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Abstract

In [1] the first MIP exact formulation was provided that describes the convex hull of the solutions satisfy-
ing all the standard operational constraints for the thermal units: minimum up- and down-time, minimum
and maximum power output, ramp (including start-up and shut-down) limits, general history-dependent
start-up costs, and nonlinear convex power production costs. That formulation contains a polynomial,
but large, number of variables and constraints. We present two new formulations with fewer variables de-
fined on the shut-down period and computationally test the trade-off between reduced size and possibly
weaker bounds.

Key words: Unit Commitment problem, Ramp Constraints, MIP Formulations, Dynamic Programming,
Convex Costs
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1. Introduction

The Unit Commitment (UC) problem is a fundamental problem in power industries. It requires to coordi-
nate the production of a set of power generation units by finding a feasible schedule—satisfying complex
operational constraints—of each, over some time period, in order to minimize operational costs while
satisfying system-wide constraints. The latter usually comprise the satisfaction of the energy demand,
the provision of different types of reserve, and the handling of the transmission network. Operational
constraints depend on the type of generation units. Despite the significant increase of contribution of
Renewable Energy Sources (RES) units (wind, solar, . . . ), most power systems are still mainly based on
thermal units (comprised nuclear ones) and hydro units. Indeed, these are necessary if only to be able to
cope with the uncertainty in the production output that is typical of most RES units, which lead to highly
complex uncertain (robust and/or stochastic) UC variants [15]. Thus, thermal units remain at the heart of
basically every UC model of practical interest. In the last decade, the advances in Mixed-Integer (linear
and convex) Programming (MIP) solvers have made MIP approaches an attractive option for solving
UC, either as a whole or for specific sub-problems in the context of decomposition approaches (e.g.,
[14, 15, 2, 13]. This motivated a significant amount of research on the strong combinatorial structure of
operational constraints of thermal units. In [10] many of the different types of formulations that appeared
in the literature have been surveyed and compared with a large computational experience.

In [1] we gave the first MIP description of the convex hull of the solutions satisfying all the standard
operational constraints for the thermal units: minimum up- and down-time, minimum and maximum
power output, ramp (including start-up and shut-down) limits, general history-dependent start-up costs,
and nonlinear convex power production costs. This formulation is inspired by a Dynamic Programming
algorithm [5], and contains a polynomial number of variables and constraints. However, the number
of variables grows cubically with the number of instants in the time horizon, making the formulation
somehow impractical. This is why we also presented two additional MIP formulations which trade a
weaker bound for fewer variables. We mention that three independent groups obtained a similar result
restricted to linear objective function: the first was [6, 7] and then [8, 9] also appeared with very similar
structure but with different proof techniques.

In this paper we continue and extend this line of research by deriving two new MIP formulations
for UC that investigates complementary options to reduce the number of variables. In [1] one of the
presented formulations was based on variables defining the power produced by a unit when the start-up
time has been fixed. Here, we present a nearly-symmetric formulation based on variables defining the
power produced by a unit when the shut-down time has been fixed. Despite the near symmetry, the two
formulation behave somewhat differently, as our computational results show. Finally, we present and test
a further formulation that combines both the “start-up” and the “shut-down” approach.

The structure of the paper is as follows. In Section 2 we recall the present most popular UC formu-
lation restricted to thermal units. In Section 3 we recall the results in the recent paper [1] on the new
formulations based on the DP algorithm in [5]. In Section 4 we present the new formulation based on
shut-down power variables and the combined one. In Section 5 we present some preliminary computa-
tional experiments to characterize the placement of the new formulations within the state-of-the-art of
MIP formulations for UC. Finally, in Section 6 we sum up the results, and draw some possible lines for
future research on the topic.

2. The thermal Unit Commitment problem

Here we briefly recall the MIP formulation of the thermal Unit Commitment problem that became more
and more popular in the last years, as it is one of the main innovations which made UC solvable by
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standard MIP solvers. It has been introduced in [12] and, independently, in [11], and it is usually referred
to as the “3-bin formulation” from the number of vectors of binary variables that are considered.

Let I be the set of thermal generators, with m = |I|, and T = {1, . . . ,n} be the set of time periods in the
planning horizon. Given two time instants t ′ and t ′′, we will denote by T (t ′, t ′′) the set of all the periods
from t ′ to t ′′, extremes included. For each i ∈ I and t ∈ T , let pit (the power variables) be the power level
of unit i at period t, and xit (the commitment variables) be the binary variable denoting the on/off state of
unit i at period t. If xit = 1 (“on” state), then the power pit may be nonzero and subject to some technical
constraints specified in the following. If xit = 0 (“off” state), then pit = 0. The 3-bin formulation requires
two additional sets of variables: start-up variables vit denoting if unit i has been started up at period t
(i.e., xit=1 and xi,t−1=0) and shut-down variables wit denoting if i has been shut down at t (i.e., xit=0
and xi,t−1=1). The basic version of the 3-bin formulation is

min ∑i∈I ∑t∈T (xit fi(pit/xit)+ cixit + sivit ) (1)

∑i∈I pit = dt t ∈ T (2)

lixit ≤ pit ≤ uixit i ∈ I , t ∈ T (3)

∑s∈T (t−τ i
++1,t) vis ≤ xit i ∈ I , t ∈ T (τ

+
i , n) (4)

∑s∈T (t−τ i
−+1,t) wis ≤ 1− xit i ∈ I , t ∈ T (τ

−
i , n) (5)

xit − xi,t−1 = vit −wit i ∈ I , t ∈ T (6)

pit − pi,t−1 ≤ ∆
+
i xi,t−1 + l̄ivit i ∈ I , t ∈ T (7)

pi,t−1− pit ≤ ∆
−
i xit + ūiwit i ∈ I , t ∈ T (8)

xit , vit , wit ∈ {0,1} i ∈ I , t ∈ T (9)

The objective function (1) is composed of three parts: the variable generation costs evaluated as the
Perspective Reformulation [5] of the quadratic function fi(pit) = ai p2

it + bi, the fixed generation costs
cixit , and the start-up costs sivit . For simplicity, in this formulation we consider only fixed start-up costs;
history-dependent start-up costs can be included with some complication [10], and are handled basically
“for free” by the DP-based formulations examined here (cf. [1] for details). The demand constraints (2)
are the simplest version of system-wide constraints, where dt is the (forecast) total energy demand at
period t; other types may relate reserves and the distribution network (e.g. [10]), but we only consider (2)
since our focus is on the description of the individual thermal units, which is logically independent from
system-wide constraints. Minimum and maximum power output constraints are imposed by (3), where
li and ui are the extreme values for the generated power for each unit i ∈ I (when on). In order to
limit the technical stress due to frequent start-up and shut-down operations, minimum up- and down-time
constraints (4)-(5) establish a minimum number of periods that unit i has to be in on and off state, τ

+
i and

τ
−
i , respectively; for simplicity we have omitted the obvious constraint that may fix the on/off status of

the unit depending on its state prior to the beginning of the planning horizon. Constraints (6) establishes
the relation among state, start-up, and shut-down variables. Ramp-up and ramp-down constraints (7)-
(8) limit the maximum increase ∆

+
i or decrease ∆

−
i , respectively, of the power produced by unit i in

two consecutive time instants. These are usually related with start-up and shut-down limits, that is the
maximum power l̄i when the unit is started-up and the maximum power ūi before the unit is shut-down.
For consistency, it must be li ≤ l̄i ≤ ui and li ≤ ūi ≤ ui.

The above formulation, minus (7)-(8), is known to be exact only when no ramp-up/down limits are
imposed. The question if it is possible to write an exact formulation for UC restricted to a single thermal
unit (1UC) in the variable space of the 3-bin formulation is still unsolved. However, 1UC is known to
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be an easy problem: indeed, in [5] a Dynamic Programming (DP) algorithm was proposed that can solve
1UC with all the above constraints in O(n3) (and that can be generalized to more complex objectives).
Based on that, in [1] we gave the first exact formulation for 1UC that considers all the above mentioned
technical features, which is recalled in the next section.

3. DP formulations

For the description of the DP algorithm we drop the unit index i for notational simplicity. We then define
a state-space graph G = (N , A). The nodes in N are of two types: ONt and OFFt for each t ∈ T , plus
two special nodes, the source s and the sink d. The arcs in A are of two types: ON-arcs (OFFh , ONk ),
denoting that the unit is turned on at the beginning of period h and unit remains on until the end of period
k, and OFF-arcs (ONk , OFFr ), denoting that the unit is off from period k+1 to period r−1. Both on-
and off-arcs are only constructed, obviously, if they satisfy the minimum (respectively) up- and down-
time constraints. Moreover, there are the connections between the source node s and the ON and OFF
nodes defined according to the initial state of the unit. That is, if the unit is on since τ0 periods, then there
is an on-arc from s to each node ONk such that k+τ0 ≥ τ+. If, instead, the unit is off since −τ0 periods,
then there is an off-arc from s to each node OFFh such that h− τ0− 1 ≥ τ−. ON-arcs (OFFh , ONk )
are labeled with costs γhk

ON computed as the fixed cost ci multiplied by (k−h+1); OFF-arcs are labeled
with γkr

OFF corresponding to the start-up cost. All nodes are then connected to the sink node d: OFF-arcs
(ONt , d ) and ON-arcs (OFFt , d ). Finally, the single arc (s , d ) means that the unit remains with the
same status for all the time horizon, and it is an ON- or OFF-arc according to the fact that the unit, is,
respectively, on or off at time 0. The details about the (efficient) computation of the arcs costs within the
DP algorithm are provided in [5].

The formulation inspired by the DP algorithm for (1UC) consists of two parts:

• the shortest path formulation based on the state-space graph G;

• new power variables and the linking constraints with the previous part.

The shortest path formulation is straightforward: one just introduces the node-arcs incidence matrix of
the state-space graph and writes the obvious system of inequalities. Then we can then simply write this
part of the formulation as:

E iyi = δ
i , yi ≥ 0 , (10)

where E i is the node-arcs incidence matrix of Gi = (Ni , Ai ) (here we reintroduced the unit index i ∈ I),
yi is the vector of arc flow variables, and δ i is the vector with all zero entries except δ i

s =−1 and δ i
d = 1.

Within the vector yi, we denote with yhk
i the variable associated with an ON-arc (OFFh , ONk ) ∈ Ai. For

short, we define as Ai
ON as the subset of such ON-arcs, and we denote them simply as “(h , k )” (as the

type of the nodes is obvious). For each (h , k ) ∈ Ai
ON and t ∈ T (h , k ) we construct a variable phk

t to
denote the power level for each time instant if the unit i is started-up at time h and shut-down at time k.
The following result is proven in [1]:
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Theorem 3.1. [1] The following is an exact formulation for (1UC):

min γT
i yi +∑(h ,k )∈Ai

ON
∑t∈T (h ,k ) yhk

i fi(phk
it /yhk

i )
)

(11)

(10)

lyhk ≤ phk
h ≤ l̄yhk

lyhk ≤ phk
t ≤ uyhk t ∈ T (h+1 , k−1)

lyhk ≤ phk
t ≤ ūyhk

phk
t+1 ≤ phk

t + yhk∆+ t ∈ T (h , k−1)
phk

t ≤ phk
t+1 + yhk∆− t ∈ T (h , k−1)


(h , k ) ∈ Ai

ON (12)

Constraints (12) express the Economic Dispatch conditions associated with an ON-arc (OFFh , ONk )
and the objective function (11) is the Perspective Reformulation [4] of the original objective function fi.
This immediately yields the DP formulation for the complete UC problem

min ∑i∈I
(

γT
i yi +∑(h ,k )∈Ai

ON
∑t∈T (h ,k ) yhk

i fi(phk
it /yhk

i )
)

∑i∈I ∑(h ,k ) : t∈T (h ,k ) phk
it = dt t ∈ T

(10) , (12) i ∈ I

(13)

The number of binary and continuous variables in (13) is, respectively, O(n2|I|) and O(n3|I|). Although
the formulation provides (as expected) a strong bound, its size grows quickly, in particular due to the
number of continuous variables. Because of this, in [1] two other formulations were introduced which
are also based on the DP approach, but achieve different trade-offs between size and tightness. When
restricted to 1UC, both are less tight than the exact formulation (10)–(12). The first one uses the original
O(n|I|) power variables pit of the 3-bin formulation, while the second one presents a new type of power
variables whose cardinality is intermediate between 3-bin and DP formulations.

Given a unit i, consider the commitment variable xit , the start-up/shut-down variables vit /wit and the
set of variables yhk

i for (h , k ) ∈ Ai
ON . It is easy to see that these variables are related by the following

equations:
xit = ∑(h ,k ):t∈T (h ,k ) yhk

i , vit = ∑k≥t ytk
i , wit+1 = ∑h≤t yht

i . (14)

Consequently, the ramp-up/down constraints assume, respectively, the following form:

pit − pit−1 ≤ ∆
+
i ∑(h ,k ) : t−1∈T (h ,k−1) yhk

i + l̄i ∑k : k≥t ytk
i − li ∑h : h≤t−1 yht−1

i (15)

pit−1− pit ≤ ∆
−
i ∑(h ,k ) : t−1∈T (h ,k−1) yhk

i + ūi ∑h : h≤t−1 yht−1
i − li ∑k : k≥t ytk

i (16)

Note that, in case the unit is on at the beginning of time horizon (τ0
i > 0), the initial ramp-up/down

conditions have to be set by

pi1 ≤ (∆+
i + pi0)∑k : 1≤k y0k

i , −pi1 ≤ (∆−i − pi0)∑k : 1≤k y0k
i (17)

Then minimum and maximum power output constraints can be rewritten as follows:

li ∑(h ,k ) : t∈T (h ,k ) yhk
i ≤ pit ≤ ui ∑(h ,k ) : t∈T (h ,k ) yhk

i (18)

The right-hand side of constraints (18) can be reinforced as follows. Assuming that τ
+
i ≥ 2, if a unit i is

switched on at time t then ∑k : k≥t ytk
i = 1 and the power pit is bounded by l̄i. If the unit is switched off at
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time t then ∑h : h≤t yht
i = 1 and the power pit must not exceed ūi. In case the unit does not turn on or off

but it is committed at time t then ∑(h ,k ) : h<t<k yhk
i = 1 holds. Consequently, there exists (h , k ) such that

h < t < k and yhk
i = 1. Because of the maximum power output and the ramp-up/down constraints, the

power pit is bounded by ψhk
it =min{ui , l̄i+∆

+
i (t−h) , ūi+∆

−
i (k−t)}. Furthermore, if the unit is initially

committed (τ0
i > 0) then ∑k :l1≤k y0k

i = 1 and we have to set ψ0k
it = min{ui , pi0 +∆

+
i · t , ūi +∆

−
i (k− t)}.

Hence, if τ
+
i ≥ 2 then (18) can be reinforced as

pit ≤ l̄i ∑k : k≥t ytk
i + ūi ∑h : h≤t yht

i +∑(h ,k ) : h<t<k ψhk
it yhk

i (19)

whereas if τ
+
i = 1 and ytt

i = 1, the power pit is bounded by the minimum between l̄ and ū, which means
that (18) rather becomes

pit ≤ l̄i ∑k : k>t ytk
i + ūi ∑h : h<t yht

i +∑(h ,k ) : h<t<k ψhk
it yhk

i +min{ l̄i , ūi }ytt
i (20)

This finally yields the pt-model

min ∑i∈I
(

γT
i yi +∑t∈T ∑(h ,k ) : t∈T (h ,k ) yhk

i ) fi(pit/(∑(h ,k ) : t∈T (h ,k ) yhk
i )
)

(2) , (10) , (15)–(20)
(21)

The last formulation introduced in [1] is rather centered on defining variables ph
it denoting the power

produced by unit i if committed at time t and if it has been turned on at time instant h; differently from
the variable phk

it , in this case the time when the unit will be turned off is not fixed. The relation between
pit and ph

it variables is
pit = ∑h : h≤t ph

it . (22)

The ramp-up/down constraints are then reformulated as

ph
it − ph

it−1 ≤ ∆
+
i ∑k : k≥t yhk

i − liyht−1
i h ∈ T (1 , n−1) , t ∈ T (h+1 , n) (23)

ph
it−1− ph

it ≤ ∆
−
i ∑k : k≥t yhk + ūiyht−1

i h ∈ T (1 , n−1) , t ∈ T (h+1 , n) (24)

If τ0
i > 0, the initial ramp-up/down conditions can be imposed by

p0
i1 ≤ (∆++ p0)∑k : 1≤k y0k

i , −p0
i1 ≤ (∆−− p0)∑k : 1≤k y0k

i (25)

and minimum/maximum power output constraints take the form

li ∑k : k≥t yhk
i ≤ ph

it ≤ ui ∑k : k≥t yhk
i h ∈ T (0 , n) , t ∈ T (h , n) (26)

However, for t = h the rightmost inequality in (26) can be substituted by

ph
ih ≤ l̄i ∑k : k>h yhk

i +min{ l̄i , ūi }yhh
i (27)

while for t > h one can rather use

ph
it ≤ ūiyht

i +∑k :lk>t ψhk
it yhk

i (28)

In conclusion, the Start-Up formulation (SU) is

min ∑i∈I
(

γT
i yi +∑t∈T ∑h : t≥h(∑k : k≥t yhk

i ) fi(ph
it/(∑k : k≥t yhk

i ))
)

(29)

(10) , (23)–(28) i ∈ I

∑i∈I ∑h : h≤t ph
it = dt t ∈ T (30)

This has O(n2|I|) power variables, compared to O(n|I|) of the pt-model and O(n3|I|) of the original DP
formulation, with a bound to match [1].
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4. Two new formulations for UC

Mirroring the derivation of (29)–(30), we can construct a nearly symmetric formulation, that we name
Shut-Down formulation (SD). This is based on variables p̃k

it denoting the power produced at time t by a
unit i that will be turned off at time instant k, i.e.,

pit = ∑k :lk≥t p̃k
it (31)

All the constraints can be derived by using (31); in particular, the ramp-up/down constraints become

p̃k
it − p̃k

it−1 ≤ l̄iytk
i +∆

+
i ∑h : h≤t−1 yhk

i k ∈ T (2 , n) , t ∈ T (2 , k ) (32)

p̃k
it−1− p̃k

it ≤−liytk
i +∆

−
i ∑h : h≤t−1 yhk

i k ∈ T (2 , n) , t ∈ T (2 , k ) (33)

If τ0
i > 0, the initial ramp-up/down conditions can be imposed by

p̃k
i1 ≤ (∆++ p0)y0k

i , −p̃k
i1 ≤ (∆−− p0)y0k

i (34)

The minimum/maximum power output constraints take the form

li ∑h : h≤t yhk
i ≤ p̃k

it ≤ ui ∑h : h≤t yhk
i k ∈ T , t ∈ T (1 , k ) (35)

which for can t = k be strengthened by

p̃k
ik ≤ ūi ∑h : h<k yhk

i +min{ l̄i , ūi }ykk
i (36)

while for t < k by

p̃k
it ≤ l̄iytk

i +∑h : h<t ψhk
it yhk

i (37)

due to the fact that the unit could be turned on at time t (ytk
i = 1) or not (∑h : h<t yhk

i = 1). All in all, the
SD formulation is

min ∑i∈I
(

γT
i yi +∑t∈T ∑k : t≤k(∑h :h≤t yhk

i ) fi(p̃k
it/(∑h : h≤t yhk

i ))
)

(38)

(10) , (32)–(37) i ∈ I

∑i∈I ∑k : k≥t p̃k
it = dt t ∈ T (39)

It is now natural to define the Start-Up/Shut-Down formulation (SUSD) by basically combining the
previous two:

min ∑i∈I
(

γT
i yi +∑t∈T θit

)
(40)

θit ≥ (∑k : k≥t yhk
i ) fi(ph

it/(∑k : k≥t yhk
i )) i ∈ I , t ∈ T (41)

θit ≥ (∑h : h≤t yhk
i ) fi(p̃k

it/(∑h : h≤t yhk
i )) i ∈ I , t ∈ T (42)

(10) , (30) , (23)-(28) , (32)-(37) i ∈ I

∑h : h≤t ph
it = ∑k : k≥t p̃k

it t ∈ T (43)

Basically, (41) and (42) guarantee that the objective function (40) represents the maximum between
these of the SU and the SD formulations. The constraints, and in particular (43), enforce the intersection
between the feasible solutions of the two formulations. Thus, the lower bound provided by the continuous
relaxation of the SUSD formulation has to be at least as good as the ones of both the SU and the SD
models, at the cost of having roughly twice the number of variables of each (but still O(n2|I|) as opposed
to the O(n3|I|) ones of the original DP formulation).
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3-bin DP pt SU SD SUSD
units time gap time gap time gap time gap time gap time gap

10 0.12 1.522 16.40 0.671 0.59 0.931 2.83 0.916 4.29 0.678 44.84 0.671
20 0.28 1.435 59.07 0.512 1.46 0.775 8.53 0.758 11.09 0.515 139.52 0.512
50 0.96 0.871 300.53 0.076 4.32 0.301 22.42 0.287 33.64 0.079 529.96 0.076

Table 1: Root node gaps of the 3-bin, DP, pt , SU, SD, and SUSD formulations.

5. Computational Results

In this section we provide some preliminary computational experiments to compare the new formulations
presented with the DP-based ones introduced in [1] as well as the reference 3-bin model. For our tests,
we considered standard benchmark realistic instances with 10, 20 and 50 units and n = 24 time periods,
available at

http://www.di.unipi.it/optimize/Data/UC.html

All the experiments were conducted on a PC with 2.2 GHz Intel Xeon Gold 5120 CPUs and 64 GB of
RAM, under a GNU/Linux Ubuntu 18.04.3 LTS operating system. We used CPLEX 12.9 as optimization
tool. For a given number of units, we considered five instances and the average of the results thus obtained
are reported.

In Table 1 we compare the formulations by evaluating the lower bound by their continuous relaxations.
In particular, for each instance size and for each model, “time” denotes the average time for solving the
linear relaxation while “gap” is the average gap (in percentage) between the optimal solution and the
value of the linear relaxation.

As it can be expected from the theory, the DP formulation is the one that provides the best gaps;
however, it being the largest one, it also has a high computing time for the linear relaxation. In general,
a clear trend exists between having a larger number of variables, and therefore a larger cost, and having
a stronger bound. The interesting comparison is between the SU and SD models that have basically
identical size. On the test instances, the SD formulation is somewhat more costly to solve, but it provides
a better bound. This is somewhat unexpected due to the high degree of symmetry between the two, and
worth further investigation. A separate analysis is to be done for the SUSD formulation. It shows the
same gaps of the produced by the DP model; it is unclear whether this happens by chance or if it can be
proven theoretically. Surprisingly, it runs with the highest computing times even if it has a size that is
between SU and SD models on the one hand and the DP model on the other hand. Finally, we remark
that the 3-bin formulation provides the worst lower bounds although in small computing times.

Table 2 show some computational experiments for solving the integer formulation with the B&C ap-
proach in CPLEX. We set a required relative gap of 0.01% and a time limit of 10000 seconds. For each
model, column “time” reports the average total time, “opt” the number of instances, over five, solved
within the time limit, “nodes” the number of nodes explored during the B&C, and “gap” the average
final gap (in percentage).

The results show that the SD formulation is indeed somewhat more effective (surprisingly) than the SU
one, and its performances are comparable with the pt-model, which is the best performing one among
the formulations presented in [1]. Hence, the trade-off between the higher cost and the tighter bound
(cf. Table 1) is positive, at least on these instances. This is not the case for the SUSD model, that has the
worst results in general.



10.

3-bin DP pt

units time opt nodes gap time opt nodes gap time opt nodes gap

10 28 5 275 0.01 832 5 599 0.01 5 5 41 0.01
20 7036 2 3561 0.08 7902 2 1961 0.05 1066 5 1234 0.01
50 10000 0 1619 0.12 10000 0 695 0.14 8095 1 2303 0.03

SU SD SUSD
units time opt nodes gap time opt nodes gap time opt nodes gap

10 152 5 591 0.01 251 5 473 0.01 8033 2 3187 0.17
20 6694 3 3996 0.02 4884 4 2281 0.02 10000 0 1824 0.20
50 8471 1 2669 0.08 8150 2 1617 0.07 10000 0 671 0.20

Table 2: Computational results with gap 10−4 and time limit 10000 seconds.

6. Conclusions

We have introduced two new formulations for the UC problem with convex cost function. Both models
are based on the DP formulation introduced in [1]. In particular, the Shut-Down is a nearly symmetric
formulation of the Start-Up model already introduced in [1], while the Start-Up/Shut-Down is a combi-
nation of the two.

The results of our computational experiments show that the Shut-Down formulation is surprisingly
more effective that its closest sibling, the Start-Up one. The reason is not completely clear, and surely
worth further investigation. On the other hand, the Start-Up/Shut-Down model so far does not seem ef-
fective for solving UC. However, it can be further investigated in at least two aspects. First, the trade-off
between size and bound quality is inherently tied with the algorithm that is used to solve the continuous
relaxation. A column-and-rows generation approach, such as the Structured Dantzig-Wolfe Decomposi-
tion [3], may considerably shift the balance in favour of models that would not be effective using standard
linear programming approaches. Second, the experimental results show that the value of the linear relax-
ation of the Start-Up/Shut-Down model is equal to the one provided by the DP formulation, that is the
strongest model in this sense. It may be interesting to consider whether this equivalence can be proven
theoretically, since the Start-Up/Shut-Down model has considerably less variables than the DP one.
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