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Abstract

Reformulation is one of the most useful and widespread activities in mathematical modeling, in that
finding a “good” formulation is a fundamental step in being able so solve a given problem. Currently, this
is almost exclusively a human activity, with next to no support from modeling and solution tools. In this
paper we show how the reformulation system defined in [15] allows to automatize the task of exploring
the formulation space of a problem, using a specific example (the Hyperplane Clustering Problem). This
nonlinear problem admits a large number of both linear and nonlinear formulations, which can all be
generated by defining a relatively small set of general Atomic Reformulation Rules (ARR). These rules
are not problem-specific, and could be used to reformulate many other problems, thus showing that a
general-purpose reformulation system based on the ideas developed in [15] could be feasible.

Key Words: Automatic Reformulation, Mixed-Integer NonLinear Programs, Declarative
Techniques

1 Introduction

It is a striking discovery that while the term reformulation is ubiquitous in mathematics (e.g. [4, 9, 16, 18]),
there are few formal definitions and theoretical characterizations of the concept. Some are limited to syntactic
reformulations, i.e., those that can be obtained by application of algebraic rewriting rules to the elements of
a given model [11]. These reformulations are capable of exploiting syntactical structure of the model, such
as presence of particular algebraic terms in parts of its algebraic description [7]. While being very relevant,
these do not include all transformations that have shown to be of practical use.

Indeed, oftentimes reformulations are based on nontrivial theorems which link the properties of two seem-
ingly very different structures. Some notable examples are the equivalent representations of a polyhedron in
terms of extreme points and faces (which underpins a number of important approaches such as decomposition
methods, and has many relevant special cases such as the path formulation and the arc formulation of flows
[1]) and the equivalence between the optimal solution value of a convex problem and that of its dual. These
reformulations require a higher view of the concept of structure of a model, i.e., a semantic structure which
considers the mathematical properties of the entire represented mathematical objects as opposed to these
of small parts of their algebraic description; we therefore refer to them as semantic reformulations. Proper
definitions of reformulation capable of capturing this concept are thin on the ground.

For instance, an attempt was made in [17] by demanding that a bijection exists between the feasible
regions of the two models and that one objective function is obtained by applying a monotonic univariate
function to the other, which are extremely strict conditions. A view based on complexity theory was proposed
in [2], but since it requires a polynomial time mapping between the problems it already cuts off a number
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of well-known reformulation techniques where the mapping is pseudo-polynomial [6] or even exponential in
theory [3, 5, 8], but quite effective in practice. Limited to MIP problems, general ideas based on variable
redefinition were proposed by [13, 14], without finding wide application due to its complexity, remaining
unknown (or unused) by the “average” user. Only recently a wider attempt at formalizing the definition of
formulation has been done which covers several techniques such as reformulation based on the preservation
of the optimality information, changes of variables, narrowing, approximation and relaxation [11, 12].

However, a general formal definition of reformulation is not enough; the aim is to identify classes of

reformulation rules for which automatic search in the formulation space is possible. In this sense, syntactic
reformulations, being somewhat more limited in scope and akin to rewriting systems, may prove to have
stronger properties that allow more efficient specialized search strategies. Yet, defining appropriate more
general classes of semantic reformulations is also necessary in order for the system to be able to cover a large
enough set of possible reformulations.

In this paper we showcase the modeling capabilities of the i-dare (Intelligence-Driven Automatic Refor-
mulation Engine) system developed in [15] by using a specific example (the Hyperplane Clustering Problem).
This nonlinear problem admits a large number of both linear and nonlinear formulations, which can all be
generated by defining a relatively small set of general Atomic Reformulation Rules (ARR) on a set of properly
defined structures described in §2.

The ARRs are a key component of the i-dare reformulation system (i-dare(t)) [15]; it informally defines
a reformulation rule based on the fact that we can transform structure A into B if and only if A’s input is
transformable into B’s input, and B’s output is transformable into A’s output. ARRs are defined between
two structures; in the i-dare system, structures are classes that are derived from the hierarchy in Figure 1
where d LeafProblem C represents the atomic structures, and d Block C represents the structures that are composed
of other structures. The composition of structures is controlled by the arrangement of the sub-structure’s
shared variables. i-dare exploits the power of a declarative language (in particular FLORA-2 [19]) for the
definition of the structures and of the ARRs.

d_Component_C

d_LeafProblem_C d_Block_C

Figure 1: i-dare(lib) hierarchy

ARRs are divided in two classes, Algebraic ARRs (ARR
∑

) and Algorithmic ARRs (ARRA). The ARR
∑

s
define the transformation of the input and output using solely algebraic operation, whereas the ARRAs need
the intervention of an algorithmic approach for reformulation the input and/or output. In this paper, for
space reasons, we only concentrate on the former. Further, we will not define formally the concept of ARR,
which is described in detail in [15]. The aim here is to show that a relatively small set of general (algebraic)
ARRs suffice for producing a large number of both linear and nonlinear formulations for the problem. These
ARRs are not problem-specific, and could be used to reformulate many other problems, thus showing that
a general-purpose reformulation system based on the ideas developed in [15] could be feasible.

2 Structures

One of the main i-dare potentialities is the capacity of declaring and relating structures that contain a
specific semantic value. In this section we will focus on creating a set of global structures that will allow us
to build models by combining them.

For instance we may declare some simple structures just to define a binary variable (BV), continuous
variable (CV), relation and a constant.
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d Sing leBV C : : d Lea fProb lem C
[

a r g s −> [ v = d va r ]
] .

d S ing leCV C : : d Lea fProb lem C
[

a r g s −> [ v = d va r ]
] .

d R e l a t i o n C : : d Lea fProb lem C
[

a r g s −> [ r e l = d r e l ]
] .

d Constant C : : d Lea fProb lem C
[

a r g s −> [ c = d cons tan t ]
] .

We may also define, for example a vector of continuous variables,

d VectorCV C : : d Lea fProb lem C
[

d im va r −> [D] ,
a r g s −> [ v = d ve c to r ( d var , [D ] ) ]

] .

Considering more complex structures, we can create for instance a product between a CV and a BV,

d ProdBC C : : d Block C
[

i d s −> [ b i n , cont ] ,
subsC −> [ d S ing leBV C , d Sing leCV C ] ,
l i n k −> [ ( [ X] , d a l l ) , ( [Y ] , d a l l ) ]
r p lR −> [ b i n = 1 , cont = 1 ]

] .

Moreover we can declare a structure to represent a semi-continuous expression, like f ∗ x, where f is a
continuous structure (i.e. using only CVs) and x is a BV.

d SemiCont inuous C : : d Block C
[

i d s −> [ c t , bv ] ,
subsC −> [ d Component C , d Sing leBV C ] ,
l i n k −> [ ( [ X] , d a l l ) , ( [Y ] , d a l l ) ] ,
r p lR −> [ c t = 1 , bv = 1 ]

] .

Considering operators like |·| (absolute value), we can create further structures. For instance the following
leftmost structure represents |

∑
i vici|, where vi is a CV and ci is a constant, and the rightmost represents

its non-vectorial version.
d VAbs C : : d Lea fProb lem C
[

d im va r −> [D] ,
a r g s −> [

v = d ve c to r ( d var , [D] ) ,
c = d ve c to r ( d constant , [D ] )

]
] .

d SAbs C : : d Lea fProb lem C
[

a r g s −> [
v = d var ,
c = d cons tan t

]
] .

Structures representing specific collections of constraints and/or optimization problems can also be de-

fined, like Linear Programs (d LP C); Mixed-Integer Linear Programs (d MILP C); Semi-Assignment Constraints
(d SemiAssign C), and Complementary Constraints (d ProdCC C) defined by xy = 0 where x, y ≥ 0 are CVs.

d LP C : : d Lea fProb lem C
[

d im va r −> [ c o l s , cons ] ,
a r g s −> [

x = d ve c to r ( d var , [ c o l s ] ) ,
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c = d ve c to r ( d constant , [ c o l s ] ) ,
A = d ve c to r ( d constant , [ cons , c o l s ] ) ,
b = d ve c to r ( d constant , [ cons ] ) ,
r e l s = d ve c to r ( d r e l , [ cons ] ) ,
d i r = d d i r e c t i o n

]
] .

d MILP C : : d Lea fProb lem C
[

d im va r −> [ cons , co l sR , c o l s I ] ,
a r g s −> [

x r = d ve c to r ( d var , [ co l sR ] ) ,
x i = d ve c to r ( d var , [ c o l s I ] ) ,
c r = d ve c to r ( d constant , [ co l sR ] ) ,
c i = d ve c to r ( d constant , [ c o l s I ] ) ,
Ar = d ve c to r ( d constant , [ cons , co l sR ] ) ,
Ai = d ve c to r ( d constant , [ cons , c o l s I ] ) ,
b = d ve c to r ( d constant , [ cons ] ) ,
r e l s = d ve c to r ( d r e l , [ cons ] ) ,
d i r = d d i r e c t i o n

]
] .

d SemiAss ign C : : d Lea fProb lem C
[

d im va r −> [D] ,
a r g s −> [

v = d ve c to r ( d var , [D] )
]

] .

d ProdCC C : : d Lea fProb lem C
[

a r g s −> [
x = d var ,
y = d va r

]
] .

Beside those specific structures we can define a structure to represent a general constraint f =</=/>= c, where
c is a constant, and f can be any component. Likewise we could define a minimization objective function,

d Con s t r a i n t C : : d Block C
[

i d s −> [ exp r , r e l , c ] ,
subsC −> [ d Component C , d Re l a t i on C , d Constant C ] ,
l i n k −> [ ( [ X] , d a l l ) , ( [ ] , d a l l ) , ( [ ] , d a l l ) ] ,
r p lR −> [ exp r =1, r e l = 1 , c = 1 ]

] .

d OFMin C : : d Block C
[

i d s −> [ exp r ] ,
subsC −> [ d Component C ] ,
l i n k −> [ ( [ X] , d a l l ) ] ,
r p lR −> [ exp r = 1 ]

] .

Note that in d Constraint C, d Relation C and d Constant C are helper structures to put a single relation and/or a
constant inside a block. Also, observe that if expr (as well as rel and c) has free indices, they must be equal to
the free indices in the constraint. Therefore no internal replication is allowed (also in the case of d OFMin C).

Once we have the single structures we may want to compose them to obtain more complex structures.
The following structure combines two structures that share a set of variables,

d Compos i t ion C : : d Block C
[

i d s −> [ p1 , p2 ] ,
subsC −> [ d Component C , d Component C ] ,
l i n k −> [ ( [ X ,Y ] , d a l l ) , ( [X, Z ] , d a l l ) ] ,
r p lR −> [ p1 = 1 , p2 = 1 ]

] .

Observe that both substructures share a set of variables (X) and have independent sub-sets of variables (Y
and Z).
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Another composition case can be based on the internal replication of a sub-structure.

d IndCompos i t i on C : : d Block C
[

i d s −> [ s ] ,
subsC −> [ d Component C ] ,
l i n k −> [ ( [ X] , d a l l ) ]

] .

Notice that the internal structure s can be replicated inside of d IndComposition C, implying that each replication
will have an independent set of variables. Therefore, the substructures are completely separable. This fact
will prove useful during reformulations, while integrating narrowings of d IndComposition C. We can specify a
general behavior by saying that d IndComposition C will sum all isolated terms and concatenate all constraints.

3 Creating a model

In this section we propose the representation of a Hyperplane Clustering Problem (HCP) using an i-dare

model. In a HCP we have a set of points p = {pi | i ∈ M} ∈ R
D and we want to find the set of N hyperplanes

w = {wj1x1 + . . . + wjdxd = w0
j | j ∈ N} ∈ R

D and an assignment of points to hyperplanes such that the
distances from the hyperplanes to their assigned points are minimized. HCP can be algebraically defined by
the following MINLP,

min
∑

i∈M

∑

j∈N

|wjpi − w0
j |xij (3.1)

∑

j∈N

xij = 1 ∀i ∈ M (3.2)

∑

k∈D

|wjk| = 1 ∀j ∈ N (3.3)

w ∈ R
N×D, w0 ∈ R

N , x ∈ {0, 1}M×N

Note HCP has a parameter p ∈ R
M×D, and dimensions N,M,D ⊂ N.

To model HCP we will use a combination of the previously specified structures. Note that (3.1) is an
objective function containing products between absolute values and BVs; (3.2) is a semi-assignment; and
(3.3) is a constraint containing absolute value operations. Hence, we can build the following model.

Dimensions, indices and Properties

d d imens ion (D) . d d imens ion (N) . d d imens ion (M) .
d index ( i , M) . d index ( j , N) . d index ( k , D) .

p : d cons tan t .
p : d p rope r ty

[
d ims −> [M, D]

] .

w : d va r .
w : d p rope r ty

[
d ims −> [N, D]

] .

w0 : d va r .
w0 : d p rope r ty

[
d ims −> [D]

] .

x : d va r .
x : d p rope r ty

[
d ims −> [M, N] ,
l ower −> 0 ,
upper −> 1

] .
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Structures

vab so f : d VAbs C
[

a r g s −> [
v = $ ( [ $(w( j , k ) , [ k ] ) , w0( j ) ] ) ,
c = $ ( [ $( p ( i , k ) , [ k ] ) , 1 ] )

] // f r e e i n d s i , j
] .

b vo f : d Sing leBV C
[

a r g s −> [
v = x ( i , j )

] // f r e e i n d s i , j
] .

s em io f : d SemiCont inuous C
[

subs −> [ a b so f , bvo f ] ,
subVP −> [ [ ( w,w0 ) ] , [ x ] ] ,
f r e e I −> [ i , j ]

] .

i n d o f : d IndCompos i t i on C
[

subs −> [ s em io f ] ,
subVP −> [ [ ( w,w0 , x ) ] ]

] .

o f : d OFMin C
[

subs −> [ i n d o f ] ,
subVP −> [ [ ( w,w0 , x ) ] ]

] .

s emiac : d SemiAss ign C
[

a r g s −> [
v = $( x ( i , j ) , [ j ] )

] // f r e e i n d s i
] .

s ab s c : d SAbs C
[

a r g s −> [
v = w( j , k ) ,
c = 1 ,

] // f r e e i n d s j , k
] .

r e l : d R e l a t i o n C
[

a r g s −> [ r e l = ’= ’ ]
] .

c : d Constant C
[

a r g s −> [ c = 1 ]
] .

i ndc1 : d IndCompos i t i on C
[

subs −> [ s ab s c ] ,
subVP −> [ [ ( w ) ] ] ,
f r e e I −> [ j ]

] .

c o n s t r a i n t : d Con s t r a i n t C
[

subs −> [ i ndc1 , r e l , c ] ,
subVP −> [ [ w] , [ [ ] ] , [ [ ] ] ] ,
f r e e I −> [ j ]

] .

i ndc2 : d IndCompos i t i on C
[

subs −> [ s emiac ] ,
subVP −> [ [ ( x ) ] ]

] .

i ndc3 : d IndCompos i t i on C
[

subs −> [ c o n s t r a i n t ] ,
subVP −> [ [ ( w ) ] ]

] .

cmpdc : d Compos i t ion C
[

subs −> [ i ndc2 , i ndc3 ] ,
subVP −> [ [ [ ] , x ] , [ [ ] , w ] ]

] .

fcmp : d Compos i t ion C
[

subs −> [ of , cmpdc ] ,
subVP −> [ [ ( x ,w) , w0 ] ,

[ ( x ,w) , [ ] ] ]
] .

HCP : d Fo rmu l a t i on
[

r o o t −> fcmp ,
d imens i on s −> [D,M,N] ,
i n d i c e s −> [ i , j , k ] ,
p r o p e r t i e s −> [w, w0 , p , x ]

] .

The diagram in Figure 2 shows the HCP formulation by representing only the name and class of the structures
used, plus the relations between them:

4 Reformulations

In this section we will introduce some of the reformulations that can be created based on the previously de-
fined structures. One usual goal when reformulating nonlinear problems is to remove the nonlinear elements,
e.g. by adding the proper additional variables and constraints. We will use the classes d MILP C and d LP C as
the main goals in the ARRs to be presented herein. Most of the reformulation rules exposed in this section
were extracted from [10].

In some of the cases, the generated MILP and LP will have no objective function (i.e. the cost is constant),
so we will not specify the direction parameter, because it is irrelevant. In other cases, when integrating two
MILPs, for instance, we will use the fact that the d direction type is evaluated as 1 if equal to min and −1 if
equal to max. So depending on the unified direction we want to produce, we will transform the cost constants
of the objective function.
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Figure 2: HCP Formulation

4.1 ProdBC to MILP

A product between a BV b and a CV x ∈ [0, U ], can be substituted by a continuous variable w ∈ [0, U ] and

the constraints: w − Ub ≤ 0, w − x ≤ 0 and x+ Ub− w ≤ U . So we can build the following ARR
∑

.

d ProdBC to MILP ARR : d ARR Algebra i c
[

A −> d ProdBC C (? , ? ) ,
B −> d MILP C ,
indexA −> [1=( i , i 1 ) , 2= j ] ,
indexB −> [ ] ,
d imRel −> [ c o l s I =1, co l sR=2, cons =3] ,
arg map −> [

B . . c i = 0 ,
B . . cR = $ ( [ 0 , 1 ] ) ,
B . . Ai = $ ( [

[ $(−1∗ up (A . . cont . . v ) , [ i 1 , i ] ) ] ,
[ $( 0 , [ i 1 , i ] ) ] ,
[ $( up (A . . cont . . v ) , [ i 1 , i ] ) ]

] ) ,
B . . Ar = $ ( [

[ $( c s ([1−> j =1, 0 ] ) , [ i 1 , j ] ) ] ,
[ $( c s ([1−> j =1, −1]) , [ i 1 , j ] ) ] ,
[ $( c s ([1−> j =0, −1]) , [ i 1 , j ] ) ]

] ) ,
B . . r e l s = ’=< ’ ,
B . . b = $ ( [ 0 , 0 , up (A . . cont . . v ) ] ) ,
B . . x i = l ower ( 0 ) ,
B . . x i = upper ( 1 ) ,
B . . x r = lower ( 0 ) ,
B . . x r = upper ( up (A . . cont . . v ) ) ,
B . . x r = [ v=1, aux=1]

] ,
ans map −> [

A . . b i n . . v = B . . x i ,
A . . cont . . v = B . . x r ( v )

]
] .
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Note that the objective function of the generated MILP has a non-zero constant for the variable that must
substitute bx, and the rest of the constants are 0. The utility of this objective function constants will be
seen when reformulating d OFMin C and d Constraint C. Most of the ARRs proposed in the rest of the section are
written in a similar way to the one previously exposed. Therefore, we will avoid the specification of the ARR
subclass (in i-dare(t) language) due to space limitations (for the complete set of ARR consult [15]).

4.2 SAbs to Composition

If we consider a structure involving a term |pv| (d SAbs C, p is a constant and v is a CV), this term can be
reformulated so that it is differentiable, by adding two CVs t+, t− ∈ [0,+∞]; replacing |pv| by t+ + t−; and
adding the constraints pv− t+− t− = 0 and t+t− = 0. This reformulation involves a linear substructure, plus
a complementary constraint (xy = 0). So we can define an ARR

∑

that transforms d SAbs into a composition
between a d LP C and a d ProdCC C. Notice that the substitution of |pv| may be expressed by defining the c

constants in d LP C with 0 for v and 1 for t+ and t−.

4.3 VAbs to LP

Considering now a term |
∑

i pivi| we can apply a similar reformulation to the one defined in the previous
section. However in this case we will consider that the term is inside a minimization function (the same
way can be done for d SAbs C). In this case, the complementary constraint can be eliminated because we are
minimizing t+ + t−, so due to the function’s direction, at a global optimum, one of t+ or t− will have value
zero. Therefore implying the complementary constraint. In this case we used a condition inside the ARR

∑

indicating that A must have a parent d OFMin C inside the block’s tree, thus it must be inside a minimization
function.

4.4 SemiContinuous to MILP

If we manage to narrow a d SemiContinuous C until the point of knowing that it has an d LP C inside, then we can
easily transform d SemiContinuous C into a d MILP C. Assume the LP has the form (leftmost equation)

min cTx

Ax = b

xi ∈ [0, Bi]

min
∑

i cixiy

Ax = b

xi ∈ [0, Bi], y ∈ {0, 1}

min
∑

i wi

Ax = b

wi −Biy ≤ 0 ∀(i)

wi − xi ≤ 0 ∀(i)

xi +Biy − wi ≤ Bi ∀(i)

wi, xi ∈ [0, Bi], y ∈ {0, 1}
then the fact of multiplying this LP by a BV y (only in the objective function) creates the following MINLP

(previous center equation). This MINLP can be reformulated into a MILP by applying the same mechanism
used for d ProdBC to MILP ARR (cf. §4.1). We may add a CV wi ∈ [0, Bi] to substitute each product xiy, and
then add the constraints wi −Biy ≤ 0, wi − xi ≤ 0 and xi +Biy −wi ≤ Bi. Resulting in the MILP present
in the rightmost part of the previous equations.

4.5 ProdCC to MILP

When in presence of a complementary constraint xy = 0, we can substitute it by the following MILP
constraints, x − Mz ≤ 0 and y +Mz ≤ M , where z ∈ {0, 1} and M is a sufficiently large number. Since
d ProdCC C represents a constraint, the generated MILP will have no objective function.

4.6 SemiAssign to MILP

The semi-assignment constraint
∑

i yi = 1, has trivial transformation into a MILP with no CVs.
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4.7 Constraint to MILP

Having a d Constraint C with its substructure narrowed to a MILP, allows us to transform the whole constraint
structure into a MILP. We will assume that the objective function (

∑
i cixi) of the inner MILP will represent,

regardless of its direction, a last row of the LHS matrix of the new generated MILP. This last row is obtained
by combining

∑
i cixi with the d Relation C and d Constant C substructures of d Constraint C. Therefore the resulting

MILP will include all constraints of the inner MILP plus
∑

i cixi d rel d constant. Notice that an ARR
∑

to
reformulate d Constraint C(d LP C, ? , ? ) into d LP C can be created in an analogous way.

4.8 OFMin to MILP

The reformulation of a d OFMin C with the inner structure narrowed to a MILP is even more direct that the
d Constraint C case, because the objective function is left as it is, except for the sign transformation depending
on the inner MILP direction. Again in this case the reformulation from d OFMin(d LP C) to d LP C can be done
in an analogous way.

4.9 IndComposition to MILP

The d IndComposition C structure with the inner structure narrowed to MILP, can be reformulated into a single
MILP, by mixing the inner replicated structures. For instance if the inner MILP has a free index j then
each MILPj has an independent set of variables with respect to the other MILPj′ , with j 6= j′. Therefore
the resulting MILP can be composed as shown in Figure 3.

Figure 3: Independent Composition of N MILP subproblems

The cj constants will be multiplied by the direction of MILPj in order to unify the objective func-
tion to a minimization. Applying this composition we can define the following ARR

∑

to reformulate a
d IndComposition C(d MILP C) into a single d MILP C. We could define a similar reformulation to integrate several
d LP C into a single d LP C.

4.10 Composition to MILP

When the composition of two structures, with shared variables (d Composition C), has both substructures nar-
rowed to MILP, it can be reformulated into a single MILP. The main difficulty in this case are the common
variables, for instance assume we have an inner MILP1 with variables x, y and another inner MILP2 with
variables x, z (note that x are the shared variables), then to integrate both of them into a single MILP we
need to,

• create the objective function min(d1c1x + d2c2x)x+ c1yy + c2zz, and

• create the constraints A1
xx+A1

yy ≤ / = / ≥ b1 and A2
xx+A2

zz ≤ / = / ≥ b2.
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where

• d1 and d2 are the directions of MILP1 and MILP2, respectively;

• c1x and cx
2 are the costs related with the shared variables of MILP1 and MILP2, respectively;

• c1y and cz
2 are the costs related with the independent variables of MILP1 and MILP2, respectively;

• A1
x and A2

x are the LHS matrices related with the shared variables of MILP1 and MILP2, respectively;

• A1
y and A2

z are the LHS matrices related with the independent variables of MILP1 and MILP2, respec-
tively; and

• b1 and b2 are the RHS vectors of MILP1 and MILP2, respectively.

The diagram in Figure 4 is a representation of this composition.

Figure 4: Composition of two MILP subproblems with shared variables

By using this integration mechanism we can define the ARR
∑

to reformulate d Composition C(d MILP C, d MILP C)

into d MILP C. Other combinations of d MILP C and d LP C as substructures of d Composition C can conduct to similar
ARR

∑

to treat those cases. We only have to be careful with the resulting structure, that it is always d MILP C

except for the case when both substructures are d LP C (in that case the generated structure must be d LP C.

5 Applying the ARR
∑
s to HCP

Taking the HCP formulation we defined in §3, we could apply a combination of the previously defined ARR
∑

s
until finally obtain a MILP formulation. To show how the HCP formulation is modified by the application of
the ARR

∑

we will use the HCP algebraic formulation combined with the graphical representation, pointing
out the latest reformulation applied. To do so, we will dim all the model except for the structure being
transformed, and the new structure obtained will have a gray background color (instead of white). We will
start from the original HCP formulation (see Figure 5).

First we apply the ARR
∑

d VAbs to LP oncond OFMin ARR (§4.3) to the structure vabsof in the formulation (see
Figure 6). A new structure of class d LP C substitutes the structure vabsof, even if in the actual reformulated
model vabsof is exchanged with the track structure tr (vabsof , d LP C). To keep the example simple we will only
show the tail of the track structures.

We can now reformulate semicof by applying the ARR
∑

d SemiContinuous LP SingleBV to MILP ARR (cf. §4.4), see
Figure 7. Observe that semicof meets the criteria for this reformulation, since it has a substructure of class
d LP C and another of class d SingleBV C.

Since d IndComposition C has a substructure of type d MILP C, then we can apply the ARR
∑

d IndComposition MILP to MILP ARR

(cf. §4.9). Notice that the MILP has the same free indices semicof had in the original model (i ∈ M, j ∈ N),
so this reformulation will integrate the ‖M‖ ∗ ‖N‖ replications of the inner MILP. Moreover, after doing this

we can apply the ARR
∑

d OFMin MILP to MILP ARR (cf. §4.8), since of has d MILP C has its inner structure, see
Figure 8.

Figure 9 moves to the constraints part, staring by reformulating sabsc using ARR
∑

d SAbs to Composition LP ProdCC ARR

(cf. §4.2).
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min
∑

i∈M

∑

j∈N

|wjpi − w0
j |xij

∑

j∈N

xij = 1 ∀i ∈ M (5.1)

∑

k∈D

|wjk| = 1 ∀j ∈ N

(5.2)

w ∈ R
N×D, w0 ∈ R

N , x ∈ {0, 1}M×N

Figure 5: HCP non-linear formulation

Although in this case the complexity of the model augmented a little bit, this will allow us to simplify it
further by applying ARR

∑

d ProdCC to MILP ARR (cf. §4.5) to the d ProdCC C structure class, that can be seen in
Figure 10.

Observe that at this point the algebraic representation is in MILP form. However, the formulation still
have to undergo some other reformulations to be completely transformed into a d MILP C, see Figure 11. Note
how in this example the reformulations are applied only when the narrowing requisites are met. Only at
that point the corresponding ARR

∑

can be applied to transform the structure. Thanks the the deductive
power of FLORA-2 , the system easily detects which ARRs it can apply to a certain (maybe intermediate)
formulation, allowing the creation of all possible reformulations.

6 Discussion
This paper shows, with a relatively simple example, how the i-dare system allows to automatically produce
a large set of reformulations of a given mathematical model based on a small set of general structures
and Automatic Reformulation Rules. This system matches the capabilities of the framework envisioned
in [11, 12], which covers a large number of real-life problems and reformulation techniques. However, our
system also allows to deal with algorithmic reformulation rules that are out of reach for frameworks based
exclusively on algebraic techniques, and it makes explicit use of the concept of structure to allow exploiting
reformulation rules based on the semantic (as opposed to purely syntactic) meaning of each block. Our
system also provides explicit algorithmic notions for its definition of reformulation, exploiting the power of
declarative languages, unlike e.g. that of [17]. On the other hand, [2] manages the idea of mapping functions;
while in theory it has the same power that our reformulation system has, we propose a reformulation
system defined over a precise modeling language, that allows us to algorithmically and algebraically deduce
reformulations. i-dare(t) offers a way of determining which structures can be reformulated and how they
will be reformulated, obtaining at the end of the process valid formulations and data ready to be given to
the solvers.

As the example shows, a small set of structures and reformulation rules produces a large set of possible
formulations. One of the main design goals of i-dare(t) is extensibility, i.e., the fact that one can easily
define new structures and reformulation rules to cover all kinds of algebraic reformulations [11]. By doing so
in a general way, i.e., defining reformulation rules for general models rather than for specific applications, the
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min
∑

i∈M

∑

j∈N

(t+ijxij + t−ijxij)

t+ij − t−ij = wjpi − w0
j ∀i ∈ M, j ∈ N

(5.3)

(5.1), (5.2)

w ∈ R
N×D, w0 ∈ R

N ,

x ∈ {0, 1}M×N , t+ij , t
−

ij ∈ [0, B]

Figure 6: Transforming VAbs to LP

system can then exploit reformulations developed for a specific model for entirely different classes of problems.
This means that a system like i-dare could act as a central repository for reformulation techniques, allowing
more effective sharing of these ideas between researchers and practitioners and fostering a positive feedback
loop whereby researchers in reformulation techniques find a much wider audience for their work, while
practitioners have access to sophisticated reformulation techniques that they would be unlikely to develop
(or even use) themselves. We believe that such a system could have a substantial positive impact both on
the research in reformulation techniques and, possibly more importantly, on the practice of the solution of
mathematical models.
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d’Habilitation à Diriger des Recherches, Université Paris IX.
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min
∑

i∈M

∑

j∈N

(y+ij + y
−

ij)

∑

k∈D

u
+

jk
+ u

−

jk
= 1 ∀j ∈ N (5.10)

u
+

jk
− u

−

jk
= wjk ∀j ∈ N, k ∈ D (5.11)

u+

jk
u−

jk
= 0 ∀j ∈ N, k ∈ D (5.12)

(5.4) − (5.9), (5.3), (3.2)

w ∈ R
N×D , w0 ∈ R

N , x ∈ {0, 1}M×N ,

t
+

ij , t
−

ij ∈ [0, B], y
+

ij , y
−

ij ∈ [0, B], u
+

jk
, u

−

jk
∈ [0, B]

Figure 9: Transforming SAbs to Composition

min
∑

i∈M

∑

j∈N

(y+ij + y
−

ij)

u+

jk
≤ Bzjk ∀j ∈ N, k ∈ D (5.13)

u
−

jk
≤ B(1 − zjk) ∀j ∈ N, k ∈ D (5.14)

(5.11), (5.10), (5.4) − (5.9),

(5.3), (3.2)

w ∈ R
N×D , w0 ∈ R

N , x ∈ {0, 1}M×N ,

t
+

ij , t
−

ij ∈ [0, B], y
+

ij , y
−

ij ∈ [0, B],

u
+

jk
, u

−

jk
∈ [0, B], z ∈ {0, 1}N×D

Figure 10: Transforming ProdCC to MILP
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Figure 11: Rest of the reformulations
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