
FAST SOLUTION OF A CERTAIN RICCATI EQUATION THROUGH
CAUCHY-LIKE MATRICES

DARIO A. BINI, BEATRICE MEINI∗ AND FEDERICO POLONI†

Abstract. We consider a special instance of the algebraic Riccati equation XCX − XE −
AX + B = 0 encountered in transport theory, where the n × n matrix coefficients A, B, C, E are
rank structured matrices. The equation is reduced to unilateral form A2X2 + A1X + A0X = 0
and solved by means of Cyclic Reduction (CR). It is shown that the matrices generated by CR
are Cauchy-like with respect to a suitable singular operator and their displacement structure is
explicitly determined. The application of the GKO algorithm provides a method for solving this
Riccati equation in O(n2) arithmetic operations (ops) with quadratic convergence. The structured
doubling algorithm is analyzed in the same framework and accelerated to O(n2) ops as well. In
critical cases where convergence turns to linear, we present an adaptation of the shift technique
which allows to get rid of the singularity. Numerical experiments and comparisons which confirm
the effectiveness of the new approach are reported.

Key words. Nonsymmetric algebraic Riccati equation, cyclic reduction, Cauchy matrix, matrix
equation, fast algorithm, M -matrix.

AMS subject classifications. 15A24, 65F05, 65H10

1. Introduction. The numerical treatment of a problem in transport theory,
related with the transmission of a neutron beam in a solid medium [17], is reduced to
the solution of the following nonsymmetric algebraic Riccati equation (NARE):

XCX −XE −AX +B = 0, (1.1)

where A,B,C,E ∈ Rn×n are given by

A = ∆− eqT , B = eeT , C = qqT , E = D − qeT , (1.2)

and

e = (1, 1, . . . , 1)T ,
q = (q1, q2, . . . , qn)T with qi = ci

2ωi
,

∆ = diag(δ1, δ2, . . . , δn) with δi = 1
cωi(1+α) ,

D = diag(d1, d2, . . . , dn) with di = 1
cωi(1−α) .

(1.3)

The matrices and vectors above depend on the parameters 0 < c 6 1, 0 6 α < 1
and on the sequences 0 < ωn < . . . < ω2 < ω1 < 1 and ci > 0, i = 1, 2, . . . , n such
that

∑
i ci = 1 (for the physical meaning of these parameters, we refer the reader to

[17] and to the references therein). The solution of interest is the minimal positive
one, which exists as proved in [17].

It is important to point out that equation (1.1) with coefficients (1.2), (1.3) orig-
inates from the numerical discretization of an integral differential equation where the
size n of the unknown X corresponds to the number of nodes used for the numerical
integration. Therefore, the larger is n the more accurate is the approximation of X to
the solution of the physical model; thus, large values of n are meaningful in practice.
It is therefore important to design fast algorithms for the solution of (1.1) for large
values of n.

∗Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy ({bini,
meini} @mail.dm.unipi.it).

†Scuola Normale Superiore, Piazza dei Cavalieri 6, 56126 Pisa, Italy (poloni@sns.it).

1

2 D. A. BINI, B. MEINI AND F. POLONI

As shown by Chun-Hua Guo [9], this equation falls in the class of nonsymmetric
algebraic Riccati equations associated with a nonsingular M-matrix or a singular
irreducible M-matrix, in fact arranging the coefficients as

M =
[
E −C
−B A

]
(1.4)

yields an M-matrix.
Even though the solution of (1.1) with the assumptions (1.2) and (1.3) can be

expressed in closed form in terms of the eigenvalues and eigenvectors of a suitable ma-
trix [18], for numerical reasons it is more suitable to apply ad hoc iterative algorithms
based on matrix iterations. In fact many algorithms of this kind have been devised in
the literature. More recently [21], the closed form of the solution has been exploited
for investigating new algorithms.

The main available algorithms for computing the minimal positive solution of this
class of algebraic Riccati equations are Newton’s method [13], Logarithmic Reduction
(LR) [10], Cyclic Reduction (CR) [3] and the Structure-preserving Doubling Algo-
rithm (SDA) [12, 14]. All these algorithms share the same order of complexity, that
is, O(n3) arithmetic operations (ops) per step, and provide quadratic convergence in
the generic case and linear convergence in critical cases.

O(n2) complexity algorithms have been designed by L.-Z. Lu [20] but they have
linear convergence which turns to sublinear in critical cases. More recently, in [4]
an algorithm implementing the Newton iteration with O(n2) ops per step has been
obtained relying on properties of certain structured matrices.

In this paper we provide two other algorithms of complexity O(n2) which maintain
the quadratic convergence. The first one relies on a reduction provided by Ramaswami
in [22] which allows one to express the matrix X in terms of the solution of a unilateral
quadratic matrix equation of the kind

A1Y
2 +A0Y +A−1 = 0,

for suitable 2n × 2n matrices A−1, A0, A1. This equation is solved by means of the
cyclic reduction algorithm which has quadratic convergence in the generic case and
complexity O(n3).

We prove that the matrix sequences generated by CR are such that DA(i)
j −A(i)

j D
has rank at most 5 for any i and j = −1, 0, 1, where D is a suitable diagonal matrix.
Matrices of this kind are known as Cauchy-like. Operators of the kind X → D1X −
XD2 have been introduced and systematically studied by Georg Heinig and Karla
Rost in the book [16].

In particular, we provide the explicit Cauchy representations of these sequences
and determine the equations which relate the generators of these matrices at two
subsequent steps of the algorithm.

This result enables us to provide an algorithm which implements CR with com-
plexity O(n2) based on a modification of the Gohberg-Kailath-Olshevsky (GKO) al-
gorithm [6].

The second method that we introduce is based on the structured doubling algo-
rithm introduced in [14]. As in the above case, it can be proven that the iterates
generated by applying SDA to the problem (1.2) are Cauchy-like, and their genera-
tors can be computed explicitly in terms of the involved matrices. This allows one
to develop an algorithm which implements the SDA iteration in structured form in
O(n2) operations per step.

FAST SOLUTION OF A CERTAIN RICCATI EQUATION 3

In critical cases, encountered when α = 0, c = 1, the convergence of CR and SDA
turns to linear. We show that the shift technique of [8], which transforms the critical
case into a new non-critical Riccati equation, can still be applied with complexity
O(n2) and with quadratic convergence.

Numerical experiments show the effectiveness of our techniques.
Our algorithms are still valid in the more general case where (1.2) holds with

A = ∆− ẽqT , B = ẽeT , C = q̃qT , E = D − q̃eT ,

and e, q, ẽ, q̃ ∈ Rn×r. In this case the complexity is O(rn2) ops per step. It is
interesting to point out that the analogous generalization of the algorithm of [4] based
on Newton’s iteration would cost O(r2n2) ops per step.

The paper is organized as follows. In Section 2 we introduce some of the tools
that are needed to prove our results. In Sections 3 and 4 we show how to develop the
structured versions of CR and SDA, respectively. Then, in Section 5, we show that the
shift technique can be used by our algorithm with no increasing of the computational
cost. Section 6 deals with an alternative implementation of part of the algorithm
in order to overcome numerical problems in critical cases. This section has a more
general interest since it shows how to replace a singular displacement operator with a
nonsingular one with a slight increase of the complexity. Numerical experiments and
conclusions follow in the last two sections.

2. Preliminary tools.

2.1. Singular and critical equations. Equation (1.1) is said nonsingular ifM
(as in (1.4)) is a nonsingular M-matrix. If M is a singular irreducible M-matrix, let
its left and right Perron vectors uT and v be partitioned accordingly to the definition

of M as u =
[
uT

1

uT
2

]T

, v =
[
vT
1

vT
2

]T

; the equation is said

• transient, if u1v1 − u2v2 > 0;
• positive recurrent, if u1v1 − u2v2 < 0;
• null recurrent, or critical, if u1v1 − u2v2 = 0.

Equation (1.2) is nonsingular if c < 1, transient if c = 1 and α > 0, and null recurrent
if c = 1 and α = 0.

2.2. Transforming a Riccati equation into unilateral form. It has been
proved by Ramaswami in [22] (see also [10]) that S is the minimal nonnegative solution
of (1.1) if and only if the matrix

G =
[
I − tE + tCS 0

S 0

]
is the minimal nonnegative solution of the following unilateral equation

A1Y
2 +A0Y +A−1 = 0 (2.1)

where

A−1 =
[
I − tE 0
tB 0

]
, A0 =

[
−I tC
0 −I − tA

]
, A1 =

[
0 0
0 I

]
, (2.2)

and t is such that 1/t ≥ max{ei,i, ai,i : i = 1, . . . , n}.

4 D. A. BINI, B. MEINI AND F. POLONI

2.3. Cyclic reduction. We briefly recall the cyclic reduction algorithm and
its convergence properties [2], [1] for computing the minimal nonnegative solution of
(2.1). Let A(0)

i = Ai, i = −1, 0, 1 and Â(0) = A0, and define the sequences

A
(k+1)
0 = A

(k)
0 −A

(k)
−1K

(k)A
(k)
1 −A

(k)
1 K(k)A

(k)
−1 , K(k) =

(
A

(k)
0

)−1

,

A
(k+1)
−1 = −A(k)

−1K
(k)A

(k)
−1 , A

(k+1)
1 = −A(k)

1 K(k)A
(k)
1 ,

Â
(k+1)
0 = Â

(k)
0 −A

(k)
1 K(k)A

(k)
−1 .

(2.3)

Since M is a nonsingular M-matrix, or an irreducible singular M-matrix, the condi-
tions of applicability (detA(k)

0 6= 0) and convergence of CR are satisfied [2], [1], [10].
In particular, the sequence

G(k) = −
(
Â(k)

)−1

A−1

converges to G. The following result holds [2], [10]
Theorem 2.1. If (1.1) is
• nonsingular, then limk A

(k)
−1 = limk A

(k)
1 = 0 with quadratic convergence, and

limk G
(k) = G with quadratic convergence.

• transient, then limk A
(k)
1 = 0, limk A

(k)
−1 = A∗−1, limk G

(k) = G with quadratic
convergence;

• positive recurrent, then limk A
(k)
1 = A∗1, limk A

(k)
−1 = 0, limk G

(k) = G with
quadratic convergence;

• null recurrent, then limk A
(k)
1 = A∗1, limk A

(k)
−1 = A∗−1, limk G

(k) = G with
linear convergence.

The last case is known as the critical case. For the problem defined by (1.2) and
(1.3), we fall in this case only for c = 1, α = 0, as proved in [17].

A useful formulation which enables us to perform a structure analysis of the
matrix sequences generated by CR is the functional formulation provided in [2].

Let ϕ(k)(z) = zA
(k)
1 + A

(k)
0 + z−1A

(k)
−1 and let ψ(k)(z) = ϕ(k)(z)−1 where z is a

complex variable and ψ(k)(z) is defined for the values of z such that detϕ(k)(z) 6= 0.
The following equation can be easily verified [2]

ψ(k+1)(z2) =
1
2
(ψ(k)(z) + ψ(k)(−z)). (2.4)

2.4. Structured doubling algorithm. The structured doubling algorithm [14]
is another algorithm for computing the solution of a nonsymmetric algebraic Riccati
equation. The algorithm can be described as follows. Choose γ ≥ max{ei,i, ai,i :
i = 1, . . . , n}; let

W = A+ γI −B(E + γI)−1C, V = E + γI − C(A+ γI)−1B,

and

E0 = I − 2γV −1,

F0 = I − 2γW−1,

G0 = 2γ(E + γI)−1CW−1,

H0 = 2γW−1B(E + γI)−1.

(2.5)

FAST SOLUTION OF A CERTAIN RICCATI EQUATION 5

For k ≥ 0, calculate

Ek+1 = Ek(I −GkHk)−1Ek,

Fk+1 = Fk(I −HkGk)−1Fk,

Gk+1 = Gk + Ek(I −GkHk)−1GkFk,

Hk+1 = Hk + Fk(I −HkGk)−1HkEk.

(2.6)

We have the following convergence result [14, 8].
Theorem 2.2. If (1.1) is
• nonsingular, then limk Ek = limk Fk = 0 with quadratic convergence, and

limk Hk = S with quadratic convergence.
• transient, then limk Fk = 0, limk Ek = E∗, limk Hk = S with quadratic

convergence;
• positive recurrent, then limk Fk = F∗, limk Ek = 0, limk Hk = S with

quadratic convergence;
• null recurrent, then limk Fk = F∗, limk Ek = E∗, limk Hk = S with linear

convergence.

2.5. Cauchy-like matrices and the GKO algorithm. A displacement op-
erator is an operator Rn×n → Rn×n of the form ∇R,S : M 7→ RM − MS, with
R,S ∈ Rn×n. It is easy to prove the following algebraic properties of displacement
operators.

Lemma 2.3 (properties of displacement operators). Let R,S, T,M,N,D,∆ ∈
Rn×n, with D and ∆ diagonals. Then,

1. ∇D,D(∆) = 0;
2. ∇R,S(M +N) = ∇R,S(M) +∇R,S(N);
3. ∇R,S(MN) = ∇R,T (M)N +M ∇T,S(N);
4. ∇R,S(M−1) = −M−1∇S,R(M)M−1.

A matrix C is called Cauchy-like if there are diagonal matricesR = diag(r1, . . . , rn)
and S = diag(s1, . . . , sn), with ri 6= sj for all i, j, such that

∇R,S(C) = UV, (2.7)

where U ∈ Rn×r and V ∈ Rr×n, and r is small with respect to n, i.e., if ∇R,S(C)
has low-rank. Note that C is uniquely determined by its generators U, V and the two
vectors

[
r1 . . . rn

]T and
[
s1 . . . sn

]T . We will call a matrix T Trummer-like1

if there is a diagonal matrix D = diag(d1, . . . , dn), with di 6= dj for all i 6= j, such
that

∇D,D(T) = UV, (2.8)

where U ∈ Rn×r and V ∈ Rr×n, and r is small with respect to n, i.e., if ∇D,D(T)
is low-rank. Note that ∇D,D is a singular operator, its kernel being the set of all
diagonal matrices, and therefore the displacement equation determines only the off-
diagonal part of T . It follows that T is uniquely determined by its generators U, V
and the two vectors

[
d1 . . . dn

]T and
[
T11 . . . Tnn

]T (the latter one being the
main diagonal of T).

1The name comes from the so-called Trummer problem, see [5] and the references therein for
further details.

6 D. A. BINI, B. MEINI AND F. POLONI

Using the relations (2.7) and (2.8) we can easily reconstruct a Cauchy-like or a
Trummer-like matrix from its generators with O(rn2) arithmetical operations; recon-
structing the matrix and then applying the usual matrix-matrix product yields an
algorithm for multiplying an n× s Cauchy-like (Trummer-like) matrix and a generic
n× s matrix in O(n2(r + s)) ops. We refer to these algorithms as Algorithm 1.

function y = camm(r , s , u , v , x)
% re turns y = C ∗ x , where C s a t i s f i e s
% diag (r) ∗ C − C ∗ diag (S) = u ∗ v
% x may be a vec t o r or a matrix

n = s ize (u , 1) ;
C = (u ∗ v) . / (r ∗ ones (1 , n) − ones (n , 1) ∗ s) ;
y = C ∗ x ;

endfunct ion
function y = trmm(d , dg , u , v , x)
% re turns y = T ∗ x , where T s a t i s f i e s
% diag (d) ∗ T − T ∗ diag (d) = u ∗ v
% and diag (T) = dg

n = s ize (u , 1) ;
T = (u ∗ v) . / (d ∗ ones (1 , n) − ones (n , 1) ∗ d + eye (n)) ;
for i = 1 : n

T(i , i) = dg (i) ;
endfor
y = T ∗ x ;

endfunct ion

Algorithm 1: Cauchy-like (Trummer-like) matrix-matrix product

The problem of solving a linear system with Cauchy matrix C was treated by
Gohberg, Kailath and Olshevsky in [6]. Their algorithm, known as the GKO algo-
rithm, is based on the fact that the Schur complement of certain Cauchy-like matrices
is Cauchy-like. In our case, if[

r1 0
0 R2

] [
c11 c12
c21 C22

]
−

[
c11 c12
c21 C22

] [
s1 0
0 S2

]
=

[
u1

U2

] [
v1 V2

]
,

then the Schur complement Ĉ = C22 − c21c11c12 solves the displacement equation

R1Ĉ − ĈS2 = (U2 −
1
c11

c21u1)(V2 −
1
c11

c12v1). (2.9)

Using this fact, one can perform Gaussian elimination on the matrix C in O(n2r)
operations: at each step, instead of computing the entries of the Schur complement of
C, one computes its generators as given by (2.9). Combining this algorithm with the
customary back-substitution, we can solve a linear system with Cauchy-like matrix
and n× s constant coefficient in O(n2(r + s)) operations.

The same technique can be used for systems with a Trummer-like matrix T , as
shown in [4], with the additional complication that knowing the generators of T̂ is
not sufficient to reconstruct the Schur complement. In fact, we need to compute its
diagonal elements separately: at each step, we update the diagonal of T as we were
performing a customary Gaussian elimination, and we compute the generators of the

FAST SOLUTION OF A CERTAIN RICCATI EQUATION 7

off-diagonal elements as in the GKO algorithm. The resulting algorithm is presented
as Algorithm 2. The algorithm can be combined with partial pivoting to improve its
numerical stability, though this will not be necessary in the following since it will only
be applied to nonsingular M -matrices.

function x = t r sv (d , dg , u , v , b)
% re turns x = Tˆ{−1} b , where T s a t i s f i e s
% diag (d) ∗ T − T ∗ diag (d) = u ∗ v
% and diag (T) = dg
% precond i t i on : Gaussian e l im ina t i on wi thout p i v o t i n g
% i s s t a b l e f o r T

n = s ize (u , 1) ;
U = zeros (n) ; %matrix U of the LU f a c t o r i z a t i o n
l = zeros (1 , n) ; %ac t i v e column of L o f the LU f a c t o r i z a t i o n
x = b ;
for k = 1 : n

% genera t e s a column of L and s o l v e s Lˆ{−1}∗b on−the− f l y
l (k+1:n) = ((u(k+1:n , :) ∗ v (: , k)) / dg (k)) . / (d(k+1:n)−d(k)) ;
x (k+1:n) = x(k+1:n) − l (k+1:n) ∗ b(k) ;
i f (abs (dg (k)) < 1 . d−10) warn ”Near−to−s i n gu l a r matrix ” ;
% genera t e s a row o f U
U(k , k) = dg (k) ;
U(k , k+1:n) = (u(k , :) ∗ v (: , k+1:n)) . / (d(k)−d(k+1:n)) ;
%updates the genera to r s to genera to r s o f the Schur complement
u(k+1:n , :) = u(k+1:n , :) − l (k+1:n) ∗ u(k , :) ;
v (: , k+1:n) = v (: , k+1:n) − v (: , k) ∗ U(k , k+1:n) / dg (k) ;
%updates the d iagona l
dg (k+1:n) = dg (k+1:n) − l (k+1:n) ∗ U(k , k+1:n) ;

endfor
endfunct ion

Algorithm 2: Solution of a linear system with Trummer-like matrix

3. Structure analysis of the Cyclic Reduction and the main algorithm.
In the following, we consider here the case of Riccati equations of the form (1.1) with

A = ∆− ẽqT , B = ẽeT , C = q̃qT , E = D − q̃eT , (3.1)

such that e, q, ẽ, q̃ ∈ Rn×r are positive, and D,∆ ∈ Rn×n are diagonal with positive
diagonal entries. Note that setting r = 1, ẽ = e, q̃ = q yields (1.2).

3.1. Block structure. It is easy to see that performing the cyclic reduction
with initial matrices of the form (2.2) not all the blocks of the involved matrices fill
up.

Theorem 3.1. Let A(k)
−1 , A

(k)
0 , Â

(k)
0 , A

(k)
1 , k > 0, be the iterates generated by the

CR (2.3) with initial matrices (2.2). Then,
1. The iterates are of the form

A
(k)
−1 =

[
∗ 0
∗ 0

]
, A

(k)
0 =

[
−I ∗
∗ ∗

]
, Â

(k)
0 =

[
−I tC
∗ −I − tA

]
, A

(k)
1 =

[
0 0
0 ∗

]
,

where ∗ denotes a generic n× n block.

8 D. A. BINI, B. MEINI AND F. POLONI

2. The (2, 1) block of A(k)
0 and Â(k)

0 are the same matrix.
Proof. All results can be easily proved by induction, noticing how the zero blocks

are distributed among the matrices. In particular, the second part follows by observing
that, in the formulas (2.3) for updating A(k+1)

0 and Â
(k+1)
0 , the term −A(k)

−1K
(k)A

(k)
1

only modifies the (2, 1) block, and the term −A(k)
1 K(k)A

(k)
−1 only modifies the second

block column.

3.2. Rank structure. Applying the reduction (2.1) to the NARE (3.1), for the
matrix function ϕ(0)(z) = A−1z

−1 +A0 +A1z we get

ϕ(0)(z) =
[
(I −D)z−1 − I 0

0 zI − (I + ∆)

]
+

[
q̃
ẽ

] [
z−1eT qT

]
.

Using the Sherman-Morrison formula [7] to invert ϕ(0)(z), we have

ψ(0)(z) = (ϕ(0)(z))−1 = Z(z) + Z(z)
[
q̃
ẽ

]
r(z)

[
z−1eT qT

]
Z(z)

with

Z(z) =
[
(I −D)z−1 − I 0

0 zI − (I + ∆)

]−1

, r(z) =
(
Ir +

[
z−1eT qT

]
Z(z)

[
q̃
ẽ

])−1

.

Now, since

DZ(z) = Z(z)D =
[
zI 0
0 −I

]
+ zZ(z) with D =

[
I −D 0

0 I + ∆

]
,

we find that

∇D,D ψ
(0)(z) = −DZ(z)

[
q̃
ẽ

]
r(z)

[
z−1eT qT

]
Z(z) + Z(z)

[
q̃
ẽ

]
r(z)

[
z−1eT qT

]
Z(z)D

=
[
−zq̃
ẽ

]
r(z)

[
z−1eT qT

]
Z(z) + Z(z)

[
q̃
ẽ

]
r(z)

[
eT −qT

]
.

Setting

s̃(0)(z) = −zr(z)
[
z−1eT qT

]
Z(z),

t̃(0)(z) = r(z)
[
z−1eT qT

]
Z(z),

ũ(0)(z) = Z(z)
[
q̃
ẽ

]
r(z)

yields

∇D,D ψ
(0)(z) =

[
q̃
0

]
s̃(0)(z) +

[
0
ẽ

]
t̃(0)(z) + ũ(0)(z)

[
eT −qT

]
.

Using the functional formulation (2.4) of CR and the linearity of ∇D,D, we can easily
prove by induction that

∇D,D ψ
(k)(z) =

[
q̃
0

]
s̃(k)(z) +

[
0
ẽ

]
t̃(k)(z) + ũ(k)(z)

[
eT −qT

]
, (3.2)

FAST SOLUTION OF A CERTAIN RICCATI EQUATION 9

for each k > 0 with

s̃(k+1)(z2) =
1
2
(s̃(k)(z) + s̃(k)(−z)),

t̃(k+1)(z2) =
1
2
(t̃(k)(z) + t̃(k)(−z)),

ũ(k+1)(z2) =
1
2
(ũ(k)(z) + ũ(k)(−z)).

Therefore, ψ(k)(z) has displacement rank 3 for all k > 0. Also, ϕ(k)(z) has displace-
ment rank 3, since

∇D,D ϕ
(k)(z) = ∇D,D

(
ψ(k)(z)−1

)
= −ϕ(k)(z)

(
∇D,D ψ

(k)(z)
)
ϕ(k)(z)

by part 4 of Lemma 2.3.

We can prove a more precise result concerning the structure of ϕ(k)(z).

Theorem 3.2. Let ϕ(k)(z) = zA
(k)
1 + A

(k)
0 + z−1A

(k)
−1 be the sequence generated

by the application of cyclic reduction to (2.2) for the problem (3.1). Then,

∇D,D A
(k)
−1 =A(k)

−1

[
q̃
0

]
s
(k)
0 +A

(k)
0

[
0
ẽ

]
t
(k)
−1 + u0

[
eT −qT

]
A

(k)
−1 ,

∇D,D A
(k)
0 =A(k)

−1

[
q̃
0

]
s
(k)
1 +A

(k)
0

[
q̃
0

]
s
(k)
0 +A

(k)
0

[
0
ẽ

]
t
(k)
0

+A
(k)
1

[
0
ẽ

]
t
(k)
−1 + u0

[
eT −qT

]
A

(k)
0 ,

∇D,D A
(k)
1 =A(k)

0

[
q̃
0

]
s
(k)
1 +A

(k)
1

[
0
ẽ

]
t
(k)
0 + u0

[
eT −qT

]
A

(k)
1 ,

(3.3)

with

s
(0)
0 =

[
eT 0

]
, s

(k+1)
0 = s

(k)
0 − s

(k)
1 K(k)A

(k)
−1 ,

s
(0)
1 =

[
0 qT

]
, s

(k+1)
1 = −s(k)

1 K(k)A
(k)
1 ,

t
(0)
−1 = −

[
eT 0

]
, t

(k+1)
−1 = −t(k)

−1K
(k)A

(k)
−1 ,

t
(0)
0 = −

[
0 qT

]
, t

(k+1)
0 = t

(k)
0 − t

(k)
−1K

(k)A
(k)
1 ,

u0 = −
[
q̃
ẽ

]
.

(3.4)

Proof. The result holds by mathematical induction. The base step is a simple
verification; concerning the inductive step, for the sake of brevity, we will only present
the analysis relative to A(k)

−1 , since the cases of A(k)
0 and A(k)

1 are very similar. In view

10 D. A. BINI, B. MEINI AND F. POLONI

of Lemma 2.3 , from (2.3) we have

∇D,D A
(k+1)
−1 = ∇D,D

(
−A(k)

−1K
(k)A

(k)
−1

)
=−∇D,D

(
A

(k)
−1

)
K(k)A

(k)
−1 −A

(k)
−1 ∇D,D

(
K(k)

)
A

(k)
−1 −A

(k)
−1K

(k)∇D,D

(
A

(k)
−1

)
=−∇D,D

(
A

(k)
−1

)
K(k)A

(k)
−1 +A

(k)
−1K

(k)∇D,D

(
A

(k)
0

)
K(k)A

(k)
−1 −A

(k)
−1K

(k)∇D,D

(
A

(k)
−1

)
=−

(
A

(k)
−1

[
q̃
0

]
s
(k)
0 +A

(k)
0

[
0
ẽ

]
t
(k)
−1 + u0

[
e −q

]
A

(k)
−1

)
K(k)A

(k)
−1+

A
(k)
−1K

(k)

(
A

(k)
−1

[
q̃
0

]
s
(k)
1 +A

(k)
0

[
q̃
0

]
s
(k)
0 +A

(k)
0

[
0
ẽ

]
t
(k)
0 +A

(k)
1

[
0
ẽ

]
t
(k)
−1+

u0

[
e −q

]
A

(k)
0

)
K(k)A

(k)
−1

−A
(k)
−1K

(k)

(
A

(k)
−1

[
q̃
0

]
s
(k)
0 +A

(k)
0

[
0
ẽ

]
t
(k)
−1 + u0

[
e −q

]
A

(k)
−1

)
=−A

(k)
−1K

(k)A
(k)
−1

[
q̃
0

](
s
(k)
0 − s

(k)
1 K(k)A

(k)
−1

)
+(

A
(k)
0 −A

(k)
−1K

(k)A
(k)
1

) [
0
ẽ

](
−t(k)
−1K

(k)A
(k)
−1

)
− u0

[
e −q

]
A

(k)
−1K

(k)A
(k)
−1

=A(k+1)
−1

[
q̃
0

]
s
(k+1)
0 +A

(k+1)
0

[
0
ẽ

]
t
(k+1)
−1 + u0

[
e −q

]
A

(k+1)
−1 ,

Here, we made use of the facts that A(k)
0 K(k) = K(k)A

(k)
0 = I, which follows from the

definition of K(k), and

A
(k)
−1

[
0
ẽ

]
= A

(k)
1

[
q̃
0

]
= 0,

due the position of the zero blocks in A
(k)
−1 and A

(k)
1 , as proved in Theorem 3.1.

Note that the displacement equations proven in the above theorem can be derived by
imposing

s̃(k)(z)ϕ(k)(z) = s
(k)
0 + s

(k)
1 z,

t̃(k)(z)ϕ(k)(z) = t
(k)
0 + t

(k)
−1z

−1,

ϕ(k)(z)ũ(k)(z) = u0

in equation (3.2).
We can say more about the meaning of s(k)

0 , s(k)
1 , t(k)

0 and t(k)
−1 .

Theorem 3.3. Let s(k)
0 , s(k)

1 , t(k)
0 and t

(k)
−1 be the sequences defined in (3.4).

Then, for all k > 0,

1. s(k)
0 =

[
−eT qT

]
A

(k)
0

[
I 0
0 0

]
;

2. s(k)
1 =

[
−eT qT

]
A

(k)
1 ;

3. The (2,2) block of A(k)
0 equals −I − t∆− tẽt

(k)
0 ;

4. The (2,1) block of A(k)
−1 equals −tẽt(k)

−1 .
All the stated results can be easily proved by induction.

FAST SOLUTION OF A CERTAIN RICCATI EQUATION 11

3.3. The main algorithm. The structure relations (3.3) allow us to develop a
faster version of the CR iteration, with computational cost O(n2r) per step. In fact,
Algorithms 1 and 2 allow us to perform fast computations with A

(k)
−1 , A(k)

0 and A
(k)
1

using only the generators of these matrices.
At each step k of the cyclic reduction, we only store the eight generator matrices

A
(k)
−1

[
q̃
0

]
, A

(k)
0

[
q̃
0

]
, A

(k)
0

[
0
ẽ

]
, A

(k)
1

[
0
ẽ

]
, t

(k)
0 , t

(k)
−1 ,[

eT −qT
]
A

(k)
−1 ,

[
eT −qT

]
A

(k)
0 ,

[
eT −qT

]
A

(k)
1 ,

(3.5)

(the first four have size n× r, while the last four have size r×n) and update them at
each step of the algorithm. Note that s(k)

0 and s
(k)
1 can be recovered from the above

generators using the results of theorem 3.3. Since the (1, 1) blocks of A(k)
−1 and the

(2, 2) block of A(k)
1 are Trummer-like matrices, we need to compute their diagonal

as well. This can be done noticing that a Trummer-like matrix T can be written as
D̄ + Trummer(D, U, V), where D̄ is its diagonal and Trummer(D, U, V) is the only
Trummer-like matrix with respect to ∇D,D with generators U, V and zeroes on the
diagonal. Therefore, for T = A

(k)
−1 we have

A
(k)
−1

[
q̃
0

]
− Trummer(D, U, V)

[
q̃
0

]
= D̄

[
q̃
0

]
,

and the whole left-hand side can be computed from the generators. Due to the position
of the zero blocks in A(k)

−1 , only the first n entries of D̄ are nonzero, and each of them
can be computed as

D̄ii =

(
D̄

[
q̃
0

])
i

q̃i
.

By applying the same technique to A(k)
1

[
0
ẽ

]
we can compute the (2, 2) block of A(k)

1

from its generators.
At each step of the iteration we recover the diagonals and s(k)

0 , s(k)
1 , then update

the eight generator matrices: t(k)
0 and t(k)

−1 are updated using the formulas (3.4), while
the other six vectors are updated using the formulas (2.3) directly, e.g.

A
(k+1)
−1

[
q̃
0

]
= −A(k)

1 K(k)

(
A

(k)
1

[
q̃
0

])
,

and the analogous formulas for the other five. The matrix products involving K(k)

are done using Algorithm 2 on A
(k)
0 (remember that K(k) =

(
A

(k)
0

)−1

), and the

ones involving A
(k)
−1 and A

(k)
1 are done using Algorithm 1. Since we apply these

algorithms to n×r matrices (or their transposed version to r×n matrices), the whole
computational cost is O(n2r). The algorithm is briefly sketched in Algorithm 3.

An obvious choice for the stopping criterion would be to compute the iterate
X(k) at each step and explicitly calculating the residual of the Riccati equation (1.1).
However, this is quite expensive. Theorem 2.1 provides another good choice. In all

12 D. A. BINI, B. MEINI AND F. POLONI

function X=f a s t c r (D ,∆ ,e ,q ,ee , eq)
k=0;
i n i t i a l i z e the generato r matr i ce s

(us ing (3.4) and (2.3))
do
k=k+1;

c a l c u l a t e the d iagona l s o f A
(k)
−1 and A

(k)
1

r e cove r s
(k)
0 and s

(k)
1

update the gene ra to r s
while (s topping c r i t e r i o n)

bu i ld the gene ra to r s o f bA(k)
0

c a l c u l a t e X=the (2, 1) block o f −
“ bA(k)

”−1

A
(0)
−1

end function

Algorithm 3: Structured cyclic reduction

three cases, the sequences A(k)
−1 and A(k)

1 converge; therefore, we can simply check that
the norms of the two values

A
(k+1)
−1

[
q̃
0

]
−A

(k)
−1

[
q̃
0

]
, A

(k+1)
1

[
0
ẽ

]
−A

(k)
1

[
0
ẽ

]
are small enough. This can be done with a small overhead, since the matrices we need
are two of the eight generators and thus are already computed at each step. In the
noncritical case, another viable choice is checking that

min
(∥∥∥∥A(k)

−1

[
q̃
0

]∥∥∥∥
1

,

∥∥∥∥A(k)
1

[
0
ẽ

]∥∥∥∥
1

)
< ε,

since at least one of A(k)
−1 and A(k)

1 converges to zero by theorem 2.1.
Note also that the algorithm can be slightly accelerated by skipping the computa-

tions with the zero blocks, thus reducing all the involved computations to n×n matrix
computations. This way, one sees that we only need to update ten n × r matrices
(instead of eight 2n× r) at each step.

4. Structure analysis of SDA. The structure analysis of SDA, following the
same strategy, leads to less cumbersome computations. Let

H =
[
E −C
B −A

]
, Hγ = (H + γI)−1(H − γI),

and suppose that Hγ is nonsingular. For the problem (3.1), we have

H =
[
D 0
0 −∆

]
−

[
q̃
−ẽ

] [
eT qT

]
.

Matrices H and Hγ commute, since the latter is a rational function of the former.
This fact can be expressed as[
D 0
0 −∆

]
H2k

γ −H2k

γ

[
D 0
0 −∆

]
=

[
q̃
−ẽ

] [
eT qT

]
H2k

γ −H2k

γ

[
q̃
−ẽ

] [
eT qT

]
, (4.1)

FAST SOLUTION OF A CERTAIN RICCATI EQUATION 13

which shows that H2k

γ has low displacement rank with respect to a suitable (singular)
operator.

It follows from the results on matrix pencils presented in [14], or also by direct
verification from equations (2.5) and (2.6), that

H2k

γ =
[
I −Gk

0 Fk

]−1 [
Ek 0
−Hk I

]
.

Using this relation, it is easy to check that[
I −Gk

]
H2k

γ =
[
Ek 0

]
,[

0 Fk

]
H2k

γ =
[
−Hk I

]
,

H2k

γ

[
I
Hk

]
=

[
Ek

0

]
,

H2k

γ

[
0
Fk

]
=

[
Gk

I

]
.

(4.2)

Now, multiply (4.1) by
[
0 Fk

]
to the left and by

[
0
Fk

]
to the right, to get

−Fk∆ + ∆Fk = −Fkẽ(eT + qTGk) + (Hk q̃ + ẽ)qTFk.

Similarly, multiplying (4.1) by either
[
0 Fk

]
or

[
I −Gk

]
to the left and either

[
0
Fk

]
or

[
I
Hk

]
to the right, in all four combinations, yields equations

DEk − EkD = (q̃ +Gkẽ)eTEk − Ek q̃(eT + qTHk),

∆Fk − Fk∆ = (Hk q̃ + ẽ)qTFk − Fkẽ(eT + qTGk),

DGk +Gk∆ = (q̃ +Gkẽ)(eT + qTGk)− Ek q̃q
TFk,

∆Hk +HkD = (Hk q̃ + ẽ)(eT + qTHk)− Ek q̃q
TFk,

(4.3)

which provide low displacement rank representations for the SDA iterates. Using
these relations, we go on along the lines of Algorithm 3. At each step, we only store
in memory the generators

Ek q̃, Fkẽ, (Hk q̃ + ẽ), (q̃ +Gkẽ),

eTEk, qTFk, (eT + qTHk), (eT + qTGk),
(4.4)

and update them accordingly to (2.6), using the Cauchy-like structure to carry out
the computations. In addition, we have to keep track of the diagonals of Ek and Fk

in order to perform the computations. In the same fashion as CR, these diagonal can
be recovered using the fact that the both eTEk and Fkẽ are known, in addition to
their Trummer-like generators.

As a stopping criterion, in the noncritical case we can use the fact that the
sequence min(

∥∥eTEk

∥∥
1
, ‖Fkẽ‖1) converges quadratically to zero.

14 D. A. BINI, B. MEINI AND F. POLONI

function X=fa s t s da (D ,∆ ,e ,q ,ee , eq)
k=0;
i n i t i a l i z e the generato r matr i ce s

(us ing (2.5) and (4.3))
and the d iagona l s o f E0 , F0

do
k=k+1;
update the gene ra to r s us ing (4.3)
c a l c u l a t e the d iagona l s o f Ek and Fk

while (s topping c r i t e r i o n)
r e cove r Hk from i t s g ene ra to r s and return X = Hk

end function

Algorithm 4: Structured SDA

5. The shift technique. In the critical case c = 1, α = 0 of the NARE (1.2),
several drawbacks are encountered. As reported in Theorems 2.1 and 2.2, the conver-
gence of the exposed algorithms is linear instead of quadratic; moreover, it has been
shown in [11] that a O(ε) perturbation to the coefficients of the equation leads to a
O(
√
ε) variation in the solution. All these drawbacks can be removed by means of

the shift technique originally introduced be He, Meini and Rhee in [15] and applied
to algebraic Riccati equations in [8], [3] and [4].

The shift technique applied to this problem consists in replacing the Riccati equa-
tion (3.1) with the equation

XC̃X −XẼ − ÃX + B̃ = 0, (5.1)

with

Ã = A− ηv2p
T
2 , B̃ = B + ηv2p

T
1 , C̃ = C − ηv1p

T
2 , Ẽ = E + ηv1p

T
1 , (5.2)

where

v =
[
v1
v2

]
is the right Perron vector of the M -matrix M defined in Equation (1.4), 0 < η 6 d1,
and pT =

[
pT
1 pT

2

]
∈ R1×2n is any positive row vector such that pT v = 1. It is

proved in [8] that the minimal nonnegative solution of (1.1) is the minimal nonnegative
solution of (5.1), and that the latter is noncritical. Therefore, cyclic reduction applied
to this problem converges quadratically to the common minimal nonnegative solution
X of the two equations.

As noted in [4], a natural choice for pT in the problem (1.2) is pT =
[
eT qT

]
,

which preserves the property thatM is a diagonal plus rank 1M -matrix, and therefore
allows one to use the algorithm presented here for the case (3.1) with r = 1 and[

q̃
ẽ

]
=

[
q − ηv1
e+ ηv2

]
.

More generally, in the case (3.1) one can choose pT as one of the rows of
[
eT qT

]
. This

choice preserves the property that M is a diagonal plus rank r M -matrix, maintaining
the problem in the form of equation (3.1), and therefore allows one to use the presented
algorithm as in the nonshifted version.

FAST SOLUTION OF A CERTAIN RICCATI EQUATION 15

6. Another approach for the computation of the diagonal. The algo-
rithms presented in the previous sections provide an effective tool for solving equation
(1.1) under the assumptions (1.2) and (1.3). However, in the critical and nearly criti-
cal cases where (α, c) is close to (0, 1), numerical instability problems are encountered
in the computation of the diagonal entries of the solution X. This phenomenon, well
illustrated in the numerical experiments of the next Section 7, is caused by the large
cancellation errors encountered in the computation of the diagonal of X, due to the
singularity of the displacement operator ∇D,D.

In this section we propose a method to overcome this drawback which in fact is a
general technique for transforming a singular displacement operator ∇D,D into a new
nonsingular operator ∇D1,D2 for which rank∇D1,D2(A) ≤rank∇D,D(A) + 1.

For a given vector u, rewrite R = ∇D,D(A) = DA−AD as

R = DA−A(D + uuT − uuT)

so that

DA−A(D + uuT) = R−AuuT =: R1

where rankR1 ≤ rank(R)+1. Moreover, if u if chosen as one of the displacement gen-
erators of R, then rankR1 ≤ rankR. Assume for simplicity that D =diag(γ1, . . . , γ2n)
where 0 < γ1 < · · · < γn < γn+1 < · · · < γ2n. Set

ξi = (γi + γi+1)/2, i = 1, 2, . . . , 2n− 1, ξ2n > γ2n. (6.1)

Then it is easily verified that the quantities

σi =

∏2n
j=1(ξj − γi)∏2n

j=1, i6=i(γj − γi)
(6.2)

are positive and that the matrix D + uuT , with

ui =
√
σi, (6.3)

has eigenvalues ξ1, . . . , ξ2n. Moreover, it is a simple matter to prove that the vector
v(j) = (v(j)

i), v(j)
i = uiθj/(ξj − γi),

θj = (
∑

i

(ui/(γi − ξj))2)−1/2, (6.4)

is a normalized eigenvector of D + uuT corresponding to the eigenvalue ξi. In other
words, it holds

(D + uuT)S = SD1, S = (θiuj/(ξ − γj)), D1 = diag(ξ1, . . . , ξ2n), (6.5)

where SST = I. Thus, one has

DAS −ASD1 = RS −AuuTS

and the operator ∇D,D1 is nonsingular.
This approach would allow one to apply the standard Cauchy-like matrix ma-

chinery to perform the computation of CR (or SDA) by replacing (3.5) with new

16 D. A. BINI, B. MEINI AND F. POLONI

expressions. However, in this way we would lose the block structure of the vectors
involved in (3.5) with an increase of complexity.

It is also possible to use the new nonsingular operator only for computing the
diagonal elements of A(k)

−1 and A
(k)
1 . For the sake of notational simplicity let us use

A for one of the above matrices and let ∇D,DA =
∑3

`=1 v
(`)w(`)T = vwT , where

the vectors v(`) and w(`) represent the vectors in the right-hand side of (3.3), and
v =

[
v1, v2, v3

]
, w =

[
w1, w2, w3

]
. Denote B = AS and observe that

ai,i =
∑

j

(B)i,j(S)i,j

=θi

∑
`

v(`)
i

∑
j

(w(`)TS)juj

(γi − ξj)(ξi − γj)

 + θi(Au)i

∑
j

(uTS)juj

(γi − ξj)(ξi − γj)

(6.6)

In the case where A = A
(k+1)
i , i = 1,−1, it holds

A
(k+1)
i u = −A(k)

i (A(k)
0)−1A

(k)
i u (6.7)

so that the product Au can be computed using the Trummer-like representation of
the matrices A(k)

i . In the SDA case, similarly, Ek+1u and Fk+1u can be computed
from the Trummer-like representations of the matrices at step k.

The following algorithm synthesize the computation of the diagonal entries of A
in the general case.

precomputation step :
choose u
compute :

ξi , i = 1 : m by means o f (6.1)
ui , i = 1 : m by means o f (6.2) and (6.3)
θi . i = 1 : m by means o f (6.4)
uT S , where S i s as de f ined in (6.5) , us ing Algorithm 1

function d=a l t d i a g (D ,v ,w ,Au)
output :
d = diag(A) .
input :
D , v , w such that
DA−AD = vwT

and Au=A∗u
Au can be computed in any way , e . g . us ing (6.7)

compute the ve c to r s wT S by us ing Algorithm 1
for i =1:m
apply (6.6) and obta in d(i) = ai,i

end for
end function

Algorithm 5: Computation of the diagonal entries of an m×m Trummer-like matrix
A

FAST SOLUTION OF A CERTAIN RICCATI EQUATION 17

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 100 1000 10000

Total time, alpha=0.5, c= 0.5

sSDA
SDA
sCR
CR
Lu 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 10 100 1000 10000

Relative residual, alpha=0.5, c= 0.5

sSDA
SDA
sCR
CR
Lu

Table 7.1
Tests with α = 0.5, c = 0.5

7. Numerical experiments. The proposed algorithms have been implemented
in Fortran 90 and tested on a 2.8GHz Xeon biprocessor, compiled with Lahey Fortran
compiler v. 6.20c. The experiments performed are those mentioned in [19], that
is, equation (1.1) for (1.2) with α = 0.5, c = 0.5 (nonsingular case) and with α =
10−8, c = 1 − 10−6 (close to null recurrent case). We have let the dimension n of
the matrices vary between 32 and 4096 to get a better grasp on the growth of the
computational cost.

The algorithms have been compared with the original version of SDA and CR
with Ramaswami’s reduction, and with the algorithm mentioned in [19], which is
a fast Newton-like algorithm specialized for problem (1.2) with cost 2/3n3 + o(n3)
per step and quadratical convergence (in noncritical cases). Our structure-preserving
algorithm are labeled sSDA and sCR in the legend, to distinguish them from the original
versions. We report some of the most significant results in Tables 7 and 7 the total
time elapsed for the experiments and the residual, calculated as

Res =

∥∥∥∆X̃ + X̃D − (X̃q + e)(qT X̃ + eT)
∥∥∥

1

max(
∥∥∥X̃q̃ + ẽ

∥∥∥
1
,
∥∥∥eT + qT X̃

∥∥∥
1
)

and capped to 1 (since values larger than 1 simply means that no meaningful con-
vergence is reached). Note that the expression appearing at the numerator inside the
norm symbols is an alternative way of writing the Riccati equation.

The results are encouraging in terms of computational time. The structured ver-
sions of the algorithms perform better than their non-structured counterparts starting
from a very low threshold for the size n; further on, the structured algorithms also
overcome Lu’s algorithm [19], which is faster for low dimensions but grows as O(n3)
with the size of the problem instead of O(n2).

In terms of accuracy, the algorithms perform well for cases far from singularity,
but show very large residuals for critical and near-to-critical cases. Eventually, for
sufficiently high dimension, the convergence is lost. Based on the intermediate results,
we believe tha the loss of accuracy is due to the computation of the diagonal entries
of the Trummer-like matrices involved, which suffers from cancellation problems. In
order to overcome them, we have developed the technique of Section 6. Though
changing the involved displacement operator seems the way to overcome the problem,
application of Algorithm 5 has provided no significant improvement in the errors. The

18 D. A. BINI, B. MEINI AND F. POLONI

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 100 1000 10000

Total time, alpha=1.E-8, c= 1-1.E-6

sSDA
SDA
sCR
CR
Lu 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 10 100 1000 10000

Relative residual, alpha=1.E-8, c= 1-1.E-6

sSDA
SDA
sCR
CR
Lu

Table 7.2
Tests with α = 10−8, c = 1− 10−6

problem of how to reduce the error in near-to-critical cases is still under investigation.

8. Conclusions. This work provides a structural analysis of SDA and CR for
diagonal plus low-rank equations. It is noteworthy that both algorithms preserve the
structure of the problem, since that is not at all apparent from their definitions.

The presented algorithms provide a new approach for the solution of the struc-
tured algebraic Riccati equations (1.2) and (3.1). While their speed is definitely
inferior to that of the structured Lu method presented in [4], the most recently de-
veloped numerical algorithm for this NARE, they compare favorably to the previous
ones. An interesting application would be applying them to equations of the kind
(3.1) (H diagonal plus rank-r) with r ≈ 10–15 or larger. For such equations, the
analogous generalization of the structured Lu methods has complexity O(n2r2), as
can easily be deduced from the derivation in [4], while structured SDA and CR have
complexity growing as O(n2r). Therefore, it is expected that our methods become
competitive with structured Lu starting from these values of r.

Turning to numerical stability, some more work is needed to get stable versions
of our algorithms for near-to-critical cases. Apparently, the cancellation problems
in the calculation of the diagonal of the involved Trummer-like matrices cannot be
overcome easily. An alternative method to the direct calculation of the diagonals
(which would require O(n3) ops) and to those presented here (which do not solve
the stability issues) is required. Different techniques, alternative to the approach of
Section 6, might be changing the displacement operator from the beginning and doing
all the computations using the new operator; or introducing a new operator for each
step of the algorithms. In this framework, SDA looks simpler to analyze than CR.
Moreover, since SDA is faster than Newton-based methods for the general NARE, it
would be interesting to see if this holds for our structured equations as well.

REFERENCES

[1] D. A. Bini, L. Gemignani, and B. Meini. Computations with infinite Toeplitz matrices and
polynomials. Linear Algebra Appl., 343/344:21–61, 2002. Special issue on structured and
infinite systems of linear equations.

[2] D. A. Bini, G. Latouche, and B. Meini. Numerical methods for structured Markov chains.
Numerical Mathematics and Scientific Computation. Oxford University Press, New York,
2005. , Oxford Science Publications.

FAST SOLUTION OF A CERTAIN RICCATI EQUATION 19

[3] Dario A. Bini, Bruno Iannazzo, Guy Latouche, and Beatrice Meini. On the solution of algebraic
Riccati equations arising in fluid queues. Linear Algebra Appl., 413(2-3):474–494, 2006.

[4] Dario A. Bini, Bruno Iannazzo, and Federico Poloni. A fast Newton’s method for a nonsymmet-
ric algebraic Riccati equation. Technical report, Dipartimento di Matematica, Università
di Pisa, Pisa, Italy, 2007. Submitted for publication.

[5] A. Gerasoulis. A fast algorithm for the multiplication of generalized Hilbert matrices with
vectors. Math. Comp., 50(181):179–188, 1988.

[6] I. Gohberg, T. Kailath, and V. Olshevsky. Fast Gaussian elimination with partial pivoting for
matrices with displacement structure. Math. Comp., 64(212):1557–1576, 1995.

[7] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins Studies in
the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, third edition,
1996.

[8] C.-H. Guo, B. Iannazzo, and B. Meini. On the doubling algorithm for a (shifted) nonsymmetric
algebraic Riccati equation. Technical report, Dipartimento di Matematica, Università di
Pisa, Italy, May 2005.

[9] Chun-Hua Guo. Nonsymmetric algebraic Riccati equations and Wiener-Hopf factorization for
M -matrices. SIAM J. Matrix Anal. Appl., 23(1):225–242 (electronic), 2001.

[10] Chun-Hua Guo. Efficient methods for solving a nonsymmetric algebraic Riccati equation arising
in stochastic fluid models. J. Comput. Appl. Math., 192(2):353–373, 2006.

[11] Chun-Hua Guo and Nicholas J. Higham. A Schur–Newton method for the matrix pth root
and its inverse. Technical Report 2005.9, Manchester Institute for Mathematical Sciences
(MIMS), Manchester, UK, October 2005. To appear in SIAM J. Matrix Anal. Appl.

[12] Chun-Hua Guo, Bruno Iannazzo, and Beatrice Meini. On the doubling algorithm for a (shifted)
nonsymmetric algebraic riccati equation. Technical report, Dipartimento di Matematica,
Università di Pisa, Pisa, Italy, May 2006. Submitted for publication.

[13] Chun-Hua Guo and Alan J. Laub. On the iterative solution of a class of nonsymmetric algebraic
Riccati equations. SIAM J. Matrix Anal. Appl., 22(2):376–391 (electronic), 2000.

[14] Xiao-Xia Guo, Wen-Wei Lin, and Shu-Fang Xu. A structure-preserving doubling algorithm for
nonsymmetric algebraic Riccati equation. Numer. Math., 103(3):393–412, 2006.

[15] C. He, B. Meini, and N. H. Rhee. A shifted cyclic reduction algorithm for quasi-birth-death
problems. SIAM J. Matrix Anal. Appl., 23(3):673–691 (electronic), 2001/02.

[16] Georg Heinig and Karla Rost. Algebraic methods for Toeplitz-like matrices and operators,
volume 13 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel,
1984.

[17] Jonq Juang and Wen-Wei Lin. Nonsymmetric algebraic Riccati equations and Hamiltonian-like
matrices. SIAM J. Matrix Anal. Appl., 20(1):228–243 (electronic), 1999.

[18] Jonq Juang and Wen-Wei Lin. Nonsymmetric algebraic Riccati equations and Hamiltonian-like
matrices. SIAM J. Matrix Anal. Appl., 20(1):228–243 (electronic), 1999.

[19] Lin-Zhang Lu. Newton iterations for a non-symmetric algebraic Riccati equation. Numer.
Linear Algebra Appl., 12(2-3):191–200, 2005.

[20] Lin-Zhang Lu. Solution form and simple iteration of a nonsymmetric algebraic Riccati equation
arising in transport theory. SIAM J. Matrix Anal. Appl., 26(3):679–685 (electronic), 2005.

[21] V. Mehrmann and H. Xu. Explicit solutions for a Riccati equation from transport theory.
Technical report, Department of Mathematics, Kansas University, 2008.

[22] V. Ramaswami. Matrix analytic methods for stochastic fluid flows. In Proceedings of the 16th
International Teletraffic Congress, pages 19–30. Elsevier Science, Edinburg, 1999.

