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Abstract

Planning a public transportation system is a complex process, which
is usually broken down in several phases, performed in sequence. Most
often, the trips required to cover a service with the desired frequency
(headway) are decided early on, while the vehicles needed to cover these
trips are determined at a later stage. This potentially leads to requiring
a larger number of vehicles (and, therefore, drivers) that would be pos-
sible if the two decisions were performed simultaneously. We propose a
multicommodity-flow type model for integrated timetabling and vehi-
cle scheduling. Since the model is large-scale and cannot be solved by
off-the-shelf tools with the efficiency required by planners, we propose
a diving-type matheuristic approach for the problem. We report on the
efficiency and effectiveness of two variants of the proposed approach,
differing on how the continuous relaxation of the problem is solved,
to tackle real-world instances of bus transport planning problem orig-
inating from customers of M.A.I.O.R., a leading company providing
services and advanced decision-support systems to public transport
authorities and operators. The results show that the approach can
be used to aid even experienced planners in either obtaining better
solutions, or obtaining them faster and with less effort, or both.

Keywords: Public transport, timetabling, vehicle-scheduling, integrated
approach, matheuristic

1 Introduction

Public transportation companies often face complex logistic problems. In
particular, vehicles and crews represent expensive resources for the oper-
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ators, that require efficient utilization. Planning in a public transporta-
tion system is usually decomposed into stages, that are solved in sequence,
namely: Network Design (ND), Line Planning (LP), TimeTabling (TT), Ve-
hicle Scheduling (VS) and Crew Scheduling (CS). The first three steps define
the type of service to be offered: ND and LP determine the set of lines (and
connections) and how often the service is offered along the lines, while TT
defines the departure and arrival time of the individual trips on each line
in order to meet the desired frequency of service. The last two steps are,
instead, devoted to resource allocation: VS is the assignment of buses to
trips, such that each trip is covered by exactly one bus and the schedules
of all the vehicles are feasible, while CS is the assignment of crews to trips,
such that each trip is covered by a crew and all the crew schedules satisfy
the required logical and legal restrictions. We refer the reader to [15] for a
detailed description of the various stages, and to [26] for a global review of
the crucial strategic and tactical steps of transit planning.

There is a vast literature addressing each one of the above steps individu-
ally. Yet, because of the interdependence of the stages, planning in sequence
possibly produces suboptimal solutions. This is in particular true for the
vehicles and drivers needed, that are only determined in the later steps of
the planning process. Unfortunately, decomposing into stages is often nec-
essary to make the solution time compatible with the requirements of the
planners. The two intermediate stages TT and VS are generally argued [10]
to be “the bulk” of the decision process. Indeed, many recent developments
in transit planning, including this work, focus on the integration of these
two steps.

In particular, our contribution consists in a new model for the Inte-
grated Timetabling and Vehicle Scheduling (ITTVS) problem. Under some
assumptions on the VS constraints, that are particularly reasonable for the
urban planning context and can be somewhat relaxed, the model is a com-
pact multicommodity-flow type problem; however, its size and the relative
weakness of the continuous relaxation are such that the problem cannot be
solved by off-the-shelf tools with the efficiency required by the planners. We
therefore also propose a diving-type matheuristic approach for the problem,
which produces good-quality solutions in reduced time. We report exper-
iments on several real-world ITTVS instances originating from customers
of M.A.I.O.R., a leading company providing services and advanced deci-
sion support systems to public transport authorities and operators, showing
that good-quality solutions—in particular, if compared with those manually
constructed by experts of the transport companies and currently used in
operations—can be obtained with a reasonable computational effort. The
variant of the approach where the continuous relaxation of the model is
tackled by forming its Lagrangian relaxation w.r.t. the linking constraints,
and approximately solving the corresponding Lagrangian Dual by means of
a bundle-type method, appears to be particularly promising as the size and
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complexity of the instances grow.
The structure of the paper is as follows. Section 2 contains the literature

review. Section 3 presents the base case scenario for our real-world applica-
tion, which is mathematically formulated in Section 4. Section 5 discusses
some important extensions to the base case scenario. Our matheuristic ap-
proach is described in Section 6, and computational results are discussed in
Section 7. Finally, in Section 8 we draw some conclusions.

2 Literature Review

In this section, we first provide a general description of the TT and VS as
individual steps. We then review the literature dealing with attempts at
integrating the two phases, providing a taxonomy that allows us to frame
our contribution. We also briefly comment on the relationships between the
problem we face and related ones, e.g., for different kind of transportation
systems.

2.1 Timetabling

Timetabling (TT) is the process of creating a schedule starting from the
route network and the desired frequency of service. The result is a set of
trips, with the scheduled times at the terminals and major points on the
routes, a.k.a. the timetable. Timetabling can be periodic (“clock-face”) or
non-periodic. If the order of the events is fixed, the latter can be efficiently
solved by shortest path techniques. If events appear periodically, an ordering
is not possible, this is why the periodic event scheduling problem (PESP) is
NP-hard [42]. In non-periodic TT one usually measures the headway of
a line, i.e., the time separating the service at its main stop by consecutive
runs; this specifies how often bus service should be offered, and is basically
the inverse of the frequency usually considered in periodic timetabling.

The TT problem aims at finding “good quality” timetables from the
viewpoint of users of the transportation service. This may mean different
things. Perhaps the simplest one is regularity, whereby one seeks to find a
timetable where the trips have exactly the frequency/headway required for
the line they belong to (in the corresponding time window), or at least the
distance of the actual frequency from the desired one is minimized. This
is the only reasonable measure if the topology consists of a single—albeit,
possibly, “complex”—line, as in our experiments. However, when multiple
lines are considered, the transfer coordination or synchronization variant is
frequently studied, where one is rather interested in finding schedules that
minimize transfer and/or waiting time of passengers (or other synchroniza-
tion measures) at the stops connecting different lines. That is, the aim is
to coordinate the trips on different lines; clearly, this requires modelling
passengers’ waiting and transfer activities during vehicle changes.
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In the context of transit planning, TT is included within operational
planning. The reason is twofold; (i) timetabling occurs frequently (e.g., ev-
ery 3-6 months); (ii) it is from the timetables that vehicle and crew schedules
are constructed. Yet, the goal of timetabling is a tactical one, since it aims
at optimizing passengers’ service. This is in contrast to the VS and CS, that
are typically intended to minimize operating costs.

2.2 Vehicle Scheduling

If the lines and the timetable are given, so is the set of trips, i.e., sequences of
arrival/departure times at each stop of a given line, that must be operated by
the same vehicle. The set of trips is the input of VS, which aims at optimally
covering them, typically minimizing the number of vehicles needed and/or
some other measure of the required effort, such as deadheads (i.e., vehicle
movements that do not constitute transportation service) or other operating
costs, while meeting all operational constraints. VS plays an important role
in the public transport planning process, since it is the first planning step
where the primary focus is put on minimizing costs, while previous steps
typically focus on passenger service. The vehicle scheduling problem is the
task of building an optimal set of sequences of trips, each sequence—called
vehicle schedule—to be performed by an individual vehicle, such that each
trip of a given timetable is covered by exactly one sequence. A sequence of
trips assigned to a vehicle results in a vehicle route, that can serve several
lines (interlining). Multi-depot VS is NP-hard [8], while the single-depot
case can be solved in polynomial time [1], provided there are no constraints
on how a chain can be formed, apart from compatibility between two trips
(taking into account max/min waiting time at terminals and/or deadhead-
ing, if allowed). More complex variants consider different types of vehicles
(e.g., number of seats, level of comfort, etc.). A well-known modelling frame-
work for the VS problem is based on a time-space network [1], where vertices
are departures or arrivals of a vehicle at a specific time and location, such
as the beginning or end of a service trip, and edges link two actions that
can be performed by the same vehicle. A vehicle schedule corresponds to a
flow through the network, so that the computation of the optimal vehicle
schedule can be performed by calculating a minimal cost circulation through
the network, with additional constraints guaranteeing that all service trips
are performed exactly once.

2.3 Integrated TT and VS

With only one exception, all the works in the literature considering inte-
grated timetabling and vehicle scheduling in urban public transport deal
with the transfer coordination version of the TT, i.e., where the objective
is to minimize the transfer and waiting time for passengers. To the best of
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our knowledge, the first two papers are [9] and [11]. The former presents
a 4-step sequential approach with a single feedback loop that determines a
timetable and the corresponding vehicle schedules. The solution approach
of the latter, instead, is based on a genetic algorithm to simultaneously op-
timize the fleet size without interlining (i.e., each bus can serve only one
line) and the waiting and transfer time of passengers.

In general, a crucial characteristic of all approaches is that the inte-
grated problem has a bi-objective nature; that is, it aims simultaneously
at maximizing the timetable quality from the passengers’ point of view, and
minimizing the operating cost of vehicle schedules from the service provider’s
point of view. Clearly, these two objectives are potentially in contrast to
each other; thus, a main decision, when developing an integrated model is on
how the interaction between the two contrasting objective functions should
be managed. Correspondingly, we subdivide all the articles in the literature
according to the strategy they adopt in this respect:

• Shifting. An important stream of research is based on the idea of solv-
ing the VS problem allowing some flexibility to change the timetable,
thus leading to the Vehicle Scheduling with Time-Windows (VSP-TW)
problem. That is, the timetable is given as an input, and arrival times
can only be modified (shifted) by a small amount, in order to allow
for cheaper vehicle schedules. Clearly, this approach prioritises the
service provider’s objective function (operating cost); however, the
quality of the timetable is somewhat guaranteed by the fact that only
minor modifications, w.r.t. the nominal one, are allowed. Hence, in
bi-objective parlance these methods are akin to budgeting ones, where
one objective is optimized subject to the constraint that the other one
cannot become worse than a given threshold (although in this case the
threshold is only indirectly specified).

• Weighting. This approach consists in having, as objective function, the
weighted sum of the two original ones. The issue with this kind of ap-
proaches is typically that of finding weights that accurately represent
the preferences of the decision maker.

• Pareto-front. To account for the inherent difficulty of the two previ-
ous approaches, i.e., that of selecting either an appropriate budget or
appropriate weights, it is possible to try to produce a set of Pareto-
optimal (i.e., non dominated) solutions. This can be done, for exam-
ple, by solving the budgeted/weighted versions of the problem with
several choices of the budget/weights; alternatively, population-based
algorithms can be used, as they naturally generate multiple solutions.

• Bilevel programming. This approach takes a different stance, where
the leader (say, the service provider) optimizes its objective function,
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while the followers (say, the users) react by optimizing their own (say,
their travel time), subject to the leader choices.

• Reordering. Finally, in this specific context, the idea has been proposed
that it might be possible to obtain “more integrated” solutions by
simply reordering the classic sequence of the planning steps outlined
at the beginning of this section.

We will now briefly describe all the papers in the literature as “subdivided”
among the five above categories. As it often happens our taxonomy is only
approximate, as some contributions combine different strategies within the
same algorithmic framework (e.g., [17, 18, 19]). It might be appropriate
to mention at this point that, due to the complexity of the problem, most
of these studies propose meta-heuristic algorithms such as Iterated Local
Search (ITL), Tabu-Search (TS), Large Neighborhood Search (LNS), Ge-
netic Algorithms (GA), and Simulated Annealing (SA).

2.3.1 Shifting

This kind of approach can be traced back to the seminal paper [30], which
considers (small) time windows in which the departure time of a service
trip can be shifted, and use a time-space network to determine feasible trip
combinations. The solution approach is based on column generation to-
gether with heuristics. The model of [30] is extended in [43] and [17], where
an hierarchical approach for VS is developed, combining mathematical pro-
gramming models, to optimize the type and the number of vehicles for each
trip, with a SA approach, that allows the trip starting times to be shifted
in time. Similarly, the use of VSP-TW in the context of tactical timetable
analysis is discussed in [6], where it is suggested to model the VSP-TW
as a Vehicle Routing Problem with Time Windows (VRP-TW) and to esti-
mate the potential of vehicle savings for a given timetable by allowing wider
departure time windows (up to 20 minutes) for service trips. Recently,
[19] proposes a matheuristic that combines the idea of shifting with that
of weighting. The algorithm iteratively solves a bi-objective mathematical
formulation (minimization of passenger transfers and operational costs) of
the ITTVS allowing timetable modifications for a subset of timetabled trips,
while solving the full VS problem. A similar approach, combining shifting
with weighting, is used in the interactive tool NetPlan described in [17, 18],
which integrates timetabling and vehicle scheduling. The tool is developed
by GIRO, a privately owned company based in Montreal that provides soft-
ware and services to plan and manage public transport operations. Finally,
[14] provides an instructive overview of different restrictions for the VS and
show practical applications in urban mass transit companies.
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2.3.2 Weighting

The ITTVS with time windows and balanced departure times is studied in
[39]; the problem is modeled as a VRP-TW, that includes the balancing
of trips departure times and minimization of deadheads in the objective
function, and it is solved by a hybrid LNS approach that decomposes the
problem into a scheduling and a balancing component. The Simultaneous
Vehicle Scheduling and Passenger Service Problem (SVSPSP) has been de-
fined for the first time in [36], where an integrated solution approach is
proposed, based on the LNS used in [16] to solve the multiple depot ve-
hicle scheduling problem (MDSVP); the approach is tested on the Greater
Copenhagen Area. A solution approach based on TS is presented in [28],
where at each iteration the timetable is altered and the optimal trip assign-
ment is recomputed solving a linear quasi-assignment problem. Finally, as
already mentioned, both [19] and [17, 18], integrate timetabling and vehicle
scheduling using a weighted objective function.

2.3.3 Pareto-front

Two integer linear programming models for TT and VS are defined in [29]
and combined in a bi-objective integrated model that is solved repeatedly
using a budgeting approach. A ITTVS model (without interlining) is pre-
sented in [44] and solved by the direct application of a multi-objective GA.

2.3.4 Bi-level

A bi-level ITTVS integer programming model is developed in [45] and it is
solved using a specialized TS algorithmic framework. A more complex bi-
objective and bi-level approach is presented in [31, 32] to study how much
the changes on timetable and vehicle scheduling affect users trips choice be-
haviour. In the model, the upper level is a service provider, that creates
timetables and vehicle schedules to minimize total operating costs and pas-
senger waiting/travel time, while the lower level are public transport users,
who choose their travel paths in a user optimal manner, responding to the
operator decision (transit assignment problem).

2.3.5 Reordering

A “reverse shifting” approach is proposed in [27] and tested on real-life in-
stances from France; the input is the current timetable, vehicle and crew
schedule, and the timetable is adjusted by a TS approach keeping the ve-
hicle and driver schedules fixed. In [34] the process starts by designing the
vehicle routes; then these routes are interpreted as lines and the correspond-
ing frequency is defined, finally the timetabling phase assigns an arrival and
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a departure time to each stop of the route. The objective function is de-
signed in order to measure the “attractiveness” for passengers, using an
origin-destination matrix of potential transport demands and maximizing
the probability that a (potential) traveler between two locations decides to
use public transportation rather than a private one. The heuristic is applied
to a case study that optimizes the local bus system in Gottingen. More re-
cently, [35] considers three consecutive planning stages in public transporta-
tion (LP, TT and VS) and propose three different ways to “look ahead”,
i.e., to include aspects of vehicle scheduling already earlier in the sequential
process, including a reordering of the sequential planning stages.

2.4 Related Problems

Similar issues as ITTVS also appear in the management of different trans-
portation systems, like railways. In that setting, VS corresponds to rolling
stock scheduling. The problems are rather different in nature, since a train
can be “(de)composed”, whereas a bus can only consists of one indivisible
unit. Yet, models based on time-space graphs have been widely used in both
settings [41]. For railway transport in particular, [4] and [37] address the
topic of integration for rolling stock planning.

With regards to periodic timetables, we mention some recent research
works that provide interesting insights into the interplay between timetabling
and vehicle scheduling, but without actually integrating them.

The software toolbox LinTim [40] gives the possibility to solve the vari-
ous planning steps in public transportation, including line planning, periodic
timetabling, delay management and rolling stock circulation. The integra-
tion of different steps into a common environment allows one to analyze the
mutual influence of the planning steps.

The recent [3] shows that the number of vehicles that are required to
operate a given periodic timetable can be computed efficiently by solving
a perfect matching problem, rather than using the common time-expanded
network flow model approach.

Finally, in [5] the authors compare periodic vs aperiodic timetabling with
respect to vehicle operation costs.

2.5 Contributions of this paper

As already mentioned, almost all the previously cited articles focus on
the transfer coordination version of the TT, save for [39], where regular-
ity (i.e., minimizing the deviation from the desired headways) is considered.
Also, almost all the contributions use meta-heuristics, save for [19], where a
matheuristic approach is developed for an integrated bi-objective formula-
tion (but with the transfer coordination objective function).
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The ITTVS problem at MAIOR, described in detail in Section 3, is char-
acterized by the following features: (i) a non-periodic timetabling problem,
with regularity (i.e., deviation from the ideal service frequency) objective
function; (ii) a single depot, single vehicle type vehicle scheduling prob-
lem. The contributions of the paper are the following. First, we consider
a real-world bus planning application at MAIOR and present an integrated
solution approach for two steps (i.e., TT and VS), that were previously
solved in sequence by customers of the company. This allows us to test
our integrated approach on real-world instances provided by Italian public
transport providers, comparing them with those previously produced by the
sequential approach. Thus, we are able not only to compare the objective
values, showing that the integrated approach significantly reduces them, but
also to have our solutions evaluated by expert transport planners, which cer-
tified them to be of “good quality” according the their judgement. This is
important, because our integrated approach is based on weighting, and the
proper selection of weights is crucial for the practical quality of the solu-
tion. Moreover, to our knowledge, our approach is the first matheuristic for
ITTVS with regularity objective function (minimizing deviation from the
ideal frequency of service). Finally, we consider some extensions for dealing
with “complex” single-line topologies and constraints on the number of ve-
hicles, which are important for the practical applicability of the approach in
some customers’ environments.

3 Problem Description

This section describes the specific characteristics of the “base case” ITTVS
problem at MAIOR, where the topology is that of a simple single line. This
is only for simplicity of exposition, in that the mathematical formulation
presented in Section 4 immediately extends to multiple independent lines
(that is, independent from the TT side, while potentially linked in the VS
one). Less trivial extensions are shown in Section 5, in particular for when
multiple routes (besides the two obvious ones) actually pertain to the same
line (i.e., a complex single line).

The main input to the integrated TT-VS problem is a public transporta-
tion network (PTN), a set of potential trips T (i.e., not every trip has to be
operated by some vehicle), and the desired (a.k.a. ideal) headways for each
of the time windows in which the operating interval is subdivided, and for
each direction. In general, a PTN is given in the form of a graph, where the
nodes correspond to bus stops or depots, and the links correspond to direct
bus transits; however, the actual graph description of the PTN is inconse-
quential for our treatment. A simple (single) line is a bi-directional path
AB in the PTN between two terminals A and B (i.e., start/end stops of
a line). Usually a simple line has two directions, called in-bound and out-
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bound and denoted by D = { A⃗B , B⃗A }, respectively; however, a circular
line (where A = B) may have only one direction. In more general cases, a
single line may comprise multiple routes or patterns for each direction, as
discussed in Section 5; however, in this paragraph patterns and directions
coincide, as shown in Figure 1. A trip corresponds to a pattern/direction
in the PTN that has to be operated by some vehicle at a given time. Since
each trip belongs to a given pattern/direction, we define T = [ Td ]d∈D as
the “direction partition” of T . Each trip i ∈ T is characterized by a start
and end terminal, denoted by sn(i) and en(i), respectively, while the corre-
sponding departure time from sn(i) and arrival time at en(i), are denoted
by st(i) and et(i), respectively. Note that all the potential trips in T have
to be separately described in input, as the trip times along the line can vary
considerably during the planning horizon (e.g., at “peak times” headways
are much shorter), and also within a single time window and for different
directions. Thus, it is not sufficient to just describe a single travel time to
characterize T , as it often happens in the timetabling literature.

Even in the case of a simple single line, for VS purposes it is necessary
to consider in the PTN, besides the terminal nodes A and B, also the single
depot node O (but not any other intermediate stop of the line).

terminal A terminal B

depot O

Figure 1: Simple single line

In the following, we will denote by N the set of terminals of the involved
lines (say, N = {A , B }) and by N+ = N ∪ {O }. For each direction, a
main stop is identified, symbolized by a “clock” in Figure 1, which is used to
calculate the headways. Although the figure may suggest that the main stop
needs be the same for the two directions of a simple line, this is not necessar-
ily true in practice (especially since the stops along the two directions could
be disjoint). The choice of the main stop can vary, depending on the struc-
ture of the line. Usually it is a “busy” point of the line, with high passenger
demand, for which the planners are interested to monitor service frequency.
It may coincide with one of the terminals if it is a relevant location of the
line (e.g., a railway node).
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3.1 TT components

Each trip i ∈ T is associated to a uniquely identified pattern/direction d(i).
The trip specifies the arrival time at each stop of the pattern, including the
arrival time a(i) at the main stop of d(i). Since we assume only one vehicle
type, the arrival times of a given trip are the same for all the vehicles. A
timetable πd for a direction d ∈ D is a subset of its potential input trips Td; a
timetable is then just the union of |D| (independent) timetables, one for each
direction, i.e., π = [πd ]d∈D. Given a timetable π, the (actual) headways of
a direction d w.r.t. π are the times separating each two consecutive trips
i, j in πd passing at its main stop, i.e., a(j) − a(i). In our non-periodic
planning, a time horizon T is given; say 5:00–24:00, i.e., each day is treated
independently. As the desired frequency of service typically varies along the
day, T is partitioned into k time windows defined by k + 1 time instants t0,
t1, . . . , tk, where t0 and tk are the initial and final time instants of T . For
each time window h and each direction d ∈ D, we are given the ideal headway
Ihd , together with minimum and maximum headways Ihd ≤ Ihd ≤ Īhd . We will
denote by h(i) the time window in which trip i happens; for simplicity we
will only describe the case in which trips are completely contained in a time
window, and therefore the ideal, minimum and maximum headways of the

trip are simply defined as Ii = I
h(i)
d(i) , Ii = I

h(i)
d(i) , and Īi = Ī

h(i)
d(i) , respectively.

However, only minor changes are required to account for “border effects”
when trip i falls in two consecutive time windows, say h and h + 1. For
instance, one can take Ii = min{ Ihd(i) , I

h+1
d(i) } and Īi = max{ Īhd(i) , Ī

h+1
d(i) };

as for Ii, one can take a convex combination of Ihd(i) and Ih+1
d(i) whose weights

can be chosen in different ways (such as how much of the trip falls in each
time window).

With the above definitions, a feasible timetable πd ⊂ Td for a direction
d ∈ D is a timetable such that:

• the (actual) headway of each two consecutive trips i and j in πd is
feasible, i.e., a(j) − a(i) ∈ [ Ii , Īi ];

• the first and the last trip of πd belong to given subsets T ini
d and T fin

d

of initial and final trips, specified as an input to the problem.

To evaluate the quality of a timetable, a quadratic penalty function is given
specifying how to compute the cost of the deviation of a feasible actual
headway ā ∈ [ Ihd , Ī

h
d ] from the ideal one Ihd . The actual form of this function

is immaterial for our model, just assuming the trivial properties that the
penalty is zero if ā = Ihd , and larger than zero (typically, nondecreasing in
| ā− Ihd |) otherwise.
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3.2 VS component

In the VS literature, traveling between two trips without passengers on board
is called a deadhead trip. In particular, a vehicle leaving a depot to reach the
start-terminal of a trip is said to be performing a pull-out trip; similarly, it
performs a pull-in trip when it returns to the depot from the end-terminal
of a trip. For each node n ∈ N+ and for each time window h we are given a
minimum and a maximum stopping-time, denoted by δhn and δ̄hn, respectively;
however, we typically assume that there is no maximum stopping time at
the depot, i.e., δ̄hO = +∞ for all h. Note that we do not consider stopping
times for any intermediate node of the given line. For each terminal n ∈ N
and for each time window h, we are also given the travel time for a pull-in
and pull-out trip, denoted by thn+ and thn−, respectively. In general, two
trips are said to be compatible if they can be covered consecutively by the
same vehicle. In our application, we distinguish two types of compatibilities
between two trips i, j ∈ T :

• in-line compatibility means that en(i) = sn(j), i.e., trip j starts at

the same terminal in which i ends, and δ
h(i)
en(i) ≤ st(j) − et(i) ≤ δ̄

h(i)
en(i),

i.e., the waiting time at the terminal between the end of trip i and the
start of trip j is feasible;

• out-line compatibility means that en(i) ̸= sn(j) and st(j) − et(i) ≥
t
h(i)
en(i)+ + δ

h(i)
O + t

h(j)
sn(j)−; in other words, there must be enough time

between the end of trip i and the start of trip j to perform a pull-
in trip from en(i), wait the minimum amount of time at the depot,
and then perform a pull-out trip towards sn(j). Note that pull-in and
pull-out trips are not included in T , as they are not (passenger) service
trips (i.e., no passengers on board).

In our case study, if en(i) ̸= sn(j), the vehicle cannot move directly from
one terminal to the other, but it must perform an out-line compatibility. In
other words, we only allow deadhead trips that start or end at the depot
(i.e., pull-in/pull-out trips). Yet, it could make sense to have deadheading
without touching the depot, subject to time compatibility. This can be easily
accounted for, without impacting the general structure of our model (barring
some specific details discussed later on). A feasible schedule for a vehicle
is composed of an initial pull-out trip, a sequence of compatible (service)
trips in T , possibly separated by pull-in/out trips, and a final pull-in trip
to return to the depot. In general, feasible schedules for a vehicle can be
seen as sequences of vehicle blocks, where each block consists of a sequence
of (service) trips in T , that starts and ends at the depot without returning
to it in the middle of the sequence. A feasible vehicle schedule Ω is a subset
of the input potential trips T that can be partitioned in feasible schedules
for single vehicles, possibly satisfying a constraint on the maximum number
of vehicles to be used if it is imposed.
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3.3 Integrated problem

The objective of our integrated problem is to provide a solution that opti-
mally balances the service provider cost (VS objective) and the users sat-
isfaction (TT objective). The latter is simply captured by minimizing the
sum of the costs of all the deviations between the actual headways and the
desired ones, each one measured by the penalty function alluded to above.
The former is somewhat more complex. Since one of the main costs for the
service provider is usually the number of vehicles used, the primary VS ob-
jective is the minimization of the number of bus schedules. Two secondary
measures of the service provider cost are the time spent by the vehicles wait-
ing at the terminals in excess to the minimum waiting time (for drivers will
typically have to man them even when stationary, thus increasing labour
cost), and the time spent by the vehicles performing pull-in and pull-out
trips (for the same reason as above, plus the fact that vehicles typically
consume some fuel). The relative importance of these terms is defined by
weighting parameters in the VS objective function; this is in addition to the
weights given to the two different overall objective functions (TT and VS)
(as described in Section 2.3.2), but the selection of the sub-weights for the
VS part is typically done even when solving the problem by separate phases,
and therefore these are well-established in practice (also because they can
ultimately be reduced to monetary costs). The selection of the weights for
the primary objective functions is more delicate, which is why judgement by
experts was required to evaluate the solutions produced by the integrated
approach before the results could be deemed satisfactory. Note that, on the
other hand, having both objective functions can actually help in properly
modelling some aspects of the transportation system. For instance, nowhere
in the VS part the capacity of the vehicles is explicitly taken into account.
Indeed, this is not necessary since this aspect is taken care of in the TT
subproblem, since the maximum headways are typically computed precisely
to prevent overcrowded services.

4 Mathematical Model

We now present the mathematical model for the ITTVS as described in the
previous section. We will often make reference to the “base case” scenario
of a simple single line for illustration, although the model readily extends to
any number of lines (patterns). The model consists of |D| TT sub-problems,
one for each direction, a single VS sub-problem, and some linking constraints,
that guarantee integration. The TT sub-problems select an optimal subset
of trips T ∗ ⊂ T , corresponding to feasible timetables π∗ = [π∗

d ]d∈D for all
directions, that minimize the total cost of deviation from the ideal headways.
The VS sub-problem constructs a feasible vehicle schedule Ω∗ with minimum
operator cost out of the selected trips T ∗; in other words, Ω∗ is a vehicle
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schedule cover of π∗. Clearly, the subproblems are not independent since
the vehicle schedule depends on the choice of T ∗, which is what the linking
constraints provide by ensuring that the trips covered by Ω∗ correspond to
all and only the trips used in the timetable.

We propose a Mixed Integer Linear Programming (MILP) multicommod-
ity flow-type model, based on node-arc formulations where arc flow variables
represent either the timetables or the vehicles schedule. That is, we con-
struct one directed graph for each of the TT subproblems (direction d) and
one directed graph for the VS subproblem, as described in Subsection 4.1
and Subsection 4.2, respectively. Finally, the integrated MILP formulation,
comprising the linking constraints, is shown in Subsection 4.3.

4.1 TT model

The TT model is based on representing feasible timetables in terms of paths
on a directed TT graph GTT

d = (NTT
d , ATT

d ), which is a compatibility graph.
For a given direction d ∈ D, the nodes of the corresponding TT graph
represent the trips in Td plus a dummy source O−

d and a dummy sink O+
d :

NTT
d = Td ∪ {O−

d , O+
d }. The arcs in ATT

d leaving the source node O−
d

end in the nodes corresponding to the set of potential initial trips T ini
d ,

and symmetrically for those entering the sink node O+
d . An arc (i, j) ∈

ATT
d between two trips i, j ∈ Td exists if and only if i and j are neither

“too close” or “too far apart”, i.e., the corresponding headway is feasible.
Its cost is computed off-line with the selected penalty function, which can
therefore be arbitrary. It is trivial to see that GTT

d is acyclic and that a
path between O−

d and O+
d in GTT

d corresponds to a feasible timetable πd,
the cost of the path (sum of the costs of the arcs) being the total cost of
violation of ideal headways. GTT

d being acyclic, each TT sub-problem—
were they independent, which they are not—could be easily solved as an
acyclic shortest path (SP) problem, whose complexity is linear in |ATT

d | and
therefore at worst quadratic in |Td| (but in practice basically linear in |Td|,
since many trips are not compatible due to the constraints on the minimum
and maximum headway).

Example 1. Consider the small example in Figure 2 with 5 trips. GTT
d

consists of two dummy nodes (source O−
d and sink O+

d ) and 5 trip nodes,
for simplicity all belonging to the same time window. The time indicated
inside the trip nodes represents the arrival time a(i) at the main stop. The
ideal headway is 2 minutes, with minimum and maximum headway of 1 and
3 minutes, respectively. The cost of the arcs (in blue) is computed using as
simple penalty function the absolute value of the deviation from the ideal
headway, in seconds. The minimum cost feasible O−

d -O+
d path in the graph

corresponds to the timetable 7:01–7:03–7:05, that has a cost of 0, which
means that the optimal total deviation from the ideal headways is 0, as it
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is immediate to verify. Note that we did not draw all the possible arcs just
for the sake of simplicity.

O- 7:00 7:01 7:03 7:05 7:06 O+
60

60

60

0

0 60

Figure 2: GTT
d compatibility graph.

4.2 VS model

The VS model is based on representing feasible vehicle schedules in terms
of flows on a single directed VS graph GV S = (NV S , AV S ), which is also
basically a compatibility graph: the VS sub-problem is not separable per di-
rection, because the schedule for each single vehicle can–and usually does—
cover trips belonging to different directions. Using compatibility graphs to
represent VS is well-known in the literature [1]; however, in a standard VS,
such as when the problem is solved in the classical planning sequence, one
typically has to construct feasible vehicle schedules that cover all the trips
of some input timetable π∗. In our ITTVS, instead, the optimal timetable
π∗ is unknown (being part of the integrated decision), hence the VS sub-
problem feasible space consists of all feasible vehicle schedules that can be
constructed from the whole input set of trips T . Indeed, a vehicle schedule
is, from a combinatorial point of view, a sequence of trips such that two
subsequent ones are compatible according to the given VS constraints.

In the following, we will actually present two different VS graphs, which
attain different trade-offs between |NV S | and |AV S | (basically, the number
of linear constraints and variables in the corresponding MILP sub-model).
Common to both versions is that NV S contains two nodes i− and i+ for
each trip i ∈ T , representing the start and the end of trip i, respectively.

“Pure” compatibility graph. In the first variant, besides the previously
mentioned trip beginning and ending nodes, GV S only contain two further
nodes O− and O+, whose out-going and in-going arcs respectively repre-
sent a vehicle performing the first pull-out and the last pull-in trips of the
corresponding schedule. As for AV S , it contains six types of arcs:

1. Trip arcs (i−, i+) for each trip i ∈ T (red arcs in Figure 3), with capac-
ity 1 and 0 cost; a unit of flow on the arc means that the corresponding
trip i is “covered” in the vehicle schedule.

2. In-line compatibility arcs (i+, j−) for each pair of trips i and j that
are in-line compatible (blue arcs in Figure 3); a unit flow on the arc
means that the bus covering trip i will be waiting at the terminal
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en(i) = sn(j) and then start trip j. These arcs have capacity 1 and

cost proportional to the extra waiting time st(j)−et(i)−δ
h(i)
en(i) w.r.t. the

minimum waiting time at en(i) in the given time window.

3. Out-line compatibility arcs (i+, j−) for each pair of trips i, j that are
out-line compatible (green arcs in Figure 3); a unit of flow on the arc
means that the vehicle covering trip i will perform a pull-in trip from
en(i) in time window h(i), then perform a pull-out trip to the sn(j) in
time window h(j) ≥ h(i), then finally start performing trip j. These

arcs have capacity 1 and cost proportional to t
h(i)
en(i)+ + t

h(j)
sn(j)−, i.e., the

sum of the pull-in/out travel times in the corresponding time windows.
Note that waiting time at the depot is not penalized, because it is not
covered by staff.

4. Start arcs (O−, i−) for each trip i ∈ T (dotted arcs in Figure 3); a
unit of flow on the arc means that a vehicle will perform a pull-out
trip to sn(i) as the first activity of its vehicle block. These arcs have

capacity 1 and cost proportional to the pull-out time t
h(i)
sn(i)−.

5. End arcs (i+, O+) for each trip i ∈ T (also dotted arcs in Figure 3);
a unit of flow on the arc means that a vehicle will perform a pull-in
trip to return to the depot from en(i) as the last activity of its vehicle
block. These arcs have capacity 1 and cost proportional to the pull-in

time t
h(i)
en(i)+.

6. Return arc, the single (O+, O−) (omitted in Figure 3). This is added in
order to allow any number of units of flow, i.e., vehicles, to depart from
O− and reach O+, thereby being used to define the vehicle schedule.
By setting all deficits of the nodes to 0, this defines a circulation
problem on the VS graph. The arc has capacity equal to the maximum
fleet cardinality (if any, +∞ otherwise) and a “large” cost (w.r.t. those
that can typically be expected on the other types) representing the cost
of using one more vehicle in the vehicle schedule.

Example 2. Consider the set T formed of the 5 trips described in Table
2. For simplicity, each trip lasts 90 minutes, travel times from/to the de-
pot to/from both terminals are all equal to 15 minutes, and all minimum
stopping times are 30 minutes. In the table, for each trip i we report the
corresponding direction (i.e., either A⃗B or B⃗A), its start and end time st(i)
and et(i), and the start/end depot time instants sd(i) and ed(i). These are
respectively the last instant in which a vehicle can start a pull-out trip

in time to reach sn(i) and perform the trip i (sd(i) = st(i) − t
h(i)
sn(i)−),

and the first instant in which a vehicle, after having performed a pull-
in trip from en(i) at the end of trip i, is ready to leave again the depot
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(ed(i) = et(i) + t
h(i)
en(i)+ + δ

h(i)
O ). Figure 3 shows the “pure” compatibility

graph for the example.

i direction st(i) et(i) sd(i) ed(i)

1 A⃗B 7:00 8:30 6:45 9:15

2 B⃗A 9:00 10:30 8:45 11:15

3 A⃗B 11:00 12:30 10:45 13:15

4 B⃗A 13:00 14:30 12:45 15:15

5 A⃗B 15:00 16:30 14:45 17:15

Table 1: A VS example.

1- 1+

2- 2+

3- 3+

4- 4+

5- 5+

O- O+

Figure 3: GV S “pure” compatibility graph for the example.

The issue with this variant of GV S is that it has a rather large number
of out-compatibility arcs. Indeed, if a trip ends rather early (with respect
to the planning horizon), it is likely to be out-compatible with most of
the subsequent trips. We can reduce the number of arcs constructing an
alternative VS graph as follows.

Compatibility/time-space graph. To remove all the out-compatibility
arcs, we can introduce “time-depot” nodes Ot for properly chosen time in-
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stants t. In particular, for each trip i ∈ T we will define the start-time-depot
Osd(i) and end-time-depot Oed(i), with the start/end depot time instants
sd(i) and ed(i) having been defined in Example 2. We denote by T̄ the
set of time instants corresponding to all the start/end time-depot nodes in
GV S . Next, after having removed the out-line compatibility arcs we add the
following arcs:

• Time arcs (Ot, Ot+1) for all pairs (t, t+1) of time instants in T̄ , where
t + 1 = min{ t′ ∈ T̄ : t′ > t } (vertical green arcs in Figure 4). These
are the typical “holding arcs” in time-space graphs, representing the
fact that all vehicles at the depot at t that have not just started a
pull-out trip will remain at the depot until t + 1. The cost of these
arcs is 0 and the capacity is set equal to the maximum fleet cardinality
(if any, +∞ otherwise).

• Pull-in arcs (i+, Oed(i)) for all i ∈ T (diagonal green arcs in Figure
4), representing the fact that the vehicle having just performed trip i
performs a pull-in to the depot, where it arrives at time ed(i). These

arcs have capacity 1 and cost proportional to the pull-in time t
h(i)
en(i)+.

• Pull-out arcs (Osd(i), i
−) for all i ∈ T (diagonal green arcs in Figure

4), representing the fact that the vehicle performs a pull-out trip at
time sd(i), i.e., just in time to subsequently start trip i. These arcs

have capacity 1 and cost proportional to the pull-out time t
h(i)
sn(i)−.

Basically, in this version the depot nodes O− and O+ are expanded in a
space-time (line) graph representing the status of the depot (number of ve-
hicles available there) at all possible times where it may change; this is why
we dub it a “compatibility/time-space graph”. In this version, each out-
compatibility arc between two trips i and j is replaced by the i+–j− path
consisting of a pull-in arc from i+ to Oed(i), a sequence of time-arcs connect-
ing the time-depot nodes Oed(i) and Osd(j), and a pull-out arc from Osd(j)

to j−. The advantage of this version is that of replacing the potentially
O(|T |2) out-line compatibility arcs with O(|T |) new nodes and arcs. Note
that for some i ̸= j, one may have ed(i) = sd(j), which means that there
may be strictly less than 2|T | nodes Ot (and that, unlike in Figure 4, these
nodes can have more than three incident arcs). In our experiments, the
compatibility/time-space graph has usually outperformed the “pure” com-
patibility one. As a final remark, if deadheading not touching the depot is
allowed, then the corresponding deadhead arcs must be added to AV S (in
either version) that are analogous to out-line compatibility arcs save for not
contemplating a return to the depot. This may seem to run contrary to the
rationale of the compatibility/time-space graph, but in practice this is likely
to be only possible for relatively few pairs of trips for which en(i)/sn(j)
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and/or et(i)/st(j) are “rather near”, in that otherwise it is more reason-
able (or required by regulations) to return to the depot anyway. Thus, the
compatibility/time-space graph may also be a sensible choice in such case.

1- 1+

2- 2+

3- 3+

4- 4+

5- 5+

Osd(1)

Oed(1)

Osd(2)

Oed(2)

Osd(3)

Oed(3)

Osd(4)

Oed(4)

Osd(5)

Oed(5)

O- O+

Figure 4: GV S compatibility/time-space graph.

Whatever the chosen version, if the VS subproblem could be solved
independently—but it can not—then it would be a min-cost circulation
problem, i.e., a minimum cost network flow (MCF) on GV S , which is poly-
nomially solvable. Actually, the optimal solution to the VS sub-problem
would trivially be the zero circulation, as the arc costs are non-negative
and the node deficits are zero. In fact, it is due to the linking constraints
described in the next sub-section, that flow will be forced to traverse the
trip-arcs corresponding to the trips T ∗ selected by the TT sub-problems,
and therefore produce a non-zero circulation (vehicle schedule Ω∗).

It should be remarked that the VS subproblem discussed in this section
may not be capable of expressing some constraints on the vehicle routes
that may be necessary in certain cases, such as those depending on the total
time/distance travelled by the vehicle (refuelling, cleaning, servicing, . . . ).
Yet, some constraints on the vehicle schedules can indeed be represented by
appropriate modifications to either the TT graphs or the VS graph; examples
are provided in the next Section 5. Furthermore, it is in principle possible to
replace the graph-based VS model with any more expressive one, e.g. based
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on set partitioning formulations, without changing the overall structure of
the integrated model (except, very possibly, making the ITTVS even more
difficult to solve in practice).

4.3 TT-VS integrated model

The integrated model combines the VS graph (in whatever version) and the
TT graphs for all directions d ∈ D to yield the following MILP model:

min αcx +
∑

d∈D cdyd (1)∑
(m,n)∈ATT

d
ydm,n −

∑
(n,m)∈ATT

d
ydn,m = bdn n ∈ NTT

d , d ∈ D (2)

ydn,m ∈ {0, 1} (n,m) ∈ ATT
d , d ∈ D (3)∑

(m,n)∈AV S xm,n −
∑

(n,m)∈AV S xn,m = 0 n ∈ NV S (4)

0 ≤ xn,m ≤ un,m (n,m) ∈ AV S (5)∑
(n,m)∈B(i) y

d(i)
n,m = xi−,i+ i ∈ T (6)

The MILP formulation is clearly formed of three distinct blocks. Constraints
(2) are the flow conservation constraints of the TT subproblems, where ydn,m
are the arc flow variables on ATT

d ; the deficits bdn for TT are all 0 except
for n ∈ {O−

d , O+
d }, which, together with (3), ensures that the solution

describes a path between O−
d and O+

d in GTT
d (timetable πd). Similarly,

xn,m are the arc flow variables on AV S , and (4) the corresponding flow
conservation constraints describing a circulation (vehicle schedule Ω) in GV S .
The capacities un,m are all 1 except that of the return arc (O+, O−) and the
time arcs (if any); the variables need not be declared integer, once this is
done for the yd, due to the total unimodularity of flow constraints. Finally,
(6) are the linking constraints ensuring that a trip is performed in the VS if
and only if it is chosen by the corresponding TT. In GTT

d , trips correspond
to nodes, whereas in GV S trips correspond to (trip) arcs. In TT, a trip i is
selected if and only if the corresponding node i belongs to the path in GTT

d ,
i.e., there is one arc entering node i (and of course one arc leaving by flow
conservation). In particular, B(i) is the backward star (i.e., in-going arcs)
of the node in NTT

d(i) corresponding to trip i, i.e., the set of all arcs in ATT
d(i)

entering it. In VS, trip i is selected if and only if the corresponding trip
arc (i−, i+) belongs to the circulation in GV S . So the linking is obtained
by imposing that the number of arcs entering node i in TT equals the flow
on the trip arc (i−, i+) in VS. As expected, this formulation of ITTVS is
NP-hard. Indeed, even if the maximum cardinality of the fleet was one, the
problem would correspond to a Quadratic Shortest Path problem, which is
APX-hard even if only adjacent arcs play a part in the quadratic objective
function [38].

The bi-objective nature of the integrated TT-VS problem is modeled

20



using the weighted objective function (1), where the VS objective is scaled
by a coefficient α representing the decision-maker preferences in terms of
priority between the two objectives. As already remarked, the VS costs c
already are obtained by properly weighting one main VS objective with two
minor ones, which means that constructing (1) requires properly choosing
no less than three scaling parameters. Of course, the main one is α, gov-
erning the compromise between the two contrasting objective functions of
the problem (service quality vs. service provider cost). The experience of
MAIOR personnel has been instrumental in properly setting these weights.

5 Extensions

We now describe two extensions of the models presented in the previous
Section that allow to deal with nontrivial constraints on either the TT or
the VS by properly modifying the underlying graphs. This is done primarily
to show the flexibility of our approach and its capacity to be adapted to the
different needs of different service providers, which is one of the defining
technical capabilities that makes MAIOR a global player in its market.

5.1 Complex lines

The first extension that we consider is that of a complex single line, which
has two sets of terminals A and B; each trip has the form either ⃗AiBj or
⃗BjAi for Ai ∈ A and Bj ∈ B. Thus, each direction of the line is actually

composed of more than one pattern, corresponding to different choices of
the terminals. Crucially, all the patterns have to share a common central
segment, where the main-stops are located, as depicted in Figure 5 for the
so-called “double Y” topology. Indeed, the headway for a direction is com-
puted as the time separating two consecutive trips i and j at the main-stop
running in that direction, irrespectively from the pattern they belong to, i.e.,
from the specific starting terminal in A and ending one in B. Accounting for
this case is actually simple enough provided that trips from different pairs
of terminals follow a regular scheme. Indeed, for a complex line, service
providers typically specify how the trips of the line alternate between differ-
ent pairs of terminals, for instance by a simple departure sequence scheme
σd and arrival sequence scheme σa, as illustrated in the following example.

Example 3. Consider the double Y topology, shown in Figure 5, with
departure scheme σd = (A1 , A2 ) and arrival scheme σa = (B1 , B1 , B2 ).
This means that trips must alternate first one vehicle departing from A1

and then one departing from A2, and a vehicle arriving in B2 after two
consecutive ones arriving in B1. Since the departure scheme has length
2, while the arrival scheme has length 3, the complete departure-arrival
sequence scheme σ = (A1-B1 , A2-B1 , A1-B2 , A2-B1 , A1-B1 , A2-B2 ) has
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length 6, and repeats indefinitely along all the planning horizon.

terminal A1

terminal A2

depot

terminal B1

terminal B2

Figure 5: “Double Y” complex single line.

Therefore, it is only necessary to modify the TT subproblem to account
for the fact that the trips have to follow the scheme σ. In fact, nodes of
GTT

d are trips, i.e., pairs of terminals; arcs can therefore be seen as having
the general form ( sn(i)-en(i) , sn(j)-en(j) ) (although, of course, the time
of the trip also plays a role). Ensuring that the chosen path follows the
right sequence basically only amounts at removing compatibility arcs be-
tween nodes that violate it, although they would be feasible in terms of the
corresponding headway. However, this would work on the original GTT

d only
if each trip type (oriented pair of terminals) appeared at most once in σ; yet,
as our example shows, this is not necessarily true. Hence, one also needs to
keep track of the position in σ of the current node ( sn(i)-en(i) ), in order
to construct the correct compatibility arcs. This can be done by replicating
it for each of its occurrences in σ, as the example below further illustrates.

Example 3 (continued). In our example, (A1-B1 ) appears twice in σ, so
we need to replicate all the nodes of this type twice to recognise whether it
is the first or the second occurrence of (A1-B1 ) in σ. The same holds for
(A2-B1 ). A slice of the corresponding modified compatibility graph GTT

d

is shown in Figure 6, where the duplicated nodes (trips) are highlighted
in red; the superscript indicates the position in the sequence. Note that,
for simplicity, we only drew the arcs from one time instant to the next
one, but the same arcs should be replicated for all pairs of (frequency-wise)
compatible time instants.

Of course, this comes at a cost of a possibly considerable increase in the
number of nodes of GTT

d , although the arcs do not grow quite as rapidly
because the construction is precisely aimed at removing those arcs that do
not follow the right order. However, the length of σ, and therefore the size
of GTT

d , may grow rather rapidly as |A| and |B|, and/or the complexity of
σd and σa, increase. Yet, there are not too many different complex line
topologies that appear in practice (the “double Y” being almost, but not
quite, the most complex that can reasonably happen), nor there is usually
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A1-B1
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A2-B1
(1)

A1-B1
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A2-B1
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A1-B1
(2)

A2-B2
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(2)

A1-B2

A2-B1
(1)

A2-B2

A1-B1
(1)

A2-B1
(2)

7:03 7:057:04

Figure 6: A slice of the modified GTT
d graph for the scheme σ.

reason to have particularly complex schemes σd and σa.
In all this, the VS model is completely unaffected. We will next present

an “orthogonal” modification that rather involves GV S only, leaving the
GTT

d unchanged.

5.2 Vehicle flow control

Public transport planners are often able to accurately estimate the num-
ber of vehicles required for different periods of the planning horizon, which
may or may not coincide with the time-windows defined in the previous sec-
tions. The number of vehicles required depends on the expected number of
passengers, the capacity of the vehicles and the frequency of service in the
given periods. As already mentioned earlier, vehicle capacity is not modeled
explicitly in the VS part, yet controlling the number of vehicles per time-
window is another way to take it into account. Indeed, these estimates can
be so accurate that the planner may want to fix the number of vehicles per
period on input. This is called Vehicle Flow Control (VFC) in MAIOR, and
it is relatively easy to do by modifying the graph GV S , in particular in its
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compatibility/time-space variant (cf. Section 4.2); indeed, as we already ob-
served, the capacity of specific arcs in GV S can be used to set a limit on the
number of vehicles, so it is not hard to bring this idea further and actually
fix the actual number of vehicles by, basically, fixing the flow on some arcs.
More specifically, for each of the periods h = 1, . . . , r, we define ϕ(h) to be
the number of vehicles to be fixed, and we add to NV S a local source node
O−

h and a local sink node O+
h . These nodes are given deficits that depend

on the number of vehicles estimated for the corresponding period and the
following/preceding period (with the right sign), as detailed below:

• for O−
1 , −ϕ(1), i.e., (minus) the desired number of vehicles for the first

period;

• for O−
h , −max{ 0 , ϕ(h)− ϕ(h− 1) }, for h = 2, . . . , r, i.e., (minus) the

difference between the number of vehicles circulating in period h and
those circulating in period h − 1 if this is positive, i.e., new vehicles
have to enter in period h;

• for O+
h , max{ 0 , ϕ(h)−ϕ(h+1) }, for h = 1, . . . , r−1, i.e., the difference

between the number of vehicles circulating in period h + 1 and those
circulating in period h if this is negative, i.e., vehicles have to leave
after the end of period h;

• for O+
r , ϕ(r), i.e., the desired number of vehicles for the last period.

This means that the VS sub-problem is no longer a circulation one, since it
has as many source/sink pairs as there are periods (the deficit of all other
nodes remains 0), and in fact the return time arc is also removed. Finally,
arcs (O−

i , i
−) and (i+, O+

h ) (with 0 cost and unitary capacity) are added for
all trips i belonging to period h. This construction is illustrated in Figure 7
for the same fragment of the (compatibility/time-space) graph GV S of Figure
4, assuming there are two periods 7:00–12:30 and 12:30–16:00 in input with
1 and 2 vehicles fixed, respectively.

A benefit of this construction is that the primary VS cost component
(i.e., the number of vehicles) is now fixed, since the number of vehicles is
so. Indeed, in GV S the cost was associated to the return time arc, which
has now disappeared. In practice, it has been observed that this may make
it somewhat easier to find good values for the weighting parameter α in the
objective function.

6 Solution Approach

Real-life MILP instances of ITTVS as defined in the previous section are
too hard to be solved directly using a general-purpose solver within the
time constraints dictated by the planners’ operational requirements (this
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Figure 7: Modified GV S graph with VFC

roughly means 15 minutes for simple lines and “a few hours” for complex
lines, depending on the complexity of the scheme). Therefore, a heuristic ap-
proach is needed. We now describe a matheuristic, called TTD (TimeTabling
Design), based on the solution of the continuous relaxation of (1)–(6) and
on a classic diving approach, that at each iteration fixes “some” trips and
progressively constructs a feasible ITTVS solution. The fixing is basically
greedy, in that decisions taken at one iteration are usually not changed in
subsequent ones, although a very limited amount of backtracking is allowed
when infeasibility of the choices is detected. The iterative process runs until
a complete integer solution is obtained, which basically means that for all
d ∈ D the corresponding πd forms a complete O−

d -O+
d path, or infeasibility

is detected that the backtracking is not able to resolve.
The two relevant technical aspects of the approach are how fixing is

performed, and how the solution of the continuous relaxation is computed;
these are basically orthogonal, and therefore are separately discussed.

6.1 Fixing strategy

The fixing strategy is based on the value of a continuous solution ( x̃ , ỹ =
[ ỹd ]d∈D ), irrespectively on how this has been computed. Fixing is clearly
the crucial aspect of a diving heuristic, and extensive experiments were
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necessary to find a fixing strategy that is both robust and efficient in practice.
The best performing fixing strategy among the ones we tested turned out
to be the so called V-fix one. On the outset, the idea is simple: to fix the
trips, we first sort them in descending order of the continuous solution value
( x̃ , ỹ ). However, note that, in our model, each trip i ∈ T is associated
to two continuous solution values: ỹi in the corresponding TT, and x̃(i−,i+)

in the VS. Which of the two is chosen depends on the particular stage the
fixing rule is in, as described below. Indeed, a crucial component for the
effectiveness of the fixing rule is to carefully restrict the set of trips that we
consider as candidates for being fixed depending on the previous history, as
we now detail. For simplicity, the description is limited to the simple single
line case, and we also assume to know that the very first trip has to start
from terminal A going towards B, rather than vice-versa, which is usually
quite clear to planners. However, the fixing rule can be extended to complex
single lines and beyond.

At the first iteration, when no trips are fixed, we select the direction
d = A⃗B, and we restrict the set of candidates to the trips in the forward
star (i.e., out-going arcs) of the corresponding dummy source node O−

d in
the corresponding TT subgraph GTT

d , ordering them in terms of the values
of the corresponding ỹdi . At the second iteration, with just one trip ī fixed,

we rather select the opposite direction d = B⃗A and we restrict the set of
candidates to the trips in the forward star of node ī+ in the VS graph,
i.e., the node representing the possible ways to chose an activity for the
vehicle having just performed trip i (an in-line compatible trip, an out-line
compatible trip, or a return to the depot), ordered by the corresponding
x̃(i−,i+) variable instead. These two initial fixings form a “V” in the time-
space graph used by transport planners to represent a timetable, whence
the name.

In the subsequent iterations, we restrict the set of candidates to the
union of the trips in both the forward star and the backward star in the
TT graphs of the trips that have been fixed, sorted in descending order
of the corresponding ỹi. We then proceed at fixing the one with highest
value, provided that a reasonable balance is kept between the number of
trips fixed for each direction. That is, if the difference is less than 20% we
allow selecting the trip to be fixed irrespectively of the direction d to which
it belongs, otherwise we only select trips for the direction with fewer fixings.
We sketch a very simple example to illustrate the idea of the V-fix strategy.

Example 4. Assume we have a simple line with terminals A and B. We
start our fixing with direction d = A⃗B and the corresponding TT graph
GTT

A⃗B
. Then, we consider the out-going arcs (O−

d , i) of the source node O−
d ,

denoted by (O−
d , 1), (O−

d , 2), (O−
d , 3), (O−

d , 4), (O−
d , 5). Each arc has an

associated ỹ (fractional) value: ỹ1 = 0.1, ỹ2 = 0.2, ỹ3 = 0.3, ỹ4 = 0.35,
ỹ5 = 0.05, respectively. We fix the trip with largest fractional value: trip
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4 in our example. Next, we move to the VS graph GV S and we consider
the out-going arcs (4+, j−) of the end-trip node 4+, denoted by (4+, 7−),
(4+, 8−), (4+, 9−) in our example (these can be either in-line or out-line
compatible arcs). Again, each arc has an associated x̃ (fractional) value:
x̃(4+,8−) = 0.3, x̃(4+,9−) = 0.5, x̃(4+,7−) = 0.2. We fix the trip with largest
fractional value: trip 9 in our example. These two fixings form the so-called
V-fix.

Note that, in order to further reduce the problem size, when we fix a trip
i to one (as belonging to the solution), we also fix to zero (as to not belonging
to the solution) the trips belonging to the “neighborhood” of i that would
violate the TT headway if they were selected, because they are “too close”
in time to i. After all these fixings, the problem may have become infeasible;
before confirming the fixing we check that this has not happened by solving
the corresponding TT and VS subproblems, and in case we backtrack on
the decision and move to the next candidate in the list. If the list becomes
empty, without any (locally) feasible fixing having been identified, we accept
failure and we exit from the heuristic (although this has never happened in
practice, after that the fixing rule has been properly tuned). For the sake
of completeness, we also mention two (now “deprecated”) fixing strategies
that we tested, but proved to be less effective than the one currently in use.

• Basic diving heuristic: the first fixing rule that we implemented. We
call it “basic” because the fixing is performed by selecting the trip
with largest (fractional) value in the current continuous solution ỹ
and considering all the trips as possible candidates. In other words,
this rule does not restrict the candidate trips to the out-going arcs of
the currently fixed ones.

• VS diving: this is similar to V-fix. The only difference is that, as the
name suggests, the fixing is guided by the VS continuous solution x̃
instead of the TT continuous solution ỹ.

6.2 Continuous Solution

We consider two ways to find a continuous solution for (1)–(6): a general-
purpose LP solver and a Lagrangian relaxation. In the former case, we
relax the integrality constraints (3) and solve the corresponding LP using
Clp (Coin-OR linear programming) [12], an open-source LP solver written
in C++. Implementing the fixing in this case is trivial by just changing the
bounds on the affected variables. Besides fixing to 1 the lower bound of
variables corresponding to trips that are chosen to be a part of the current
partial solution, we also fix to 0 the upper bound of variables representing
trips that cannot possibly be chosen together with that, as discussed above.

The alternative is to use Lagrangian techniques. This corresponds to
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defining the vector of Lagrangian multipliers λ = [λi ]i∈T associated to the
linking constraints (6), and solve the corresponding Lagrangian relaxation

P (λ) min
{
αcx+

∑
d∈D

cdyd+
∑
i∈T

λi

[ ∑
(n,m)∈B(i)

yd(i)n,m−xi−,i+

]
: (2)−(5)

}
.

Clearly, P (λ) actually consists of |D|+1 independent sub-problems, a TTd(λ)
for each d ∈ D and a single V S(λ), that can be solved separately, respec-
tively, as acyclic SPs and a MCF on the corresponding graphs GTT

d and
GV S , as discussed on the previous sections. Note that the integrality con-
straints (3) are not an issue since all the individual sub-problems have the
integrality property; thus, for any choice of λ, the corresponding Lagrangian
relaxation solution is integral.

It is well-known that for each choice of λ, P (λ) is a relaxation of ITTV S,
i.e., ν(P (λ)) ≤ ν(ITTV S) (ν(·) denoting the optimal value of an optimiza-
tion problem). To find the best possible Lagrangian relaxation, one then
has to solve the Lagrangian Dual, i.e., maximize the Lagrangian function
ν(P (λ)) over all λ ∈ R|T |. Even with the best possible choice λ∗ of the
Lagrangian multipliers, there is no guarantee that the penalty term in the
objective function will lead to a feasible integer solution in P (λ∗), i.e., one
that satisfies the linking constraints (6). However, it is well-known that the
Lagrangian Dual is equivalent to the convexified relaxation of the original
problem; since in our case all the subproblems have the integrality prop-
erty, this is actually the same as the continuous relaxation [21] of ITTVS,
as solved by the previous approach. Thus, the two approaches provide the
same lower bound, and thereby arguably continuous solution of “the same
quality”. However, this does not mean that the time required to find the
continuous solution is the same, and that the solutions themselves are nec-
essarily identical.

Both aspects (time and solution) obviously depend on the specific al-
gorithm used to solve the Lagrangian dual; in our case we are using an
implementation of the proximal Bundle approach already used with success
in other applications (e.g., [25, 24]). Besides finding the optimal Lagrangian
multipliers vector λ∗, the Bundle method also allows to explicitly construct
the optimal primal solution ( x̃ , ỹ ). Technically, this is done by collecting
the (integer, unfeasible) primal solutions generated at each iteration, out of
which the (continuous, feasible) ( x̃ , ỹ ) is generated via convex multipliers
that are automatically produced by the master problem solved at each itera-
tion. Although the exact details are well-known and can be found in [20, 21],
it can be useful to remark that while a feasible ( x̃ , ỹ ) is only produced at
the last iteration, the algorithm produces an unfeasible primal solution at
each iteration, and (roughly speaking) the “degree of unfeasibility” quickly
decreases as the algorithm proceeds. Clearly, for the purpose of driving the
fixing strategy, which is the only use of ( x̃ , ỹ ) in our setting, there is no
strong requirement that the solution be feasible. In this sense, our diving
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heuristic can be considered as well a Lagrangian heuristic, where the solu-
tions of the Lagrangian subproblems are used to guide the construction of a
feasible solution for the original problem; the use of the (not necessarily fea-
sible) “convexified” primal solution in this context has already been shown
to be effective in several applications [2]. All this allows us to explore the
trade-off between terminating the algorithm early, thereby settling for a less
“exact” ( x̃ , ỹ ) and lower bound, but gaining in solution time, or letting
it run to termination, thereby obtaining a solution ( x̃ , ỹ ) with the same
quality as that produced by Clp (albeit not necessarily exactly the same
one).

Besides the approach for (iteratively) generating the Lagrangian multi-
pliers λ, it is of course relevant how the subproblems are solved. For the TT
subproblems, an hand-made implementation of the classical acyclic Shortest
Path algorithm on the TT graphs GTT

d is used. As for the VS subproblem,
the general-purpose MCF solver MCFSimplex from the MCFClass project [33]
(based, as the name suggest, on the network simplex algorithm) has been
used.

A final, but important detail of the Lagrangian approach concerns how
fixing is enforced in the subproblems. This is nontrivial, as several prob-
lems for which polynomial algorithms exist, among which notably shortest
path ones, easily become NP-hard if specific features are required from the
solution. Fortunately, in our case this is not an issue. Indeed, for the TT
subproblems we can easily fix a trip (node) as necessarily belonging to the
chosen O−

d -O+
d path by exploiting the fact that GTT

d is acyclic: it is suffi-
cient to remove all the arcs in ATT

d overstepping it. Of course, fixing to zero
(removing) a trip is easily obtained by removing from ATT

d all arcs entering
it. As for the VS subproblem, fixing to 1 a trip arc (i−, i+) corresponds to
setting a deficit of ±1 (with appropriately chosen signs) on its end-nodes and
removing it, while fixing it to 0 just amounts at removing it (or, equivalently,
setting ui−,i+ = 0).

7 Testing

In this section we illustrate different aspects of the performances of our
approach on real-world instances.

7.1 Instance description

The tests have been performed on 12 real-world bus lines covering the city
center of 3 major Italian cities, among which Milan. Note the tests are
disjoint, i.e., each of the 12 lines is independent from the others. Indeed, as
already mentioned, interlining was not considered in our case study.

This data has been provided by the corresponding bus service providers,
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all MAIOR customers. All the tests are on single lines, albeit possibly “com-
plex” ones (cf. Section 5.1). Table 2 summarises the main characteristics
of the instances, that are of three different types: (i) simple (A-B) having
|N | = 2 terminals, (ii) complex “Y” (A-B1B2) with |N | = 3 terminals, and
(iii) complex “double-Y” (A1A2-B1B2) with |N | = 4 terminals. All simple
topologies and two of the “Y” topologies have no frequency schemes, one of
the “Y” topologies has |σ| = 4, and the “double-Y” one has |σ| = 6. Time is
discretized in minutes, and for each minute of the time horizon there is a pos-
sible trip i in T for each pattern. A typical time-horizon ranges roughly from
5:00 to 24:00, for a total of 1140 possible trips for each pattern. There are
usually around 9 time windows, or about one time window each two hours.
In Table 2 we report, for each line, the time horizon “T”, the number of
terminals “|N |”, the scheme length “|σ|”, and the average over the different

time-windows of ideal headways “Ih”, min/max dwell times “δhn/δ
h
n”, and

pull-in/out times “thn±”. Recall that there is no maximum dwell time for
the depot. The length of the lines, not reported in the table as it is not part
of the algorithm input, ranges from 4 to 16 Km, with an average of 11 Km.

instance T (hh:mm) |N | |σ| Ih (mm:ss) δhn (m) δ
h
n (m) thn± (m)

2Cap R1 05:30 24:00 2 1 11:00 3 10 20
2Cap R2 05:30 24:00 2 1 12:30 3 30 21
2Cap R3 05:00 24:00 2 1 12:00 3 10 20
2Cap F1 05:15 22:50 2 1 13:30 2 20 18
2Cap F2 05:50 20:40 2 1 23:00 2 10 10
2Cap F3 05:20 24:20 2 1 18:00 2 15 9
2Cap F4 07:00 20:25 2 1 09:00 2 10 17

3Cap F5 05:45 24:08 3 2 08:00 2 15 18
3Cap F6 06:34 20:53 3 2 07:30 2 10 18
3Cap F7 05:24 22:44 3 4 08:00 2 18 17
3Cap M1 05:57 20:31 3 2 11:00 2 13 13

4Cap F8 06:40 20:24 4 6 06:00 2 17 16

Table 2: Instance data.

Further insight on the data of the problem is provided by Table 3 and
Table 4, which report the size of the MILP model (1)–(6) for all instances. In
particular, we report the number of rows, columns and non-zeros (“#rows”,
“#cols”, “#nnz”, respectively) for the whole ITTVS models, as well as the
number of nodes (“n”) and arcs (“m”) of the graph models GTT

d for the two
timetabling sub-problems, and GV S for the vehicle scheduling sub-problem.
The two different Tables report data respectively for the “base” model of
Section 3 (with the extension to “complex” lines described in Section 5.1),
and for that with VFC of Section 5.2. An even more detailed breakdown of
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the instance data is deferred until Appendix 1.

IITVS MILP GV S GTT
A⃗B

GTT
B⃗A

instance #cols #rows #nnz n m n m n m
2Cap R1 61553 8886 163030 4442 23837 1112 18575 1112 19141
2Cap R2 103820 8886 247613 4442 66055 1112 18960 1112 18805
2Cap R3 59709 9010 157268 4504 24098 1113 19094 1142 16517
2Cap F1 90228 8254 229401 4126 43333 1008 22566 1058 24329
2Cap F2 60300 6894 162279 3446 20331 863 20064 863 19905
2Cap F3 100995 8934 268311 4466 36894 1108 31471 1128 32630
2Cap F4 32254 6382 79746 3190 18598 790 6701 808 6955
3Cap F5 240651 17526 623394 8762 102893 2208 70116 2176 67642
3Cap F6 123296 14346 318756 7172 54557 1785 36287 1804 32452
3Cap F7 509489 20878 1437921 8350 94559 4174 209236 4180 205694
3Cap M1 141127 13698 366340 6870 60359 1646 25428 1770 55340
4Cap F8 778335 30368 2130023 13498 211347 5018 285804 5104 281184

Table 3: Model sizes, without vehicle flow control.

IITVS MILP GV S GTT
A⃗B

GTT
B⃗A

instance #cols #rows #nnz n m n m n m
2Cap R1 68984 8904 188402 4460 20758 1112 24113 1112 24113
2Cap R2 109544 8906 267310 4462 63530 1112 23007 1112 23007
2Cap R3 65524 9026 177707 4520 21104 1113 24113 1142 20307
2Cap F1 191054 8282 533783 4154 41429 1008 63933 1058 85692
2Cap F2 61547 6900 169282 3452 17069 863 21813 863 22665
2Cap F3 170705 8954 480455 4486 33880 1108 68332 1128 68493
2Cap F4 30590 6402 76988 3210 16364 790 7032 808 7194
3Cap F5 421665 17540 1174016 8776 95313 2208 164216 2176 162136
3Cap F6 128912 14360 340374 7186 49787 1785 44293 1804 34832
3Cap F7 975195 20904 2838761 8376 90837 4174 456132 4180 428226
3Cap M1 135527 13706 355576 6878 54323 1646 25428 1770 55776
4Cap F8 815978 30378 2252133 13508 202166 5018 322596 5104 291216

Table 4: Model sizes, with vehicle flow control.

7.2 Computational environment

We will present results obtained with two versions of our heuristic approach,
as described in Section 6: “h-B” (approximately) solves the Lagrangian dual
using the Bundle method, while “h-C” solves the continuous relaxation of
(1)–(6) using the open-source LP solver Clp. We will also compare these
results with those obtained by directly applying the state-of-the-art, com-
mercial MILP solver Cplex 12.7 on model (1)–(6). All the experiments
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have been performed on a PC with a 1.9 Ghz Intel Xeon (R) E5-2420 pro-
cessor. For the LP relaxations of “h-C” we used the open-source Clp solver
included in Cbc-2.9.8. The Bundle method was implemented in the Bundle
solver, a C++ code developed by the second author over the years that has
been repeatedly shown to be competitive for the solution of Lagrangian du-
als of integer programs [25, 23], in particular with multicommodity structure
as in this case [22, 13, 7, 24].

All the solvers were finely tuned by performing extensive experiments in
order to find a good trade-off between solution quality and running time.
In particular, the parameters of Cplex were all set to their default values
save for CPXPARAM Emphasis MIP = 1 and CPXPARAM MIP Strategy LBHeur

= 1. For the Clp solver, we used the barrier method at the first iteration, and
the dual simplex in the subsequent ones. As for the Bundle solver, the most
important parameter is the maximum number of iterations, which should be
large enough to produce good quality solutions, but not too large in order
to avoid to excessively increase the running time; the value providing the
best compromise has been experimentally determined.

7.3 Results without vehicle flow control

We first report results for the unabridged version of our matheuristic, i.e.,
without VFC (but, necessarily, with the handling of “complex” lines). In
Table 5 we compare the performance of the two versions, ‘h-B” and “h-C’
in terms of: (i) lower bounds obtained at the very first iteration, before
any fixing is done (Clp computes the exact optimal value of the continuous
relaxation of (1)–(6), whereas the Bundle only computes a lower approxi-
mation due to being stopped early); (ii) upper bounds (value of the feasible
ITTVS solution produced), and (iii) solution time (in minutes). To improve
readability, we often report the percentage difference between two values X
vs Y , denoted by ϕ%(X,Y ), computed as ϕ%(X,Y ) = (X − Y )/Y × 100.

Table 5 shows that h-C is generally faster than h-B, apart from the last
three (larger, and more difficult) instances. The lower bounds computed
by the Lagrangian approach are uniformly (and sometimes consistently)
weaker, for two reasons: the maximum limit on the number of iterations of
the Bundle algorithm, and the fact that Clp is used from within Cbc, which
is a MILP solver, which generates cutting planes to strengthen the contin-
uous relaxation of the MILP (1)–(6). However, the quality of the feasible
ITTVS solutions found by h-B is usually better, apart from the last three
instances. The result may seem counter-intuitive, but it has been shown in
other applications [2, 25, 23] that the ( x̃ , ỹ ) solution computed by the La-
grangian approach, although not feasible, is often effective for constructing
feasible solutions, possibly even more so than the standard continuous relax-
ation solution. The fact that this does not happen with the largest instances
may be due to the iteration limit for the Bundle algorithm being uniform:
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h-C h-B h-B vs. h-C
instance time time time ϕ% LB ϕ% UB ϕ%

2Cap R1 6 28 394 -4.28 -3.53
2Cap R2 13 36 168 -2.64 -5.81
2Cap R3 8 28 249 -6.76 -0.93
2Cap F1 10 23 124 -5.07 -2.31
2Cap F2 3 6 86 -5.57 -0.41
2Cap F3 13 19 49 -9.75 -30.17
2Cap F4 2 16 842 -2.72 -4.64

3Cap F5 116 172 49 -18.32 -4.39
3Cap F6 47 101 115 -2.56 -3.58
3Cap F7 628 195 -69 -6.34 10.60
3Cap M1 66 53 -20 -4.01 0.46

4Cap F8 2410 438 -82 -7.96 4.37

Table 5: h-B vs. h-C, without vehicle flow control

possibly, on larger instances more iterations are needed to compute primal
solutions of appropriate quality. Indeed, h-B being faster than h-C precisely
in these instances illustrates the nontrivial trade-off between solution time
and solution quality.

Next, in Table 6, we asses the performance of our heuristics in terms
of solution “quality”, i.e., comparing the value of the feasible solution it
finds against: (i) the solution constructed manually, out of experience, by
the expert bus planners at the service providers (“Exp”), and (ii) the best
solution found by Cplex directly ran on the full MILP formulation (1)–
(6) in “comparable” time. More precisely, we define the “BTS” (best time
solver) for each instance as the fastest (hence, not necessarily more accurate)
between h-B and h-C. Then, with BT (best time) the corresponding total
running time (ranging from a few minutes to 6 hours), we set the time
limit for Cplex to BT (“C*1”), 2BT (“C*2”) and 4BT (“C*4”). An entry
“–” means that Cplex was not able to find any feasible solution within
the time limit. The last three columns (“g*-”) show Cplex integrality gaps
(ϕ%(UB,LB)) at termination for the three time limits considered.

The table shows that our heuristics find much better solutions than the
ones obtained manually. For smaller instances, and allowing much longer
times, CPLEX sometimes finds better solutions, but in general the heuris-
tic approach is quite competitive, especially considering the many cases in
which Cplex could not find any feasible solution within the time limit. In
particular, for complex lines, a direct solution of the MILP formulation, even
with a state-of-the-art MILP solver like Cplex, is never competitive. As a
testament of the difficulty of solving the model, even allowing far larger run-
ning times Cplex never even gets close to solving the problem to anything
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ITTVS sol. ϕ%: vs. BTS Cplex gap ϕ%(UB,LB)
instance BTS Exp C*1 C*2 C*4 g*1 g*2 g*4
2Cap R1 h-C 117.93 – – 4.60 – – 50.79
2Cap R2 h-C 28.84 1863 0.75 0.75 3488 84 83.11
2Cap R3 h-C 35.35 1488 1488.69 0.71 2290 2290 51.51
2Cap F1 h-C 202.99 3050 2.06 -1.50 5021 66 60.13
2Cap F2 h-C 51.78 1102 885.69 25.72 1539 1243 71.32
2Cap F3 h-C 158.86 5338 908.09 -16.23 12508 2237 94.20
2Cap F4 h-C 19.04 – -7.88 -7.88 – 389 38.84
3Cap F5 h-C 252.98 – 48.84 48.61 – 499 486.92
3Cap F6 h-C 81.38 – 19.61 19.61 – 93 92.75
3Cap F7 h-B 63.53 – – – – – –
3Cap M1 h-B 16.32 – – 6.11 – – 153.24
4Cap F8 h-B 61.55 – – – – – –

Table 6: Expert and Cplex solutions vs. fastest heuristic

resembling optimality, as the huge final gaps show.
Arguably, figuring out what the difference in objective function value

actually means in terms of the transportation setting is somewhat hard.
To help in this, in Table 7 we report the comparison between the solutions
obtained by our matheuristic and the expert-provided ones in terms of three
indicators:

1. ρ% is a frequency regularity index, representing the average deviation
(in minutes) with respect to the ideal headway (TT objective), ex-
pressed as a percentage of the ideal headway;

2. #v is the number of vehicles used (primary VS cost);

3. w is the extra waiting time at the terminals (in minutes) with respect
to the minimum waiting time required (secondary VS cost).

We also add the total number of trips (#c) performed in the solution; al-
though this is not directly a part of the objective function, it is an interesting
operational information.

The results paint a quite favourable picture of our heuristics. Most often
than not, the provided solution is just better when measured along all op-
erationally significant measures. Sometimes the trade-off between the two
objective functions shows off; for instance, in the largest 4Cap F8 a slight
worsening in the regularity index is paid off by a significant improvement
of the waiting time, and one vehicle less. Only in the (small) 2Cap F2 our
heuristics perform somehow worse that the manual solution, requiring one
vehicle more to yield similar results in the other measures. It should also be
remarked that the expert solutions may be taking into account some aspects
that our model does not consider, such as synchronization with other lines.
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Exp BTS
instance w #c ρ% #v w #c ρ% #v
2Cap R1 475 189 8.99 16 183 187 3.78 16
2Cap R2 488 176 2.29 16 272 174 5.84 15
2Cap R3 228 186 5.91 17 225 185 4.20 18
2Cap F1 394 138 14.74 11 146 136 3.47 9
2Cap F2 169 76 2.57 3 96 76 2.35 4
2Cap F3 408 119 12.53 7 128 122 3.11 6
2Cap F4 98 196 3.66 9 116 194 2.87 9
3Cap F5 598 262 42.10 8 497 262 7.53 7
3Cap F6 393 269 7.88 17 136 265 5.74 16
3Cap F7 574 282 16.47 24 411 274 10.02 22
3Cap M1 393 168 2.65 9 206 168 3.56 9
4Cap F8 1085 279 6.10 21 497 281 8.73 20

Table 7: Manual vs. fastest heuristic

However, what is important is that the solutions are of comparable quality
(if not better) than those obtained manually. The role of our model in the
actual Decision Support System that MAIOR provides to its customers is
to automatically suggest solutions that can be taken as a good basis for the
decision, possibly after having been manually modified. Thus, besides the
actual measures as reported in the Table, what is perhaps most important
to us has been having had the valuable support from experts in MAIOR,
who regularly work with customers on these issues and therefore have a deep
knowledge of the planners’ preferences and objectives. They have confirmed
that the solutions produced by TTD are indeed of comparable quality, and
often significantly better, than those usually employed in operations. Fur-
ther insight on the operational quality of the obtained solutions is provided
in Appendix 2.

Of course, whenever a bi-objective problem is solved, a crucial issue is
that of providing the decision-maker with easy and consistent ways of in-
fluencing the solution process in order to provide solutions with the desired
trade-off between the two objectives. In our case, this is possible in several
ways. Obviously, one can tweak the values of the scaling constants (primar-
ily, but not only, α). Another one, specifically required by the planners, is
the Vehicle Flow Control of Section 5.2, whose results are analysed next.

7.4 Results with vehicle flow control

We now analyse the performance of our TTD heuristic when the number of
vehicles for each period is fixed on input (VFC), as described in Subsection
5.2. We consider the same set of instances used for the first case study (Table
2), the only difference being the additional information on the number of
vehicles allowed to pull-in and pull-out in each time period. In Table 8 we
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compare the performance of the two heuristics in the same way as in Table
5, in Table 9 we asses the performance of our heuristic in terms of solution
quality comparing with manual and Cplex solutions, as in Table 6 and,
finally, in Table 10 we compare the “operational” quality of the solutions,
as in Table 7.

h-C h-B h-B vs. h-C
instance time time time ϕ% LB ϕ% UB ϕ%

2Cap R1 3 18 505.60 -0.50 0.01
2Cap R2 6 38 485.59 -0.17 0.68
2Cap R3 2 32 1605.99 -0.12 0.06
2Cap F1 10 10 1.28 -0.52 -1.44
2Cap F2 2 1 -38.61 0.00 0.00
2Cap F3 8 10 29.78 -0.55 -0.25
2Cap F4 1 21 1943.34 -0.11 0.08

3Cap F5 239 305 27.44 -4.11 1.41
3Cap F6 92 153 66.49 -0.34 0.14
3Cap F7 2354 349 -85.18 -2.21 -1.18
3Cap M1 23 57 142.39 -0.27 0.05

4Cap F8 5592 1044 -81.33 -0.60 0.02

Table 8: h-B vs. h-C, with VFC

ITTVS sol. ϕ%: vs. BTS Cplex gap ϕ%(UB,LB)
instance BTS Exp C*1 C*2 C*4 g*1 g*2 g*4
2Cap R1 h-C 5.84 – 0.00 0.00 – 0.00 0.00
2Cap R2 h-C 5.63 – – -0.03 – – 0.01
2Cap R3 h-C 2.40 – – – – – –
2Cap F1 h-C 8.61 – -2.81 -2.83 – 0.20 0.17
2Cap F2 h-B 6.53 – – 0.00 – – 0.00
2Cap F3 h-C 9.39 – -0.36 -0.36 – 0.00 0.00
2Cap F4 h-C 2.59 – -0.14 -0.14 – 0.00 0.00
3Cap F5 h-C 7.79 – – -2.13 – – 3.97
3Cap F6 h-C 2.53 – – 50.34 – – 52.85
3Cap F7 h-B 9.03 – – – – – –
3Cap M1 h-C 4.92 – – – – – –
4Cap F8 h-B 4.38 – – – – – –

Table 9: Manual and Cplex solutions vs. fastest heuristic, with VFC

Regarding the comparison between h-B and h-C, the same trends ap-
parent in the previous results also show off here, i.e., the former is generally
slower except on some complex lines, Lagrangian lower bounds are rather
weaker, but its solutions are generally better. Yet, the difference in perfor-
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Exp BTS with VFC
instance w #c ρ% #v w #c ρ% #v
2Cap R1 475 189 8.99 16 59 200 12.77 16
2Cap R2 488 176 2.29 16 76 188 4.35 16
2Cap R3 228 186 5.91 17 96 190 6.49 17
2Cap F1 394 138 14.74 11 127 142 14.46 11
2Cap F2 169 76 2.57 3 21 81 2.90 3
2Cap F3 408 119 12.53 7 49 130 11.18 7
2Cap F4 98 196 3.66 9 29 201 4.47 9
3Cap F5 598 262 42.10 8 375 272 75.00 8
3Cap F6 393 269 7.88 17 124 273 9.64 17
3Cap F7 574 282 16.47 24 374 284 33.75 24
3Cap M1 393 168 2.65 9 47 176 4.76 9
4Cap F8 1085 279 6.10 21 437 292 19.54 21

Table 10: Manual vs. fastest heuristic, with VFC

mance is considerably less marked, perhaps indicating that VFC constrains
much more tightly the set of feasible solutions to the problem, preventing
the heuristics to construct much better (or much worse) solutions to one an-
other. Similarly, the comparison with Cplex and the manual solution paints
a similar picture, except that the difference in solution quality is far less
pronounced. Even when, given much longer running time, Cplex can find
better solutions than the heuristics, the gain is rather small; again, Cplex
often fails to find solutions at all, especially for complex lines. Thus, these
results confirm that whenever the complexity of the problem increases, a
heuristic approach is crucial as even state-of-the-art MILP solvers are not
competitive. Still, the heuristics provide better solutions than the manual
approach, to the tune of 2-10%; the gain is not very large, but consistent
throughout the test set, indicating that the approach can reliably relieve
planners with tedious and repetitive handwork. Furthermore, the detailed
transportation data of Table 10 shows that the solutions hit a considerably
different trade-off w.r.t. those of the non-VFC case: with the same number
of vehicles (obviously, to make the comparison fair), the heuristic schedules
significantly more trips, resulting in significantly decreased waiting time (in
some cases by about one order of magnitude) at the cost of a significantly
decreased regularity (in some cases by a factor of three or more). Yet, the
solutions have been deemed to be fully satisfactory by the experts. This
shows that our approach is capable of allowing the planners to influence
the trade-off between the two aspects of the problem (objective function) in
several ways, while still producing solutions that are operationally useful.

7.5 Further analysis

In this section we report the results of further analysis for our case studies.
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In particular, we report data that shows the “effect” of integration with
respect to solutions where either only the timetabling or only the vehicle
scheduling objective function is optimized, and we analyse the performance
of our matheuristic on reduced test cases (derived from the original ones),
that can be solved by Cplex at optimality.

7.5.1 “Zero-TT” vs “Zero-VS”

Here we report the results of a simple experiment aimed at giving a sense of
the available trade-off between the two objective functions. In Table 11 we
report on the results obtained by running our matheuristic (without VFC)
with three different configurations of the costs: the standard one of Section
7.3, the “zero TT” one where the timetabling regularity objective term is
almost zeroed out (i.e., α is taken “very large”), and the ‘zero VS” one
where VS costs objective term is almost zeroed out (i.e., α is taken “very
small”). Clearly, it would make no sense to compare the objective function
values of our solutions; instead, we compare the “operational” quality of the
solutions with the same parameters as in Table 7 and Table 10.

“zero TT” “zero VS” BTS
instance w #c ρ% #v w #c ρ% #v w #c ρ% #v
2Cap R1 2 153 32.41 6 639 190 2.64 48 183 187 3.78 16
2Cap R2 2 143 29.70 7 1108 176 0.10 18 272 174 5.84 15
2Cap R3 3 145 39.27 7 522 187 0.01 56 225 185 4.20 18
2Cap F1 7 88 50.90 5 961 140 0.23 14 146 136 3.47 9
2Cap F2 0 77 14.75 3 128 75 0.77 47 96 76 2.35 4
2Cap F3 5 98 19.90 4 405 120 0.15 22 128 122 3.11 6
2Cap F4 1 152 19.60 5 728 193 0.08 16 116 194 2.87 9
3Cap F5 99 193 44.32 6 1211 268 0.13 22 497 262 7.53 7
3Cap F6 26 190 29.99 11 1156 265 0.47 44 136 265 5.74 16
3Cap F7 135 241 19.33 20 1297 277 0.12 33 411 274 10.02 22
3Cap M1 30 170 9.38 9 640 169 0.49 47 206 168 3.56 9
4Cap F8 246 228 35.15 15 1703 273 0.36 25 497 281 8.73 20

Table 11: “zero TT”, “zero VS”, and “normal” solutions

The results clearly illustrate the very substantial trade-off between the
two measures. By entirely focussing on the service provider’s objective (the
“zero TT” case) a drastic reduction on the number of vehicles can be ob-
tained, but at the cost of a very poor regularity, i.e., very large deviations
from the ideal headway. On the other hand, insisting on an (almost) periodic
timetable where regularity is (almost) never violated (the “zero VS”) incurs
in a much higher operating cost with respect to both the number of vehicles
(primary VS objective) and the waiting times (secondary objective). The
solutions of our matheuristic (BTS) indeed manage to strike a balance be-
tween the two contrasting objectives, leading to solutions whose indicators
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are kind of “midway” between the two extremes.

7.5.2 Reduced test cases

The real-world ITTVS instances considered in the previous sections are too
large to be solved by Cplex at optimality. To get a better grasp of what
kind of solution quality improvements we could still obtain by improving our
heuristics, in Table 12 we consider 6 instances obtained from the original
two-terminal simple line ones by reducing the time-horizon, so that they can
be solved by Cplex at optimality. Each instance corresponds having deleted
the second part of the afternoon, roughly from about 17:00 on, from the
original one; details differ slightly for each in order to have the operation
compatible with the original time windows, but in general each reduced
instance corresponds to about 60% of the original one. For these we report
the percentage difference ϕ% of the corresponding objective function values
(column “o.f.”) between the optimal (integer) solution computed by Cplex

and the solution provided by BTS. We also put these in context by showing
the parameters describing the solution from a transportation viewpoint as
in Table 7, Table 10 and Table 11. Finally we report the running time of the
two approaches (in seconds). The results show that there is indeed further
scope to improve the effectiveness of our heuristics: solutions can be found
that can improve the objective value by up to about 10%, which may lead to
visible improvements from the practical viewpoint, such as using one vehicle
less. In general, however, solution quality can be deemed to be comparable.
Furthermore, better-quality solutions come at the cost—at least when using
a general-purpose (albeit state-of-the-art) solver—of more than two orders
of magnitude more time, which clearly makes the approach unusable in
practice. Meanwhile, the solutions provided by BTS in reasonable time are
still reasonably good-quality ones.

ϕ% Cplex BTS
instance o.f. w #c ρ% #v time w #c ρ% #v time
2Cap R1* -7.30 287 113 2.21 11 25167 323 114 2.03 12 69
2Cap R3* -8.16 340 118 1.60 13 4821 357 118 2.05 13 59
2Cap F1* -4.05 258 99 3.87 9 6339 274 99 3.92 9 67
2Cap F2* -0.33 237 69 0.96 8 14639 234 69 1.05 8 85
2Cap F3* -8.87 187 86 1.66 6 4401 229 86 1.35 7 100
2Cap F4* -9.24 220 122 2.39 8 6544 274 122 1.60 9 35

Table 12: Cplex vs. fastest heuristic on reduced instances
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8 Conclusions

We have presented a new model for integrated timetabling and vehicle
scheduling which, given a set of possible trips and the desired headways, pro-
duces a timetable and a set of vehicle schedules with the best (user-defined)
compromise between service quality (deviation from the ideal frequency of
service) and service cost (number and “cost” of vehicles used). This is a
problem that service planners in real-world public transportation compa-
nies face day-to-day, and that is usually manually solved through labor and
experience.

Our model is based on combining compatibility graphs representations
of both the TT subproblems (minimizing deviation from the ideal frequency
of service) and the VS subproblem (finding a minimal-cost vehicle schedule),
although for the latter a hybrid compatibility/time-space graph formulation
is usually preferable. The model is quite flexible and can handle further
requirements suggested by MAIOR customers, namely complex lines and
vehicle flow control. The corresponding MILP formulation is a large-scale
multicommodity-type integer program, which is hard to solve in short time
with standard techniques. We have therefore proposed a matheuristic ap-
proach, that at each iteration solves the continuous relaxation of the prob-
lem, either via a general-purpose LP solver or via Lagrangian techniques,
and uses the resulting information to drive a diving heuristic.

Testing the approach on real-world instances of the service providers for
three major Italian cities has shown that the heuristic consistently and reli-
ably provide solution of comparable—and most often better—quality than
those constructed manually by experts, thereby indicating that the model
can be used to aid even experienced planners in either obtaining better
solutions, or obtaining them faster and with less effort, or both. Also, the
heuristic is quite competitive w.r.t. the direct use of state-of-the-art, general-
purpose solvers like Cplex.

The proposed approach lends itself to different uses in an actual oper-
ating environment. Most MAIOR customers that have tested it use it in a
single-line setting like the one envisioned in Section 7. This makes sense in
particular for high-intensity lines, possibly using dedicated vehicles (double-
length buses, metros, trams, . . . ), whereby interlining is necessarily either
absent or very reduced. However, the approach can also be used in the stan-
dard sequential planning process only to construct the timetables, with the
knowledge that a “good” underlying VS then exists for each single (direction
of each) line, which can then be improved by a global, inter-line VS step.
Indeed, the vehicle schedules produced by the approach can be passed in in-
put to the inter-line VS solver (which is often based on column generation),
ensuring that the quality of the VS for the lines where the approach has
been used can only improve, exploiting interlining, w.r.t. what is possible
considering each line separately.
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Actually, it would conceivably be possible to run the model for the whole
of a city planning, i.e., for all the lines at the same time: the corresponding
problem would however be huge, and making this feasible from the compu-
tational viewpoint requires further research.

Also, it could be possible to incorporate in the model other features
suggested by MAIOR customers, e.g. ones where specific constraints are
imposed on the vehicle schedules to ease the construction of feasible crew
duties in the last planning phase. Of course, this is always possible by
integrating a full-blown constrained VS model in the ITTVS, but this comes
at a potentially high computational cost. Alternatives might be possible
where the required structures are instead modeled by clever manipulations
of the graphs structure, akin to those already illustrated in the paper.
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Beńıtez, and M. Ali, editors, Trends in Applied Intelligent Systems,
volume 6096 of Lecture notes on computer science, pages 21–30. 2007.

[28] V. Guihaire and J.K. Hao. Transit network timetabling and vehcile
assignment for regulating authorities. Computers and Industrial Engi-
neering, 59(1):16–23, 2010.

[29] O.J. Ibarra-Rojas, R. Giesen, and Y.A. Rios-Solis. An integrated ap-
proach for timetabling and vehicle scheduling problems to analyze the
trade-off between level of service and operating costs of transit net-
works. Transportation Research Part B: Methodological, 70:35–46, 2014.

[30] N. Kliewer, T. Mellouli, and L.A. Shul. A time-space network based
exact optimization model for multi-depot bus scheduling. European
Journal of Operational Research, 175(1):1616–1627, 2005.

[31] T. Liu and A. Ceder. Integrated public transport timetable synchroniza-
tion and vehicle scheduling with demand assignment: A bi-objective bi-
level model using deficit function approach. Transportation Research
Procedia, 23:341 – 361, 2017.

[32] T. Liu, A. Ceder, and S. Chowdhury. Integrated public transport
timetable synchronization with vehicle scheduling. Transportmetrica
A: Transport Science, 13(10):932–954, 2017.

[33] The mcfclass project, http://www.di.unipi.it/optimize/software/mcf.html.
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Appendix 1: Detailed Instance Information

In this Appendix we provide more detailed information about the instances,
trying to provide a better sense of the variability of the data. In particular,
Table 13 describes the different time windows in which the planning horizon
is subdivided. For each time window we report the right extreme (“T”)
of the corresponding interval; the first “empty” window is only meant to
indicate where the first “real” time window starts. For the TT time windows
we report the minimum (“Ih”), ideal (“Ih”) and maximum (“I

h
”) headway.

Note that different data is reported for the two directions (TT subproblems)
A⃗B and B⃗A, as both the number of time windows, their position and the
headways are different for each, as required by the planners. We also report
the time windows of the VS subproblem with the VFC feature, with the
corresponding required number of vehicles (“#v”); again, the number and
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placement of these is different from the TT ones. For the sake of space, we
only present details on four instances out of the twelve considered in the
case studies, since the others present a similar pattern. The data shows
the flexibility of the model, that allows the planners to make detailed and
specific requirements to both the desired headways–for each direction–and
the VS problem separately.

Appendix 2: TTD Screenshots

To provide further insight on the value of allowing “small” deviations from a
completely periodic timetable, we report in Figures 8 and 9 two screenshots
taken from the actual graphical interface of MAIOR software for the TTD

module implementing the approach described in this paper. These represent
timetabling corresponding to the “peak-hour” trips for the simple line in-
stance 2Cap R2, whose details are reported in Table 13, with two terminals
(“CBN” and “MGI”), and an ideal headway of 15 minutes in both direc-
tions, under the form of the typical time-space charts familiar to planners,
where each trip is a green line. The main stop corresponds to the departure
terminal of each of the two directions. The small number on the right side
of the endpoint of each trip is the actual headway with respect to the pre-
vious trip, the length of the larger base of the trapezoid represents the total
waiting time at the corresponding terminal, and the length of the smaller
base represents the extra waiting time at the terminal with respect to the
minimum required; hence, if the trapezoid reduces to a triangle, no extra
waiting time was used, and therefore no secondary cost is incurred. Figure
9 represents (a slice of) a solution where a fully regular (periodic) service
was imposed, i.e., all the actual headways correspond to the ideal headway
of 15 minutes, while Figure 8 shows (the same slice of) a solution calculated
by our algorithm. It is apparent from the two pictures that a fully regu-
lar service comes at a price, as the (extra) waiting times at the terminals
are fairly large in Figure 9. On the other hand, the solution in Figure 8 is
not perfectly regular (some trips have 16 minutes headway instead of 15),
but the corresponding extra waiting times are far smaller; moreover, it uses
only 8 vehicles, while the perfectly regular solution requires 9 vehicles. This
shows that carefully placed minor deviations from the ideal headway, likely
irrelevant to users, can lead to a much better usage of the resources (i.e.,
number of vehicles and waiting times). It is also clear how manually finding
such a carefully crafted solution can be tedious and time consuming, even
for an experienced planner, while our approach produces it automatically.
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Figure 8: Screenshot of a TTD solution at peak hours.

Figure 9: Screenshot of a “completely regular” solution at peak hours.

47



TT-A⃗B TT-B⃗A VS with VFC

instance T Ih Ih I
h

T Ih Ih I
h

T #v

2Cap R1

5:30 0 0 0 5:30 0 0 0 5:30 0
5:51 480 960 1500 6:55 390 780 1500 6:00 4
6:52 390 780 1500 9:57 270 540 1080 7:00 6
8:57 300 600 1200 12:26 420 840 1500 10:35 12
9:48 240 480 960 15:48 390 780 1500 17:15 8
13:12 420 840 1500 16:56 420 840 1500 20:35 11
16:56 390 780 1500 19:55 270 540 1080 21:30 7
20:01 270 540 1080 20:52 360 720 1440 22:20 5
20:59 360 720 1440 21:44 420 840 1500 23:50 3
24:00 420 840 1500 24:00 570 1140 1500 24:40 4

2Cap R2

5:30 0 0 0 5:30 0 0 0 5:30 0
6:22 450 900 1500 6:23 480 960 1500 6:25 5
9:59 300 600 1200 9:57 300 600 1200 6:55 7
11:55 360 720 1440 11:53 360 720 1440 8:15 11
16:26 450 900 1500 16:20 450 900 1500 10:50 12
18:25 330 660 1320 18:27 330 660 1320 12:40 10
19:54 300 600 1200 19:51 300 600 1200 16:35 8
21:04 420 840 1500 20:42 420 840 1500 20:45 12
24:00 570 1140 1500 22:23 480 960 1500 21:35 7
39:59 0 0 0 24:00 600 1200 1500 23:05 5

- - - - - - - - 24:40 4
- - - - - - - - 39:59 0

3Cap F7

5:23 0 0 0 5:27 0 0 0 5:00 0
6:23 300 600 1200 6:10 600 1200 1800 5:40 3
10:20 180 360 720 7:56 150 300 600 6:05 8
13:42 210 420 840 10:38 180 360 720 6:55 19
15:59 240 480 960 11:34 210 420 840 10:55 21
17:00 270 540 1080 12:35 180 360 720 13:35 19
20:15 210 420 840 13:29 210 420 840 16:05 16
20:38 270 540 1080 16:23 240 480 960 17:10 17
22:44 540 1080 1680 20:06 210 420 840 20:20 19

- - - - 20:18 270 540 1080 21:00 14
- - - - 22:25 420 840 1800 21:30 9
- - - - - - - - 22:40 6
- - - - 39:59 0 0 0 23:30 3

4Cap F8

6:54 0 0 0 6:40 0 0 0 6:20 0
8:02 150 300 660 6:48 120 240 480 7:00 15
9:44 180 360 720 6:58 150 300 600 13:10 21
10:08 150 300 600 7:25 180 360 720 18:25 20
12:15 180 360 720 7:38 150 300 600 20:00 19
12:51 150 300 600 18:52 180 360 720 20:51 13
19:22 180 360 720 19:54 210 420 720 - -
19:46 210 420 720 20:01 270 540 720 - -
20:07 240 480 720 20:20 330 660 720 - -
20:24 300 600 720 - - - - - -

Table 13: More detailed instances description
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