
ISTITUTO DI ANALISI DEI SISTEMI ED INFORMATICA

CONSIGLIO NAZIONALE DELLE RICERCHE

A. Frangioni, A. Lodi, G. Rinaldi

NEW APPROACHES FOR OPTIMIZING

OVER THE SEMIMETRIC POLYTOPE

R. 561 Maggio 2004

Antonio Frangioni – Dipartimento di Informatica, Università di Pisa, largo Bruno Pontecorvo 1, 56127
Pisa, Italy (frangio@di.unipi.it)..

Andrea Lodi – Dipartimento di Elettronica, Informatica e Sistemistica, Università di Bologna, viale
Risorgimento 2, 40136 Bologna, Italy (alodi@deis.unibo.it)..

Giovanni Rinaldi – Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti” del CNR, viale
Manzoni 30, 00185 Roma, Italy (rinaldi@iasi.cnr.it)..

ISSN: 1128–3378

Collana dei Rapporti dell’Istituto di Analisi dei Sistemi ed Informatica, CNR

viale Manzoni 30, 00185 ROMA, Italy

tel. ++39-06-77161
fax ++39-06-7716461
email: iasi@iasi.rm.cnr.it
URL: http://www.iasi.rm.cnr.it

Abstract

The semimetric polytope is an important polyhedral structure lying at the heart of hard combinatorial
problems. Therefore, linear optimization over the semimetric polytope is crucial for a number of relevant
applications. Building on some recent polyhedral and algorithmic results about a related polyhedron,
the rooted semimetric polytope, we develop and test several approaches, mainly based over Lagrangian
relaxation and application of Non Differentiable Optimization algorithms, for linear optimization over the
semimetric polytope. We show that some of these approaches can obtain very accurate primal and dual
solutions in a small fraction of the time required for the same task by state-of-the-art general purpose
linear programming technology. In some cases, good estimates of the dual optimal solution (but not of
the primal solution) can be obtained even quicker.

Key words: semimetric polytope, Lagrangian methods, max-cut, network design

3.

1. Introduction

Let G = (V, E) be a simple loopless undirected graph, C be the set of all chordless cycles of G, and Ē be
the subset of the edges of G that do not belong to a 3-edge cycle (a triangle) of G. For an edge function
x ∈ R

E and an edge subset F ⊆ E, by x(F) we denote the sum
∑

e∈F xe. The semimetric polytope
M(G) associated with G is defined by the following system of inequalities:

x(C \ F)− x(F) ≤ |F | − 1 F ⊆ C with |F | odd and C ∈ C (1)

0 ≤ xe ≤ 1 e ∈ Ē. (2)

The inequalities (1) are called the cycle inequalities. In the special case in which G is complete, the only
chordless cycles of G are its triangles, therefore M(G) is defined by the set of inequalities

xij + xik + xjk ≤ 2
xij − xik − xjk ≤ 0

−xij + xik − xjk ≤ 0
−xij − xik + xjk ≤ 0

for all distinct i, j, k ∈ V, (3)

called the triangle inequalities. Observe that in this case the set Ē is empty, and so all the bounds on
the variables are redundant.

The paper deals with the problem of finding efficient algorithms to optimize a linear function with
coefficients c ∈ R

E over M(G).
We briefly mention two reasons to seek for an efficient way to optimize a linear function over M(G)

that are related to the optimization of two difficult combinatorial optimization problems.

The maximum cut of a graph

For a node set W ⊆ V , the set of all the edges in E having exactly one endpoint in W is denoted by
δ(W) and is called a cut of the graph G. The node sets W and V \W are called the shores of the cut.
The maximum cut problem (max-cut for short) is to find a cut δ(W ∗) of G having maximum weight
c(δ(W ∗)). With every cut δ(W) of G we associate an incidence vector χW ∈ R

E where, for each e ∈ E,
the component χW

e is equal to 1 if e ∈ δ(W) and is equal to 0 otherwise. Thus the weight of the cut δ(W)
is also given by the inner product c · χW . The convex hull of the incidence vectors of all cuts of G is the
cut polytope CUT (G) associated with G (see, e.g., [6] for the details). Then max-cut can be formulated
as the linear program

max{c · x | x ∈ CUT (G)}.

It is not difficult to see that the semimetric and the cut polytopes are related by the inclusion

CUT (G) ⊆M(G),

which is strict for |V | > 4.
Thus, maximizing c overM(G) produces an upper bound on the maximum c-value cut of G that can be

exploited in branch and bound or in a branch and cut scheme for solving max-cut to optimality. Actually,
in all the computational studies concerning instances of max-cut for very large sparse graphs based on
a branch and cut scheme, the only relaxation exploited is, to a large extent, M(G). Consequently, the
computation of a maximum cut merely amounts to a (possibly long) series of linear optimizations over
M(G).

Network design

If an edge capacity function q ∈ R
E and an edge demand d ∈ R

E functions are given, the existence of
a feasible multiflow in the network defined by G, q, and d is established by the Japanese Theorem (see,
e.g., [23]). According to this theorem a feasible multiflow exists if and only if µ · (q − d) ≥ 0 holds for
every metric µ on V , i.e., for every point of the cone defined by all the homogeneous equations of (3). It

4.

is not hard to see that this is equivalent to the condition min{(q − d) · x | x ∈ M(G)} ≥ 0. In network
design such a feasibility problem has to be solved several times. This again calls for an effective solution
algorithm.

Although the problem of optimizing the linear function c · x over the polytope defined, e.g., by (3) in

the case of a complete graph, is just a standard linear program with a polynomial number (4
(

|V |
3

)

) of
constraints, it happens to be surprisingly difficult to solve with standard LP tools such as the simplex
method or interior-point methods, as it will be shown in the following, even if state-of-the-art software is
used.

In light of the previous observations, it is therefore of considerable interest to develop alternative
algorithmic techniques that are able to compute (possibly with some degree of approximation) optimal
primal and dual solutions of these LP’s, faster than it is currently doable with standard methods.

A natural alternative technique is the Lagrangian approach where we “dualize” all the triangle (or the
cycle) inequalities and leave, as explicit constraints, only the upper and lower bounds on the variables
(although redundant). Such an approach has been successfully applied, e.g., in [3] where the “Volume
Algorithm” is used to solve the Lagrangian dual problem.

We propose a slight modification of this approach. First, we dualize only a subset of the cycle inequal-
ities, leaving, as explicit constraints, the inequalities that define the so called rooted semimetric polytope.
In [12, 13] it is shown how a linear program defined on this polytope can be solved efficiently. Then, to
solve the Lagrangian dual problem, besides the Volume Algorithm, we make use also of a bundle-type
algorithm.

In this paper we report on our experience along this route. We tested several different variants of
Lagrangian relaxation and two of the main current algorithmic approaches available for solving the La-
grangian dual: a subgradient-type algorithm and a bundle-type algorithm; at termination, we also used
a projection-type heuristic for quickly obtaining feasible primal solutions out of the (slightly) infeasible
primal solutions that are typically generated by the Lagrangian approaches. We discovered that the
proper combination of these tools results in algorithms that can obtain very accurate primal and dual
solutions in a small fraction of the time required for the same task by state-of-the-art general purpose LP
technology. In some cases, good estimates of the dual optimal solution (but not of the primal solution)
can be obtained even quicker. These results show that the proper combination of Lagrangian techniques
and efficient algorithms for optimization over the rooted semimetric polytope hold some promise as build-
ing blocks for approaches to the related hard combinatorial optimization problems mentioned above.

The structure of the paper is as follows. In Section 2 we recall the relevant polyhedral and algorithmic
properties of the semimetric and rooted semimetric polytopes. In Section 3 we propose a number of
different ways for exploiting the efficient algorithm for the rooted semimetric polytope in order to solve
the linear optimization problem over the semimetric polytope. Then, in Section 4 the relevant details of
the implementation of the proposed approaches are discussed; in Section 5 the obtained computational
results are presented and discussed, and, finally, in Section 6 some conclusions are drawn.

2. Semimetric polytopes

As it was mentioned in the Section 1, the inequalities defining the semimetric polytope for a complete
graph are 4n(n− 1)(n− 2)/6. Therefore, already for graphs of a few hundred nodes, the inequalities are
too many to be handled explicitly and the use of a cutting-plane approach is mandatory. In this case, the
separation procedure, which provides triangle inequalities violated by a given point, runs in polynomial
time as it trivially amounts to making a check in a set of inequalities whose size is polynomial in n.

In general, for a graph G the cycle inequalities (1) are exponentially many. Nevertheless, as it was
proved in [4], the separation for these inequalities runs in polynomial time, as it amounts for finding at
most n shortest paths in a graph that has twice the size of G.

By the polynomial equivalence between separation and optimization (see, e.g., [16]), it follows that
optimizing a linear function over the semimetric polynomial can be done in polynomial time. As it
was noticed before, this task may take a substantial amount of time if a standard LP optimizer is used

5.

in combination with a cutting-plane algorithm. Therefore it would be extremely helpful if a purely
combinatorial algorithm were available to optimize over the semimetric polytope in polynomial time.
Unfortunately, at present finding such an algorithm appears to be quite a difficult task.

To the contrary, a purely combinatorial algorithm has been found for a relaxation of the semimetric
polytope that we describe next.

Let r be a selected node of G that will be called the root node. Without loss of generality, we assume
that r is adjacent to every other node of G (if this is not the case we can add new edges to the graph
with zero weight). Let Er be the edgeset of the subgraph of G induced by V r = V \ {r}. The subset of
triangle inequalities (3) corresponding to all triples (r, i, j) for all (i, j) ∈ Er defines the rooted semimetric
polytope Mr(G).

Despite the fact that Mr(G) has much less defining inequalities than M(G), it is still true that the
incidence vector of any cut of G belongs to Mr(G) and, conversely, that every integral point in Mr(G)
is the incidence vector of a cut of G. In other words, Mr(G) is a relaxation of M(G) that provides an
integer linear programming formulation of max-cut. This formulation is minimal, i.e., the removal of any
its inequalities results in a formulation that has integral feasible solutions that are not incidence vectors
of cuts of G.

Therefore, optimizing c · x over Mr(G) yields an upper bound on the value of an optimal cut, as
optimizing over M(G) does. However, in most practical cases the former bound is far weaker than the
latter, and thus is of little use for any procedure aiming, e.g., at solving max-cut. On the other hand, as
shown in [12], optimizing overMr(G) can be accomplished through very efficient network flow algorithms,
much faster than using standard linear programming technology.

More in details, let us denote by Arx ≤ br the set of constraints that define Mr(G) and let us consider
the linear program

max{c · x | Arx ≤ br}. (4)

Consider a capacitated directed graph with node set {r}∪U ∪U ′ defined as follows. For each node i ∈ V r

we associate the two nodes i and i′ belonging to U and U ′, respectively. Two opposite uncapacitated arcs
connect r with every node in U ∪ U ′. With each edge ij (i < j) of Er we associate two arcs (i, j ′) and
(j, i′) if ij ∈ Er

+ = {ij ∈ Er | cij > 0}, and the two arcs (i, j) and (i′, j′) if ij ∈ Er
− = {ij ∈ Er | cij ≤ 0}.

The capacity of these arcs is 2|cij |. Finally, consider the following minimum cost flow problem (MCFP)
associated with this directed graph:

min
∑

i∈V r

(uri + uri′) +
∑

ij∈Er

+

(vij′ + vji′)

subject to

uri +
∑

ij∈Er

+

vij′ +
∑

ki ∈ Er
−

k < i

wki −
∑

ki ∈ Er
−

k > i

wik − qir = di

− uri′ −
∑

ij∈Er

+

vji′ −
∑

ki ∈ Er
−

k < i

wk′i′ +
∑

ki ∈ Er
−

k > i

wi′k′ + qi′r = −di

i ∈ V r

vij′ ≤ 2|cij |

vji′ ≤ 2|cij |

}

ij ∈ Er
+

wij ≤ 2|cij |

wi′j′ ≤ 2|cij |

}

ij ∈ Er
−

u, v, w, q ≥ 0 ,

(5)

where
di = cri +

∑

ij∈Er

cij − 2
∑

hi ∈ Er
−

h < i

chi.

Then we have the following

6.

Theorem 2.1 ([12]) The optimal objective function value of (5) equals twice the optimal value of (4).
An optimal solution of (4) is obtained from an optimal solution of (5) with a simple linear time algorithm.

Since strongly polynomial algorithms for MCFP exist (see, e.g., [1]), it follows that (4) is also solvable
in strongly polynomial time. Furthermore, since the largest absolute value of the components of the
cost vector, C, is equal to one in our case, the Cost Scaling algorithm, that runs in O(n2m log nC)
time, also solves (4) in strongly polynomial time. Indeed, in [13] numerical results using a Cost Scaling
implementation [15] are reported which suggest that this class of approaches is indeed very effective for
the type of instances produced by (5).

Thus, (4) is a “very easy” problem. However, we are rather interested in solving

max{c · x | Arx ≤ br, r = 1, . . . , n− 1} (6)

that is, in the linear optimization over the whole M(G). Note that any two blocks of constraints Arx ≤ br

and Aqx ≤ bq are in general not disjoint; in fact, it is easy to verify that only n− 1 blocks (without loss
of generality, the first n− 1) suffice to “cover” all the constraints in M(G). In order not to overburden
the notation, we will assume that, each time that multiple copies of a constraint (and the corresponding
dual multipliers) are present, only one copy is actually considered; accordingly, we will write

min
{

n−1
∑

r=1

yrbr |
n−1
∑

r=1

yrAr ≥ c
}

(7)

for the dual of (6), although in principle any two subvectors yr and yq of the dual vector of variables y,
corresponding to blocks Arx ≤ br and Aqx ≤ bq, share some variables.

Our goal is to solve the primal problem (6) which has n− 1 blocks of constraints, exploiting the fact
that if the problem had only one of these blocks it would be “very easy” to solve. Equivalently, we want
to solve the dual problem (7), which has n− 1 blocks of variables, exploiting the fact that if we knew the
optimal value of the dual variables for all but one of these blocks, we could “very easily” compute the
optimal value for the remaining variables.

The presence of an “easy” structure embedded into a “more complex” problem is one rather common
occurrence in optimization, and it is often dealt with by means of Lagrangian approaches. However, the
present case is (qualitatively) different by most of the standard ones in that the blocks are many. For
example, for a graph with 100 nodes, we have in fact 99 blocks of constraints. Since all blocks are of
roughly equal size, each block contains approximately 1/100 of the constraints, i.e., only a few of them.
Put it in dual terms, we have an efficient way for optimizing over a subset of the dual variables, but the
subset is rather “small”.

Yet, there are quite a number of different ways for exploiting this structure for algorithmic purposes;
the next section will be devoted to discussing some of them.

3. Solving the semimetric problem

The main tool used to exploit the algorithmic results on (4) in order to solve (6) is Lagrangian relaxation;
the reader is therefore assumed to be familiar with the basic principles of Lagrangian duality (see, e.g.,
[10, 21]).

3.1. Keep one, relax many

The easiest route for solving (6) is perhaps to arbitrarily select one r ∈ V , form the Lagrangian relaxation
of (6) with respect to all other blocks of constraints

z(y) = max
x

{

c · x−
∑

h6=r

yh(bh −Ahx) | Arx ≤ br
}

(8)

where the yh, h 6= r are fixed Lagrangian multipliers, and then solve the corresponding Lagrangian dual

min
y

{z(y) | y ≥ 0} (9)

7.

This is easily seen that solving (9) is equivalent to solving problem (7); indeed, the Lagrangian multipliers
in (9) are precisely the dual variables of (7), except for the O(n2) dual variables yr that are implicitly
handled by the Lagrangian relaxation.

The program (9) is a large-scale Non Differentiable Optimization problem, with O(n3) constrained (in
sign) variables. As such, it can be expected to be, in practice, a relatively “difficult” task; NDO problems
with hundreds of thousands of variables are not generally considered as routinely solvable by standard
approaches. However, as shown by the results in Section 5, the problems corresponding to this application
turn out to be solvable quite efficiently. For this to be true, the choice of a proper NDO algorithm and
its correct implementation, as discussed in Section 4, are crucial.

Yet, while planning the implementation of this approach, we had to confront with the following two
issues.

The first is about the choice of r. How should r be chosen? In other words, can we tell a priori which
constraints (dual variables) are most “relevant” to determine the optimal solution? Furthermore, is a
“good” choice of the root node at the initial iterations of a NDO approach still “good” in a later phase
of the algorithm? In other words, is there any “good” fixed choice of the root, or should we resort to
some “root hopping” approach? In the latter case, care should be paid with the algorithmic aspects. In
principle, a “root hopping” approach is simple when we have to solve (7): we seek for a full optimal dual
vector [y1, . . . , yn−1] for (7), dynamically changing the root only influences which of the blocks of dual
variables is “controlled” by the solution of the Lagrangian problem (8) rather than by the NDO algorithm.
However, for each choice r of the root, a different Lagrangian function z(y) is defined; therefore, it is not
at all straightforward to adapt existing NDO algorithms to the optimization of such a family of related
functions.

The second issue stems from the fact, already discussed in Section 2, that each of the constraints
blocks Arx ≤ br involves only a “few” (O(n2)) of the “many” (O(n3)) constraints of (6). In dual
terms, the optimization over the single block in (8) can only set a “few” of the “many” variables of (7).
Therefore, it is not obvious a priori that the Lagrangian approach using the rooted semimetric polytope
is computationally superior to solving the equivalent Lagrangian dual

min
y≥0

{

max
x

{

c · x−
n−1
∑

r=1

yh(bh −Ahx) | x ∈ {0, 1}E
}

}

(10)

of (6) with respect to all blocks of constraints. In fact, the advantage of having “slightly fewer” dual
variables y is paid by the need of solving one flow problem at each iteration, that is clearly more costly
than the trivial optimization over the unitary hypercube required by (10).

3.2. Lagrangian decomposition

A different possibility for exploiting multiple “easy” structures in a problem is to use Lagrangian decom-
position. In our case, this amounts to rewriting (6) in the following equivalent form

max c̄

n−1
∑

r=1

xr

subject to

Arxr ≤ br r = 1, . . . , n− 1

xr = xr+1 r = 1, . . . , n− 2

(11)

where c̄ = c
n−1

. The program (11) has n−1 blocks of duplicated variables, so that each block of constraints
has its own independent block of variables. Thus, the Lagrangian dual of (11) with respect to all the

8.

xr = xr+1 constraints

min
π

{

max
x1

{

(c̄− π1)x1 | A1x1 ≤ b1
}

+

n−3
∑

r=2

max
xr

{

(c̄− πr + πr−1)xr | Arxr ≤ br
}

+ max
xn−1

{

(c̄ + πn−2)xn−1 | An−1xn−1 ≤ bn−1
}

}

(12)

can be solved by means of n − 1 optimizations over Mr(G) (with n − 1 distinct roots). Elementary
theory of Lagrangian duality shows that this yields the same bound of (7), and therefore of the previous
approaches.

An advantage of the Lagrangian decomposition approach is that it is independent on the choice of a
particular root node; a disadvantage, however, is that at each iteration the solution of n − 2 problems
over Mr(G) is required, which may be significantly more expensive than the iteration cost of (9) and, a
fortiori, that of (10).

Moreover, for the solution (12) we need to solve a large-scale Non Differentiable Optimization problem,
with O(n3) unconstrained variables π, and therefore similar considerations as in the previous case apply:
such a problem cannot be expected to be, in practice, “easy” to solve. The results in Section 5 actually
confirm that this is the case: the rate of convergence (number of iterations required to reach a specified
precision) is, on the test instances, far slower than that of (9), making this approach impractical for
obtaining high quality solutions.

3.3. A hybrid approach

It is possible to combine the two previous approaches in one unified method of which the two are special
cases. The idea is to select a set R = {r1, r2, . . . , rk} ⊂ V of root nodes, and to consider the following
equivalent form of (6)

max c̄
∑

r∈R

xr

subject to

Arxr ≤ br r ∈ R

xri = xri+1 i = 1, . . . , k − 1

Aq

(

1

k

∑

r∈R

xr

)

≤ bq q /∈ R

(13)

where k = |R| and c̄ = c
k . The problem has k copies of the original variables x linked by k − 1 blocks

of equality constraints, plus all the blocks of constraints (3) not “covered” by the blocks in R. In these
constraints it is convenient to express the identical value of all variables blocks xr in terms of the average
of the duplicated variables.

Thus, the Lagrangian dual of (11) with respect to all the xri = xri+1 constraints and the blocks out
of R

min
π,y

{

max
xr1

{

(c̄− π1)xr1 −
1

k

∑

q/∈R

yq(bq −Aqxr1) | Ar1xr1 ≤ br1
}

+
k−1
∑

i=2

max
xri

{

(c̄− πr + πr−1)xri −
1

k

∑

q/∈R

yq(bq −Aqxri) | Arixri ≤ bri

}

+ max
xr

k

{

(c̄ + πk)xrk −
1

k

∑

q/∈R

yq(bq −Aqxrk) | Arkxrk ≤ brk

}

}

(14)

can be solved by means by k optimizations over Mr(G), with k distinct roots. The program (14) is
still a large-scale Non Differentiable Optimization problem, with O(kn2) unconstrained variables πi,
corresponding to the xri = xri+1 constraints, plus O((n − k)n2) constrained variables yq, corresponding
to all the blocks q /∈ R. Thus, in terms of number of variables (14) is essentially equivalent to the three

9.

previous approaches, and the same considerations apply. Indeed, we can consider all the approaches
proposed so far as special cases of (14): problem (9) corresponds to |R| = 1, (12) corresponds to |R| = n−1
and even (10) can be thought as corresponding to (14) with R = ∅.

Thus, the hybrid approach offers an “handle”, namely |R|, that allows one to compromise between
the number of blocks which have their own vector of variables and those that do not. The immediate
consequence is that a possibly critical decision has to be made: what is a good value for |R|? Then,
similar questions as for (9) arise: how to select the elements of R? Should R be a fixed set, or “roots
hopping” should be used? We remark once again that modifying NDO approaches in order to construct
provably convergent algorithms to solve (14), if the set R is allowed to change, is again nontrivial.

4. Implementation details

All the approaches of the previous section require to solve some Lagrangian dual, i.e., large-scale Non
Differentiable Optimization problems. Several algorithms have been proposed that can be used to perform
this task; the choice of the proper algorithm, and possibly even some details of the implementation, is
therefore potentially crucial for making the proposed approaches computationally effective.

4.1. Non Differentiable Optimization algorithms

The form of the dual problem (7) and the availability of efficient algorithms for solving its restrictions, in
particular the Lagrangian relaxation (8), immediately suggest to apply a block dual-ascent approach. The
approach can be shortly described as follows: at each iteration a current dual point [y1, . . . , yn−1] is kept.
One root node r is selected, in some cyclical fashion, all the yh, h 6= r are fixed, and (8) is solved. This
gives a new value ȳr for the block of dual variables corresponding to the selected root, that substitutes
yr in the current point; then, a new iteration begins. The algorithm stops when all the n− 1 roots are
tested without producing any change in the dual multipliers (alternatively, no improvement in the value
of the objective function). As previously noted, the blocks of variables are not disjoint, but this does not
affect the applicability of the approach.

This is a heuristic approach for (7), in that there is no guarantee that such an algorithm will eventually
converge to an optimal solution. Furthermore, even if a dual optimal solution is attained, no optimal
primal solution—nor even a close approximation—is in general available. Finally, the approach does not
extend to different models such as (14).

Therefore, solving all the models with any arbitrary degree of precision requires using some standard
Non Differentiable Optimization algorithm. It is clearly out of the scope of this paper to discuss the
current status of computational NDO in details; we will simply provide a synthetic description of the
characteristics of the algorithms that are relevant in our case.

Implementable NDO algorithms can, for the sake of taxonomy, be grouped in two categories:

1. cutting-plane-type approaches;

2. subgradient-type approaches.

The first class of algorithms stems from the classical cutting-plane algorithm, perhaps better known
for its specialized version for structured linear programs: Dantzig-Wolfe’s decomposition method. A
number of other approaches have, however, been proposed in an attempt to improve on the relatively
poor performances in practice of the cutting-plane method. These algorithms can be further subdivided
into two different groups: bundle algorithms (e.g., [9, 18, 21]) and algorithms based on centers (e.g.,
[7, 21]).

All algorithms of this category need to solve a “complex” master problem at each iteration, in order
to compute the next vector of Lagrangian multipliers. The corresponding Lagrangian relaxation is then
solved, producing a set of (approximately) optimal solutions that are used to compute (approximate)
subgradients of the Lagrangian function. These subgradients are in turn used to modify the master
problem, usually increasing its size (number of constraints in the primal, variables in the dual). Rules

10.

can be defined for some, but not all, algorithms that allow one to keep the size of the master problem,
and therefore its computational cost, bounded.

The actual form of the master problem is the most prominent aspect that differentiates cutting-plane-
type approaches among themselves. The master problem can be: a) a linear program, as in the cutting-
plane algorithm and in some form of bundle algorithms, b) a convex quadratic program, as in most
bundle algorithms, or c) a general nonlinear program (e.g., with logarithmic objective function), as in
other bundle algorithms and in the algorithms based on “centers”. Therefore, even for an identical
set of subgradients, the cost of solving the master problem can be markedly different according to the
NDO algorithm employed and also to the algorithm used to solve the master problem itself. For our
implementation we have chosen a “classical” proximal bundle method, similar to those successfully used,
e.g., in [5, 11]. The master problem for this algorithm is a structured convex quadratic program, which
can be efficiently solved e.g. with the specialized code of [8].

An important characteristic of cutting-plane-type approaches is that, at each iteration, the solution
of the master problem produces a set of convex multipliers that can be used to construct a solution to
problem (6) out of the solutions of the Lagrangian relaxations obtained at the previous iterations. This
solution may or may not be feasible with respect to the relaxed constraints, depending on the particular
approach; for the proximal bundle method, for instance, it is in general not so. However, for all methods
this solution is guaranteed to converge to a primal optimal solution of (6); in practice, the solution tends
to quickly become “almost feasible”. This is crucial for our application because both a primal and a dual
optimal solution of (6) are in principle required. At termination, the (possibly infeasible) primal solution
constructed with the information provided by the master problem is used to obtain an (almost) optimal
solution with a procedure described later. Furthermore, the (normally infeasible) primal solution is also
computed at each iteration where we check if new Lagrangian variables have to be created, to serve as
the primal point where the separator is called, as discussed in more details below.

Subgradient methods are simpler as they do not, on the surface, require the solution of a master
problem; in fact, they choose the next point where the Lagrangian function has to be evaluated along
a direction that is a linear combination of the latest obtained subgradient and the direction used at the
previous iteration. The rules for computing the parameters of the linear combination and the step size
differentiate subgradient-type approaches among themselves.

However, the distinction between cutting-plane and subgradient approaches is more blurred than it
appears from the above description. In fact, some subgradient methods [20, 3] also produce information
that can be used to construct a primal solution, out of the previous solutions of the Lagrangian relax-
ations, which converges to an optimal solution of (6). On the other hand, the algorithmic parameters of
some bundle methods (such as the one we used) can be chosen in such a way that the computational effort
required for the master problem is potentially comparable to that required for computing the direction
in a subgradient approach. In other words, subgradient approaches which produce primal solutions are
very similar to bundle approaches where the size of the master problem is always limited to the smallest
possible value [2]. Thus, bundle approaches can be considered to be more general, as they provide a
“knob”—the maximum size of the master problem—that can be set according to the characteristics of
the problem to balance between the cost of the master problem solution and the overall convergence speed
(see, e.g., [5]). Yet, a number of possibly important algorithmic details, such as the step-size selection
rule and the stopping condition, differentiate practical implementations of bundle approaches from that
of subgradient approaches, as further discussed in Section 5. Thus, we decided to also test the algorithm
of [3] for the solution of the proposed Lagrangian duals.

An important characteristic of the NDO problems to be solved in our application is their extremely
large size; for a complete graph with 150 nodes, for instance, there are more than two million inequalities
(3). However, the optimal Lagrangian multipliers corresponding to most of these inequalities are expected
to be zero. Therefore, the solution of (14) for “small” values of |R| may greatly benefit from a dynamic
generation of Lagrangian variables (already used with success, e.g., in [14, 11]), that is, an ordinary row
generation approach for the solution of (6).

Indeed, our preliminary results have shown that such a strategy has a considerable impact on the

11.

overall efficiency of the algorithms. This is of course far more relevant for the bundle approach, where
the solution of the master problem is costly, but also the subgradient approach greatly benefits from it.
It has to be remarked that a large fraction of the improvement in the running time obtained through
the use of the dynamic Lagrangian variables generation in the bundle approach is due to the use of the
specialized code of [8]. Indeed, the two-level active-set approach employed in the algorithm of [8] allows
one to deal very efficiently with the changes in the master problem corresponding to Lagrangian variables
creation/destruction. Moreover, the initial tests actually suggested a number of improvements in the
code that allowed to better exploit the creation/deletion of large “chunks” of variables. Implementations
of bundle approaches using non-specialized codes might have benefited less from the dynamic generation
of Lagrangian variables.

Since generating new Lagrangian variables corresponds to separating violated inequalities (3), a primal
solution is needed. Traditionally, the solution of the latest Lagrangian problem has been used [14];
however, this solution is not always a “good” input for separation routines [17]. Fortunately, recent
NDO algorithms provide, as noted before, a very convenient alternative under the form of the primal
solution obtained by convex combination of the previous ones, and we have found this point to provide
a completely satisfactory input for the separation routines.

4.2. Finding primal feasible solutions

As previously mentioned, the NDO algorithms employed for solving the Lagrangian duals provide (at
least asymptotically) optimal solutions to the primal problem as well. However, when the algorithms are
finitely stopped the available primal solutions are most often infeasible. This is especially true for the
subgradient approach which, due to its stopping rules (discussed in more details in the next Section),
most often terminates with a primal solution that is very far from being feasible. The situation for
the bundle approach is different in that, normally, the obtained primal solution is very near to being
feasible; however, it is most often not feasible within the typical precision provided by a standard linear
programming solver, i.e., at least 1e-8 (relative) for interior-point solvers and 1e-12 for simplex solvers.
It is often possible to obtain feasible primal solutions with the bundle approach by properly setting the
algorithmic parameters which control the stopping conditions of the code. However, normally the bundle
algorithm reaches a very accurate dual solution much earlier than producing such a primal solution.
Therefore, setting the parameters in such a way, as to require a very high precision in feasibility, may
result in a considerable increase in the number of iterations.

For all these reasons, we decided to experiment with a very simple projection-type approach for pro-
ducing feasible primal solution out of the (slightly) infeasible ones “naturally” generated by the NDO
algorithms. For each inequality in (3) the feasibility (to within 1e-12) of the current primal solution is
tested: if a violated inequality is found the primal solution is projected over the inequality, using simple
closed formulae, and the process is repeated until no more violated inequalities are found. Note that this
process does not depend on which particular NDO approach has been used, nor from which Lagrangian
dual has been solved.

Because each inequality has only three nonzero coefficients (when G is complete), both checking the
violation of an inequality and projecting one point over a violated inequality requires O(1). Thus, an
entire scan of all the constraints requires linear time in the total number of inequalities. We found this
approach to be almost surprisingly efficient, in that it has always, in all our experiments, produced a
feasible solution in very few scans. Indeed, the running time required for finding the primal feasible
solution has invariably been a very small fraction of the time required by the overall algorithm. Also,
the objective function value of the obtained feasible primal solution is typically very close to that of the
starting infeasible solution, even though the objective function is not taken into account at all in the
process. As the next section shows, this simple approach allowed us to produce very high quality primal
solutions, together with the dual solutions provided by the NDO algorithms.

12.

5. Computational results

We empirically evaluated the proposed approaches with a large-scale comparison. We used 5 different
types of graph: a) clique graphs, b) planar graphs randomly generated with density between 50% to 100%
of the maximum possible density of a planar graph, c) simplex graphs (see, e.g., [19]). The edge costs
were drawn from uniform random distribution with several ranges (namely [-10,10], [-50,50], [-100,100],
[-10,80], and [0,100]). The last two types were d) toroidal 2D and e) toroidal 3D-grid graphs, i.e., 2- and
3-dimensional grid graphs where the first and the last node of each “line” of the grid are adjacent. These
instances are relevant, e.g., in Statistical Physics for analyzing the properties of spin glass (see, e.g., [22]).
As it is customary in the spin glass literature, for the these two classes of graphs we experimented both
with ±1 costs, drawn from a uniform random binary distribution and with costs drawn from a Gaussian
distribution. Thus, we had a total of seven groups of instances. Within each group we produced instances
with different number of nodes (comprised between 25 and 150) according to the characteristics of the
class. For each group and size we generated either 5 or 15 different instances, for a grand total of 175
instances.

In the instances, sparse graphs are “completed” by adding zero-cost edges, so that the separation
procedure was done by trivial enumeration of all triangle inequalities and the results were not affected by
the degree of sophistication of the algorithm used to separate the cycle inequalities. Note that turning a
sparse graph into a complete one by adding edges of zero cost, produces a new instance in which the shores
of a maximum cut define a maximum cut of the original (sparse) instance. Although this transformation
makes it possible to deal with polynomially sized semimetric relaxations, it typically produces instances
that are much more difficult to solve than the original ones (they have much more variables and most of
them have nonzero value at the optimal solution of the semimetric relaxation). Therefore, our choice of
completing all graphs of our test-bed has also the effect of testing the algorithms with supposedly difficult
instances.

All the instances have been produced by the rudy random generator (available at [24]), whose main
feature is to produce machine-independent instances; the parameters for creating the instances are avail-
able upon request from the authors.

Apart from comparing the approaches among themselves, we also tested their efficiency against a
sotware based on the state-of-the-art general-purpose linear programming code CPLEX 9.0 for solving
(6). Although writing a code for solving (6) with CPLEX may appear to be a trivial exercise, we found
ourselves confronted with some computational choices. The first was whether to provide the solver with
a full formulation of (6), or to use a row generation approach completely analogous to that used by the
Lagrangian approaches. The second was which of the three main LP algorithms (primal simplex, dual
simplex and primal-dual interior-point) should be used. The third is, if row generation is performed, the
maximum number h of violated inequalities insert at most at each row generation.

We tested all possible combinations of the above choices, and we discovered that solving the full
formulation of the problem with the primal-dual algorithm is always consistently faster than all other al-
ternatives. However, the maximum size of the solvable instances for this approach, on our machines with
1Gb RAM, is roughly 150 nodes, while the row generation methods can solve much larger instances. So
we decided to report the results of both the “monolihitc” approach and of the best of the row generation
ones, that is, the one using – again – the interior-point algorithm and h = n(n−1) (corresponding to twice
the size of a base). It may be worth remarking that in row generation the primal simplex was always
consistently slower than the other two approaches, while the dual simplex was often, but not always,
almost competitive with the interior-point algorithm. Also, the version of the code that was tested did
not include any procedure for removing “useless” inequalities from the current model: all the removal
strategies that we tested considerably increased the number of row generation iterations and the running
time. This may be partly justified by the fact that, with “reasonable” values of h, the LP-based code
never performs more than a few row generations, and therefore it is difficult to decide which inequalities
are actually useless.

The Lagrangian approaches have been implemented using a general-purpose bundle solver developed

13.

by the first author and a version of the Volume algorithm directly derived by the publicly available
version of [3]. These codes have numerous algorithmic parameters that can be tuned to maximize their
performances. In particular, note that at least one of these algorithmic parameters—the maximum
number h of violated inequalities to be inserted at each Lagrangian variables generation—is common
with the LP-based approach. In order to obtain a fair comparison with the LP-based approach, where all
instances are run with the same default parameters for the LP solver, we refrained from instance- or even
class-specific tuning of the algorithmic parameters of both the NDO algorithms (the only, unavoidable
exception being a stopping parameter which depends on the scaling of the Lagrangian function). After a
few preliminary experiments (described below) on a subset of the instances, all the instances have been
run with the same set of parameters, mostly set to the “default” values advised for a generic problem.

5.1. Preliminary results

Before running the large-scale comparison on all the instances, we performed numerous tests on a selected
set of instances in order to gather a first understanding of the behavior of the approaches. We briefly
report the findings of this first phase of the experiments, without showing any detailed table of results in
order not to clutter the presentation.

1) The block dual-ascent approach is not computationally efficient: each iteration is indeed very fast,
but only the first very few iterations actually result in a sizable decrease of the upper bound. All the
subsequent iterations obtain only a negligible—even if in general non-null—improvement, resulting in an
extremely poor overall rate of convergence to an upper bound of very low quality. This holds true for
all instances and for all methods for selecting the next root that we tested. This behavior can probably
be explained by the fact that each iteration takes into account only a “small” block of the variables,
resulting in an approach akin to the coordinate ascent one, which is well-known to be inefficient.

2) Concerning the way of exploiting the rooted semimetric relaxation, the experiments have shown that
the rate of convergence of both Lagrangian approaches applied to (12) is much slower than the rate of
convergence of the same approaches applied to (9) or (10). More in general, the rate of convergence of
the Lagrangian approaches applied to (14) suffers a very sharp decrease passing from |R| = 1 to |R| > 1,
and seems to slowly deteriorate as |R| increases. Since the cost of solving the Lagrangian subproblem
also increases with |R|, the only computationally viable choices for |R| are 0 and 1, corresponding to
(10) and (9). In other words, the rate of convergence of the hybrid approach with |R| ≤ 1 is surprisingly
high, while for |R| > 1 (and, in particular, for |R| = n − 1) is the “normal” low rate that can be
expected for a large-scale NDO problem. This is probably at least partly explained by the fact that
the optimal Lagrangian multipliers for most of the inequalities (3) are zero, and therefore they are set
to their optimal value at the beginning of the algorithm (the all-0 vector is the starting point for both
Lagrangian approaches), and possibly, the resulting inequalities are never even explicitly generated. By
contrast, the optimal Lagrangian multipliers for the equality constraints in (13) are most likely to be
nonzero, and therefore they have to be (painfully) found by the algorithm. Yet, for “small” values of |R|
only relatively “few” of the “difficult” multipliers are in the problem, so the sharp decrease in the rate of
convergence remains somewhat surprising.

3) The choice of the root node in (9) is scarcely relevant: a simple heuristic (choosing the node with
largest sum of the costs of the incident arcs) appear to consistently provide a good root node. Similarly,
the low rate of convergence of the hybrid approach with |R| > 1 does not seem to be materially influenced
by the choice of the nodes in R. Therefore we decided not to test “root hopping” techniques, also in view
of the already good results that we have obtained.

4) A suitable value for the critical parameter h (the maximum number of violated inequalities to be
inserted at each Lagrangian variables generation) appears to be the same used for the LP-based approach.
For the Lagrangian approaches, however, it is also necessary to decide when attempting to perform the
separation, since waiting for an “optimal” solution of the Lagrangian dual restricted to the current set

14.

of variables is rather inefficient. Indeed, we found that the simple rule of attempting separation every
a few iterations of the NDO algorithm (typically 10) worked nicely. Furthermore, for the Lagrangian
approaches removal strategies do appear to improve performances; once again, a simple rule such as
eliminating all variables that have been set to 0 for five consecutive iterations of the NDO algorithm
appears to be adequate.

5) The subgradient algorithm is, on most instances, incapable of obtaining solutions with an arbitrary
precision. While the “default” parameters normally produce an upper bound of medium-to-good quality
reasonably fast, no of the parameter settings we tried was capable of substantially improving on it; only
very minor gains could be obtained, but at a very high computational costs. Therefore, we decided to
accept the solution produced by the default parameters. The bundle algorithm, instead, was always able
to produce solutions whose precision was in excess of the 1-e8 required by its stopping parameters. We
remark that such a precision is very high for the solution of a NDO problem, and generally comparable
with that obtained by interior-point algorithms for linear programming.

After the preliminary experiments, we could therefore discard the block dual-ascent approach and the
hybrid approaches with |R| > 1. We also had a reasonable set of parameters for both the Lagrangian
and the LP-based approaches to run all the instances with.

5.2. Results of the large-scale experiments

The results of the experiments are shown next. All the codes have been written in C/C++ and compiled
with gcc 3.3 using -O2 optimization. CPLEX 9.0, the LP solver that we used, was as usual only available
as a library. The experiments have been performed on a PC sporting an Athlon MP 2400+ processor
and 1Gb of RAM, running Linux.

In the table, each row is labeled by 〈type〉n, where n indicates the number of nodes and 〈type〉 denotes
the instance class: “c” for clique graphs, “p” for planar graphs, “s” for simplex graphs, “g2-pm” for
toroidal 2D-grid graphs with ±1 costs, “g2-g” for toroidal 2D-grid graphs with Gaussian costs, “g3-pm”
for toroidal 3D-grid graphs with ±1 costs and “g3-g” for toroidal 3D-grid graphs with Gaussian costs. For
all columns, the entries of each row correspond to the average among all the instances of the corresponding
class (15 for planar graphs, 5 for all the others).

For each algorithm we report, in the column labelled “Time”, the total time in seconds required to solve
the problem, excluding the loading time. For the Lagrangian approaches this includes the time required
for running the projection heuristic for finding the feasible primal solution; we deemed it unnecessary to
report this time separately because it was always a very small fraction of the total time. For the LP-
based algorithms, the reported time does not include any “crossover” procedure for generating a more
“accurate” basic solution out of the interior one produced by the algorithm; the solutions obtained by
this approach are of completely comparable quality with those obtained by the Lagrangian ones. For
the latter approaches, the columns labelled “DGap” and “PGap” report the obtained (relative) dual and
primal gaps, respectively, i.e.,

DGap =
obtained lower bound− v(6)

v(6)

PGap =
v(6)− cost of obtained primal solution

v(6)

where v(6), the optimal value of the problem (6), has been computed “exactly” by the LP-based approach
(with the dual simplex method). An empty entry corresponds to a gap not larger than 1e-10.

In Table 5.2 we report the main comparison between solving (6) with CPLEX, both providing it the full
formulation (column “C0”) or by row generation (column “C2”), and the most promising of our proposed
Lagrangian approaches. In particular, the columns labeled “V0” report the results obtained by using the
subgradient approach for solving (10), the columns labeled “V1” report the results obtained by using the
subgradient approach for solving (9), the columns labeled “B0” report the results obtained by using the

15.

bundle approach for solving (10) and, finally, the columns labeled “B1” report the results obtained by
using the bundle approach for solving (9).

The following facts clearly emerge from the table:

1) The Lagrangian approaches are competitive with the LP-based ones. In particular, for the largest
instances of each class the “B1” variant finds primal and dual solutions of very good quality at least four
times faster, and up to two orders of magnitude faster, than the “C0” code. The results are even more
impressive when compared to the row generation “C2” code, that is usually three to four times slower
than the “C0” one, and that rapidly becomes the only available choice due to the memory requirements
of the interior point methods.

2) Exploiting the efficient approaches for optimization over Mr(G), i.e., solving (9), is in general con-
venient with respect to not doing it, i.e., solving (10). This is especially true when using the bundle
method, since the “B1” variant almost always finds primal and dual solutions of better quality than those
found by the “B0” variant with a running time that can be more than two orders of magnitude smaller
on the largest instances. This is due to the fact that the “B1” variant usually shows a much faster rate
of convergence; since most of the computing time, using a bundle approach, is spent solving the master
problem (whose cost is identical, for the same size, for the two variants), the extra cost of solving (4) at
each iteration is largely compensated by the reduction in the number of iterations. The only exception
to this rule are the clique graphs, where the two approaches obtain comparable precisions in comparable
time, but the “B0” variant is usually faster, up to a factor of two on the largest instances. It seems that
for these “completely unstructured” problems the ability of automatically setting a “small” block of dual
variables to their optimal value is indeed not so important as for “more structured” ones, and therefore
the extra cost incurred for solving (4) is not justified. A somewhat analogous picture can be drawn
comparing the “V0” and “V1” variants: the latter most often obtains a much better (dual) precision
than the former. Once again, the only exception are the clique graphs, where the obtained precisions are
always very similar. However, because in the subgradient algorithm the computing time for solving the
Lagrangian problem is a significant fraction of the total time, this is obtained at the cost of an increase in
the running time, up to more than a factor of two. Hence, on the clique graphs the “V0” variant obtains
comparable (albeit slightly worse) precisions than the “V1” variant in significantly less time.

3) Comparing the best bundle variant (i.e., “B1” except for clique graphs) with the best subgradient
variant (ditto) we see that most often the bundle method obtains much better dual precision in comparable
or even less time. This is partly due to the fact that the bundle method converges more rapidly, but most
importantly due to the fact that the bundle method has an effective stopping criterion – producing a(n
almost) feasible (almost) optimal primal solution – that allows it to determine when optimization may be
stopped. The bundle code may reach convergence in as little as 10 iterations, and on average requires less
than 250 iterations to find a proper primal solution. By contrast, the volume algorithm never terminates
before 500 iterations; typically, the last 500 ones are non descent ones, where the algorithm is only
waiting to have reached the minimum number of consecutive non descent iterations required to declare
the best point “optimal”. So, while the bundle terminates by having constructed a proof of optimality,
the volume algorithm terminates because it is no longer capable of improving the dual solution; note
that in theory it also would eventually produce a primal solution of comparable quality, but this would
take a very long time. This is clearly reflected by the precision of the obtained primal solutions: the
subgradient approach never produces solutions of even moderate quality, whereas the bundle approach
always produces solutions of acceptable, and most often of excellent, quality. However, the cost per
iteration of the bundle code can be significantly larger than that of the subgradient algorithm, due to
the master problem cost; in fact, especially for the largest instances the subgradient can be significantly
faster, and in particular, it is a factor of 2 faster on “g2-g144” instances, almost a factor of 3 faster on
“g2-pm144” instances, and almost an order of magnitude faster on “c150” instances. Note that in the
latter two cases the obtained dual precision (not to mention the primal precision) is much worse, whereas
in the first case it is comparable. Thus, on selected instances or if a rough bound has to be obtained

16.

C
0

C
2

V
0

V
1

B
0

B
1

T
im

e
T

im
e

D
G

a
p

P
g
a
p

T
im

e
D

G
a
p

P
g
a
p

T
im

e
D

G
a
p

P
g
a
p

T
im

e
D

G
a
p

P
g
a
p

T
im

e
c2

5
0
.2

8
0
.1

2
2
e-

7
8
e-

3
0
.0

4
1
e-

7
6
e-

3
0
.4

7
1
e-

8
0
.3

9
0
.2

7
c5

0
5
.5

3
7
.4

1
8
e-

4
7
e-

3
0
.5

4
6
e-

4
5
e-

3
2
.2

1
7
e-

9
1
e-

5
4
.0

0
7
e-

9
7
e-

6
4
.8

0
c7

5
3
3
.7

7
7
6
.4

9
6
e-

4
4
e-

3
1
.8

7
4
e-

4
3
e-

3
6
.8

0
8
e-

9
6
e-

6
1
3
.3

3
4
e-

9
5
e-

6
1
9
.3

8
c1

0
0

1
4
4
.2

3
3
3
6
.2

8
5
e-

4
5
e-

3
4
.1

1
4
e-

4
5
e-

3
1
3
.8

8
8
e-

9
9
e-

6
3
4
.8

0
3
e-

9
1
e-

5
4
2
.7

9
c1

2
5

4
4
2
.2

6
1
7
5
7
.0

9
5
e-

4
7
e-

3
8
.5

4
3
e-

4
3
e-

3
2
6
.4

3
2
e-

9
1
e-

5
8
6
.4

5
1
e-

9
1
e-

5
1
2
2
.0

6
c1

5
0

1
1
9
2
.5

8
4
2
2
3
.4

8
5
e-

4
5
e-

3
1
4
.9

0
3
e-

4
3
e-

3
5
0
.3

5
4
e-

9
1
e-

5
1
3
8
.0

3
1
e-

9
2
e-

5
2
5
6
.4

1
p
5
0

6
.8

9
1
5
.7

3
5
e-

8
8
e-

3
0
.5

0
3
e-

3
0
.9

9
7
e-

9
4
.1

1
0
.6

7
p
1
0
0

2
1
2
.2

9
8
1
7
.3

6
4
e-

6
3
e-

2
5
.5

8
2
e-

2
6
.2

0
1
e-

7
1
5
5
7
.5

6
5
.0

4
p
1
5
0

1
9
0
7
.9

6
8
9
0
7
.3

0
1
e-

4
5
e-

2
2
4
.9

7
2
e-

8
5
e-

2
2
1
.5

3
2
e-

9
5
e-

6
5
4
4
8
.5

0
1
9
.7

8
s2

1
0
.1

3
0
.1

0
3
e-

3
0
.0

3
5
e-

4
0
.1

2
0
.0

5
0
.0

2
s5

6
1
2
.3

4
2
2
.9

6
1
e-

2
0
.6

7
3
e-

9
2
e-

2
2
.1

4
4
.0

9
1
.4

6
s9

1
1
3
9
.6

4
3
9
5
.1

5
3
e-

7
2
e-

2
4
.0

7
2
e-

2
6
.3

8
2
9
.0

5
5
.1

7
s1

3
6

1
1
1
4
.7

6
4
2
7
2
.7

7
3
e-

5
3
e-

2
1
5
.4

0
1
e-

1
1
9
.7

5
2
e-

9
3
5
7
7
.3

5
3
1
.3

4
g
2
-p

m
2
5

0
.2

9
0
.3

6
4
e-

4
2
e-

3
0
.0

6
2
e-

7
2
e-

3
0
.3

1
2
e-

9
0
.4

2
0
.0

8
g
2
-p

m
4
9

6
.4

1
1
4
.0

9
2
e-

4
8
e-

3
0
.6

1
1
e-

8
6
e-

3
1
.7

1
7
e-

9
4
e-

7
7
.3

1
1
.2

1
g
2
-p

m
8
1

7
3
.9

6
2
2
4
.1

6
7
e-

5
2
e-

2
2
.9

2
7
e-

8
1
e-

2
5
.6

9
7
e-

9
2
e-

6
6
2
4
0
.7

1
9
.0

5
g
2
p
m

-1
0
0

2
3
9
.2

1
9
4
5
.0

5
1
e-

3
5
e-

2
1
3
.6

4
5
e-

6
5
e-

2
1
3
.0

6
6
e-

9
2
e-

5
8
9
6
0
.9

6
1
1
.7

1
g
2
p
m

-1
4
4

1
8
3
7
.0

5
8
6
2
4
.2

1
1
e-

3
6
e-

2
2
3
.0

3
1
e-

4
9
e-

2
5
0
.0

2
3
e-

6
5
e-

4
1
1
0
2
4
.2

0
6
e-

9
1
e-

7
1
4
1
.0

5
g
3
-p

m
2
7

0
.4

2
0
.6

5
6
e-

4
2
e-

3
0
.0

7
9
e-

8
4
e-

3
0
.5

7
1
e-

9
3
e-

8
4
.7

1
0
.9

7
g
3
-p

m
6
4

2
3
.2

0
5
9
.0

1
7
e-

5
2
e-

2
1
.6

6
4
e-

2
5
.2

2
5
e-

9
3
e-

7
1
3
2
.7

3
2
.2

8
g
3
-p

m
1
2
5

8
6
7
.6

0
3
8
1
2
.5

8
1
e-

3
5
e-

2
1
6
.8

8
2
e-

5
9
e-

2
5
2
.0

3
5
e-

8
4
e-

6
6
7
3
4
.2

1
3
2
.9

9
g
2
-g

2
5

0
.3

1
0
.2

1
3
e-

3
0
.0

5
1
e-

3
0
.1

5
0
.1

0
0
.0

5
g
2
-g

4
9

7
.0

9
1
1
.3

3
7
e-

3
0
.4

7
5
e-

3
0
.9

8
1
.6

6
0
.4

5
g
2
-g

8
1

7
9
.5

4
2
9
0
.9

1
1
e-

7
3
e-

2
2
.7

7
2
e-

2
4
.4

4
1
5
.1

1
2
.9

9
g
2
-g

1
0
0

2
4
3
.0

2
1
1
5
8
.7

8
6
e-

6
5
e-

2
6
.0

2
9
e-

2
6
.9

3
9
0
.0

1
1
e-

8
7
.3

7
g
2
-g

1
4
4

1
7
6
6
.6

4
9
7
8
8
.5

8
7
e-

5
7
e-

2
2
3
.8

1
2
e-

9
1
e-

1
2
9
.3

6
2
e-

9
1
5
2
8
.1

0
3
e-

8
6
0
.8

4
g
3
-g

2
7

0
.3

9
0
.4

2
4
e-

3
0
.0

6
5
e-

4
0
.2

6
0
.2

1
0
.0

7
g
3
-g

6
4

2
5
.5

4
6
2
.5

2
3
e-

8
2
e-

2
1
.3

9
2
e-

2
3
.6

3
1
0
.2

4
1
.9

8
g
3
-g

1
2
5

9
3
1
.7

5
4
3
0
2
.7

2
4
e-

5
6
e-

2
1
6
.2

0
1
e-

9
1
e-

1
3
9
.0

2
2
8
8
.2

1
2
6
.8

5

T
a
b
le

1
:

M
a
in

ta
b
le

o
f
re

su
lt
s

17.

quickly, and especially as the size of the instances grow, subgradient-based approaches may still be of
interest.

6. Conclusions and future research

We have proposed and tested several Lagrangian approaches for solving linear optimization problems over
the semimetric polytope M(G) associated with a given graph G. Some of these approaches have been
shown to be superior to state-of-the-art general-purpose linear programming codes. In order to provide
competitive results, using the recently proposed efficient algorithms for solving linear optimization prob-
lems over the rooted semimetric polytope Mr(G) is in most cases (“structured” instances) instrumental,
and a careful use of state-of-the-art Non Differentiable Optimization technology is required. As far as
the choice between different NDO approaches goes, if accurate primal solutions are required a bundle
approach, exploiting the projection heuristic, is also instrumental. The bundle approach is necessary for
obtaining accurate dual solutions in several cases, and either competitive or downright faster in many
others. However, on some large-scale instances, or if only a rough dual bound has to be obtained quickly,
the subgradient algorithm may provide an interesting alternative.

Although we feel that the obtained results already clearly show the potential of Lagrangian approaches
in this field, there are still a number of issues that need to be investigated for being able to properly
assessing the value of these techniques for the solution of combinatorial optimization problems related
to the semimetric polytope, such as the max-cut problem. In particular, implementing versions of this
approach for very large, sparse graphs requires to substitute the (trivial) separation routine for the
(polynomially many) triangle inequalities (3) with (less trivial) separation routine of the (exponentially
many) cycle inequalities (1). The effect of this change on the relative efficiency of the approaches will have
to be examined. Furthermore, a number of issues arise when embedding a Lagrangian-based approach
within an enumerative approach, such as branch and cut, for a combinatorial problem [10] that will need
to be properly resolved in order to being able to replace standard LP technology with the proposed
algorithms. Finally, different—either general-purpose or specialized—NDO approaches may prove to be
even more efficient than the ones that we have been using so far.

References

[1] R. Ahuja, T. Magnanti, and J. Orlin, Network Flows: Theory, Algorithms, and Applications,
Prentice-Hall, Englewood Cliffs, 1993.

[2] L. Bahiense, N. Maculan, and C. Sagastizábal, The volume algorithm revisited: relation with
bundle methods, Mathematical Programming, 94 (2002), pp. 41–70.

[3] F. Barahona and R. Anbil, The Volume Algorithm: Producing primal solutions with a subgradi-
ent method, Mathematical Programming, 87 (2000), pp. 385–400.

[4] F. Barahona and A. Mahjoub, On the cut polytope, Mathematical Programming, 36 (1986),
pp. 157–173.

[5] T. Crainic, A. Frangioni, and B. Gendron, Bundle-based relaxation methods for multicom-
modity capacitated fixed charge network design problems, Discrete Applied Mathematics, 112 (2001),
pp. 73–99.

[6] M. Deza and M. Laurent, Geometry of Cuts and Metrics, vol. 15 of Algorithms and Combina-
torics, Springer-Verlag, Berlin, 1997.

[7] O. du Merle, J.-L. Goffin, and J.-P. Vial, On Improvements to the Analytic Center Cutting
Plane Method, Computational Optimization and Applications, 11 (1998), pp. 37–52.

[8] A. Frangioni, Solving semidefinite quadratic problems within nonsmooth optimization algorithms,
Computers & Operations Research, 21 (1996), pp. 1099–1118.

18.

[9] , Generalized Bundle Methods, SIAM Journal on Optimization, 13 (2002), pp. 117–156.

[10] , About lagrangian methods in integer optimization, Annals of Operations Research, submitted
(2003).

[11] A. Frangioni and G. Gallo, A bundle type dual-ascent approach to linear multicommodity min
cost flow problems, INFORMS Journal on Computing, 11 (1999), pp. 370–393.

[12] A. Frangioni, F. Glover, A. Lodi, and G. Rinaldi, Optimal Semicuts, Tech. Report OR-04-3,
DEIS, Università di Bologna, 2004.

[13] A. Frangioni, A. Lodi, and G. Rinaldi, Optimizing over semimetric polytopes, in Integer Pro-
gramming and Combinatorial Optimization - IPCO 2004, D. Bienstock and G. Nemhauser, eds.,
vol. 3064 of Lecture Notes in Computer Science, Springer-Verlag, 2004, pp. 431–443.

[14] B. Gavish, Augmented Lagrangian Based Algorithms for Centralized Network Design, IEEE Trans-
actions on Communications, 33 (1985), pp. 1247–1257.

[15] A. Goldberg, An efficient implementation of a scaling minimum-cost flow algorithm, Journal of
Algorithms, 22 (1997), pp. 1–29.

[16] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial Opti-
mization, Springer Verlag, 1988.

[17] M. Guignard, Efficient cuts in Lagrangean ’Relax-and-Cut’ schemes, European Journal of Opera-
tional Research, 105 (1998), pp. 216–223.

[18] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms,
vol. 306 of Grundlehren Math. Wiss., Springer-Verlag, New York, 1993.

[19] D. E. Knuth, The Stanford GraphBase: a platform for combinatorial computing, ACM Press, 1993.

[20] T. Larsson, M. Patriksson, and A.-B. Strömberg, Ergodic, primal convergence in dual sub-
gradient schemes for convex programming, Mathematical Programming, 86 (1999), pp. 283–312.

[21] C. Lemaréchal, Lagrangian relaxation, in Computational Combinatorial Optimization, M. Jünger
and D. Naddef, eds., Springer-Verlag, Heidelberg, 2001, pp. 115–160.

[22] F. Liers, M. Jünger, G. Reinelt, and G. Rinaldi, Computing exact ground-states of hard Ising
spin-glass problems by branch and cut, in New Optimization Algorithms in Physics, A. Hartmann
and H. Rieger, eds., Wiley-VCH Verlag, Berlin, 2004. In press.

[23] M. Lomonosov, Combinatorial approaches to multiflow problems, Discrete Applied Mathematics,
11 (1985), pp. 1–93.

[24] G. Rinaldi, Rudy. http://www-user.tu-chemnitz.de/~helmberg/sdp software.html.

