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Abstract

The Perspective Relaxation (PR) is a general approach for constructing tight approximations to
Mixed-Integer NonLinear Problems with semicontinuous variables. The PR of a MINLP can be for-
mulated either as a Mixed-Integer Second-Order Cone Program (provided that the original objective
function is SOCP-representable), or as a Semi-Infinite MINLP. While these reformulations signifi-
cantly improve the lower bound and the running times of the corresponding enumerative approaches,
they may spoil some valuable structure of the problem, such as the presence of network constraints.
In this paper, we show that under some further assumptions the PR of a Mixed-Integer Quadratic
Program can also be reformulated as a piecewise linear-quadratic problem, ultimately yielding a QP
relaxation of roughly the same size of the standard continuous relaxation and where the (network)
structure of the original problem is safeguarded. We apply this approach to a quadratic-cost single-
commodity network design problem, comparing the newly developed algorithm with those based on
both the standard continuous relaxation and the two usual variants of PR relaxation.

Keywords: Mixed-Integer NonLinear Problems, Semicontinuous Variables, Perspective Relaxation,

Nonlinear Network Design Problem

1 Introduction

Semi-continuous variables are very often found in models of real-world problems such as distribution
and production planning problems [6, 9], financial trading and planning problems [7], and many others
[1, 11, 12]. These are variables which are constrained to either assume the value 0, or to lie in some given
polyhedron P ; when 0 belongs to P , one incurs in a fixed cost to allow the variable to have a nonzero
value. We will consider Mixed-Integer NonLinear Programs (MINLP) with n semi-continuous variables
pi ∈ R

mi for each i ∈ N = {1, . . . , n}. Assuming that each Pi = {pi : Aipi ≤ bi} has the property that
{pi : Aipi ≤ 0} = {0}, each pi can be modeled by using an associated binary variable ui, leading to
problems of the form

min g(z) +
∑

i∈N fi(pi) + ciui (1)

Aipi ≤ biui i ∈ N (2)

(p, u, z) ∈ O , u ∈ {0, 1}n , p ∈ R
m , z ∈ R

q (3)
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where all fi and g are closed convex functions, z is the vector of all the “other” variables, and O is any
subset of R

m+n+q (with m =
∑

i∈N mi), representing all the “other” constraints of the problem.
It is known that the convex hull of a (possibly disconnected) domain such as {0}∪P can be conveniently

represented in a higher-dimensional space, which allows to derive disjunctive cuts for the problem [13];
this leads to defining the Perspective Reformulation of (1)—(3) [4, 6]

min g(z) +
∑

i∈N uifi(pi/ui) + ciui

(2) , (3)
(4)

whose continuous relaxation is significantly stronger than that of (1)—(3), and that therefore a more
convenient starting point to develop exact and approximate solution algorithms [6, 7, 9, 12]. However,
an issue with (4) is the high nonlinearity in the objective function due to the added fractional term.
Two alternative reformulations of (4) have been proposed; one as a Mixed-Integer Second-Order Cone
Program [14, 2, 12] (provided that the original objective function is SOCP-representable), and the other
as a Semi-Infinite MILP [6]. In several cases, the latter outperforms the former in the context of exact
or approximate enumerative solution approaches [8], basically due to the much higher reoptimization
efficiency of active-set (simplex-like) methods for Linear and Quadratic Programs w.r.t. the available
Interior Point methods for Conic Programs. However, both reformulations of (4) require the solution of
substantially more complex continuous relaxations than the original formulation of (1)—(3); furthermore,
they may spoil the valuable structure of the problem, such as the presence of network constraints. In
this paper, we show that under some further assumptions, the PR of a Mixed-Integer Quadratic Program
can also be reformulated as a piecewise linear-quadratic problem, ultimately yielding a QP relaxation of
roughly the same size of the standard continuous relaxation; this is discussed in Section 2. Furthermore,
if the original problem has some exploitable structure, then this structure is preserved in the reformula-
tion, thus allowing to construct specialized approaches for solving the PR. We apply this approach to a
Quadratic-cost (single-commodity) network design problem (Section 3), reporting numerical experiments
comparing state-of-the-art, off-the-shelf MIQP solvers with taylor-made, specialized solution approaches.

2 A piecewise description of the convex envelope

We here analyze the properties of the Perspective Reformulation under three further assumptions on the
data of the original problem (1)—(3):

A1) each pi is a single variable (i.e., mi = 1) and each Pi is a bounded real interval [0, pmax];

A2) the variables ui only appear each in the corresponding constraint (2), i.e., the “other” constraints
O do not concern the ui;

A3) all functions are quadratic, i.e., fi(pi) = aip
2
i + bipi (and since they are convex, ai > 0).

While these assumptions are indeed restricting, they are in fact satisfied by most of the applications of
the PR reported so far [6, 7, 11, 2, 12]. Since in this paragraph we will only work with one block at a
time, to simplify the notation in the following we will drop the index “i”. We will therefore consider the
(fragment of) Mixed-Integer Quadratic Program (MIQP)

min
{

ap2 + bp + cu : 0 ≤ p ≤ pmaxu , u ∈ {0, 1}
}

(5)

and its Perspective Relaxation

min
{

f(p, u) = (1/u)ap2 + bp + cu : 0 ≤ p ≤ pmaxu , u ∈ {0, 1}
}

. (6)

The basic idea behind the approach is to recast (6) as the minimization over p ∈ [0, pmax] of the following
function:

z(p) = minuf(p, u) = bp + min
{

(1/u)ap2 + cu : 0 ≤ p ≤ pmaxu , u ∈ [0, 1]
}

. (7)
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It is well-known that z(p) (partial minimization of a convex function) is convex; furthermore, due to the
specific structure of the problem z(p) can be algebraically characterized. In particular, due to convexity
of f(p, u), the optimal solution u∗(p) of the inner optimization problem in (7) is easily obtained by the
solution ũ (if any) of the first-order optimality conditions of the unconstrained version of the problem,
i.e., ∂f(p, u)/∂u = c− ap2/u2 = 0. In fact, if ũ is feasible for the problem, then it is optimal (u∗(p) = ũ);
otherwise, u∗(p) is the projection of ũ over the feasible region, i.e., the extreme of the interval nearer to
ũ (this is where assumption A1 is used). Thus, by developing the different cases, one can construct an
explicit algebraic description of z(p) = f(p, u∗(p)).

2.1 The piecewise description of z(p)

We start by rewriting the constraints in (7) as

(0 ≤) p/pmax ≤ u ≤ 1 (8)

(since pmax ≥ p ≥ 0 ⇒ p/pmax ≥ 0). We must now proceed by cases:

1) If c ≤ 0, then ũ is undefined: the derivative is always negative. Thus, there is no global minima of
the unconstrained problem, and therefore u∗(p) = 1, yielding

z(p) = ap2 + bp + c (9)

2) If, instead, c > 0, then ũ = p
√

a/c (note that we have used p ≥ 0, c > 0, a > 0). In general, two
cases can arise:

2.1) ũ ≤ p/pmax ⇔ pmax ≤
√

c/a ⇔ u∗(p) = p/pmax ⇒

z(p) =
(

b + apmax + c/pmax

)

p (10)

2.2) 0 ≥ ũ ≥ p/pmax ⇔ pmax ≥
√

c/a(≥ pmin). This gives two further subcases

∗ (pmax ≥) p ≥
√

c/a (≥ 0) ⇒ ũ ≥ 1 ⇒ u∗(p) = 1;

∗ 0 ≤ p ≤
√

c/a (≤ pmax) ⇒ ũ ≤ 1 ⇒ u∗(p) = ũ.

finally showing that z(p) is the piecewise linear-quadratic function

z(p) =

{ (

b + 2
√

ac
)

p if 0 ≤ p ≤
√

c/a

ap2 + bp + c if
√

c/a ≤ p ≤ pmax

(11)

Note that (11) is continuous and differentiable even at the (potential) breakpoint p =
√

c/a,
and therefore convex (as expected).

In all the cases, z(p) is a convex differentiable piecewise-quadratic function with at most 2 pieces.

3 Quadratic-cost network design

Assume that a directed graph G = (N, A) is given. For each node i ∈ N a deficit bi ∈ R is given indicating
the amount of flow that the node requires (negative deficits indicate source nodes). Each arc (i, j) of the
graph is either constructed at a fixed cost cij , and therefore flow is allowed to pass through the arc up to
a given maximum capacity uij , or it is not constructed, thus paying no cost but also losing the possibility
of sending any flow through the arc. If xij units of flow are sent through a (constructed) arc (i, j), then
a quadratic flow cost bijxij + aijx

2
ij is also incurred. The problem is that of deciding which arcs have to
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be constructed and how the flow has to be routed in such a way that demands are satisfied and the total
(construction + routing) cost is minimized. The problem can be written as

min
∑

(i,j)∈A cijyij + bijxij + aijx
2
ij

∑

(j,i)∈A xji −
∑

(i,j)∈A xij = bi i ∈ N

0 ≤ xij ≤ uijyij , yij ∈ {0, 1} (i, j) ∈ A

(12)

This network design problem is NP-hard, and therefore enumerative techniques are required if an optimal
solution is sought for; a recent application of this general model in a Facility Location setting is given
e.g. in [11, 12]. Since we can assume cij > 0 (for otherwise yij can surely be fixed to 1), in the continuous
relaxation of (12) the “design” variables yij can be projected onto the xij ; that is, since at optimality
it surely is yij = xij/uij , the yij variables can be eliminated and cij/uij added to the linear cost term
bij . Such a problem can be efficiently solved by means of (convex) Quadratic Min-Cost Flow (QMCF)
algorithms; however, the bound provided by the continuous relaxation is usually weak, leading to a large
number of nodes in the enumeration tree and therefore to a large solution time.

Applying the results of §2.1 to (12) gives a Separable Convex-cost NonLinear MCF problem, where
the flow cost function on each arc is a piecewise linear-quadratic convex cost function. In turn, this can
be rewritten as a QMCF problem

min
∑

(i,j)∈A′ b′ijxij + a′

ijx
2
ij

∑

(j,i)∈A′ xji −
∑

(i,j)∈A′ xij = bi i ∈ N

0 ≤ xij ≤ u′

ij (i, j) ∈ A′

on a graph G′ = (N, A′) with the same node set and at most 2 times the number of arcs. For each of the
original arcs (i, j), at most two “parallel” copies are constructed. If uij ≤

√

cij/aij (case 2.1), then only
one representative of (i, j) is constructed in G′, with b′ij = bij +aijuij + cij/uij , a′

ij = 0 and u′

ij = uij . If,

instead, uij <
√

cij/aij (case 2.2), then two parallel copies of the arc (i, j) have to be constructed in G′;

the first has b′ij = bij + 2
√

aijcij , a′

ij = 0 and u′

ij =
√

cij/aij , while the second has b′ij = bij , a′

ij = aij

and u′

ij = uij −
√

cij/aij . For this kind of “partitioned” NonLinear MCF problems (where some of the
arcs have strictly convex cost functions, while the other have linear cost functions) specialized algorithms
have been proposed [5]; in general, any algorithm for Convex (Quadratic) MCF problems (e.g. [3]) can
be used. While codes implementing these algorithms are either not available, or not very efficient in
practice, the efficient off-the-shelf solver Cplex has a specialized solution approach for (convex) QMCFs.

A possible alternative is to further linearize the quadratic part of the objective function for those arcs
that has one (i.e., for which uij <

√

cij/aij). Thus, arbitrarily fixing some integer k ≥ 1 (in principle
different for each arc) we can partition the “quadratic portion” of each arc flow into k disjoint intervals and
construct the corresponding k-pieces lower linearization (from below) of the quadratic objective function.
This amounts at constructing k “parallel” copies of each arc (i, j) with appropriate upper bounds uh

ij

and cost coefficients bh
ij for h = 1, . . . , k, to be added to the “linear copy” of the arc with its appropriate

upper bound and cost coefficient, as discussed above. Of course, the disadvantage of this approach is that
the lower bound will be worse, and only increasing k the difference can be reduced; on the other hand,
the resulting relaxation is a linear (as opposed to Quadratic) MCF problem, for which several extremely
efficient solvers are available that can also be easily interchanged due to the availability of an abstract
C++ interface [10]. We thus have four different approaches to compare:

1. a B&C on the PR (6), using either the Semi-Infinite MILP or the MI-SCOP formulation;

2. a specialized B&B where the continuous relaxation is solved with a QMCF solver;

3. a specialized B&B with approximated continuous relaxation (for various k) solved with a linear
MCF solver.
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4. a standard B&C on the continuous relaxation.

We remark that current B&C solvers like Cplex provide all means for implementing all four options in
the same framework, thus allowing for a fair assessments of the computational advantages of each.
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[11] O. Günlük, J. Lee, and R. Weismantel. MINLP Strengthening for Separable Convex Quadratic
Transportation-Cost UFL. IBM Research Report RC24213, IBM Research Division, 2007.

[12] O. Günlük and J. Linderoth. Perspective relaxation of MINLPs with indicator variables. In A. Lodi,

A. Panconesi, and G. Rinaldi, editors, Proceedings 13th IPCO, volume 5035 of Lecture Notes in

Computer Science, pages 1–16, 2008.

[13] R.A. Stubbs and S. Mehrotra. A branch-and-cut method for 0-1 mixed convex programming. Math-

ematical Programming, 86:515–532, 1999.

[14] M. Tawarmalani and N.V. Sahinidis. Convex extensions and envelopes of lower semi-continuous
functions. Mathematical Programming, 93:515–532, 2002.

5


