1 QBD Processes

1.1 Birth-death processes

We wish to model the evolution of a queue of people waiting in line. At each moment, there is a probability c that an additional customer arrives and the queue length increases, a probability a that a customer (if there is one) is served and leaves the queue, and a probability b that no one arrives or is served and the queue length stays the same. Clearly one must have $a+b+c=1$. We assume $a \neq 0, c \neq 0$.

This situation is modelled by a Markov chain with state the number of people in the queue; hence the state set is \mathbb{N}. It is a Markov chain with an infinite number of states, which is a new concept for us.

We can write the transition probabilities in an infinite matrix

$$
\left[\begin{array}{ccccc}
a+b & a & & & \tag{1}\\
c & b & a & & \\
& c & b & a & \\
& & \ddots & \ddots & \ddots
\end{array}\right]
$$

1.2 Transient or recurrent?

All the states belong to the same class. Are they transient or recurrent? Note that this is not a moot question: one can have Markov chains with infinite states in which each state is transient: for instance, take model (1) with $a=b=0, c=$ 1.

To answer this question, we need $\mathbb{P}\left[x_{k}=0\right.$ for some $\left.k>0 \mid x_{0}=0\right]$. Clearly, in view of the first transition, this is equal to $a+b+c g$, where $g=\mathbb{P}\left[x_{k}=0\right.$ for some $\left.k>1 \mid x_{1}=1\right]$, that is, the probability of eventually returning to level 0 starting from level 1.

Let us divide on the different things that can happen at time 1: we have

$$
g=\underbrace{a}_{\begin{array}{l}
\text { return imme- } \\
\text { diately to } 0, \\
x_{1}=0
\end{array}}+\underbrace{\begin{array}{l}
\text { go up } 1 \text { level, } \\
\text { then go down } \\
\text { (eventually) }
\end{array}}_{\begin{array}{l}
x_{1}=1, \text { then } \\
\text { eventually re- } \\
\text { turn to } 0
\end{array}} \begin{aligned}
& \text { twice }
\end{aligned}
$$

This equation has two solutions. One is 1 , for $a+b+c=1$. The other is $\frac{a}{c}$. The following result holds.

Lemma 1. The quantity $g=\mathbb{P}\left[x_{k}=0\right.$ for some $\left.k>1 \mid x_{1}=1\right]$ is the smallest solution of the equation $a+b x+c x^{2}=x$.
Proof. (sketch, not a real proof). Let h be this smallest solution, and $g_{i}=$ $\mathbb{P}\left[x_{k}=0\right.$ for some k with $\left.1 \leq k \leq i \mid x_{1}=1\right]$. Clearly, g_{i} is increasing and its limit is g. One can prove by induction that $g_{i} \leq h$.

Hence if $\frac{a}{c}<1$ ("more people arrive than leave the queue"), then $g<1$, $a+b+c g<1$, and the queue is transient. Intuitively, with probability 1 the number of people in the queue grows indefinitely. If $\frac{a}{c} \geq 1$ ("more people leave"), then $g=1$, and the queue is recurrent. The in-between case, $a=c$, is known as null recurrent. The queue returns to lower states with probability 1,
but takes infinitely long time to do so. In contrast, when $\frac{a}{c}<1$ we say that the queue is positive recurrent.

1.3 Steady-state probability

When the queue is recurrent, it makes sense to compute an invariant measure, that will be the steady-state limit distribution.

The stationary probability vector π must satisfy

$$
\begin{array}{rlr}
(a+b) \pi_{0}+a \pi_{1} & =\pi_{0} & \\
c \pi_{k}+b \pi_{k+1}+a \pi_{k+2} & =\pi_{k+1} & k \geq 0 \tag{3}
\end{array}
$$

Equation (3) falls under the general theory for linear recurrence sequences, i.e., all solutions of (3) are of the form $\alpha x_{1}^{k}+\beta x_{2}^{k}$, where x_{1} and x_{2} are the solutions of the equation $c+b x+a x^{2}=x$. These solutions are $x_{1}=1$ and $x_{2}=r:=\frac{c}{a}$ (it's the reversal of the equation that we considered above). To get a vector with $\sum_{k=1}^{\infty} \pi_{k}=1$, one must have $\alpha=0$. Then $\beta=\left(\sum_{k=0}^{\infty} x_{2}^{k}\right)^{-1}$. Luckily for us, this (only) solution satisfies (2) as well.

So we get the following:
Theorem 2. The steady-state distribution of (1) (when it is positive recurrent, i.e., $c<a$) is given by $\pi_{k}=(1-r)^{-1} r^{k}$, with $r=\frac{c}{a}$.

1.4 Now with matrices

A very quick description of what happens if we consider a "block case" of this problem.

Suppose that we have a Markov chain that models the arrival rate. For instance (very simple case), we have two states, "congestioned" and "not congestioned". Their transition matrix might look like this:

$$
P=\left[\begin{array}{ll}
0.9 & 0.3 \\
0.1 & 0.7
\end{array}\right]
$$

i.e., $\mathbb{P}[$ not congestioned \rightarrow congestioned $]=0.1, \mathbb{P}[$ congestioned \rightarrow not congestioned $]=$ 0.3 , and so on. Depending on the state, we may have different arrival probabilities. In general, there are three matrices A, B, C, with $A+B+C=P$, with $A_{i j}=$ \mathbb{P} [one person leaves the queue, and $j \rightarrow i], B_{i j}=\mathbb{P}$ [the queue stays the same length, and $\left.j \rightarrow i\right]$, $C_{i j}=\mathbb{P}$ [one person joins the queue, and $\left.j \rightarrow i\right]$.

The transition matrix is now the infinite block tridiagonal matrix

$$
\left[\begin{array}{ccccc}
A+B & A & & & \tag{4}\\
C & B & A & & \\
& C & B & A & \\
& & \ddots & \ddots & \ddots
\end{array}\right]
$$

This model is called $Q B D$ (quasi-birth-death).
An argument similar to the one in scalar case yields $A+B G+C G^{2}=G$, where G is the matrix so that $G_{i j}=\mathbb{P}$ [we return from level 1 to level 0 for the first time, and $j \rightarrow i$] (first return probabilities).
G is the smallest solution (componentwise) to the matrix equation $A+B X+$ $C X^{2}=X$. There is no easy closed-form formula, but it can be determined using several matrix iterations (simplest of all: $X_{k+1}=A+B X_{k}+C X_{k}^{2}$, with $X_{0}=0$, converges monotonically to G). The model is positive recurrent if $\rho(G)=1$.

Similarly, there is a matrix R which is the minimal solution to $A Y^{2}+B Y+$ $C=Y$, and the invariant measure is of the form $\pi_{k}=w^{T} R^{k}$ for some vector w^{T} (note that π_{k}, probabilities of being at level k, is a vector with n states, where n is the dimension of the "environment" queue). Matrix analysis is a powerful tool to study these equations. For instance, the $2 n$ zeros of $f(z)=\operatorname{det}\left(A+B z+C z^{2}\right)$ are the eigenvalues of G and those of R^{-1}.

