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Abstract

This paper investigates a drayage problem, which is motivated by a carrier providing
door-to-door freight transportation services by trucks and containers. The trucks
carry one or two containers to ship container loads from a port to importers and from
exporters to the same port. The problem is modeled by a set covering formulation
with integer variables. We propose a Price-and-Branch algorithm for this problem,
in which the pricing problem is a pair of shortest path problems, one for each truck
type, in a suitable graph. The algorithm can determine near-optimal solutions in a
short time.
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1 Introduction

In this problem a carrier manages a fleet of trucks to serve two types of cus-
tomer requests: the delivery of container loads from a port to importers and
the shipment of container loads from exporters to the same port. Some trucks
carry one container and can serve up to one importer and one exporter in a
route. Other trucks can carry up to two containers and can serve up to two
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importers and two exporters in a route. Customers must be serviced accord-
ing to a stay-with policy, i.e. drivers wait for containers during packing and
unpacking operations and trucks carry the same containers throughout their
routes. Each truck performs only one route, routing costs between any pair of
locations depend only on their distances and the truck type, as two-containers
trucks have higher costs per unitary distance than one-container trucks.
This problem has several original characteristics. Trucks were usually sup-
posed to carry one container at a time and the distribution of more-than-one
container per truck has received attention only in recent papers (e.g., [4]).
Moreover, in many drayage problems trucks are decoupled from containers
at customer locations and trucks can perform different tasks during packing
and unpacking operations (see [1] for a detailed literature). Few papers in-
vestigated both multiple containers per truck and stay-with operations as in
our problem [2, 3]. These papers proposed node-arc formulations, which have
very poor linear relaxations. A set-covering formulation for this problem was
proposed by [1], where all feasible routes were enumerated and an off-the-shelf
optimization solver was run to optimally solve realistic-sized instances. How-
ever, it runs out-of-memory in the case of large-scale problems.
This paper proposes a Price-and-Branch algorithm for the formulation of [1].
In the first step, the linear programming relaxation of the set-covering problem
is solved by column generation, where the pricing problem is a shortest path
problem in a proper graph. The resulting fractional optimal solution value is
a tight lower bound on the value of the optimal integer solution. Then, from
the set of columns generated so far, an integer solution is sought by Cplex.
The computational results are compared to those in [1].
The paper is organized as follows. In Section 2, the set-covering mathematical
model [SCMM] is presented. In section 3 the Price-and-Branch algorithm is
proposed. In Section 4, the results of the computational experiments are pre-
sented. Finally, conclusions and further research perspectives are described in
Section 5.

2 Modeling

Let I be the set of importers, E the set of exporters and V = I ∪ E the
set of customers, let R1 and R2 be the set of all feasible routes performed by
one-container and two-container trucks, respectively, and R = R1∪R2 the set
of all feasible routes. More precisely, R1 and R2 are the sets of routes leaving
from the port, serving up to two and four customers respectively and moving
back to the same port. If n = max{ |E| , |I| }, the number of all the possible



routes is O(n4). Moreover, we denote by k1 and k2 the number of available
trucks for one-container and two-containers routes, respectively.
For each route r ∈ R and each customer v ∈ V , define the coefficient αvr such
that αvr = 0 if customer v ∈ V is not visited in route r ∈ R, αvr = 1 if customer
v ∈ V is visited in route r ∈ R to deliver or pick up one container load, αvr = 2
if customer v ∈ V is visited in route r ∈ R2 to deliver or pick up two container
loads. Let dv be the demand of each customer v ∈ V , i.e., the number of
containers which must be used to service customer v. The decision variable
xr is defined as the number of times in which route r ∈ R is performed, each
time paying the corresponding unitary cost cr. According to this notation,
the SCMM can be presented as follows:

ZP = min
∑

r∈R crxr (1)

s.t.
∑

r∈R α
v
rxr ≥ dv v ∈ V (2)∑

r∈R1
xr ≤ k1 (3)∑

r∈R2
xr ≤ k2 (4)

xr ∈ Z+ r ∈ R (5)

Routing costs are minimized in the objective function (1). Constraints (2)
ensure that all customers are served. Constraints (3) and (4) enforce that the
number of routes is lower than the number of available corresponding trucks.
Finally, constraint (5) defines the domain of decision variables.

3 Price-and-Branch algorithm

To solve the problem effectively, a Price-and-Branch algorithm is proposed.
At first, a restricted set of all possible routes is enumerated and the linear
relaxation with this partial route set (or Restricted Master Problem [RMP])
is solved. Let B1 ⊆ R1 and B2 ⊆ R2 be the subsets of routes with one-
container and two-containers trucks, respectively, where B = B1 ∪ B2 and
B ⊆ R. The RMP is formulated as follows:

zRMP = min
∑

r∈B crxr (6)

s.t.
∑

r∈B α
v
rxr ≥ dv v ∈ V (7)∑

r∈B1
xr ≤ k1 (8)∑

r∈B2
xr ≤ k2 (9)

xr ∈ R+ r ∈ B (10)

The optimal solution of the RMP may be sub-optimal for the master prob-



lem with all feasible routes. However, the values of the optimal dual variables
of the RMP can be used to identify if there are any routes not included in the
RMP that can further reduce the objective function value zRMP . Let ξv, π,
and $ multipliers of constraints (7), (8), and (9) for each v ∈ V . The dual of
the RMP is denoted by DMP and is formulated as follows:

zDMP = max
∑

v∈V ξvdv − πk1 −$k2 (11)

s.t.
∑

v∈V ξvα
v
r − π −$ ≤ cr r ∈ B (12)

ξv ∈ R+ v ∈ V (13)

π,$ ∈ R+ (14)

Let x∗ be the optimal solution of RMP and ξ∗, π∗, $∗ the optimal solution of
DMP. Although this solution satisfies constraint (12), there may exist at least
a route r ∈ R \B violating this constraint. If so, this route is added to B, the
RMP is solved again to determine a better value of zRMP and so on until no
violated constraint is found.
Determining these violated constraints means looking for columns with nega-
tive reduced costs, where the reduced cost of route r is {c∗r = cr−(

∑
v∈V ξ

∗
vα

v
r−

π∗ −$∗)}. These columns are determined in the pricing problem, where one
minimizes c∗r, such that capacity constraints are met.
The key-point of this Price-and-Branch algorithm is that the pricing problem
can be formulated as a pair of shortest path problems on the following acyclic
graph, one for each the truck type.

• In the case of one-container trucks, the port is split into two nodes p and
p′ and each customer v ∈ V is modeled by one node. Arcs link p to any
customer v ∈ V , any importer to any exporter, any customer v ∈ V to p′.
Each arc is associated with a unitary routing cost.

• In the case of two-container trucks, the port is again split into two nodes p
and p′ and each customer is modeled by two nodes v′ ∈ V ′ and v′′ ∈ V ′′.
Arcs link p to any node v′ ∈ V ′, any pair of nodes v′ ∈ V ′ and v′′ ∈ V ′′

associated with each customer v ∈ V , any importer i ∈ V ′′ to any exporter
e ∈ V ′ and vice versa, any node v′ ∈ V ′ and v′′ ∈ V ′′ to p′. Each arc
connecting two different locations is associated with a unitary routing cost,
whereas all corresponding arcs from v′ ∈ V ′ to v′′ ∈ V ′′ have a null cost.

Fig.1 represents the acyclic graphs in the case of two importers denoted
by 1 and 2, and three exporters denoted by 3, 4 and 5. In the case of two-
container trucks, dash-lines represent arcs connecting the pair of nodes v′ ∈ V ′
and v′′ ∈ V ′′ associated with each customer; these arcs have null cost.



Fig. 1. Acyclic graph with five customers for one-container and two-containers
trucks

In the new graph, the pricing problem is a pair of two shortest path prob-
lems from p to p′: the first determines a route for one-container trucks, the
second a route for two-container trucks. If both solutions are negative, add
both routes to the RMP. If only one of them is negative, add it to the RMP.
The column generation stops when both routes determined in the pricing have
a non-negative reduced cost. If so, solve a RMP with the updated set B in
which the decision variables are required to be integer.

4 Computational tests

Computational tests are carried out on some instances taken from [2]. The
Price and Branch algorithm in Section 3 has been implemented by Java EE-
Eclipse, and solved by Cplex 12.5 on a Linux server with 3.00 Ghz processor,
16 GB of RAM. The pricing problem is solved by the shortest path algorithm
of Cplex. The restricted set of routes is initialized with all direct trips made
by one-container and two-container trucks. The outcomes are reported in
Tables 1. The following notation is used:

• it and |B∗| are the number of iterations of the column generation algorithm
and the number of columns of the RMP at the end of the column generation;

• tPB, tM , tP and tlm (in seconds) are the total execution time of the Price-
and-Branch algorithm, total execution time for solving the master problem,



total computing time for solving the pricing problem, and the time to solve
the integer master problem at the end of the Pricing and Branch algorithm,
respectively;

• τn and tn are the preprocessing time in seconds to generate all |R| feasible
routes for the set-covering model and the time in seconds to solve the set-
covering model by Cplex, respectively;

• Gap1 is the relative gap between the upper bound determined by the integer
RMP in Price-and-Branch algorithm and the optimal solutions of SCMM
taken from [1];

• Gap2 is the relative gap between the optimal solution of SCMM taken from
[1] and the linear relaxation of the RMP at the end of Price-and-Branch
algorithm.

The results in Table 1 show the effectiveness of the Price-and-Branch al-
gorithm. First, |B∗| is significantly lower than |R|, thus it takes a short time
to determine integer solutions from the RMP. Nevertheless, the solutions of
the algorithm Price-and-Branch are near-optimal. Second, the time of the
Price-and-Branch is a bit larger than sum of the overall time to enumerate
all feasible routes and solve the set covering model in the case of all instances
with 10 and 20 customers, but it is faster in most of instances with 40 and
50 customers. Therefore, it is of interest to test if this trend holds event in
the case of larger instances. They are taken from [1] and the related compu-
tational tests are reported in Table 2, where the same notation of Table 1 is
adopted. The results in Table 2 show that the Price-and-Branch algorithm
can determine near-optimal solutions for all the instances. The set covering
with all feasible routes takes a much longer running time to solve instances
H, I and J. Moreover, it does not return any feasible solution in the case of
instances K, L, M, and N, as Cplex runs out-of-memory.



Price-and-Branch Enumeration

|I| |E| k1 k2 it |B∗| tPB tM tP tlm R τn tn Gap1 Gap2

2 8 2 9 14 40 0.575 0.554 0.008 0.077 462 0.02 0.09 0.003 0.100
5 5 2 7 14 42 0.482 0.457 0.008 0.062 810 0.10 0.17 0.005 0.093
8 2 5 9 13 40 0.455 0.434 0.007 0.070 366 0.03 0.07 0.004 0.114
2 8 0 10 14 40 0.658 0.637 0.007 0.053 462 0.02 0.09 0.014 0.120
5 5 0 8 14 42 0.603 0.577 0.007 0.041 810 0.10 0.17 0.024 0.076
8 2 0 12 13 40 0.572 0.547 0.008 0.046 366 0.03 0.07 0.005 0.105

2 18 8 22 24 81 1.129 1.071 0.036 0.062 1792 0.05 0.27 0.006 0.066
5 15 7 19 30 86 1.383 1.284 0.049 0.159 7095 0.16 0.40 0.023 0.070

10 10 5 14 31 84 1.474 1.396 0.050 0.054 11220 0.34 0.28 0.016 0.066
15 5 7 19 28 83 1.544 1.412 0.047 0.216 6345 0.26 1.75 0.005 0.072
18 2 5 24 26 81 1.199 1.132 0.042 0.058 1716 0.05 0.31 0.009 0.052
2 18 0 26 24 81 1.115 1.052 0.035 0.081 1792 0.05 0.35 0.004 0.056
5 15 0 23 30 86 1.498 1.405 0.053 0.068 7095 0.16 0.46 0.006 0.041

10 10 0 17 31 84 2.403 2.331 0.048 1.186 11220 0.35 0.61 0.000 0.051
15 5 0 23 28 83 1.585 1.500 0.050 0.134 6345 0.26 0.94 0.014 0.063
18 2 0 27 26 81 1.442 1.377 0.040 0.184 1716 0.05 0.37 0.004 0.057

2 28 13 33 39 124 1.986 1.819 0.118 0.102 5578 0.29 0.26 0.002 0.069
5 25 12 30 42 124 2.117 1.966 0.115 0.137 19555 1.49 1.12 0.007 0.072

10 20 10 25 46 127 3.215 3.007 0.157 0.147 44730 1.72 4.39 0.028 0.045
15 15 8 19 54 143 3.542 3.336 0.152 0.313 54480 2.11 3.48 0.021 0.051
20 10 10 26 48 131 2.746 2.563 0.136 0.072 42730 2.15 4.27 0.002 0.070
25 5 12 32 38 122 1.788 1.655 0.100 0.065 17055 1.49 1.29 0.008 0.060
28 2 14 35 33 119 1.607 1.491 0.087 0.089 4122 0.83 0.28 0.004 0.059
2 28 0 40 39 124 2.192 2.043 0.117 0.187 5578 0.29 0.44 0.032 0.040
5 25 0 36 42 124 2.313 2.151 0.123 0.077 19555 1.49 3.08 0.030 0.049

10 20 0 30 46 127 2.521 2.297 0.168 0.216 44730 1.72 6.31 0.020 0.053
15 15 0 23 54 143 3.090 2.908 0.135 0.057 54480 2.11 6.72 0.014 0.058
20 10 0 31 48 131 3.201 3.004 0.153 0.052 42730 2.15 9.62 0.011 0.063
25 5 0 38 38 122 2.260 2.116 0.101 0.116 17055 1.38 4.10 0.025 0.043
28 2 0 42 33 119 1.870 1.749 0.093 0.079 4122 0.83 0.28 0.025 0.030

2 38 20 49 44 160 2.230 1.988 0.201 0.138 10228 0.09 1.68 0.067 0.031
5 35 18 45 49 161 2.578 2.293 0.237 0.107 38215 1.72 2.34 0.020 0.066

10 30 14 38 57 165 4.085 3.754 0.274 0.106 100340 4.19 5.37 0.047 0.032
15 25 12 31 60 171 4.481 4.011 0.351 0.144 151265 6.83 7.11 0.034 0.048
20 20 12 29 69 179 4.448 3.998 0.377 0.098 168840 8.35 18.4 0.030 0.062
25 15 14 36 59 160 3.855 3.533 0.233 0.062 147515 6.39 7.47 0.029 0.072
30 10 17 43 54 164 3.142 2.859 0.228 0.111 94340 4.01 5.27 0.028 0.061
35 5 19 48 45 159 3.289 3.026 0.221 0.131 32965 1.51 2.12 0.028 0.061
38 2 20 51 45 162 2.462 2.228 0.188 0.208 7492 0.09 0.81 0.023 0.062
2 38 0 59 44 160 2.964 2.720 0.200 0.187 10228 0.09 5.38 0.069 0.019
5 35 0 54 49 161 2.982 2.712 0.225 0.291 38215 1.72 3.41 0.070 0.025

10 30 0 45 57 165 4.588 4.236 0.297 0.167 100340 4.19 8.35 0.089 0.020
15 25 0 37 60 171 5.718 5.255 0.390 0.498 151265 6.83 7.89 0.081 0.021
20 20 0 35 69 179 5.252 4.794 0.388 0.126 168840 8.35 18.5 0.070 0.022
25 15 0 43 59 165 4.451 4.018 0.367 0.605 147515 6.39 7.52 0.068 0.021
30 10 0 51 54 164 3.384 3.112 0.226 0.105 94340 4.01 4.37 0.076 0.023
35 5 0 58 45 159 2.850 2.597 0.207 0.132 32965 1.51 1.68 0.070 0.018
38 2 0 61 45 162 2.669 2.402 0.189 0.188 7492 0.09 1.14 0.066 0.019

2 48 22 56 56 203 3.250 2.757 0.437 0.232 16278 1.02 0.56 0.024 0.070
5 45 21 54 62 202 3.796 3.286 0.449 0.307 62850 4.19 1.67 0.033 0.069

10 40 18 50 70 202 5.620 4.957 0.588 0.100 177750 11.0 8.01 0.072 0.034
15 35 17 42 70 201 5.150 4.411 0.586 1.522 295500 17.9 14.0 0.073 0.038
20 30 13 37 80 210 7.013 6.250 0.671 0.084 379350 23.1 23.2 0.073 0.038
25 25 11 32 77 218 4.702 4.133 0.492 0.094 407550 24.7 16.2 0.071 0.035
30 20 12 32 78 219 4.881 4.334 0.473 0.079 373350 22.2 16.2 0.094 0.034
35 15 15 39 73 206 4.453 3.936 0.451 0.183 285000 17.4 13.0 0.091 0.031
40 10 17 46 73 211 4.537 4.010 0.461 0.109 165750 9.96 4.61 0.085 0.039
45 5 20 50 62 205 3.872 3.389 0.405 0.123 53850 3.39 2.01 0.064 0.035
48 2 22 55 55 201 3.393 2.955 0.381 0.150 11862 0.73 1.14 0.049 0.035
2 48 0 67 56 203 3.941 3.464 0.428 0.145 16278 1.02 1.17 0.088 0.015
5 45 0 65 62 202 4.072 3.607 0.395 0.151 62850 4.19 2.71 0.095 0.015

10 40 0 59 70 202 5.599 4.970 0.540 0.266 177750 11.0 5.11 0.099 0.015
15 35 0 51 70 201 7.258 6.335 0.709 1.431 295500 17.9 14.9 0.100 0.020
20 30 0 44 80 210 7.990 7.150 0.737 0.155 379350 23.1 13.2 0.096 0.024
25 25 0 38 77 218 5.144 4.591 0.480 0.073 407550 24.7 17.4 0.094 0.021
30 20 0 38 78 219 5.413 4.870 0.470 0.084 373350 22.2 16.7 0.122 0.015
35 15 0 47 73 206 4.856 4.368 0.420 0.259 285000 17.4 7.92 0.122 0.019
40 10 0 55 73 211 4.931 4.439 0.430 0.121 165750 9.96 3.81 0.118 0.014
45 5 0 60 62 205 4.490 4.046 0.383 0.166 53850 3.39 1.48 0.098 0.020
48 2 0 66 55 201 3.803 3.346 0.399 0.142 11862 0.73 1.23 0.085 0.019

Table 1
Comparison on realistic-sized instances between the Price-and-Branch algorithm

and the set-covering formulation enumerating all feasible routes [1]



Price-and-Branch Enumeration

|I| |E| it |B∗| tPB tM tP tlm R τn tn Gap1 Gap2

A 20 5 28 59 1.149 1.093 0.043 0.133 1.1e+4 1.01 0.22 0.00025 0.00036
B 20 10 47 93 2.051 1.907 0.112 0.059 4.3e+4 1.94 1.19 0.00061 0.00045
C 20 20 62 136 2.971 2.691 0.236 0.048 1.7e+5 8.98 4.00 0.00026 0.00024
D 30 8 46 94 2.060 1.877 0.155 0.245 6.1e+4 5.03 9.09 0.00021 0.00024
E 30 15 67 132 3.449 3.084 0.319 0.130 2.1e+5 6.83 13.3 0.00041 0.00028
F 30 30 103 206 6.028 5.139 0.811 0.059 8.4e+5 15.7 20.3 0.00084 0.00091
G 45 12 67 136 3.439 2.900 0.488 0.160 3.0e+5 8.65 16.3 0.00034 0.00017
H 45 23 95 194 6.283 5.292 0.922 0.805 1.1e+6 13.06 2455.7 0.00029 0.00019
I 45 45 148 300 11.73 9.184 2.434 0.092 4.2e+6 30.48 782.9 0.00037 0.00024
J 75 19 115 230 8.137 6.025 2.028 0.642 2.1e+6 18.49 5560.3 0.00034 0.00023
K 75 38 177 340 16.02 11.46 4.422 0.138 8.2e+6 49.25 n.s. - -
L 75 75 275 556 34.55 22.34 11.86 0.115 3.2e+7 157.29 n.s. - -
M 100 25 162 313 15.04 10.06 4.837 0.619 6.3e+6 38.14 n.s. - -
N 100 50 215 425 24.53 15.38 8.940 0.988 2.5e+7 107.32 n.s. - -

Table 2
Comparison on larger instances

5 Conclusion

We have investigated a drayage problem faced by a carrier. We have proposed
a Price-and-Branch algorithm, in which a pair of shortest path problems is
solved at each iteration of the pricing problem. The algorithm can deter-
mine near-optimal solutions in short time intervals and is very useful to solve
large instances efficiently. A valuable development of this research will be the
development of a Branch-and-Price algorithm to determine optimal solutions.
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