
Optimizing over Semimetric Polytopes

Antonio Frangioni1, Andrea Lodi2, Giovanni Rinaldi3

1 Dipartimento di Informatica, Univertità di Pisa,
Largo B. Pontecorvo 1, 56127 Pisa, Italy

frangio@di.unipi.it
2 D.E.I.S., University of Bologna,

Viale Risorgimento 2, 40136 Bologna, Italy
alodi@deis.unibo.it

3 Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti” del CNR,
Viale Manzoni 30, 00185 Roma, Italy

rinaldi@iasi.cnr.it

1 Introduction

Let G = (V, E) be a complete graph. Then the semimetric polytope M(G)
associated with G is defined by the following system of inequalities

xij + xik + xjk ≤ 2
xij − xik − xjk ≤ 0

−xij + xik − xjk ≤ 0
−xij − xik + xjk ≤ 0

for all distinct i, j, k ∈ V, (1)

called the triangle inequalities. The paper deals with the problem of finding
efficient algorithms to optimize a linear function over such a polytope.

We briefly mention two reasons to seek for an efficient way to optimize a
linear function over M(G).

1. The polytope M(G), for |V | > 4, properly contains the cut polytope asso-
ciated with G (see, e.g., [7] for the details). Thus, if an edge cost function
c ∈ RE is given, maximizing c over M(G) produces an upper bound on the
maximum c-value cut of G, which can be exploited in branch and bound or
branch and cut schemes for solving max-cut to optimality. Actually, in all the
computational studies concerning instances of max-cut for very large sparse
graphs based on a branch and cut scheme, the only relaxation exploited is
M(G), or, more precisely, its projection that will be described shortly later.
Consequently, most of the computation time for finding a maximum cut is
spent into a (possibly long) series of linear optimizations over M(G).

2. If an edge capacity function c ∈ RE and an edge demand function d ∈ RE

are given, the existence of a feasible multiflow in the network defined by G,
c, and d is established by the Japanese Theorem (see, e.g., [15]). According
to this theorem, a feasible multiflow exists if and only if µ · (c− d) ≥ 0 holds
for every metric µ on V , i.e., for every point of the cone defined by all the
homogeneous equations of (1). It is not hard to see that this is equivalent

to the condition min{(c − d)x | x ∈ M(G)} ≥ 0. In some approaches to
network design problems [2, 6] such a feasibility problem has to be solved
several times. Again, this calls for an effective solution algorithm.

Although these problems are just standard linear programs with a polynomial
number of constraints (4

(|V |
3

)
), they turn out to be surprisingly difficult to solve

with standard LP tools such as the simplex method or interior-point methods,
even if state-of-the-art software is used. It is therefore of considerable interest
to develop alternative algorithmic techniques that make it possible to compute
(even with some degree of approximation) optimal primal and dual solutions of
these LP’s, faster than it is currently possible with standard methods.

An alternative technique is the Lagrangian approach where one “dualizes”
all the triangle inequalities and leaves only the upper and lower bounds on the
variables (which are actually redundant in the system (1)) as explicit constraints.
Such an approach has been successfully applied, e.g., in [3], where a subgradient-
type approach is used to solve the Lagrangian dual.

We propose to extend this approach in two ways. First, we dualize only a sub-
set of the triangle inequalities, leaving, as explicit constraints, all the inequalities
associated with the triangles of G that have a selected node in common. Such
a system of inequalities defines the rooted semimetric polytope. We show later
how a linear problem defined on this polytope can be solved efficiently. Then, we
test the use of a bundle-type algorithm [8] as an alternative to subgradient-type
approaches to solve the Lagrangian dual; since subgradient-type approaches can
be seen as “special cases” of bundle-type ones [1], this alternative can be con-
sidered an extension. We show that, in most cases, bundle-type approaches, in
comparison with subgradient-type ones, either produce primal and/or dual solu-
tions of substantially higher accuracy, or reduce the running times significantly,
or achieve both these results. The best Lagrangian approach we implemented is
shown to obtain, on a large set of instances, primal and dual solutions of accu-
racy comparable with that produced by standard LP algorithms but in a small
fraction of their computation time.

2 Optimizing over the Rooted Semimetric Polytope

If G is not complete, the semimetric polytope associated with G can be obtained
by projecting the set defined by (1) into RE . The resulting polytope is defined
as follows. Let C be the set of all chordless cycles of G and Ē the subset of the
edges of G that do not belong to a 3-edge cycle (a triangle) of G. The following
system of linear inequalities

x(C \ F)− x(F) ≤ |F | − 1 F ⊆ C with |F | odd and C ∈ C (2)
0 ≤ xe ≤ 1 e ∈ Ē (3)

defines the semimetric polytope M(G) associated with G. Obviously, M(G)
contains the cut polytope associated with G and every its integral point is the
incidence vector of a cut of G. The inequalities (2) are called cycle inequalities.

Although exponentially many, they can be separated in polynomial time (see
[5]).

Let r be a selected node of G that will be donoted as the root. Without loss
of generality, assume that node r is adjacent to every other node of G. If this is
not the case, one can make r adjacent to each other node by adding new edges
to the graph and by extending the edge weight vector c assigning a zero weight
to the new edges. A cut in the new graph is readily associated with a cut in the
original graph and the two cuts have the same weight.

Let us partition the set C into two subsets: the set Cr of the chordless cycles
that contain node r and its complement in C. Under the above assumption,
the edge set Ē is empty and Cr contains only triangles. The rooted semimetric
polytope Mr(G) associated with G is defined by the subsystem of the cycle
inequalities defined by Cr, i.e.,

xri + xrj + xij ≤ 2
xri − xrj − xij ≤ 0

−xri + xrj − xij ≤ 0
−xri − xrj + xij ≤ 0

for all ij ∈ Er, (4)

where Er is the edge set of the subgraph of G induced by V r = V \ {r}.
Despite the fact that the system (4) has much less inequalities than (1), it

shares with (1) the property that it is satisfied by the incidence vector of any
cut of G, while every its integral solution is the incidence vector of a cut of
G. Therefore, the system (4) along with the integrality requirements provides
an integer linear programming formulation for the max-cut problem. Thus, the
optimization of c · x over Mr(G) yields an upper bound on the value of an
optimal cut.

The system (4) has only 4|Er| inequalities, but optimizing over the rooted
semimetric polytope with a general purpose linear optimizer, although not as
difficult as optimizing over M(G), is not as easy as one may expect. We first
give a characterization of the vertices of Mr(G), then we outline a method to
effectively solve the problem exploiting this characterization.

For any two disjoint subsets W and Z of V , the notation (W : Z) stands
for the set of edges with one endpoint in W and the other in Z. For a node set
W ⊆ V , by E(W) denote the set of all the edges in E with both the endpoints
in W . If Z = V \W , then the edge set (W : Z) = (W : V \W) is a cut of G and
is also denoted by δ(W).

Definition 1. A semicut of G is an ordered pair Ω = (F, J) of disjoint subsets
of the edges of G satisfying the following condition: there exists an ordered pair
(S, T) of disjoint subsets of V , with r ∈ S, such that

(a) F = (S : T) ∪H, where H ⊆ E(V \ (S ∪ T)), and
(b) J = δ(S ∪ T).

The edges in F are called regular, while those in J are called weak.

If S ∪ T = V , then the set of weak edges is empty and the semicut is the
ordered pair of a cut of G and of the empty set. Since a semicut is fully specified
by the ordered pair of node sets (S, T) and by the edge set H, it will be denoted
by ∆(S, T, H).

With a semicut Ω = ∆(S, T, H) a representative vector ψΩ ∈ RE is associ-
ated, where for each e ∈ E the component ψΩ

e is equal to 1 if e is a regular edge,
is equal to 1/2 if it is a weak edge, and is equal to 0 otherwise. If S ∪ T = V ,
then H is empty and the characteristic vector of Ω is the incidence vector of a
cut, namely, the cut δ(S). Conversely, the incidence vector of a cut δ(W) is the
representative vector of the semicut ∆(W,V \W, ∅). The weight of a semicut Ω
is given by the inner product c · ψΩ .

A semicut of G is called extreme if its representative vector cannot be written
as a convex combination of representative vectors of distinct semicuts of G. Not
all semicuts are extreme. A characterization of the extreme semicuts and of the
vertices of Mr(G) is given by the following theorems.

Theorem 1. A semicut Ω = ∆(S, T, H) is not extreme if and only if U =
V \ (S ∪ T) is nonempty and there is a connected component Gi = (Ui, Ei) of
the subgraph of G induced by U for which Ei ∩H is a cut of Gi.

Corollary 1. In a complete graph of n nodes the number of extreme semicuts
for which r ∈ S is given by

2n−1 +
n−1∑

k=3

(
n− 1

k

)
(2(k

2) − 2k−1)2n−k−1

Theorem 2. The set of vertices of Mr(G) coincides with the set of represen-
tative vectors of all the extreme semicuts of G for which r ∈ S.

Let us now turn to the solution of

max{c · x | x ∈Mr(G)} (5)

Consider a capacitated directed graph with node set {r} ∪ U ∪ U ′ defined as
follows. For each node i ∈ V r we associate the two nodes i and i′ belonging to
U and U ′, respectively. Two opposite uncapacitated arcs connect r with every
node in U ∪ U ′. With each edge ij (i < j) of Er we associate two arcs (i, j′)
and (j, i′) if ij ∈ Er

+ = {ij ∈ Er | cij > 0}, and the two arcs (i, j) and (i′, j′)
if ij ∈ Er

− = {ij ∈ Er | cij ≤ 0}. The capacity of these arcs is 2|cij |. Finally,
consider the following minimum cost flow problem (MCFP) associated with this

directed graph:

min
∑

i∈V r

(uri + uri′) +
∑

ij∈Er
+

(vij′ + vji′)

subject to
uri +

∑

ij∈Er
+

vij′ +
∑

ki ∈ Er
−

k < i

wki −
∑

ki ∈ Er
−

k > i

wik − qir = di

− uri′ −
∑

ij∈Er
+

vji′ −
∑

ki ∈ Er
−

k < i

wk′i′ +
∑

ki ∈ Er
−

k > i

wi′k′ + qi′r = −di

i ∈ V r

vij′ ≤ 2|cij |
vji′ ≤ 2|cij |

}
ij ∈ Er

+

wij ≤ 2|cij |
wi′j′ ≤ 2|cij |

}
ij ∈ Er

−

u, v, w, q ≥ 0 ,

where
di = cri +

∑

ij∈Er

cij − 2
∑

hi ∈ Er
−

h < i

chi. (6)

Then we have the following

Theorem 3. The optimal objective function value of MCFP equals twice the
optimal value of (5).

A sketch of the proof of this theorem is given in the Appendix. In addition,
we can show that an optimal solution of (5) can be easily obtained from an
optimal dual solution of MCFP, which in turn can be obtained from a primal
optimal solution by exploiting the semicut structure. The characterization of
the solutions of (5) as semicuts is useful also to devise an efficient algorithm for
ranking all the solutions of (5) in the spirit of the scheme given, e.g., in [17] for
ranking the s-t cuts in a graph.

Several polynomial time algorithms are available to solve MCFP. In particu-
lar, Cost Scaling algorithms run in O(n2m log nC) time, where n is the number
of nodes of the graph, m the number of arcs, and C the largest absolute value
of the components of the cost vector. Since in our case C is equal to 1, Cost
Scaling algorithms solve (5) in strongly polynomial time.

We have performed extensive computational tests on several large-scale in-
stances. In Table 1 we report a brief outcome of our testing on clique graphs,
planar graphs, simplex graphs and toroidal 2D and 3D-grid graphs for spin glass
problems, with either ±1 or Gaussian costs (costs in R drawn from a Gaussian
distribution), for a total of 39 instances. The name of each instance begins with
“c”, “p”, “s”, “g2-pm”, “g2-g”, and “g3-g”, respectively, the rest of the name
gives the size of the node set. We tested different algorithms for MCFP imple-
mented under the MCFClass interface [9], as well as with a general purpose LP

solver. Specifically, we tested ILOG-Cplex 8.1 Network (CPXNET), the min-cost
flow network simplex implementation in [14] (ZIB) and the Cost Scaling algo-
rithm in the implementation of [11] (CS2), and the general purpose LP solver
ILOG-Cplex 8.1 Barrier directly applied to (5). We do not report on the per-
formance of general purpose Primal Simplex and Dual Simplex algorithms as
prior tests have shown that for this kind of instances they run much slower than
Barrier. Computing times are in seconds on a Pentium M 1.6 GHz notebook,
and each entry is an average over three different instances.

The results in Table 1 clearly show that for these classes of instances the
Cost Scaling algorithm actually provide better performances than simplex-type
approaches for MCFP, and that all the min-cost flow algorithms outperform the
general-purpose LP algorithm. The last column of Table 1 reports the speed
factor of CS2 with respect to ILOG-Cplex 8.1 Barrier.

It is known that (5) provides a rather weak upper bound to the max-cut
problem. Therefore, the algorithm described here to solve (5) has been designed
primarily with the purpose of optimizing over (1), as it will be explained later.
Nevertheless, there are instances of max-cut for which one may expect the bound
given by (5) to be of some help in practical computation. These are, for example,
instances where the weights of the edges incident with a selected node are, in
absolute value, sensibly larger than all the other weights. These instances have
received a considerable attention in the computational studies of max-cut (or of
its equivalent problem, the unconstrained quadratic 0−1 problem) (see, e.g., [4]
and [16]). Using our algorithm embedded in a vanilla branch and bound scheme
we obtained the results reported in Table 2.

Table 2 reports the result of the branch and bound approach based on the
rooted semimetric relaxation on classical instances from the literature [16]. More
precisely, instances denoted as “a” and “c” are the ones from [16] generated as
in [4] and [18], while instances denoted as “b” are the ones from [16] generated
as in [12]. Table 2 reports information about the problem size (n), the density of
the graph (d), and the intervals of the random generated weights for the edges
incident with the selected nodes and for the other edges, respectively. The last
two columns of the tables give the outcome in terms of nodes and CPU time of
the branch and bound algorithm. The results show that for those problems the
rooted semimetric relaxation provides a very good bound allowing their effective
solution.

3 Optimizing over the Semimetric Polytope

Let us denote the constraints (4) for one given root node r by Arx ≤ br. Then,
linear optimization over (1) can be written as

max
x
{cx | Arx ≤ br, for r = 1, . . . , n− 1} (7)

Note that any two blocks of constraints Arx ≤ br and Aqx ≤ bq are in general
not disjoint; in fact, only n − 1 blocks suffice to “cover” all constraints in (1).

d
ir

ec
te

d
g
ra

p
h

C
P

X
N

E
T

Z
IB

C
S
2

IL
O

G
-C

p
le

x
8
.1

,
B

a
rr

ie
r

N
a
m

e
#

n
o
d
es

#
a
rc

s
ti

m
e

ti
m

e
ti

m
e

#
va

r.
s

#
co

n
s.

s
ti

m
e

sp
ee

d
-u

p

c1
5
0

2
9
9

2
2
2
7
8
.4

0
.1

0
.1

0
.0

1
0
9
9
0
.2

4
3
3
6
4
.8

1
.0

6
9
.2

c5
0
0

9
9
9

2
4
6
3
6
3
.2

3
.2

7
.6

0
.3

1
2
2
6
8
2
.6

4
8
8
7
3
4
.4

2
4
.8

8
2
.6

p
1
0
0
0
0

1
9
9
9
9

9
6
7
6
0
.0

1
.7

4
.9

0
.8

3
8
3
8
0
.7

1
1
3
5
2
8
.0

2
.6

3
.5

p
2
0
0
0
0

3
9
9
9
9

1
9
3
5
1
6
.7

5
.3

1
1
.5

2
.5

7
6
7
5
8
.0

2
2
7
0
4
1
.3

5
.8

2
.4

s3
9
7
1
1

7
9
4
2
1

6
0
3
2
1
9
.3

2
5
6
.1

3
3
6
.2

9
.7

2
6
1
8
9
9
.7

8
8
8
7
5
8
.7

2
0
6
.7

2
1
.2

g
2
-p

m
2
2
5
0
0

4
4
9
9
9

1
7
9
9
8
8
.0

2
.5

2
.8

2
.1

6
7
4
9
5
.0

1
7
9
9
8
4
.0

4
.7

2
.2

g
2
-p

m
6
2
5
0
0

1
2
4
9
9
9

4
9
9
9
8
8
.0

1
0
.2

1
3
.5

8
.8

1
8
7
4
9
5
.0

4
9
9
9
8
4
.0

2
4
.2

3
.0

g
3
-p

m
6
4
0
0
0

1
2
7
9
9
9

6
3
9
9
8
4
.0

8
0
.8

6
8
.2

9
.5

2
5
5
9
9
3
.0

7
6
7
9
7
6
.0

7
5
7
.7

7
9
.6

g
3
-p

m
8
0
0
0

1
5
9
9
9

7
9
9
8
4
.0

1
.4

0
.7

0
.6

3
1
9
9
3
.0

9
5
9
7
6
.0

1
0
.7

2
1
.8

g
2
-g

2
2
5
0
0

4
4
9
9
9

1
7
9
9
8
6
.7

8
.1

1
2
.4

2
.9

6
7
4
9
4
.3

1
7
9
9
8
1
.3

5
.9

2
.0

g
2
-g

6
2
5
0
0

1
2
4
9
9
9

4
9
9
9
8
6
.0

3
8
.8

6
2
.8

1
0
.3

1
8
7
4
9
4
.0

4
9
9
9
8
0
.0

2
4
.5

2
.4

g
3
-g

8
0
0
0

1
5
9
9
9

7
9
9
8
3
.3

3
.8

5
.1

0
.8

3
1
9
9
2
.7

9
5
9
7
4
.7

1
1
.9

1
5
.1

g
3
-g

6
4
0
0
0

1
2
7
9
9
9

6
3
9
9
8
4
.0

3
9
6
.5

7
8
6
.4

1
1
.6

2
5
5
9
9
3
.0

7
6
7
9
7
6
.0

8
5
7
.2

7
3
.6

T
a
b
le

1
.
O

p
ti

m
iz

in
g

ov
er

th
e

ro
o
te

d
se

m
im

et
ri

c
p
o
ly

to
p
e

off-diagonal diagonal
Name n d weights weights nodes time

1a 50 .1 [-100,100] [-100,100] 3 0.03
2a 60 .1 [-100,100] [-100,100] 1 0.03
3a 70 .1 [-100,100] [-100,100] 159 0.12
4a 50 .2 [-100,100] [-100,100] 135 0.09
5a 30 .4 [-100,100] [-100,100] 119 0.06
6a 30 .5 [-100,100] [-100,100] 75 0.07
7a 100 .0625 [-100,100] [-100,100] 1 0.03

1b 20 1. [-100,0] [0,63] 29 0.03
2b 30 1. [-100,0] [0,63] 67 0.05
3b 40 1. [-100,0] [0,63] 105 0.11
4b 50 1. [-100,0] [0,63] 115 0.20
5b 60 1. [-100,0] [0,63] 145 0.42
6b 70 1. [-100,0] [0,63] 177 0.87
7b 80 1. [-100,0] [0,63] 261 1.81
8b 90 1. [-100,0] [0,63] 397 5.12
9b 100 1. [-100,0] [0,63] 655 14.57

10b 125 1. [-100,0] [0,63] 885 51.53

1c 40 .8 [-50,50] [-100,100] 2815 1.90
2c 50 .6 [-50,50] [-100,100] 23275 19.29
3c 60 .4 [-50,50] [-100,100] 6247 5.82
4c 70 .3 [-50,50] [-100,100] 8737 8.08
5c 80 .2 [-50,50] [-100,100] 2191 2.48
6c 90 .1 [-50,50] [-100,100] 11 0.04
7c 100 .1 [-50,50] [-100,100] 1 0.03

Table 2. Branch and bound based on the solution of the rooted semimetric relaxation

We assume that, each time that multiple copies of a constraint (and the cor-
responding dual multipliers) are present, only one copy is actually considered;
accordingly, we will write

min
y

{
n−1∑
r=1

yrbr |
n−1∑
r=1

yrAr ≥ c

}
(8)

for the dual of (7).
A possible way for solving (7) is to form the Lagrangian relaxation of (7)

with respect to all other blocks of constraints but one

max
x

cx−

∑

h6=r

yh(bh −Ahx) | Arx ≤ br

 (9)

where the yh, h 6= r are fixed Lagrangian multipliers, and then solve the corre-
sponding Lagrangian Dual

min
y
{v(9) | y ≥ 0} (10)

where v(·) denotes the optimal objective function value of a problem. This is
equivalent to solving problem (8); the Lagrangian multipliers in (10) are precisely
the dual variables of (8), except for the O(n2) dual variables yr that are implicitly
handled by the Lagrangian relaxation.

However, some issues arise:

– Problem (10) is a challenging large-scale Non Differentiable Optimization
(NDO) problem, therefore it is natural to ask whether such approach can
ever compete with a LP-based one?

– How should we choose the root r? Should we just select r and keep it fixed
or a “root hopping” strategy would be preferable?

– Each of the constraint blocks Arx ≤ br involves only a “few” (O(n2)) of the
“many” (O(n3)) constraints of (7) or, put it in dual terms, the optimization
over the single block in (9) can only set a “few” of the “many” variables
of (8). Consequently, one wonders if solving (10) has a clear advantage over
solving the equivalent Lagrangian Dual

min
y≥0

{
max

x

{
cx−

n−1∑
r=1

yh(bh −Ahx) | x ∈ {0, 1}E

}}
(11)

of (7) with respect to all blocks of constraints?
– Which NDO algorithm has to be used for solving the Lagrangian Duals?
– Are there alternative Lagrangian approaches based on reformulations of (7),

such as Lagrangian Decomposition, that provide more convenient ways for
solving (8)?

We experimentally evaluated the proposed approaches with a large-scale com-
parison. Due to the large number of constraints, each algorithm was embedded
into a cutting plane scheme, where first a formulation with no explicit constraint
is taken and then it is iteratively enlarged by adding explicit constraints violated
by the current primal solution.

The test-bed was made by 175 instances of the same type of graphs described
above, but in this context sparse graphs were “completed” by adding zero-cost
edges, so that the separation procedure was done by trivial enumeration of all
triangle inequalities and the results were not affected by the degree of sophisti-
cation of the algorithm used to separate the cycle inequalities.

Our experiments showed that these large-scale NDO problems, at least for
the instances we tested, appear to be relatively easy to solve, even if a fixed
root r is chosen with a simple heuristic. This is shown in Table 3, where the
results obtained by the approach of [3] for solving (10) and (11) (columns “V1”
and “V0”), those of a corresponding bundle-type approach (columns “B1” and
“B0”) and those of a finely tuned code using the state-of-the-art general-purpose
LP solver ILOG-Cplex 8.1 (column “ILOG-Cplex”) are compared. Computing
times are in seconds on an Athlon MP 2400+.

The table clearly shows that the Lagrangian approaches, in particular the
bundle-based one using (5) as subproblem (B1), provides solutions with very

IL
O

G
-C

p
lex

V
0

V
1

B
0

B
1

tim
e

D
G

a
p

P
g
a
p

tim
e

D
G

a
p

P
g
a
p

tim
e

D
G

a
p

P
g
a
p

tim
e

D
G

a
p

P
g
a
p

tim
e

c2
5

0
.2

8
2
e-7

8
e-3

0
.0

4
1
e-7

6
e-3

0
.4

7
1
e-8

0
.3

9
0
.2

7
c5

0
8
.9

7
8
e-4

7
e-3

0
.5

4
6
e-4

5
e-3

2
.2

1
7
e-9

1
e-5

4
.0

0
7
e-9

7
e-6

4
.8

0
c7

5
6
9
.0

3
6
e-4

4
e-3

1
.8

7
4
e-4

3
e-3

6
.8

0
8
e-9

6
e-6

1
3
.3

3
4
e-9

5
e-6

1
9
.3

8
c1

0
0

3
8
6
.6

0
5
e-4

5
e-3

4
.1

1
4
e-4

5
e-3

1
3
.8

8
8
e-9

9
e-6

3
4
.8

0
3
e-9

1
e-5

4
2
.7

9
c1

2
5

1
4
0
9
.2

0
5
e-4

7
e-3

8
.5

4
3
e-4

3
e-3

2
6
.4

3
2
e-9

1
e-5

8
6
.4

5
1
e-9

1
e-5

1
2
2
.0

6
c1

5
0

3
7
2
9
.5

1
5
e-4

5
e-3

1
4
.9

0
3
e-4

3
e-3

5
0
.3

5
4
e-9

1
e-5

1
3
8
.0

3
1
e-9

2
e-5

2
5
6
.4

1

p
5
0

1
3
.8

0
5
e-8

8
e-3

0
.5

0
3
e-3

0
.9

9
7
e-9

4
.1

1
0
.6

7
p
1
0
0

7
6
2
.1

5
4
e-6

3
e-2

5
.5

8
2
e-2

6
.2

0
1
e-7

1
5
5
7
.5

6
5
.0

4
p
1
5
0

8
8
7
7
.4

2
1
e-4

5
e-2

2
4
.9

7
2
e-8

5
e-2

2
1
.5

3
2
e-9

5
e-6

5
4
4
8
.5

0
1
9
.7

8

s2
1

0
.0

8
3
e-3

0
.0

3
5
e-4

0
.1

2
0
.0

5
0
.0

2
s5

6
2
5
.9

6
1
e-2

0
.6

7
3
e-9

2
e-2

2
.1

4
4
.0

9
1
.4

6
s9

1
4
6
2
.0

3
3
e-7

2
e-2

4
.0

7
2
e-2

6
.3

8
2
9
.0

5
5
.1

7
s1

3
6

5
4
9
2
.8

7
3
e-5

3
e-2

1
5
.4

0
1
e-1

1
9
.7

5
2
e-9

3
5
7
7
.3

5
3
1
.3

4

g
2
-p

m
2
5

0
.2

8
4
e-4

2
e-3

0
.0

6
2
e-7

2
e-3

0
.3

1
2
e-9

0
.4

2
0
.0

8
g
2
-p

m
4
9

1
5
.0

1
2
e-4

8
e-3

0
.6

1
1
e-8

6
e-3

1
.7

1
7
e-9

4
e-7

7
.3

1
1
.2

1
g
2
-p

m
8
1

2
3
3
.9

1
7
e-5

2
e-2

2
.9

2
7
e-8

1
e-2

5
.6

9
7
e-9

2
e-6

6
2
4
0
.7

1
9
.0

5
g
2
p
m

-1
0
0

1
2
1
8
.5

5
1
e-3

5
e-2

1
3
.6

4
5
e-6

5
e-2

1
3
.0

6
6
e-9

2
e-5

8
9
6
0
.9

6
1
1
.7

1
g
2
p
m

-1
4
4

9
4
3
6
.3

6
1
e-3

6
e-2

2
3
.0

3
1
e-4

9
e-2

5
0
.0

2
3
e-6

5
e-4

1
1
0
2
4
.2

0
6
e-9

1
e-7

1
4
1
.0

5

g
3
-p

m
2
7

0
.7

0
6
e-4

2
e-3

0
.0

7
9
e-8

4
e-3

0
.5

7
1
e-9

3
e-8

4
.7

1
0
.9

7
g
3
-p

m
6
4

5
9
.2

3
7
e-5

2
e-2

1
.6

6
4
e-2

5
.2

2
5
e-9

3
e-7

1
3
2
.7

3
2
.2

8
g
3
-p

m
1
2
5

3
4
2
7
.7

7
1
e-3

5
e-2

1
6
.8

8
2
e-5

9
e-2

5
2
.0

3
5
e-8

4
e-6

6
7
3
4
.2

1
3
2
.9

9

g
2
-g

2
5

0
.2

8
3
e-3

0
.0

5
1
e-3

0
.1

5
0
.1

0
0
.0

5
g
2
-g

4
9

1
3
.9

8
7
e-3

0
.4

7
5
e-3

0
.9

8
1
.6

6
0
.4

5
g
2
-g

8
1

1
8
7
.4

3
1
e-7

3
e-2

2
.7

7
2
e-2

4
.4

4
1
5
.1

1
2
.9

9
g
2
-g

1
0
0

7
8
8
.5

5
6
e-6

5
e-2

6
.0

2
9
e-2

6
.9

3
9
0
.0

1
1
e-8

7
.3

7
g
2
-g

1
4
4

9
0
5
0
.6

7
7
e-5

7
e-2

2
3
.8

1
2
e-9

1
e-1

2
9
.3

6
2
e-9

1
5
2
8
.1

0
3
e-8

6
0
.8

4

g
3
-g

2
7

0
.4

9
4
e-3

0
.0

6
5
e-4

0
.2

6
0
.2

1
0
.0

7
g
3
-g

6
4

5
8
.4

5
3
e-8

2
e-2

1
.3

9
2
e-2

3
.6

3
1
0
.2

4
1
.9

8
g
3
-g

1
2
5

3
5
6
4
.9

8
4
e-5

6
e-2

1
6
.2

0
1
e-9

1
e-1

3
9
.0

2
2
8
8
.2

1
2
6
.8

5

T
a
b
le

3
.
M

a
in

ta
b
le

o
f
resu

lts

low primal and dual relative gaps (columns “PGap” and “DGap”, an empty
entry in those columns corresponding to a gap not larger than 1e-10) in a small
fraction of the time required by the LP solver.

The table also shows that “x1” approaches are in general much more efficient
than “x0” ones, with the notable exception of complete (clique) graphs. As
far as the “Vx” versus “Bx” comparison is concerned, most often the bundle
method obtains much better dual precision in comparable or even less time;
furthermore, the subgradient approach never produces primal solutions of even
moderately good quality, whereas the bundle approach always produces solutions
of acceptable — and most often of excellent — quality. However, especially for
the largest instances the subgradient can be significantly faster.

We remark that alternative, more complex Lagrangian approaches — that
we do not describe here for space reasons — have been tested, but they have not
been found to be competitive with those presented here.

The above analysis allows us to conclude that Lagrangian approaches for
linear optimization over (1) are competitive with LP-based. On all “structured”
instances, exploiting the efficient algorithms for (5) is instrumental. If accurate
primal solutions are required a bundle approach is also instrumental; the bundle
approach is also necessary for obtaining accurate dual solutions in several cases,
and either competitive or downright faster in many others. However, on some
large-scale instances, or if only a rough dual bound has to be obtained quickly,
the subgradient algorithm may provide an interesting alternative.

References

1. L. Bahiense, N. Maculan, and C. Sagastizábal, The volume algorithm revis-
ited: relation with bundle methods, Mathematical Programming, 94 (2002), pp. 41–
70.

2. Barahona, F., Network Design Using Cut Inequalities, SIAM Journal on Opti-
mization, 6 (1996), pp. 823–837.

3. F. Barahona and R. Anbil, The volume algorithm: Producing primal solutions
with a subgradient method, Mathematical Programming, 87 (2000), pp. 385–400.

4. F. Barahona, M. Jünger, and G. Reinelt, Experiments in quadratic 0–1 pro-
gramming, Mathematical Programming, 44 (1989), pp. 127–137.

5. F. Barahona and A. Mahjoub, On the cut polytope, Mathematical Program-
ming, 36 (1986), pp. 157–173.

6. Bienstock, D., Chopra, S., Günlük, O., and Tsai, C., Minimum Cost Capac-
ity Installation for Multicommodity Network Flows, Mathematical Progamming,
81 (1998), pp. 177–199.

7. M. Deza and M. Laurent, Geometry of Cuts and Metrics, vol. 15 of Algorithms
and Combinatorics, Springer-Verlag, Berlin, 1997.

8. A. Frangioni, Generalized bundle methods, SIAM Journal on Optimization, 13
(2002), pp. 117–156.

9. Frangioni, A. and Manca, A., A Computational Study of Cost Reoptimization
for Min Cost Flow Problems, INFORMS Journal on Computing, to appear.

10. D. Fulkerson, A. Hoffman, and M. McAndrew, Some properties of graphs
with multiple edges, Canadian Journal of Mathematics, 17 (1965), pp. 166–177.

11. A. Goldberg, An efficient implementation of a scaling minimum-cost flow algo-
rithm, Journal of Algorithms, 22 (1997), pp. 1–29.

12. V. Gulati, S. Gupta, and A. Mittal, Unconstrained quadratica bivalent pro-
gramming problem, European Journal of Operational Research, 15 (1984), pp. 121–
125.

13. D. Hochbaum, Monotonizing matrices with up to two nonzeroes per column, Op-
erations Research Letters, 32 (2003), pp. 49–58.

14. A. Löbel, Solving large-scale real-world minimum-cost flow problems by a network
simplex method, Technical Report SC-96-7, ZIB Berlin, 1996.

15. M. Lomonosov, Combinatorial approaches to multiflow problems, Discrete Ap-
plied Mathematics, 11 (1985), pp. 1–93.

16. P. Pardalos and G. Rodgers, Computational aspects of a branch and bound
algorithm for quadratic zero-one programming, Computing, 45 (1990), pp. 131–
144.

17. V. Vazirani and M. Yannakakis, Suboptimal cuts: Their enumeration, weight
and number, in Proceedings of the 19th International Colloquium on Automata,
Languages, and Programming, W. Kuich, ed., vol. 623 of Lecture Notes in Com-
puter Science, New York, NY, 1992, Springer-Verlag, pp. 366–377.

18. A. Williams, Quadratic 0–1 programming using the roof dual with computational
results, Tech. Report RUTCOR-8-85, State University of New Yersey, 1985.

Appendix

Sketch of the proof of Theorem 3. With a couple of simple variable trans-
formations it is possible to rewrite system (5) as

max d · z
subject to

zri + zrj − zij ≤ 1, ij ∈ Er
+

−zrh + zrk − zij ≤ 0, ij ∈ Er
− and

{
h = min{i, j}
k = max{i, j}

zri ≤ 1, i ∈ V r

z ≥ 0,

(12)

where dri, for i ∈ V r, coincides with di as defined in (6), and dij := 2|cij |, for
ij ∈ Er. Then, it is not difficult to see that the dual of (12) can be interpreted as
a network flow problem on a mixed network in which there are undirected edges
(associated with constraints corresponding to ij ∈ Er

+), and directed arcs (as-
sociated with constraints corresponding to ij ∈ Er

−), plus directed arcs from/to
the root node r to/from all other nodes i ∈ V r. A simple example of a complete
graph of four nodes is shown in Figure 1, while the corresponding mixed network
is given in Figure 2. Specifically, in Figure 2 node labels in boldface and in ital-
ics denotes node identifiers and node supply/demand, respectively; edge labels
denote edge capacities. Directed arcs from node r to the other nodes have cost
1, as well as the edges of the mixed network, while the directed arcs between
nodes i, j ∈ V r have cost 0. Finally, arcs from/to node r have infinite capacity.

g

f h

g

-3

6

-3

-1-2

3

0

1

2

3

Fig. 1. Weighted undirected graph of four
nodes

e

e

e

e

/ -

w

-

k�
r ≡ 0

1,6

2,-1

3,5

12

6

2

?

?

Fig. 2. Network interpretation of the dual
of (12)

Obviously, in the special case in which Er
+ = ∅, the mixed network becomes

a directed network and the dual of (12) is already a min-cost flow problem.
When Er

+ 6= ∅, to overcome the difficulty associated with the presence of
undirected edges in the network representing the dual of system (12) we make
use of a transformation proposed in [10] and recently pointed out in [13]. The
transformation works as follows: (a) for each node i ∈ V r we make a replica,
say i′, connected to node r with two arcs ri′ and i′r; (b) for each arc ij in
the mixed network we have an additional arc j′i′; and (c) each edge ij in the
mixed network is replaced by two arcs i′j and j′i. Costs and capacities of the
arcs in the directed network are naturally inherited from edges and arcs in the
mixed network, while the supply/demand associated with each duplicated node
is the opposite of the original one. The directed graph in the special case of the
example of figures 1 and 2 is shown in Figure 3.

j

i

j

i

i

j

j

~-

=

�

} �

>

-
}
�

N

�

1′,-6

2′,1

3′,-5

1,6

2,-1

3,5

r ≡ 0

66

22

12

12

?

?

6

6
o

�

Fig. 3. The directed network corresponding to the mixed network of Figure 2

