can happen at time 1: we have

g = a︸︷︷︸
return imme-

diately to 0,

x1 = 0

+ bg︸︷︷︸
x1 = 1, then

eventually re-

turn to 0

+ cg2︸︷︷︸
go up 1 level,

then go down

(eventually)

twice

This equation has two solutions. One is 1, for a + b + c = 1. The other is a
c .

The following result holds.

Lemma 1. The quantity g = P [xk = 0 for some k > 1 | x1 = 1] is the smallest
solution of the equation a+ bx+ cx2 = x.

Proof. (sketch, not a real proof). Let h be this smallest solution, and gi =
P [xk = 0 for some k with 1 ≤ k ≤ i | x1 = 1]. Clearly, gi is increasing and its
limit is g. One can prove by induction that gi ≤ h.

Hence if a
c < 1 (“more people arrive than leave the queue”), then g < 1,

a + b + cg < 1, and the queue is transient. Intuitively, with probability 1
the number of people in the queue grows indefinitely. If a

c ≥ 1 (“more people
leave”), then g = 1, and the queue is recurrent. The in-between case, a = c, is
known as null recurrent. The queue returns to lower states with probability 1,
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but takes infinitely long time to do so. In contrast, when a
c < 1 we say that the

queue is positive recurrent.

1.3 Steady-state probability

When the queue is recurrent, it makes sense to compute an invariant measure,
that will be the steady-state limit distribution.

The stationary probability vector π must satisfy

(a+ b)π0 + aπ1 = π0 (2)

cπk + bπk+1 + aπk+2 = πk+1 k ≥ 0. (3)

Equation (3) falls under the general theory for linear recurrence sequences,
i.e., all solutions of (3) are of the form αxk1 + βxk2 , where x1 and x2 are the
solutions of the equation c + bx + ax2 = x. These solutions are x1 = 1 and
x2 = r := c

a (it’s the reversal of the equation that we considered above). To
get a vector with

∑∞
k=1 πk = 1, one must have α = 0. Then β = (

∑∞
k=0 x

k
2)−1.

Luckily for us, this (only) solution satisfies (2) as well.
So we get the following:

Theorem 2. The steady-state distribution of (1) (when it is positive recurrent,
i.e., c < a) is given by πk = (1− r)−1rk, with r = c

a .

1.4 Now with matrices

A very quick description of what happens if we consider a “block case” of this
problem.

Suppose that we have a Markov chain that models the arrival rate. For
instance (very simple case), we have two states, “congestioned” and “not con-
gestioned”. Their transition matrix might look like this:

P =

[
0.9 0.3
0.1 0.7

]
,

i.e., P [not congestioned→ congestioned] = 0.1, P [congestioned→ not congestioned] =
0.3, and so on. Depending on the state, we may have different arrival probabili-
ties. In general, there are three matricesA,B,C, withA+B+C = P , withAij =
P [one person leaves the queue, and j → i], Bij = P [the queue stays the same length, and j → i],
Cij = P [one person joins the queue, and j → i].

The transition matrix is now the infinite block tridiagonal matrix
A+B A
C B A

C B A
. . .

. . .
. . .

 . (4)

This model is called QBD (quasi-birth-death).
An argument similar to the one in scalar case yields A + BG + CG2 = G,

whereG is the matrix so thatGij = P [we return from level 1 to level 0 for the first time, and j → i]
(first return probabilities).
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G is the smallest solution (componentwise) to the matrix equation A+BX+
CX2 = X. There is no easy closed-form formula, but it can be determined using
several matrix iterations (simplest of all: Xk+1 = A+BXk+CX2

k , with X0 = 0,
converges monotonically to G). The model is positive recurrent if ρ(G) = 1.

Similarly, there is a matrix R which is the minimal solution to AY 2 +BY +
C = Y , and the invariant measure is of the form πk = wTRk for some vector wT

(note that πk, probabilities of being at level k, is a vector with n states, where n
is the dimension of the “environment” queue). Matrix analysis is a powerful tool
to study these equations. For instance, the 2n zeros of f(z) = det(A+Bz+Cz2)
are the eigenvalues of G and those of R−1.
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