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Abstract. We present a bundle method for convex nondifferentiable minimization where the
model is a piecewise-quadratic convex approximation of the objective function. Unlike standard
bundle approaches, the model only needs to support the objective function from below at a properly
chosen (small) subset of points, as opposed to everywhere. We provide the convergence analysis
for the algorithm, with a general form of master problem which combines features of trust region
stabilization and proximal stabilization, taking care of all the important practical aspects such as
proper handling of the proximity parameters and the bundle of information. Numerical results are
also reported.
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1. Introduction. We are interested in the numerical solution of the problem

f∗ = inf { f(x) : x ∈ R
n },

where f : Rn → R is convex, not necessarily differentiable, and only known through an
oracle which, given any x̄ ∈ R

n, returns the value f(x̄) and one subgradient g ∈ ∂f(x̄).
The method we will develop can be easily adapted to the case when x has to belong
to a known and “easy” convex set X or, alternatively, when f is an extended-valued
function and the oracle can provide tight defining inequalities for its effective domain
X ; there are several ways to perform the necessary modifications (e.g., [21, 8, 23, 13])
that will not be discussed here for the sake of notational simplicity. Also, techniques
developed to cope with inexact computation of the objective function [22] and/or the
constraints [24] can be adapted to the new algorithm; again, we refrain from doing
this in order to focus on the fundamental differences with standard approaches of the
same class.

All bundle methods are based on the idea of sampling the space in a sequence
of tentative points xi, collecting the corresponding set of triples (xi, f(xi), gi) with
gi ∈ ∂f(xi). We will denote by B the currently available set of triples or, with a slight
abuse of notation, the set of their indices. In what follows we also denote by ‖ · ‖ the
Euclidean norm in R

n, and by ab the standard inner product of the vectors a and b.
The bundle B is typically used for constructing the cutting plane model

f̂B(x) = max { f(xi) + gi(x− xi) : i ∈ B },
which estimates the objective function from below (i.e., f̂B ≤ f). This is used to

drive the choice of the next iterate, clearly in the region where f̂B improves over the
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best value found so far. It is well known that some form of stabilization is needed for
this process, if only because f̂B may well be unbounded below. In proximal bundle
methods, one selects a stability center y ∈ R

n (e.g., the best iterate found so far)
which leads to the corresponding translated model

f̂B(d) = f̂B(y + d)− f(y) = max { gid− αi : i ∈ B },
where αi = f(y)− f(xi)− gi(y − xi) ≥ 0 is the linearization error of gi w.r.t. the y.
Then, for an appropriately chosen proximity parameter ρ > 0, one finds the optimal
solution d∗ of the master problem

min
d

{
f̂B(d) + ρ‖d‖2/2 } = min

v,d

{
v + ρ‖d‖2/2 : v ≥ gid− αi, i ∈ B }(1.1)

and probes y + d∗ as the next iterate. The dual of (1.1)

min
λ

⎧⎨
⎩ 1

2ρ

∥∥∥∥∥
∑
i∈B

λigi

∥∥∥∥∥
2

+
∑
i∈B

λiαi : λ ∈ Λ

⎫⎬
⎭(1.2)

(where Λ = { λ ≥ 0 :
∑

i∈B λi = 1 } is the unitary simplex of appropriate dimension)
is also relevant. From the algorithmic viewpoint, the optimal solution λ∗ of (1.2)
reveals the aggregated subgradient and linearization error

z∗ =
∑
i∈B

λ∗i gi, σ∗ =
∑
i∈B

λ∗iαi,(1.3)

which also provide d∗ = −(1/ρ)z∗ and v∗ = −‖z∗‖2/ρ− σ∗; thus, dual approaches to
(1.1) are possible, and are in fact often preferred, especially if n is large w.r.t. |B| [6].
From the analytic viewpoint it is easy to verify that gi belongs to the ε-subdifferential
of f at y for ε = αi (i.e., gi ∈ ∂αif(y)), and consequently one has that z∗ ∈ ∂σ∗f(y);
thus, whenever both ‖z∗‖ and σ∗ are “small,” an approximate optimality condition
is reached. Let us mention here that different forms of stabilization ([26, 8] and many
others) can be used with only slight modifications to the master problems and next
to none to the convergence theory [8]. In particular, (1.1) with the proximal term
ρ‖d‖2/2 in the objective function replaced by a trust-region constraint γ‖d‖2 ≤ 2
would lead to an algorithm with basically the same convergence properties. This has
not received much attention in the past, most likely because the master problem then
becomes a quadratically constrained problem, hence potentially more difficult to solve
in practice than the linearly constrained quadratic problem (1.1); as we will see, trust
region constraints are instead basically “free” in our case.

Despite being useful in several applications ([3, 5, 10] among many others), bundle
algorithms can be painfully slow both in theory and in practice. This is not surprising,
as the piecewise-linear representation of the curvature of f contained in the model f̂B is
clearly far less efficient, especially around an optimum, than that of the second-order
model of Newton-type approaches. Whence the push toward second-order bundle-
type algorithms [32, 36] which, however, are hindered by the complexity of second-
order objects in the nondifferentiable case. It can be shown that, locally to each
point, R

n can be partitioned into the subspace where f is essentially smooth and
therefore second-order approaches converge rapidly, and into the subspace where f
is essentially “kinky” and therefore accumulation of linear inequalities is efficient.
This VU-theory [30] allows us to develop, under appropriate assumptions, second-
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order-type approaches that are rapidly convergent both in theory and in practice [31].
However, these approaches are not easy to analyze and implement.

Here we aim at a conceptually simpler approach which may ultimately lead to
rapidly convergent algorithms. Since second-order objects are “piecewise in nature”
in the nondifferentiable case [4, 18], one may want to develop a piecewise-smooth
model of f . The most natural form is that of a piecewise-quadratic (convex) model
[16]. This is the kind of model envisioned in [27], where the quadratic components
are second-order matrices produced by the oracle (or approximated by finite differ-
ences) at the sample points. Yet, the master problem solved in that paper does not
use a piecewise-quadratic model, but one similar to [32] with a single quadratic term
obtained by averaging the second-order matrices. In contrast, we aim at keeping the
structure of the piecewise-quadratic model intact, although we also allow aggregation
whenever appropriate; yet, our aggregation generates another quadratic function in
the piecewise-quadratic model, rather than being applied only to the quadratic part.
An issue with piecewise-quadratic models is that by necessity they lose the property
of the cutting plane model, that is, being a lower approximation of f everywhere.
Yet, the latter property is not strictly necessary: the recent paper [33] uses a dif-
ferent model ψy(x) which is not in general a lower approximation to f but which
“conserves the sign of f(x)− f(y)”, in the sense that if f(x) ≤ f(y), then ψy(x) ≤ 0,
whereas if f(x) > f(y), then ψy(x) > 0. We will show that one can work with a
model that, while actually overestimating f somewhere, never does so knowingly at
least on a (potentially very small) set of points. We obtain this by working on the
scaling parameters of the quadratic part; our approach is therefore significantly dif-
ferent from that in [27] in this respect, as there the result was obtained by modifying
the linear components of the model using proximity measures. Doing so we retain
global convergence of the approach under mostly the same technical conditions as
ordinary bundle methods, with similar algorithmic options in the important aspects
such as management of the parameters governing the stabilization and of B. While
the quadratic models we employ here are the simplest possible ones, this paves the
way to algorithms using richer second-order information, in the manner of [27].

The structure of the paper is the following. In section 2 we present the new
model and discuss the properties of the corresponding master problems. In section 3
we present the algorithm and discuss its convergence properties. In section 4 we
discuss the implementation issues of the approach and present our numerical results.
Finally, in section 5 we draw some conclusions and directions for future research.

2. The piecewise-quadratic model. For every (ordered) pair (i, j) ∈ B × B,
the mutual linearization error computed in xj for the ith element of the bundle is

αij = f(xj)− f(xi)− gi(xj − xi) (≥ 0);

obviously, αii = 0. For qi(x) = f(xi) + gi(x − xi) + εi‖x − xi‖2/2, the quadratic
expansion of f generated at xi, one has that

qi(xj) ≤ f(xj) ⇐⇒ εi ≤ εij = 2αij/‖xj − xi‖2, xj 	= xi.(2.1)

Consequently, let I ⊆ B be an arbitrarily selected subset of the bundle containing the
“important” (or “interpolating”) points; by requiring that

0 ≤ εi ≤ min{ εij : j ∈ I } ∀ i ∈ B,(2.2)

we can rest assured that no qi knowingly overestimates f on the points in I, that is,
f(xj) ≥ qi(xj) for all (i, j) ∈ B ×I. We can take εii = +∞ in (2.1), as when B = {i}
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the property clearly holds for any εi. Of course, the property is then transmitted from
the individual qi to the natural piecewise-quadratic model of f ,

f̆B(x) = max{ qi(x) : i ∈ B },(2.3)

which, since qi(xi) = f(xi) by definition, therefore (like f̂B) satisfies

f̆B(xi) = f(xi) ∀ i ∈ I,

justifying the moniker “set of interpolating points” for I. As with f̂B, it is convenient
to express each qi w.r.t. the displacement d = x− y:

qi(d) = f(y) + ĝid− α̂i + εi‖d‖2/2, where

α̂i = αi − εi‖y − xi‖2/2 and ĝi = gi + εi(y − xi).(2.4)

Note that the translation obviously does not change the fact that each qi lies above
the corresponding standard linear approximation of f (with εi = 0); that is,

εi‖d‖2/2 + ĝid− α̂i ≥ gid− αi ∀ i ∈ B and ∀ d ∈ R
n.(2.5)

In our development we will assume that y is one of the tentative points xi, and we
denote by c the index such that y = xc. It is easy to verify (use αi = αic) that

c ∈ I ⇒ α̂i ≥ 0 ∀ i ∈ B.(2.6)

This property is essential, and I = {c} is the minimal possible set of interpolating
points for our analysis to work. In fact, with the corresponding translated model
f̆B(d) = f̆B(y + d)− f(y) we can define a proximal/trust region master problem

mind

{
f̆B(d) + ρ‖d‖2/2 : γ‖d‖2 ≤ 2

}
= minv,d

{
v + ρ‖d‖2/2 : v ≥ εi‖d‖2/2 + ĝid− α̂i, i ∈ B , γ‖d‖2 ≤ 2

}
,

(2.7)
which exposes both a proximal term weighted with ρ and a trust region term governed
by γ. Its dual (use, e.g., the strict converse duality theorem [29, p. 117])

min
λ,μ

{ ∥∥∑
i∈B λiĝi

∥∥2
2
(
μ+ ρ+

∑
i∈B λiεi

) +∑
i∈B

λiα̂i +
μ

γ
: λ ∈ Λ , μ ≥ 0

}
(2.8)

has similar primal-dual relationships to (1.3)

d∗ = −
∑

i∈B λ
∗
i ĝi

μ∗ + ρ+
∑

i∈B λ
∗
i εi

, v∗ = −‖d∗‖2
(
μ∗ + ρ+

∑
i∈B λ

∗
i εi

2

)
−
∑
i∈B

λ∗i α̂i,(2.9)

which show that, under (2.6), the optimal value of (2.8) is nonnegative, and therefore
the optimal value of (2.7) is nonpositive. It is easy to check that this means that

v∗ = f̆B(d∗) ≤ 0, which implies that the optimal solution d∗ is a descent direction for

the model f̆B, a property that is crucial in the analysis of the approach. Note that
both the “pure” proximal (γ = 0) and trust region (ρ = 0) versions are unavoidably
quadratically constrained problems, so there is no longer any reason to prefer one to
the other; furthermore, we will see that having both stabilizing terms not only creates
no problems in the convergence analysis (this is not surprising since [8, Theorem 3.2]
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shows that stabilizing terms can “look like a proximal term, a trust region term, or
both”), but it actually helps. The apparently nasty fractional term in the objective
function of (2.8) can be dealt with by reformulating it as

minλ,μ,t,s t+
∑
i∈B

λiα̂i + μ/γ

ts ≥
∥∥∥∥∥
∑
i∈B

λiĝi

∥∥∥∥∥
2

, s = 2

(
μ+ ρ+

∑
i∈B

λiεi

)
, λ ∈ Λ, μ ≥ 0,

(2.10)

which is a rotated second-order cone program (SOCP) solvable by standard ap-
proaches (it can be transformed into a standard SOCP with well-known trick ts =
(t+ s)2/4− (t− s)2/4 if need be).

An interesting feature of the new model f̆B is that it is somewhat “self-stabilized,”
with the εis playing a role similar to that of ρ and γ: just rewrite (2.7) as

min
v,d

{
v : v ≥ ε′i‖d‖2/2 + ĝid− α̂i, i ∈ B, γ‖d‖2 ≤ 2

}
,

where ε′i = εi + ρ,(2.11)

and note that the fixed ρ, the variable μ (“controlled” by γ), and the variable

ε(λ) =
∑
i∈B

λiεi and/or ε(λ)′ =
∑
i∈B

λiε
′
i = ε(λ) + ρ(2.12)

basically play the same role in (2.8). Indeed, provided that at least one of the εi
is strictly positive, one could even take ρ = γ = 0 while ensuring that the master
problems always have a solution. Interestingly, the classical example of instabil-
ity of the (nonstabilized) cutting-plane algorithm [17] uses f(x) = x2/2 with ini-
tial iterates x1 = 1 and x2 = −ε; it is immediate to realize that for this example
f̆B(x) = x2/2 = f(x), and the pure cutting-plane algorithm with the new model
instead terminates at the third iteration. Similarly, for any fixed ε ∈ (0, 1/2) the min-
imization of f(y, η) = max{|η|,−1+2ε+ ‖y‖} on the unit ball with the cutting-plane
algorithm given (y1, η1) = (0, 1) as starting point requires a large number of iterations

[17], while when using f̆B instead, only two iterations are required (cf. [1] for details).
Thus, for a few selected examples the new model, even without stabilization, does
improve on the classical cutting-plane model.

3. The algorithm. We now present the algorithm, which depends on
• the descent parameter m ∈ (0, 1);
• the upper threshold T on the scaling factors εi;
• the stopping parameters η ≥ 0, κ > 0, and δ ∈ (0, 1).

Let us indicate with v(ε) the optimal value of the dual master problem (2.8), which is
the opposite of the optimal value of the primal master problem (2.7). Under (2.6) one
has that v(ε) ≥ 0; this is crucial, because that value is used for the “approximate”
stopping criterion of the algorithm:

v(ε) =

∥∥∑
i∈B λ

∗
i ĝi
∥∥2

2
(
μ∗ + ρ+

∑
i∈B λ

∗
i εi
) +∑

i∈B
λ∗i α̂i +

μ∗

γ
≤ η(1− δ).(3.1)

Accordingly, the “true” stopping criterion is

v(0) =

∥∥∑
i∈B λ

∗
i gi
∥∥2

2(μ∗ + ρ+ κ)
+
∑
i∈B

λ∗iαi ≤ η(3.2)
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with the obvious property that

v(0) ≤ lim
‖ε‖→0

v(ε);(3.3)

the “≤” is due to the extra term “κ”, which is there to avoid any problem with μ∗ = 0
(a possible occurrence), and to the missing nonnegative term μ∗/γ.

The algorithm is initialized with an arbitrary starting point x0 ∈ R
n, y = x0

(c = 0), B = { (x0, f(x0), g0) }, where g0 ∈ ∂f(x0), and I = B. The parameters ρ
and γ are initialized to any nonnegative value, and a parameter t is initialized to any
value in (0, T ]. The algorithm then executes the following steps.

Step 1. Solve (2.7)/(2.8) for the optimal solutions (d∗, v∗)/(λ∗, μ∗).

Step 2. If (3.1) is not satisfied, then go to Step 4.

Step 3. If (3.2) holds, then stop, else set t := t/2 and εi := min{ εi, t } for all
i ∈ B. Increase ρ and/or γ. Go to Step 1.

Step 4. Define the tentative point x+ = y + d∗. Evaluate f(x+) and some g+ ∈
∂f(x+). Calculate ε+ at x+ according to (2.2). Set ε+ := min{ ε+, t }. Add the
triple (x+, f(x+), g+) to B, and optionally to I, with the scaling factor ε+. If

f(x+)− f(y) > −mv(ε),(3.4)

then increase ρ and/or γ and go to Step 1.

Step 5. Set y = x+. Update I ensuring that (2.6) holds. Compute the εi according
to (2.2) with the new y and I. Compute the α̂i and ĝi according to (2.4) with the
new y and εi. Reset t to any value in (0, T ] and ρ and γ to any nonnegative value.
Go to Step 1.

The core of the algorithm is the main iteration, consisting of a sequence of con-
secutive Steps 1–4 where the stability center remains unchanged. Within the main
iteration one can have several inner iterations, corresponding to sequences of consec-
utive steps where Step 3 is never executed; in this case the εi also are unchanged and
only B (and possibly ρ/γ) varies. The fact that the εi need not be updated during
a main iteration, even if the newly obtained point is inserted in I (which is possible,
although not mandatory), is not entirely obvious, but it can be easily proved since
(3.4) gives

f(x+)− f(y) > −mv(ε) ≥ f̆B(d∗) = f̆B(x+)− f(y)

(using m ≤ 1 and −v(ε) ≥ f̆B(d∗), which implies f(x+) > f̆B(x+). This gives

f(x+) ≥ f̆B(x+) ≥ f(xi) + gi(x+ − xi) + εi‖x+ − xi‖2/2

for all i ∈ B, and therefore

εi+ =
2αi+

‖x+ − xi‖2 =
2(f(x+)− f(xi)− gi(x+ − xi))

‖x+ − xi‖2 ≥ εi.

The result is easy to explain intuitively: all qi support f̆B (their pointwise maximum)

in x+, but f is well above f̆B there, for otherwise a descent step would have been
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obtained. Therefore, within a main iteration the εi for the items already in B do not
increase. Hence, it is immediate to verify that, within the same main iteration,

εi ≤ t̄/2p−1,(3.5)

where t̄ is the value of t at the beginning of the main iteration (as set in Step 5) and p
is the number of inner iterations within the main iteration (i.e., the number of times
Step 3 has been executed). This means that all the εi eventually converge to zero if
infinitely many inner iterations are performed within the same main iteration.

3.1. Convergence of the main iteration. As customary in bundle-type meth-
ods, the first step is to prove that the main iteration eventually terminates. Hence we
focus on a single main iteration, denoting by the index “k” all the quantities at the
kth pass through Steps 1–4, removing the superscript “∗” for notational simplicity. A
first assumption is needed to ensure that the master problem is well defined.

Assumption 3.1. At least one among ρ, γ, and the εi is strictly positive.
Under Assumption 3.1, the objective function of (2.7) is strongly convex, and

therefore the problem admits a (unique) optimal solution. Due to accumulation of
information in B, within the same inner iteration, one would expect the optimal
value of the master problem to be monotone, i.e., that v+(ε) ≤ vk(ε) (“+” again
indicating the subsequent pass). However, this standard property, at the cornerstone
of classical convergence arguments in bundle methods [8], is no longer true when the
εi are reduced in Step 3 (i.e., whenever more than one inner iteration is performed
within the same main iteration). In fact, it is easy to verify that −vk(ε) ≥ −vk(ε′)
for ε′ ≤ ε: therefore, Step 3 may cause an increase in vk(ε), whose effect is not easy
to bound. We therefore need the following result.

Lemma 3.2. If either γ1 > 0 or ρ1 > 0 and there exists a linear function
l(d) = gd− α such that l(·) ≤ f̆k(·) for all k, then the sequence {dk} is bounded.

Proof. Clearly, Assumption 3.1 is satisfied. In the first case γk ≥ γ1 > 0 and
therefore ||dk|| ≤ √

2/γk ≤ √
2/γ1 for all k. In the second case, it is clear that

dk ∈ { d : vk + ρk‖dk‖2/2 ≤ 0 }. Since vk = f̆k ≥ gd − α, one has ρk‖dk‖2/2 ≤
−vk ≤ α − gdk. Hence dk ∈ { d : ρ1‖d‖2/2 ≤ α − gd } (ρk ≥ ρ1), a compact
set.

Lemma 3.2 shows the advantage of having an explicit trust region term: without
it (γ = 0), boundedness requires an extra assumption. It is worth remarking that
without adjustments of the εi the assumption is not necessary: boundedness of {dk}
is a consequence of monotonicity of vk(ε) (cf. [8, Lemma 5.5], which does not require
fB ≤ f it may appear that [10, Lemma 5.5] requires fB ≤ f , but in fact it does not
require it). Yet, that line of proof fails when one cannot bound the optimal value
of the master problem, as may be the case when the εi decrease. The assumption
itself is not overly strong. For instance, in Lagrangian relaxation often some l > −∞
(the value of the best feasible solution to the original problem found so far [9]) is

known such that f ≥ l. In this case, a (linear) constraint f̆B(y + d) ≥ l can be
explicitly added to (2.7); it corresponds to a “flat” subgradient with g = 0, coupled
with a scaling factor ε = 0 which eliminates any need to define a corresponding iterate
x. This also guarantees the well-posedness of (2.7) without Assumption 3.1, in the
manner of [8, Condition (P3′)]. Alternatively, it is enough to ensure that one single
subgradient always survives in B in all iterations. However, removing items from B
is important to keep the cost of the master problem low enough (even more so in
this case), as discussed in the following, which makes satisfying the assumption not
entirely obvious.
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Lemma 3.3. Under the hypotheses of Lemma 3.2, if infinitely many inner itera-
tions are performed within a main iteration, then limk→∞ vk(0) ≤ limk→∞ vk(ε).

Proof. Under the hypotheses, p → ∞ in (3.5), and therefore εi → 0. Lemma 3.2
ensures the existence of some ∞ > D ≥ ‖dk‖ such that ‖ĝi‖ ≤ ‖gi‖ + εiD and
α̂i ≥ αi − εiD

2/2 uniformly for all i ∈ Bk (that is, D does not depend on k). Thus,
as k → ∞ one has ĝi → gi and α̂i → αi; hence the result follows as in (3.3).

Clearly, different schemes for updating the εi and t could be used, provided that
εi → 0 holds. Lemma 3.3 allows us to prove that, eventually, the stopping criterion
(3.2) holds, at least if a very conservative strategy is adopted for handling B.

Lemma 3.4. Assume that no item is ever removed from B, and that either γ1 > 0
or ρ1 > 0; then, during an infinite inner iteration limk→∞ vk(ε) = 0.

Proof. As already discussed, no removals imply that the linear function l1(d) =

g1d−α1 underestimates f̆k for all k; thus the hypotheses of Lemma 3.2 hold. During
an infinitely long inner iteration, the εi are never changed. Since the descent criterion
at Step 4 has not been met by hypothesis, one has for all k (using (2.5) with d = dk)

f̆+(dk) ≥ g+dk − α+ = f(y + dk)− f(y) > −mvk(ε) ≥ −vk(ε) ≥ f̆k(dk) = vk,(3.6)

which implies that the new constraint entering the master problem at iteration k+ 1
is not satisfied by the pair (dk, vk). Hence, the sequence {vk(ε)} is monotonically
nonincreasing; since, due to (2.6), vk(ε) ≥ 0 one has that v∞(ε) = limk→∞ vk(ε) ≥ 0.
Furthermore, from Lemma 3.2, {dk} belongs to a compact set and there exists a
convergent subsequence, say {dk}k∈K . Now, let i and s be two successive indices in
K: because no item is ever removed from B, i ∈ Bs. Note that s is not in principle i+1
but rather the—unknown a priori—following iteration in the convergent subsequence,
whence the need for removing nothing from B. Both inequalities

εi‖di‖2/2 + diĝi − α̂i > −mvi(ε),
εi‖ds‖2/2 + dsĝi − α̂i ≤ vs ≤ −vs(ε)

hold, from which we obtain vs(ε) −mvs(ε) < ĝi(di − ds) + εi(‖di‖2 − ‖ds‖2)/2; thus
v∞(ε) ≤ 0, and therefore v∞(ε) = 0.

Theorem 3.5. Assume that no item is ever removed from B: under the hypothe-
ses of Lemma 3.3, the main iteration terminates.

Proof. Assume by contradiction that the main iteration does not terminate. Ei-
ther infinitely many inner iterations are performed, or the last inner iteration is infi-
nite. In the former case (3.1) is satisfied infinitely many times, but due to Lemma 3.3
eventually (3.2) must also be satisfied, a contradiction. In the latter case Lemma 3.4
gives that vk(ε) → 0; however, this clearly implies that condition (3.1) at Step 2
cannot be satisfied for all k, again a contradiction.

Several modifications to this basic scheme are possible which may be useful in
practice without requiring any significant change in the convergence analysis. Since
only infinitely long sequences matter, anything that “does not happen infinitely often”
can be tolerated. For instance, decreasing ρ within a main iteration is also possible
(e.g., to accommodate curved searches along y in the style of [35]), provided that this
is done only finitely many times. Similarly, the convergence analysis allows for not
evaluating f at x+ (e.g., to perform a line search instead) and/or not inserting the
new subgradient in B [8].

However, Theorem 3.5 requires a monotonically increasing B; this makes the
algorithm hardly implementable, both in theory and in practice. Yet, the strategies to
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reduce the size of B that have been developed for the methods based on the standard
cutting-plane model can be adapted to our setting. The first of these is based on
the observation that the dual optimal multipliers λ∗i provide a useful “measure of
importance” of the corresponding points i ∈ B; in particular, if λ∗i = 0, then the
corresponding item is useless for (the current) master problem and can be eliminated
without changing its solution. This leads to proving that eliminating all these items
does not impair convergence. The same result can be proved, with somewhat more
convoluted arguments, for the current setting. To do so, it is convenient to introduce,
in analogy with (2.12), the aggregated data

ĝ =
∑
i∈B

λ∗i ĝi, α̂ =
∑
i∈B

λ∗i α̂i, ε =
∑
i∈B

λ∗i εi(3.7)

and consider the corresponding aggregated primal master problem

min
v,d

{
v + ρ‖d‖2/2 : v ≥ ε‖d‖2/2 + ĝd− α̂, γ‖d‖2 ≤ 2

}
.(3.8)

It is immediate to realize that (3.8) has the same optimal solution (and therefore
optimal value) as (2.7): just construct its dual, whose single “variable” λ can only
achieve value 1, and use (2.9). More to the point, (3.8) has the same optimal value
to the modified (2.7) in which all items such that λ∗i = 0 have been removed from B.
Therefore, let v̄+(ε) be the (opposite of the) optimal value to the simplified problem

minv,d v + ρ‖d‖2/2
v ≥ ε‖d‖2/2 + ĝd− α̂, v ≥ ε+‖d‖2/2 + ĝ+d− α̂+, γ‖d‖2 ≤ 2.

(3.9)

It is easy to check that 0 ≤ v+(ε) ≤ v̄+(ε), even if—possibly—all items such that
λ∗i = 0 have been removed from B. We can then prove the following weakened form
of Lemma 3.4.

Lemma 3.6. Assume that the hypotheses of Lemma 3.2 hold and that at all
iterations no item with λ∗i > 0 is ever removed from B. If ρk > 0 for at least one
iteration k, then any inner iteration must finitely terminate.

Proof. Note that, unlike in Lemma 3.4, for γk = 0 and ρk > 0 the hypothesis of
Lemma 3.2 is no longer automatically guaranteed: without a trust region, compactness
has to be ensured by external means. We will show that v̄+(ε) is “significantly lower”
than v(ε)—the value before the insertion of the new item in B—in a way that guar-
antees that the sequence has to finitely terminate. We prove this for the case where
the stabilization parameters do not change during the iteration (i.e., ρk = ρ+ = ρ and
γk = γ+ = γ), knowing that the result holds a fortiori if ρ and/or γ increase.

Let (dk, vk) and (v+, d+) be the optimal solution of (3.8) (and (2.7)) and (3.9),

respectively: v+ 	= vk, for otherwise (3.6) would give vk = v+ = f̆+(dk) > vk. Hence

f̆+(d+) = v+ = ε+‖d+‖2/2 + ĝ+d+ − α̂+,(3.10)

which means that the newly added quadratic constraint is always active in the new
optima. Let s+ = d+ − dk be the effect of the introduction of the new constraint on
the optimal primal solution; we analyze separately the two mutually exclusive cases

(i) 2(‖ĝ+‖+ ε+‖dk‖)‖s+‖ < τ, (ii) 2(‖ĝ+‖+ ε+‖dk‖)‖s+‖ ≥ τ

of “small” and “large” s+, respectively, where the threshold τ = η(1−m)(1− δ) uses
the tolerances η and δ of the stopping criterion (3.1) and m from (3.4). In case (i),
which holds in particular if either ‖ĝ+‖ + ε+‖dk‖ = 0 or d+ = dk (i.e., ‖s+‖ = 0),
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using (3.10) one has

−v̄+(ε) = v+ + ρ‖d+‖2/2 ≥ v+ = ε+‖d+‖2/2 + ĝ+d+ − α̂+

= ε+‖dk + s+‖2/2 + ĝ+(dk + s+)− α̂+

=
(
ε+‖dk‖2/2 + ĝ+dk − α̂+

)
+ ĝ+s+ + ε+dks+ + ε+‖s+‖2/2

> −mv(ε) + (ĝ+ + ε+dk)s+ + ε+‖s+‖2/2
≥ −mv(ε) + (ĝ+ + ε+dk)s+ = −v(ε) + (1−m)v(ε) + (ĝ+ + ε+dk)s+

≥ −v(ε) + (1−m)v(ε)− ‖s+‖
(‖ĝ+‖+ ε+‖dk‖

)
> −v(ε) + η(1−m)(1 − δ)− η(1 −m)(1− δ)/2 = −v(ε) + τ/2,

where in the last passage we have used (i) and the fact that the stopping rule (3.1) is
not satisfied. This rules out infinitely many steps, since at each iteration the optimal
value increases by at least a fixed amount. For case (ii), we start from

v+ ≥ ε‖d+‖2/2 + ĝd+ − α̂

(cf. (3.10), the definition of f̆+, and (2.5)) to write

−v̄+(ε) = v+ + ρ‖d+‖2/2 ≥ ε‖dk + s+‖2/2 + ĝ(dk + s+)− α̂+ ρ‖dk + s+‖2/2
= −v(ε) + (ĝ + (ρ+ ε)dk

)
s+ + (ρ+ ε)‖s+‖2/2

= −v(ε)− μkdks+ + (ρ+ ε)‖s+‖2/2,(3.11)

where in the last passage we have used (μk+ρ+ ε)dk = −ĝ (cf. (2.9)). If μk = 0, then
μkdks+ = 0; otherwise, the constraint γ‖d‖2 ≤ 2 is active in dk (i.e., γ‖dk‖2 = 2).
Since one also has γ‖d+‖2 ≤ 2, we obtain that

γ‖dk‖2 + γ‖s+‖2 + 2γdks+ ≤ 2 ⇒ γ‖s+‖2 + 2γdks+ ≤ 0.

Hence, −μkdks+ ≥ μk‖s+‖2/2 is always true. Using (ii) in (3.11), we conclude that

−v̄+(ε) ≥ −v(ε) + (μk + ρ+ ε)‖s+‖2/2 ≥ −v(ε) + (μk + ρ+ ε)τ2

8(‖ĝ+‖+ ε+‖dk‖)2 .

Now, τ is constant, and ‖ĝ+‖+ ε+‖dk‖ is bounded above. In fact, from Lemma 3.2 all
primal solutions, and hence in particular dk, belong to a compact set. Hence so do all
the gi (the image of a compact set under the subdifferential mapping is compact for
a function that is finite everywhere), and the term y−xi in (2.4) is likewise bounded.
Finally, all εi (comprising ε+) are bounded above by t, which gives boundedness of
all the ĝi (comprising ĝ+). Since μk + ρ + ε ≥ ρ = ρk, if any ρh is strictly positive,
then at length ρk ≥ ρh > 0: summing over k infinitely many times would contradict
v̄+(ε) ≥ 0; hence the inner iteration is finite.

Lemma 3.6 can be used in Theorem 3.4 instead of Lemma 3.4 to prove convergence
of the main iteration under the more relaxed handling of B. It may be worth remarking
that this result sharply distinguishes the two forms of stabilization: while the trust
region is a handy means of ensuring compactness but is otherwise inessential, the
proximal term is necessary (setting ρk = 0 is not an option). This appears to be
inherent rather than a flaw in the analysis. Indeed, convergence under aggregation
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for the standard cutting plane method requires the dual stabilizing term to be smooth
(i.e., the primal stabilizing term to be strictly convex [8, condition (P3′′)]). The trust
region corresponds to a primal stabilizing term with the form of an indicator function,
and therefore not strictly convex, whose conjugate is in fact not differentiable (in 0).

The number of points such that λ∗i > 0 can be very large in practice, leading

to computationally expensive master problems. Indeed, while with f̂B one can prove
that |B| ≤ n + 1 (still not a “small” number for large-scale optimization) suffice, in
the quadratic case even this bound is not given. Fortunately, one can do better.

3.2. Convergence with aggregation. The above analysis suggests an inter-
esting possibility: if it were possible to replace B with just the aggregated pair (ĝ, α̂),
with multiplier ε, then the convergence would still be assured. This is in fact possible
when using the cutting plane model, as the aggregated subgradient and linearization
error (z∗, σ∗) (cf. (1.3)) can indeed be legally added to B, possibly removing all the
rest of the points in exchange. Doing so at every iteration yields the so-called poorman
versions of bundle methods, which are characterized by solving at each step a master
problem with only two subgradients (for which closed formulae can be devised), and
which closely resemble subgradient approaches [2].

Achieving the same feat for the quadratic model, however, is substantially more
complex, due to the fact that (ĝ, α̂) 	= (z∗, σ∗), and in particular that ĝ is not, in
general, a(n approximated) subgradient to f . The catch, therefore, is the need to
exhibit a potential new bundle element (x̄, f(x̄), ḡ) and its multiplier ε̄, derived from
existing information, which, when plugged into (2.4), exactly reproduce ĝ, α̂, and ε.
At first this might seem easy, because

ĝ =
∑
i∈B

λ∗i ĝi =
∑
i∈B

λ∗i (gi + εi(y − xi))

= z∗ + ε

(∑
i∈B

λ∗i εi
ε

(y − xi)

)
= z∗ + ε(y − x̃),

where x̃ =
∑

i∈B ηixi and ηi = λ∗i εi/ε, with the obvious property that η ∈ Λ. Hence,
combining the original convex multipliers λ∗i and the weights εi provides new convex
multipliers ηi which would seem to produce a good candidate for defining the “center”
x̄ of the usual aggregate subgradient z∗. Note that while the ηi are undefined if ε = 0,
that case requires λ∗i εi = 0 for all i ∈ B, which immediately gives ĝ = z∗ and α̂ = σ∗;
thus, that is actually the “easy” case in which everything falls back to the standard
aggregate model (formally, one can then take x̄ = y and ε̄ = 0). Unfortunately, things
are not so easy: in fact, while plugging σ∗, ε, and x̃ into (2.4) gives

α∗ = σ∗ − ε‖y − x̃‖2/2 = σ∗ − ε

∥∥∥∥∥
∑
i∈B

ηi(y − xi)

∥∥∥∥∥
2

/2,

one has

α̂ =
∑
i∈B

λ∗i α̂i =
∑
i∈B

λ∗i (αi − εi‖y − xi‖2/2) = σ∗ − ε

(∑
i∈B

ηi‖y − xi‖2
)
/2.

In plain words, using z∗, σ∗, and x̃, while correctly reproducing ĝ, fails to exactly
reproduce α̂; in particular, it is easy to verify that α∗ ≥ α̂, in that

ξ =
‖y − x̃‖2∑

i∈B ηi‖y − xi‖2 =

∥∥∑
i∈B ηi(y − xi)

∥∥2∑
i∈B ηi‖y − xi‖2 ≤ 1
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(use, e.g., convexity of ‖y − ·‖2). Fortunately, there are other ways to obtain ĝ, at
least if one is willing to play with ε. Indeed, for any ε̄ ∈ (0, ε) (recall that ε > 0),

x̄ =
(ε̄ − ε)

ε̄
y +

ε

ε̄
x̃ ⇐⇒ ε̄(y − x̄) = ε(y − x̃)

has the property that

z∗ + ε̄(y − x̄) = z∗ + ε(y − x̃) = ĝ.

For the specific choice ε̄ = ξε one has

σ∗ − ε̄

2
‖y − x̄‖2 = σ∗ − ε̄

2

∥∥∥ε
ε̄
(y − x̃)

∥∥∥2 = σ∗ − ε

2ξ
‖y − x̃‖2

= σ∗ − ε

(∑
i∈B

ηi‖y − xi‖2
)
/2 = α̂.

The case ξ = 0, which implies ε̄ = 0, is also consistent, since it gives y = x̃ and,
again, ĝ = z∗ and α̂ = σ∗. Thus, in all cases one can pretend that the linear
lower approximation to f given by z∗ and σ∗ has been obtained by the oracle in
x̄; assigning it weight ε̄ = ξε reproduces both ĝ and α̂. Further, imposing that
σ∗ = f(y)− f(x̄)− z∗(y − x̄) is equivalent to assuming that

f(x̄) = f(y) + z∗(x̄ − y)− σ∗.

Thus, the value to be used as f(x̄) for the aggregated element to be inserted into
B is simply that of the aggregated linearization, which is a lower bound on the true
function value. If the corresponding ε eventually goes to zero during a main iteration,
what remains is a perfectly legal linear function underestimating f , which cannot
cause any problem for the convergence of the algorithm. The only issue with using a
lower bound instead of the true value of f(x̄) is the possibility of negative αij , and
therefore negative εij/εi, for subgradients obtained after the aggregation step. There
could be ways of dealing with this: for instance, once a negative αij is detected,
then the point that generates it (the one where the linear approximation lies above
the alleged function value) can be updated by increasing its function value so as to
obtain αij = 0. This is legal, since one has just obtained a better lower bound on the
true function value, which can just be used to replace the initial one. Alternatively,
one may just update (2.1) to ignore negative elements (i.e., set εij = max{εij , 0}).
All this would require some analysis, and it may have a negative impact in practice,
since it would tend to decrease the size of the weights εi, as the quadratic models
would be forced to support (possibly crude) lower approximations to true function
values. Fortunately, our setting allows for an easier solution: simply avoid inserting
the aggregated point into I. This is possible, since x̄ will never be the current point
except by chance (cf. the case ε̄ = 0 above), and no issues arise. By ensuring that the
aggregated point never belongs to I, none of the corresponding αij and εij will ever be
computed, and the fact that the estimate of f(x̄) used to construct the corresponding
quadratic function is a(n even crude) lower bound on the true value is immaterial.

One catch remains in the above approach: to reproduce α̂ one has to decrease the
weight of the aggregated piece from the expected ε. Without any other action, the
optimal value of the master problems may increase, and the primal optimal solution
would be different, as is easy to verify from (2.9). However, there is an easy fix for
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this: update the stabilization parameters. This can be done independently for both,
considering that the optimal solution to the aggregated primal master problem (3.8)
always has the form d̄ = −βĝ for β = 1/(μ∗ + ρ+ ε) > 0 (cf. (2.9)).

Changing ρ is actually very simple, since it is easy to verify that

ρ′ = ρ+ ε− ε̄ > ρ(3.12)

leads to exactly the same optimal solution μ∗ as the original value ρ, in that ρ′ + ε̄ =
ρ+ε. Consequently, the aggregated primal master problem (3.8) has exactly the same
optimal solution d∗ (and optimal value) as the original value ρ.

Changing γ is instead rather more complex, as the role of ρ is taken by the extra
variable μ, which cannot be directly set and reacts only “indirectly” to changing γ.
The issue is then that of finding a new value for γ so that the optimal value of the
aggregated problem reproduces that of the original one, which is

ε′‖d∗‖2/2 + ĝd∗ − α̂ =

(
ε′

2(μ∗ + ε′)2
− 1

μ∗ + ε′

)
‖ĝ‖2 − α̂

since all constraints corresponding to dual multipliers λ∗i > 0 are active; note that we
have used the “alternative” form of the problem (cf. (2.11)). Imposing that the new
optimal solution d̄ = −βĝ reproduces the same value, i.e., that

ε̄′‖d̄‖2/2 + ĝd̄− α̂ =
(
ε̄β2/2− β

) ‖ĝ‖2 − α̂

holds (where obviously ε̄′ = ε̄ + ρ), leads to the equation

ε′

2(μ∗ + ε′)2
− 1

μ∗ + ε′
=
ε̄′β2

2
− β.

For ε̄′ = 0 (which implies ρ = 0) the only solution is

β̄ = (2μ∗ + ε′)/(2(μ∗ + ε′)2) (≥ 0),

while for ε̄′ > 0 the solution has two roots

β± =
1±√

1− δ

ε̄′
, where 0 < δ = ε̄′

2μ∗ + ε′

(μ∗ + ε′)2
= 2ε̄′β̄ < 1,

as is easy to verify algebraically (use ε′ = ε + ρ > ε̄ + ρ = ε′ and μ∗ ≥ 0). One thus
wants to select γ′ ≥ γ such that

γ′‖d̄‖2 = 2 ⇒ γ′ = 2/(β2‖ĝ‖2),

where we note that γ‖d∗‖2 ≤ 2 gives γ ≤ 2(μ∗ + ε′)2/‖ĝ‖2. For ε̄′ = 0 this gives

γ′ =
8(μ∗ + ε′)4

(2μ∗ + ε′)2‖ĝ‖2 ≤ 8(μ∗ + ε′)2

‖ĝ‖2 ,(3.13)

which, in case μ∗ > 0 and consequently γ = 2(μ∗ + ε′)2/‖ĝ‖2, also gives γ′ ≤ 4γ. For
ε̄′ > 0 the root β+ cannot be chosen in general, as, if μ∗ > 0, one would have

γ = 2

(
μ∗ + ε′

‖ĝ‖
)2

> 2

(
ε̄′

‖ĝ‖
)2

> 2

(
ε̄′

(1 +
√
1− δ)‖ĝ‖

)2

= γ′
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since ε̄′ < μ∗ + ε′ and 1 +
√
1− δ > 1. This finally leads to

γ′ = 2

(
ε̄′

(1−√
1− δ)‖ĝ‖

)2

(3.14)

being the chosen value, and indeed it can be verified algebraically that

γ′ = 2

(
ε̄′

(1 −√
1− δ)‖ĝ‖

)2

≥ 2

(
μ∗ + ε′

‖ĝ‖
)2

≥ γ

(the verification is tedious although not difficult; see [1] for details).
The above analysis shows that one can aggregate while retaining the convergence

of the approach, as increasing ρ and/or γ during a main iteration is allowed. A
last issue remains, though: while ρ and/or γ can become arbitrarily large as far as
“local” convergence is concerned, some discipline has to be exercised on the stabilizing
terms if “global” convergence has to be attained, as it is clear that (say) shrinking
the trust region exponentially fast may lead to the algorithm stalling far from the
optimum. The simplest form of discipline requires insisting that ρk ≤ ρmax < +∞
and γk ≤ γmax < +∞ (cf. Theorem 3.9); however, one may then find oneself between
a rock and a hard place when ρ and/or γ must be increased due to aggregation.

Fortunately, increasing ρ and/or γ is a reaction to the fact that the ε obtained by
aggregation is “too small”; yet, reducing ε is a standard step in our algorithm, and
it is actually necessary for convergence. Hence, the only required trick is to properly
coordinate the increase of the stabilization parameters and the decrease of ε. In this
respect, (3.12) comes in very handy, because εi ≤ t for all i ∈ B implies that ε ≤ t,
and therefore ρ′ ≤ ρ+ t. Thus, one may impose any arbitrary upper bound ρmax on
ρ and still be able to perform aggregations as follows:

• initialize t such that t ≤ (ρmax − ρ1)/4;
• never increase ρ by more than t at a time (this is free for aggregation but not
necessarily so for regular ρ-handling heuristics; cf. section 4.1);

• each time that ρmax − ρk < 2t set t := t/4 and εi := min{ εi, t } for all i ∈ B
(cf. Step 3 of the algorithm).

This ensures that ρmax−ρk ≥ 2t at all iterations k, and therefore that “there is always
enough room to increase ρ” when an aggregation has to be performed. Of course this
also implies that ε → 0 whenever ρk → ρmax. Doing a similar trick for γ appears
to be more difficult, as bounding the increase of γ in terms of ε (hence t) does not
seem obvious. Thus, perhaps the most promising setting is one large and fixed trust
region to guarantee compactness arguments, and then using ρ as the real driver of the
stabilization tuning. In so doing, the maximum size of B can be kept limited to any
fixed number ≥ 2 by inserting the aggregated constraints into B, deleting any subset
of the current bundle elements (possibly all), and replacing ρ by ρ′.

3.3. Global convergence. We are now in the position to prove finiteness of the
algorithm for any η > 0. Since Theorem 3.5 rules out infinitely long main iterations,
we need only prove that an infinite number of descents cannot occur. For this we can
disregard whatever happens during a main iteration and consider only the state of
the algorithm at the end of each; therefore, from now on the index “k” denotes the
iteration where Step 5 is executed for the kth time, and k → ∞, for otherwise nothing
has to be proved. Of course, here the stability center also has an index.

Theorem 3.7. Either f∞ = limk→∞ f(yk) = −∞ (and therefore f is unbounded
below and {yk} is a minimizing sequence) or the algorithm finitely stops.
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Proof. Since (3.4) is not satisfied at iteration k, then f(yk+1) ≤ f(yk) − mvk
where vk(εk) > η(1 − δ), since (3.1) is not satisfied. Summing over k gives f(yk) <
f(y0) − kmη(1 − δ), which for k → ∞ gives f∞ = −∞; thus, either a minimizing
sequence is constructed which proves that f is unbounded below, or the algorithm
terminates in a finite number of main iterations.

For any fixed η > 0 the algorithm eventually terminates, and the obtained stability
center satisfies the approximate optimality conditions (3.2). However, running the
algorithm with η = 0 is not, in principle, possible. Yet, one can resort to an obvious
trick: for a sequence {ηk} → 0, run the algorithm with η = ηk and collect yk, zk,
and σk as, respectively, the stability center, the aggregated subgradient, and the
aggregated linearization error when the algorithm terminates. It is easy to show that,
provided that the optimal value is not “artificially” reduced by sending ρk and/or
γk → ∞, ||zk|| and σk can be made “as small as desired.” Thus {yk} “looks like” a
minimizing sequence, and it actually is so under weak assumptions on f , such as in
the following definition.

Definition 3.8. Let Sδ(f) = { x : f(x) ≤ δ } be the level set corresponding to
the f -value δ: a function f is ∗-compact if for all L ≥ l > f∗ ≥ −∞

e(l, L) = supx{ dist(x, Sl(f)) : x ∈ SL(f) } <∞.

∗-compact functions are asymptotically well-behaved, which precisely means that
any sequence like {yk} is minimizing. Many functions are ∗-compact (e.g., all the
inf-compact ones; see [8] for further discussion).

Theorem 3.9. Assume that ρk ≤ ρmax < +∞, γk ≤ γmax < +∞, and f is
∗-compact; then, f∞ = f∗.

Proof. It is easy to realize that boundedness of ρk and γk implies that {‖zk‖} → 0
and σk → 0; just look to (3.2) and consider that (3.1) implies μk ≤ γmaxη(1− δ) (that
is, boundedness of γ implies boundedness of μ). Now, assume by contradiction that
f∗ < l = f∞ − λ for some λ > 0, and take ŷk as the projection of yk onto Sl(f) (i.e.,
ŷk = arg inf{ ‖yk−x‖ : x ∈ Sl(f) }). Since f(yk) is nonincreasing, f(yk) ≤ f(y1) = L
for all k. Hence, since zk is a σk-subgradient of f at yk,

f∞ − λ = f(ŷk) ≥ f(yk) + zk(ŷk − yk)− σk ≥ f∞ − ‖zk‖ ‖ŷk − yk‖ − σk.

From ∗-compactness ‖ŷk−yk‖ ≤ e(l, L) <∞, and, taking into account that {zk} → 0
and {σk} → 0, we get the desired contradiction.

4. Implementation and numerical results.

4.1. Implementation issues. The proposed algorithmic scheme has several
implementations details which may significantly impact the practical performance of
the algorithm. In the following we describe several of them, detailing the choices that
were used to obtain the results reported in section 4.2.

• The general-purpose, commercial solver Cplex version 12.2 was used to solve
the master problem. Cplex can solve both quadratically-constrained quadratic
programs such as (2.7) and SOCPs such as (2.10). As the computational re-
sults will show, choosing the “right” formulation definitely has an impact on
the running time of the approach.

• The set I was chosen at Step 5 as I = { i ∈ B : ‖xi − y‖ ≤ ζ‖d∗‖ }, where
ζ ≥ 1 is a parameter, which clearly guarantees (2.6).

• It appears to be beneficial to set the εi to a slightly smaller value than that
dictated by (2.2), thus having the model strictly minorize f on I.
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• Rather than checking (3.1), (3.2) for the current value of ρ and then ensuring
that eventually ρ decreases to a “small enough” value to attain a solution
with the required accuracy, as required by the results in section 3.3, we use
the tests

1

2
(
μ∗ + ρ̄+

∑
i∈B λ

∗
i εi
)
∥∥∥∥∥
∑
i∈B

λ∗i ĝi

∥∥∥∥∥
2

+
∑
i∈B

λ∗i α̂i +
μ∗

γ
≤ η(1 − δ)f(y),

1

2(μ∗ + ρ̄+ κ)

∥∥∥∥∥
∑
i∈B

λ∗i gi

∥∥∥∥∥
2

+
∑
i∈B

λ∗iαi ≤ ηf(y)(4.1)

for a properly chosen “small” value of ρ̄. This does not require any substantial
change to the convergence analysis, and choosing a value of ρ̄ such that the
attained solution is actually η-optimal (in relative sense, thanks to the scaling
factor f(y)) in the end is usually easy enough.

• Heuristics for increasing/decreasing ρ are of utmost importance for the practi-
cal effectiveness of the approach. Following [7] both “short-term” approaches,
based only on information gathered in the current iteration (or at most in
the few preceding ones) and “long-term” approaches, which take into account
data pertaining to the overall convergence behavior of the algorithm, were im-
plemented. For the former, one can basically copy the approaches in [20, 7]
by considering the two-piece quadratic model of (3.9) restricted along the
previous direction d∗ and computing its minimum ξd∗, with ξ ∈ (0, 1]. This
can be done in constant time, since the minimum can only lie at five different
values of ξ (the minimum of each individual quadratic function, if any, the
intersection between of the two functions, and ξ = 1). Then, one can set ρ
to the value that would place the minimum of the aggregated model there,
assuming that d∗ would remain the same (which we know it would not), that
is, the ρ′ which solves

ξd∗ = − ξĝ

μ∗ + ρ+ ε
= − ĝ

μ∗ + ρ′ + ε

(again a O(1) computation). Since this value may be either too large or too
small, compared to the previous one, this approach is typically “damped” by
projecting ρ′ onto the interval [mρ,mρ] centered on the previous value for
some fixed 0 < m < 1 < m. As far as “long-term” approaches go, the idea
is to monitor that ρ neither becomes “too large too rapidly,” thereby causing
long sequences of very “short” descents which do not actually improve the
objective value much, nor “remains too small too long,” thereby causing
long sequences of nondescent steps. One way in which this can be done is
by decreasing ρ, or at least inhibiting further increases, if ‖z∗‖2 is already
“much smaller” than σ∗, as both terms eventually need to become “small”
for the algorithm to stop (cf. (4.1)). This can be done in different ways;
one, for instance, is to try to ensure that the ratio σ∗/‖z∗‖2 lies into some
interval [π, 1/π] for some fixed 0 < π < 1, and inhibit decreases/increases of
ρ (whichever is appropriate) if the ratio is already outside the interval.

• As far as control of the bundle size is concerned, a classical approach (again
inspired from the classical cutting-plane version) is to keep track of the num-
ber of consecutive iterations in which any given subgradient is “useless” (i.e.,
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has λ∗i = 0) and remove all subgradients for which this count is larger than
a given threshold. This can already contribute to keeping the bundle size
controlled by discarding information that seems to have few chances of ever
returning to be significant again. In order to further decrease the master
problem cost one can also impose any given hard limit on the maximum bun-
dle size; as soon as the limit is hit, first all subgradients with λ∗i = 0 in the
current solution are discarded (in order of their count). If this is not enough,
aggregation is performed (cf. section 3.2), and two subgradients are discarded
(in reverse order of λ∗i , i.e., starting with those with the smallest multiplier) in
order to make space for the aggregated subgradient and the newly added one.

4.2. Numerical results. The proposed algorithm has been coded in C++ and
compared with a C++ code based on the standard cutting-plane model [5, 9, 10, 11] on
a 2.10GHz Intel T8100 CPU with 2Gb of RAM, under an i686 GNU/Linux (Ubuntu
10.04 LTS) compiled with g++ version 4.4.3. We have fixed η = 1e-6 in (4.1), hence
requiring six significant digits of precision in the optimal function value. The (nu-
merous) algorithmic parameters were tuned (simultaneously for all functions, but)
individually for each algorithm to find the best performing settings for the given test
set. Also, comparison with the variable metric algorithm of [36] has been possible
using results reported in the literature.

We first tested the algorithms on 14 standard convex nondifferentiable functions,
described in Table 4.1; for more details (e.g., optimal value, optimal solution, and

Table 4.1

Standard test functions.

Name n Function

1 CB2 2 f(x) = max{x2
1 + x4

2 , (2− x1)2 + (2 − x2)2 , 2e−x1+x2}
2 CB3 2 f(x) = max{x4

1 + x2
2 , (2− x1)2 + (2 − x2)2 , 2e−x1+x2}

3 DEM 2 f(x) = max{ 5x1 + x2 , −5x1 + x2 , x2
1 + x2

2 + 4x2 }

4 QL 2
f(x) = max{x2

1 + x2
2 , x

2
1 + x2

2 + 10(−4x1 − x2 + 4) ,

x2
1 + x2

2 + 10(−x1 − 2x2 + 6) }
5 LQ 2 f(x) = max

{−x1 − x2 , −x1 − x2 + (x2
1 + x2

2 − 1)
}

6 Mifflin1 2 f(x) = −x1 + 20max
{
x2
1 + x2

2 − 1 , 0
}

7 Rosen 4

f(x) = max{ f1(x) , f1(x) + 10f2(x) ,
f1(x) + 10f3(x) , f1(x) + 10f4(x) }, where

f1(x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4,

f2(x) = x2
1 + x2

2 + x2
3 + x2

4 + x1 − x2 + x3 − x4 − 8,

f3(x) = x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 10,
f4(x) = x2

1 + x2
2 + x2

3 + 2x1 − x2 − x4 − 5

8 Maxq 20 f(x) = max1≤i≤20 x
2
i

9 Maxl 20 f(x) = max1≤i≤20 | xi |
10 Maxquad 10 f(x) = max1≤k≤5 (xAkx− bkx )

11 TR48 48 f(x) =
∑48

j=1 dj max1≤i≤48(xi − aij)−
∑48

i=1 sixi

12 Shor 5 f(x) = max1≤i≤10

{
bi

∑5
j=1(xj − aij)2

}

13 Smooth n f(x) =
∑n

i=1 x
2
i

14 AbsVal n f(x) =
∑n

i=1 | xi |
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Table 4.2

Results for standard test functions.

CPB VMNC BNL QPB
n #f time gap #f gap #f gap MP #f SS time ptime gap

1 2 21 0.01 3e−7 16 3e−7 10 0e+0 16 15 13 0.10 0.37 1e−7
2 2 34 0.01 3e−7 17 0e+0 15 0e+0 18 17 11 0.27 0.94 2e−7
3 2 12 0.01 0e+0 20 1e−7 16 0e+0 21 21 14 0.22 0.68 9e−7
4 2 21 0.01 1e−7 18 3e−7 6 0e+0 15 15 11 0.07 0.17 2e−7
5 2 10 0.01 3e−8 10 2e−7 17 3e−8 23 22 11 0.45 0.58 3e−7
6 2 30 0.01 2e−7 59 8e−6 13 0e+0 30 30 16 0.26 0.75 9e−7
7 4 43 0.01 2e−7 32 6e−7 15 0e+0 25 25 13 0.14 0.56 1e−7
8 20 141 0.01 1e−6 111 9e−6 39 3e−9 141 141 55 1.59 33.88 2e−7
9 20 31 0.01 0e+0 23 0e+0 25 5e−9 52 51 38 1.11 13.98 4e−7

10 10 116 0.02 6e−7 89 3e−6 14 7e−8 47 44 24 0.38 5.08 6e−7
11 48 140 0.01 0e+0 295 4e−6 — — 184 184 59 9.32 1662.07 6e−7
12 5 51 0.01 7e−7 30 1e−6 8 6e−7 21 21 12 0.36 0.69 2e−7
13 100 2 0.01 0e+0 — — — — 13 13 8 0.08 1.70 5e−9
14 100 3 0.01 0e+0 — — — — 14 14 13 0.06 0.62 8e−7
13 200 2 0.01 0e+0 — — — — 13 13 8 0.05 3.22 1e−8
14 200 3 0.01 0e+0 — — — — 14 14 13 0.07 1.45 5e−8

starting point) the interested reader can consult [28] for functions 1–9, [25] for 10–11,
and [19] for 12 (the “very easy” functions 13–14 need little explanation).

The results are reported in Table 4.2. In the table, columns “CPB” refer to the
standard bundle approach using the cutting-plane model of [11], columns “VMNC”
refer to the variable metric algorithm of [36], columns “BNL” refer to the bundle-
Newton method of [27], and columns “QPB” refer to the algorithm proposed in this
paper. For all algorithms, column “#f” reports the total number of function eval-
uations, and column “gap” reports the final relative gap w.r.t. the “true” optimal
value (either known beforehand or obtained by running CPB with very high required
accuracy and unlimited available running time). For CPB and QPB, column “time”
reports the total CPU time required. Finally, for QPB column “MP” reports the total
number of master problems solved (which may be larger than the number of function
evaluations due to inner iterations), column “SS” reports the total number of descent
steps (serious steps), and column “ptime” reports the running time of the algorithm
if the master problem (2.7) is solved instead of the dual (2.10).

The table shows that BNL performs uniformly better than any other among the
tested algorithms. It is worth noting, however, that BNL requires computation of the
Hessian matrix whenever a new element is inserted into the bundle, and consequently
the number of function evaluations does not completely represent the computational
burden of the method. The newly proposed algorithm often requires fewer function
evaluations than CPB or VMNC on the first 12 test functions; however, the running
time is worse due to the need to solve a more complex master problem. The slow-
down can be relevant if the dual master problem is addressed, but can be downright
disastrous if the primal formulation is solved instead. The idea of inserting this “sim-
plified” second-order information into the model does not appear to be particularly
fruitful for test functions such as TR48 (function 11), which is in fact polyhedral, nor
for the “very easy” functions 13 and 14, which are solved extremely efficiently by the
standard bundle approach and much less so by the newly proposed one. For 13, this is
likely due to the fact that first-order information “by chance” points directly toward
the optimum, and the “noise” provided by the extra quadratic terms in the model
deviates the algorithm from the extremely promising direction it would have when
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Table 4.3

Results for QR(n,m) test functions.

CPB QPB
n m #f time gap MP #f SS time gap
10 10 33 0.01 3e−7 25 24 13 0.16 5e−7
10 100 52 0.01 2e−7 31 31 13 0.22 4e−7

100 100 90 0.01 3e−7 56 55 21 0.81 6e−7
100 1000 158 0.14 4e−7 88 86 34 2.03 6e−7
200 200 121 0.04 6e−7 84 83 29 1.82 5e−7
200 2000 286 1.18 3e−7 164 162 48 9.68 6e−7

1000 1000 291 3.15 4e−7 173 172 54 14.19 6e−7
1000 10000 541 64.30 5e−7 300 298 66 106.12 7e−7

using the standard cutting-plane model. Function 14 may be thought to lack any
meaningful second-order information everywhere, and the surrogate provided by the
quadratic model proves to be worse than just relying on the first-order information
alone, which, analogously to the previous case, turns out to be “quite exact” already.
By contrast, the algorithm is quite efficient on Maxquad (function 10), which is the
pointwise maximum of quadratic functions. It therefore appears that any second-
order information introduced in the model should be somewhat related to the actual
second-order behavior of f . To further test this hypothesis we developed a new class
of functions, called “QR(n,m),” with the form

f(x) = max
j=1,...,m

{
bj‖x− xj‖2 + aj

}
,

where each aj and every component of each fixed center xj is a random number
uniformly drawn in [−100, 100], while each bj is a random number uniformly drawn
in [0, 100]. That is, these functions have a shape similar to that of the quadratic
model employed in QPB, but of course the actual data characterizing each function is
unknown to the algorithm and is only approximated by using information iteratively
extracted from the oracle. We have tested both CPB and QPB on a set of functions
constructed as follows: for each n ∈ {10, 100, 200, 1000} we have considered the two
values m = n and m = 10n. For each pair (n,m) we have generated five QR(n,m)
functions for five different values of the seed to the random number generator. Results
of these experiments are reported in Table 4.3, with each row representing the average
of all five functions with the same (n,m).

Table 4.3 indicates that QPB requires a consistently smaller number of function
evaluations than CPB; although the running time is still considerably larger, it is less
so than in the previous cases, especially for large n and m. While one may argue
that the QR(n,m) functions are “too good a fit” for QPB, these results seem to be
an indication that a piecewise-quadratic model containing “appropriate” second-order
information can actually result in a more efficient algorithm. Therefore, variants of the
proposed algorithm which incorporate less “rigid” forms of second-order information
than a scalar multiple of the identity matrix could turn out to be interesting.

5. Concluding remarks. We have developed a new version of bundle method
based on a piecewise-quadratic model which does not necessarily support the objective
function from below. We have shown that the quadratic terms in the model can be
adjusted in such a way that it supports the objective function on a properly chosen set
of “important” points, and that this is enough to ensure convergence. A nice feature
of the algorithm is that it naturally allows for a hybrid stabilization which uses both a
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trust region term (useful for ensuring compactness in spite of variation of the weights
of the quadratic terms in the model) and a proximal term (useful for on-line tuning
of the stabilization parameters). The convergence analysis of the approach allows
for the incorporation of important practical aspects such as heuristics for handling
the stabilization parameter(s) and aggregation, which turns out to be surprisingly
more complex in this case than when the usual cutting-plane model is employed.
Numerical results on the newly proposed method show promise for only a special class
of functions for which the piecewise-quadratic model is “a natural fit”. Hence, while
the current form of the algorithm does not seem to be particularly useful for general
functions, these results seem to indicate that versions using richer forms of second-
order information could actually prove to be competitive. Of particular interest in
this sense is the fact that aggregation allows restricting the number of quadratic pieces
to any fixed value (as low as two), which may ease concerns about dealing with many
dense quadratic constraints in the master problem. We also believe that the use of
quadratic models could be usefully extended to bundle methods designed to jointly
deal with nonconvexity and nonsmoothness [34, 12, 14, 15].
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[31] R. Mifflin and C. Sagastizábal, A VU-algorithm for convex minimization, Math. Program.,

104 (2005), pp. 583–608.
[32] R. Mifflin, D. Sun, and L. Qi, Quasi-Newton bundle-type methods for nondifferentiable

convex optimization, SIAM J. Optim., 8 (1998), pp. 583–603.
[33] A. Ouorou, A proximal cutting plane method using Chebychev center for nonsmooth convex

optimization, Math. Program., 119 (2009), pp. 239–271.
[34] D. Pallaschke and S. Rolewicz, Foundations of Mathematical Optimization. Convex Anal-

ysis without Linearity, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.
[35] H. Schramm and J. Zowe, A version of the bundle idea for minimizing a nonsmooth func-

tion: Conceptual idea, convergence analysis, numerical results, SIAM J. Optim., 2 (1992),
pp. 121–152.
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