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Abstract One of the foremost difficulties in solving Mixed-Integer Nonlinear Programs, ei-
ther with exact or heuristic methods, is to find a feasible point. We address this issue with a
new feasibility pump algorithm tailored for nonconvex Mixed-Integer Nonlinear Programs.
Feasibility pumps are algorithms that iterate between solving a continuous relaxation and a
mixed-integer relaxation of the original problems. Such approaches currently exist in the lit-
erature for Mixed-Integer Linear Programs and convex Mixed-Integer Nonlinear Programs:
both cases exhibit the distinctive property that the continuous relaxation can be solved in
polynomial time. In nonconvex Mixed-Integer Nonlinear Programming such a property does
not hold, and therefore special care has to be exercised in order to allow feasibility pump
algorithms to rely only on local optima of the continuous relaxation. Based on a new, high
level view of feasibility pump algorithms as a special case of the well-known successive
projection method, we show that many possible different variants of the approach can be de-
veloped, depending on how several different (orthogonal) implementation choices are taken.
A remarkable twist of feasibility pump algorithms is that, unlike most previous successive
projection methods from the literature, projection is “naturally” taken in two different norms
in the two different subproblems. To cope with this issue while retaining the local conver-
gence properties of standard successive projection methods we propose the introduction
of appropriate norm constraints in the subproblems; these actually seem to significantly im-
prove the practical performance of the approach. We present extensive computational results
on the MINLPLib, showing the effectiveness and efficiency of our algorithm.
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1 Introduction

Mixed-Integer Nonlinear Programming (MINLP) problems are mathematical programs of
the following form:

min
{

f (x,y) : g(x,y)≤ 0 , (x,y) ∈X , x ∈ Zp
}

(1)

where x are integer decision variables, y are continuous decision variables, X ⊆ Rp+q is a
polyhedron (which possibly include variable bounds), f : Rp+q → R and g : Rp+q → Rm.
We remark that f can be assumed convex without loss of generality (if it were not, we
might replace it by an added variable v and adjoin the constraint f (x)− v ≤ 0 as a further
component of g).

The exact solution of nonconvex MINLP is only possible for certain classes of func-
tions f ,g (e.g. if f is linear and g involve bilinear terms xy [2,11]). In general, the spatial
Branch-and-Bound (sBB) algorithm is used to obtain ε-approximate solutions for a given
positive constant ε . The sBB computes upper and lower bounds to the objective function
value within sets belonging to an iteratively refined partition of the feasible region. The
search is pruned when the lower bound on the current set is worse than the best feasible so
far (the incumbent), when the problem restricted to the current set is infeasible, and when
the two bounds for the current set are within ε . Otherwise, the current set is partitioned and
the search continues recursively [35,6]. Heuristic approaches to solving MINLPs include
Variable Neighbourhood Search [30], automatically tuned variable fixing strategies [7], Lo-
cal Branching [31] and others; specifically, most exact approaches for convex MINLPs [21,
8] work as heuristic for nonconvex MINLPs. In heuristic approaches, however, one of the
main algorithmic difficulties connected to MINLPs is to find a feasible solution. From the
worst-case complexity point of view, finding a feasible MINLP solution is as hard as finding
a feasible Nonlinear Programming (NLP) solution, which is NP-hard [36].

In this paper we address the issue of MINLP feasibility by extending a well-known ap-
proach, namely the Feasibility Pump (FP) to the nonconvex MINLP case. The FP algorithm
was originally proposed for Mixed-Integer Linear Programming (MILP) [20], where f ,g
are linear forms, and then extended to convex MINLPs [8], where g are convex functions. In
both cases the feasible region is partitioned so that two subproblems are iteratively solved: a
problem P1 involving the continuous variables y with relaxed integer variables x, and a prob-
lem P2 involving both integer and continuous variables x,y targeting, through its objective
function, the continuous solution of P1. The two subproblems are iteratively solved, gener-
ating sequences of values for x and y. One of the main theoretical issues in FP is to show
that these sequences do not cycle, i.e., are not periodic but converge to some feasible point
(x,y). This is indeed the case for the FP version proposed for convex MINLP [8] where P2
is a MILP, while cycling might happen for the original FP version proposed for MILP [20]
where randomization is effectively (and cheaply) used as an escaping mechanism. In the
FP for MILPs, P1 is a Linear Program (LP) and P2 a rounding phase; in the FP for convex
MINLPs, P1 is a convex NLP and P2 a MILP iteratively updated with Outer Approxima-
tion (OA) constraints derived from the optimum of the convex NLP. In both cases one of
the subproblems (P1) can be solved in polynomial time; in the FP for convex MINLPs, P2
is NP-hard in general. Extensions for both FPs exist, addressing solution quality in some
cases [1] and CPU time in others [9]. The added difficulty in the extension proposed in this
paper is that P1 is a nonconvex NLP, and is therefore NP-hard: thus, in our decomposition,
both subproblems are difficult, and special care has to be exercised in order to allow FP
algorithms to rely only on local optima of the continuous relaxation.
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A contribution of the present paper is to present FP algorithms as a special case of the
well-known Successive Projection Method (SPM). By doing so we show that many possi-
ble different variants of the approach can be developed, depending on how several different
(orthogonal) implementation choices are taken. A remarkable twist of FP algorithms is that,
unlike most previous SPMs from the literature, projection is “naturally” taken in two dif-
ferent norms in P1 and P2. To cope with this issue while retaining the local convergence
properties of standard SPMs we propose the introduction of appropriate norm constraints
in the subproblems, an idea that could be generalized to other nonconvex applications of
the SPM. In particular, adding a norm constraint to P1, besides providing nice theoretical
convergence properties, actually seem to significantly improve the practical performance of
the approach.

The rest of this paper is organized as follows. In Section 2 we frame the FP algorithm
within the class of Successive Projection Methods, describing their convergence properties.
In Section 3 we discuss the use of different norms within the two subproblems of the FP
algorithm. In Section 4 we list our solution strategies for both subproblems. In Section 5
we present comparative computational results illustrating the efficiency of the proposed ap-
proach. Section 6 concludes the paper.

2 A View on Feasibility Pumps

A hitherto seemingly unremarked fact is that FP algorithms are instantiations of a more
general class of algorithms, called Successive Projection Methods, for finding a point in
a set intersection A ∩B under the (informal) assumption that “optimization over each set
separately is much easier than optimization over the intersection”. SPMs have been proposed
more than 60 years ago (cf. [37]), have found innumerable applications, and have been
developed in very many variants: the excellent—and not particularly recent—survey of [5]
provides more than one hundred references. The basic idea of SPM is to restate the feasibility
problem in terms of the optimization problem

min{‖z−w‖ | z ∈A ∧w ∈B}. (2)

Given an initial point w0, a SPM generates a sequence of iterates (z1,w1),(z2,w2), . . . defined
as follows:

zi ∈ argmin{‖z−wi−1‖ | z ∈A } (3)

wi ∈ argmin{‖zi−w‖ | w ∈B}, (4)

where on first reading the norm could be assumed Euclidean. It is easy to see that, as dis-
cussed below, each iteration improves the objective function of (2), so that one can hope
that the sequence will converge to some fixed point (z∗,w∗) where z∗ = w∗, which therefore
provides a positive answer to the feasibility problem. The standing assumption simply says
that (3)–(4) are much easier problems than the whole of (2) is, and therefore that the iterative
approach may make sense.

While in the vast majority of the applications A and B are “easy” convex sets, and it
was intended that optimization was to be exact, our nonconvex FP setting also fits under the
basic assumption of the approach. Indeed, X is the coarsest relaxation of the feasible region
of (1) and let C ⊆ {1, . . . ,m} be the set of constraint indices such that gi(x,y) is a convex
function of (x,y) (note that these do not include the linear defining inequalities of X , if
any), and N = {1, . . . ,m}rC. We denote the list of all convex constraints by gC, so that C =



4

{(x,y) | gC(x,y)≤ 0}⊆Rp+q also is a convex relaxation of the feasible region of (1). We also
denote by gN the constraints indexed by N and let N = {(x,y) | gN(x,y) ≤ 0}. We remark
that deciding whether N is empty involves the solution of a nonconvex NLP and is therefore
a hard problem. This hardness, by inclusion, extends to the continuous relaxation of the
feasible region P =C ∩N ∩X . Now, let Z = {(x,y) | x∈Zp}, so that I =C ∩X ∩Z is
the relaxation of the feasible region involving all the convex and integrality constraints of (1).
Deciding emptiness of I involves solving a convex MINLP and is therefore also hard, but
for different reasons than P . More specifically, solving nonconvex NLPs globally requires
solving nonconvex NLPs locally as a sub-step, whereas solving convex MINLPs involves
the solution of convex NLPs (globally) as a sub-step. The numerical difficulties linked to
these two tasks are very different, in particular with respect to the reliability of finding the
solution: with nonconvex NLPs, for example, Sequential Quadratic Programming (SQP)
algorithms might yield an infeasibile linearization step even though the original problem is
feasible. It therefore makes sense to decompose F =I ∩P , the feasible region of (1), into
its two components I and P , in order to address each of the difficulties separately.

Thus, by taking e.g. A = P and B = I one can fit the FP approach under the generic
SPM framework. Note that with this choice the (nonlinear) convex constraints gC are in-
cluded in the definition of both P and I (although they can possibly be outer-approximated
in the latter, as discussed below). This makes sense since C represents, in this context, an
“easy” part of (1): adding it to either set of constraints do not fundamentally change the dif-
ficulty of the corresponding problems, while clearly helping to convey as much information
of F as possible. Yet, other decompositions could make sense as well. For instance, one
may alternatively set B = X ∩Z in order to keep P2 a linear problem without having to
resort to outer approximation techniques (assuming that C only contains the nonlinear con-
vex constraints, with all the linear ones represented in X ). Alternatively, B =Z could also
make sense, since then P2 actually simplifies to a simple rounding operation (the choice of
the original FP [20], cf. §4.2). Thus, different variants of FP for (1) can be devised which can
all be interpreted as special cases of SPM for proper choices of A and B. Therefore, in the
following we will keep the “abstract” notation with the generic sets A and B whenever we
discuss general properties of the approach which do not depend on specific choices within
the FP application.

Convergence of SPMs has been heavily investigated. An easy observation is that, di-
rectly from (3)–(4),

‖zi−1−wi−1‖ ≥ ‖zi−wi−1‖ ≥ ‖zi−wi‖,

i.e., the sequence given by {δi = ‖zi−wi‖} is nonincreasing, hence the method is at least lo-
cally convergent (in the sense that δi→ δ∞ ≥ 0). Global convergence results can be obtained
under several different conditions, typically requiring convexity of A and B (so that (2) is a
convex feasibility problem) [5]. For instance, the original result of [37] for the case of hyper-
planes (where projection (3)–(4) is so easy that it can be accomplished by a closed formula)
proves convergence of the whole sequence to the point of A ∩B closest to the starting
point w0. Convergence results (for the convex case) can be obtained for substantially more
complex versions of the approach, although many of these results become particularly sig-
nificant when the number of intersecting sets is (much) larger than two. For instance, the
general scheme analyzed in [5] considers the iteration

vi = λ
i
0
(
(1−α

i
0)v

i−1 +α
i
0PB(vi−1)

)
+ λ

i
1
(
(1−α

i
1)v

i−1 +α
i
1PA (vi−1)

)
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where α i
h ∈ [0,2] are the (over/under)relaxation parameters and λ i

h ≥ 0 are the weights for
h = 0,1, λ i

0 +λ i
1 = 1, and

PA (v̄) ∈ argmin{‖v− v̄‖ | v ∈A } , PB(v̄) ∈ argmin{‖v̄− v‖ | v ∈B} .

Thus, SPMs can allow weighted simultaneous projection and relaxation; we mention in
passing that these algorithms bear more than a casual resemblance with subgradient methods
[18], as discussed in [5, §7]. The scheme (3)–(4) clearly corresponds to α i

h = 1 (“unrelaxed”)
and λ i

(i mod 2) = 1 (“cyclic control”), so that only one among the two projections actually

need to be computed at any iteration (zi = v2i−1 and wi = v2i). While simultaneous projection
is unlikely to be attractive in the FP setting, relaxation is known to improve the practical
performance of SPMs in some cases, and it could be considered.

All these global convergence results rely on convexity, but in our case the involved sets
are far from being convex; convergence of an SPM applied to the nonconvex MINLP is
therefore an issue. In order to consider the nonconvex case, the typical strategy is that of
recasting SPMs in terms of block Gauss-Seidel approaches applied to the minimization of
a block-structured objective function Q(z,w). These approaches, based on the same idea
to iteratively minimize over one block of variables at a time, can be shown to be (locally)
convergent under much less stringent conditions than convexity, especially in the two-blocks
case of interest here. Different convergence results, under different assumptions, can be
found e.g. in [34,23] for the even more general setting where the objective function of is

L(z,w) = h(z)+Q(z,w)+ k(w),

with h : Rp→ R∪{+∞} and k : Rq→ R∪{+∞} proper lower semicontinuous functions,
neither convex nor differentiable, and Q : Rp+q→ R is regular, i.e.,

Q′(z,w;dz,0)≥ 0∧Q′(z,w,0,dw)≥ 0⇒ Q′(z,w;dz,dw)≥ 0 (5)

for all feasible z,w, where Q′(z,w;dz,dw) is the directional derivative of Q at (z,w) along the
direction (dz,dw). Smooth functions are regular, while in general nonsmooth ones are not.
With stricter conditions on Q (e.g. C1) the results can be extended and somewhat strength-
ened [3] to the stabilized version

zi ∈ argmin{h(z)+Q(z,wi−1)+λi‖z− zi−1‖2
2 | z ∈A } (6)

wi ∈ argmin{Q(zi,w)+ k(w)+µi‖w−wi−1‖2
2 | w ∈B}, (7)

where the penalty terms are added to discourage large changes in the current z,w iterates.
The method (6)–(7) holds under mild assumptions such as upper and lower boundedness
of λi and µi; the whole sequence (zi,wi) is shown to converge to a critical point of L (as
opposed to only convergence of subsequences like in [23]).

One can then fit the FPs for the nonconvex MINLP case in the above setting by choosing
e.g. h = k = 0, Q(z,w) = ‖z−w‖2

2, λi = µi = 0, and A , B in any one of the possible ways
discussed above. Note that different variants could be also discussed, such as using non-zero
h(z) and k(w) to include a weighted contribution of the objective function to try to improve
on the quality of the obtained solutions, a-la [1]. Sticking to the simplest case, one has that
the sequence defined by

(x̄i, ȳi) ∈ argmin{‖(x,y)− (x̂i−1, ŷi−1)‖ |g(x,y)≤ 0∧ (x,y) ∈X } (8)

(x̂i, ŷi) ∈ argmin{‖(x,y)− (x̄i, ȳi)‖ |gC(x,y)≤ 0∧ (x,y) ∈X ∧ x ∈ Zp}. (9)
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(or any other appropriate splitting of the constraints) converges to a local optimum of the
(nonconvex) problem (2). Thus, if δi → δ∞ > 0, then either F = /0 or the algorithm has
converged to a critical point which is not a global minimum. Telling these two cases apart
is unfortunately difficult in general; however, because we are proposing a MINLP heuristic,
rather than an exact algorithm, we shall typically assume the latter case holds, and we shall
therefore employ some Global Optimization (GO) techniques to reach a putative global
optimum.

It should be remarked that (3)–(4) is only the most straightforward application of SPM
in our setting. A number of issues arises:

– The algorithm alternates between solving the nonconvex NLP (8) and the convex MINLP
(9). In order to retain the local convergence property, both problems would need to be
solved exactly: a difficult task in both cases.

– Being (9) a mixed-integer program, it would be very attractive to be able to use the
efficient available MILP solvers to tackle it. However, in order to do that one would —
as the very first step — need to substitute the Euclidean norms with “linear” ones (L1,
L∞).

– In the standard FP approach [20,8] the distance is actually only measured on the integer
(x) variables, as opposed to the full pair (x,y).

In the rest of the paper, we discuss several modifications to this approach in order to address
the above issues and better exploit the structure of the problem at hand.

3 Using Different Norms

In this section we consider employing two different norms ‖ · ‖A and ‖ · ‖B in the two sub-
problems (3)–(4):

zi ∈ argmin{‖z−wi−1‖A | z ∈A } (10)

wi ∈ argmin{‖zi−w‖B | w ∈B}. (11)

The Euclidean norm is appropriate in (8) because of its smoothness property and because (8)
is already nonlinear. In the case of (9), however, the L1 or L∞ norms yield a convex MINLP
whose objective function can be linearized by means of standard techniques [28]. Provided
the constraints indexed by C are linear, or they are outer linearized, (9) then becomes a MILP,
which allows use of the available efficient off-the-shelf general-purpose solvers. Replac-
ing the norm in (9), however, prevents us from establishing monotonicity of the sequence
{δi | i ∈N}: assuming A = 2 and (say) B = ∞, for example, one uses ‖ ·‖A ≥ ‖·‖B to derive

||zi−wi||A ≥ ||zi+1−wi||A ≥ ||zi+1−wi||B ≥ ||zi+1−wi+1||B,

but nothing ensures ||zi+1−wi+1||B ≥ ||zi+1−wi+1||A. A way to deal with this case is to
replace (10) by

zi ∈ argmin{‖z−wi−1‖A | z ∈A ∧‖z−wi−1‖B ≤ β‖zi−1−wi−1‖B}, (12)

for β ∈ (0,1]. This implies monotonicity for all β ≤ 1 and strict monotonicity for all β < 1:

||zi−wi||B ≥ β ||zi−wi||B ≥ ||zi+1−wi||B ≥ ||zi+1−wi+1||B.
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For B = ∞, the required reformulation for (10) only amounts to restricting variable bounds;
as this restricts the feasible region and it is also expected to facilitate the task of solving
(12). Local convergence — that is, no cycling—of the sequence of iterates generated by
the FP algorithm given by (12) and (11) can be established by ensuring that the sequence
‖zi−wi‖B converges. A convergence failure might occur if (12) becomes infeasible because
of the restricted variable bounds1. This shows that

min{||z−wi−1||B | z ∈A } ≥ β ||zi−1−wi−1||B,

which in turn implies that, for β ≈ 1, zi−1 is a good candidate for a local minimum, leading
to the choice zi = zi−1. If the mixed-integer iterate (11) also cannot improve the objective,
then (zi,wi) can be assumed to be a local minimum; this case will be dealt with later.

We remark that the fact that

∀z ∈A ||z− w̄||B ≥ ||z̄− w̄||B
∀w ∈B ||z̄−w||B ≥ ||z̄− w̄||B

(13)

is not sufficient to ensure that (z̄, w̄) is a local minimum: this is because ‖ · ‖B is not reg-
ular in the sense of (5) if B ∈ {1,∞}. Indeed, it is clear that for Q(z,w) = g(z−w), one
has Q′(z,w;dz,dw) = g(z−w;dz− dw), which means that Q′(z,w;dz,0) = g(z−w;dz) and
Q′(z,w;0,dw) = g(z−w;−dw). Thus, for (z,w) such that || · ||B is not differentiable at z−w,
it is not difficult to construct a counterexample to (5). One is shown in Figure 1 for the case
B = 1, where Q′(z,w;dz,0) = Q′(z,w;0,dw) = 0, but Q′(z,w;dz,dw) =−1.

-
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Fig. 1 Non-reguarity of || · ||1

Example 1 Based on Figure 1, we construct an example of nonconvergence of the FP with
A = 2 and B = 1. Let A = {(x,y) | x≥ 3} and B = {(x,y) | 2x≤ y}, and consider z̄ = (3,4)
and w̄ = (2,4). It is easy to verify that

z̄ ∈ argmin{‖(x,y)− (2,4)‖2 | (x,y) ∈A }
w̄ ∈ argmin{‖(3,4)− (x,y)‖1 | (x,y) ∈B},

which implies that (z̄, w̄) is a fixed point for the sequence generated by the FP. However,
(z̄, w̄) is not a local minimum of (2): by moving a step of length 2 along the feasible direction
(dz,dw) = (0,1,1/2,1) we obtain z′ = (3,6) and w′ = (3,6), and ‖z′−w′‖1 = ‖z′−w′‖2 =
0 < 1 = ‖z̄− w̄‖1 = ‖z̄− w̄‖2. ut

1 These failures happen in practice as shown in Section 5.4.
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Hence, the modification (12) of the FP still guarantees convergence of the δi sequence,
and therefore (at least for β < 1) ensures that no cycling can occur. Convergence may occur
to a local minimum when using “nonsmooth” norms such as L1 and L∞ even if A and B
were convex, but this is not a major issue since the sets are nonconvex, and therefore there
is no guarantee of convergence to a global minimum anyway. Other mechanisms in the
algorithm (cf. §4.2) are designed to take care of this.

3.1 Partial Norms

A structural property of the specific nonconvex MINLP setting is that whenever z = (x,y) ∈
A has the property that there exists some z̃ = (x, ỹ) ∈B, then z ∈F ; in other words, the
difficulty of optimizing over B is given by the integer constrained variables x. Thus, for our
purposes we can consider

(x̄i, ȳi) ∈ argmin{||x− x̂i−1|| | (x,y) ∈A } (14)

(x̂i, ŷi) ∈ argmin {||x̄i− x|| | (x,y) ∈B}. (15)

instead of (10)–(11). This means that we need only to consider the distance between the
projection of A and B on the x-subspace, as opposed to the distance between the full (x,y)
iterates. This does not have any significant impact on the approach. From the theoretical
viewpoint, it just says that the function Q(z,w) in (6)–(7) is constant (hence, smooth) on a
subset of the variables, i.e.,

Q( (x̄, ȳ) , (x̂, ŷ) ) = ||x̄− x̂|| .

Things are, in theory, rather more complex when two different norms ‖ · ‖A and ‖ · ‖B are
used in (14)–(15) (respectively), since then there is no longer a well-defined function Q
to minimize. However, this is as well the case when using different norms on the whole
iterates, as advocated in the previous section. From the practical viewpoint, using different
partial norms only amounts to the fact that the norm constraint in (12) actually reads

‖x− x̂i−1‖B ≤ β‖x̄i−1− x̂i−1‖B (16)

which of course is still enough to guarantee the (strict, if β < 1) monotonicity of the se-
quence {δi}. This still provides all the local convergence properties that the FP requires.

4 Approximate solution of the subproblems

The convergence theory for SPMs would require solving (8) and (9) to global optimality.
As already remarked, this is extremely challenging and not very likely to be effective in the
context of what, overall, remains a heuristic method, which at any rate does not provide any
theoretical guarantee of success. Furthermore, even if the subproblems were actually solved
to global optimality, several variants of the FP approach—most notably, those employing
two different norms–would not still entirely fit into the theoretical framework for which
convergence proofs are readily available. This frees us to consider several different options
and strategies to solve both (8) and (9), as discussed in this section, which give rise to “a
storm” of many different configurations that we extensively tested computationally. The
results are reported in Section 5, either in detail for the most successful algorithms or in
summary for the unsuccessful ones.
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4.1 Addressing the Nonconvex NLP (8)

As already mentioned solving (8) to global optimality is difficult by itself, mainly because
of the nonconvex constraints. Indeed, if only convex constraints were present, every local
optimum would be guaranteed to be also a global optimum. For this reason, considering
both the convex and nonconvex constraints does not make the subproblem much harder in
practice than only considering the nonconvex ones. Although applying GO techniques to
obtain a provably optimal solution would likely be too time consuming, we still attempt to
solve the problem globally by using two different approaches:

1. a simple stochastic multi-start approach [33] in which the NLP solver is provided with
different randomly generated starting points in order to try to escape from possible local
minima;

2. a Variable Neighborhood Search (VNS) [24] scheme [29,30].

In general, finding any feasible solution for (8) such that ||x̄− x̂i−1||A < ||x̄i−1− x̂i−1||B is
enough to retain the monotonicity property of the sequence; thus, the solution process to
(8) can be terminated as soon as this happens. Failure to obtain this condition may lead
to declare the failure of a local phase, without identifying a feasible solution, even if one
could be found if a globally optimal (or, at least, better) solution for (8) be determined, as
shown in Figure 2. In particular, we consider a nonconvex MINLP in two variables. On the
x-axis we have an integer variable, while on the y-axis a continuous one. The gray part is
the feasible region of the NLP relaxation of P while the set of the bold lines represents the
feasible region of P. The symbols •̂ represent solutions x̂i where i is the iteration number.
Similarly, the symbols •̄ represent solutions x̄i where i is again the iteration number. The
figure shows that only requiring local optimality in (8) can lead to cycling: on the left, the a
local optimum •̂ to (8) does not allow the algorithm to proceed to •̄2 and eventually to the
feasible MINLP solution •̂2 (on the right).

•0

•̄1,...•̂1,... •̂1,...

•0

•̄1 •̂1

•̄2•̂2

•∗

Fig. 2 Solving (8) heuristically (left) or to global optimality (right): helping to prevent cycling.

However, sometimes both strategies 1 and 2 might fail in finding a feasible solution for
(8) (for example due to a time limit, see Section 5) and that can happen even if they claim
the returned solution is NLP feasible. In such case we experimented two options:

a. we define (9) by using any infeasible solution of (8) ;
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b. we fix the integer variables x and we solve again (locally) a modified version of problem
(8) in which the objective function is replaced by the original objective of (1).

The fixing strategy b might improve convergence speed, as shown in Figure 3: if x1 is fixed
to the value given by •̂1 then the next NLP solution is likelier to directly lead to the feasible
MINLP region.

•0

•̄1 •̂1•̄2 •̂2•̄3 •̂3

•̄4

•0

•̄1 •̂1

•̄2

Fig. 3 Solving (8) without (left) and with (right) the fixing strategy b: accelerating convergence.

Finally, as discussed in Section 3, one might implement the overall FP scheme by using
the Euclidean norm for (8) and a different norm in (9), like L1 or L∞, to simplify it. As
previously discussed, this may well impair the only remaining (weak) convergence property
of the approach, i.e., monotonicity of the sequence {δi}, making it harder to declare that a
“local optimum” has reached. For this case, two options can be implemented:

i. we forget about such a difference in norms and we hope for the best;
ii. we amend (8) by the norm constraint (16), and solve it as usual. We remark here that pre-

liminary computational experiments have shown that the value of β does not strongly
influence the results, thus we used β = 1 in the computational results of Sect. 5.

In summary, three main decisions have to be taken to define and solve (8):

I. solution algorithm: multi-start (1. above) versus VNS (2. above),
II. additional fixing step: NO (a. above) versus YES (b. above), and

III. norm correction: NO (i. above) versus YES (ii. above).

4.2 Addressing the Convex MINLP (9)

The first decision that has to be taken for addressing problem (9) concerns the norm to use
in the objective function, i.e., how to formulate (9) in practice.

1. Of course, the most trivial option is to keep the Euclidean norm so as (9) is a convex
MINLP.

2. As discussed in Section 3, the main alternative is to employ either the L1 or the L∞

norm in the objective function so that it can be linearly reformulated in standard ways
(via the introduction of a few auxiliary continuous variables). This is in the attempt to
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replace (9) with a MILP relaxation, because MILP solution technology is currently more
advanced than its convex MINLP equivalent. This, however, requires the constraints to
be linearized as well. This can be done by means of standard Outer Approximation
approaches. That is, assuming C contains only nonlinear convex constraints (the linear
ones being left in X ), one can approximately solve (9) at the generic iteration i ∈ N by
means of its MILP relaxation

min ‖x̄i− x‖B (17)

g`(x̄k, ȳk)+∇g`(x̄k, ȳk)

(
x− x̄k

y− ȳk

)
≤ 0 ` ∈ C̄k, k ≤ i (18)

(x,y) ∈X , x ∈ Zp (19)

where the norm B in (17) can be either L1 or L∞ and C̄k ⊆C is the set of convex nonlinear
constraints that are active at (x̄k, ȳk). In other words, one keeps collecting the classical
Outer Approximation cuts [19] (18) along the iterations and uses them to define a poly-
hedral outer approximation of I . Note that while (18) could seem to require that each
g` for ` ∈C be a differentiable function, this is only assumed for the sake of notational
simplicity: notoriously, subgradients of nondifferentiable convex functions can be used
as well (e.g. [17]).

In both cases, we employ partial norms as detailed in Section 3.1 so as to take into account
in the objective function only its integral part.

The second decision is how to formulate the feasibility space of problem (9), i.e., how
to deal with the original set of constraints and relaxing them if needed. This depends on the
first decision as well, i.e., on the objective function, either 1. or 2. above, which has been
selected. Of course, such a decision is inherently linked to the solution algorithm.

a. If the Euclidean norm is used in (9), then we investigate three options:
1 we solve the convex MINLP as is by means of a sophisticated general-purpose MINLP

solver, in our case BONMIN solver [10],
2 we solve a convex mixed-integer quadratic problem (MIQP) relaxation of the MINLP.

Precisely, the MIQP is obtained by using the objective function2 min‖x̄i− x‖2 instead
of (17) but with the same set of (linear) constraints (18)-(19). This is done to simplify
the problem and being able to use a sophisticated general-purpose MIQP solver, in our
case CPLEX [25].

3 we remove all constraints (18)–(19), only keeping x ∈ Zp and bound constraints, and
solve (9) by rounding. This is in the spirit of both [20] and [9].

b. If instead the L1/L∞ norm is used and the MILP relaxation (17)–(19) is defined, we solve
the MILP as is by means of a sophisticated general-purpose MILP solver, in our case
CPLEX [25].

The third decision is how to address the issue of cycling. Indeed, because problem (9)
only takes into account the subset of convex constraints (or a relaxation of them in the MILP
case) the resulting FP algorithm might cycle, i.e., visit the same mixed-integer solution more
than once. Note that if (1) is instead a convex MINLP, OA cuts are shown to be sufficient to
guarantee that the FP algorithm does not cycle [8] as shown for example in Figure 4.

In the nonconvex case, however, OA cuts are not enough, as discussed in Example 2.
In addition, in the testbed we used to computationally test our approach, the number of OA
cuts we could generate is somehow limited as discussed in detail in Section 5.1.

2 Note that again the objective function is defined in the MIQP case only on the integer variables.
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•0 •̄1,...•̂1,... •0 •̄1 •̂1

Fig. 4 Solution of (9) without (left) and with (right) OA cuts: helping to prevent cycling.

Example 2 In Figure 5 a nonconvex feasible region and its current linear approximation are
depicted. Let us consider x̄ being the current solution of subproblem (8). In this case, only
one OA cut can be generated, i.e., the one corresponding to convex constraint γ . However,
it does not cut off x̂, i.e., the solution of (9) at the previous iteration. In this example, the FP
would not immediately cycle, because x̂ is not the solution of (9) which is closest to x̄. This
shows that there is a distinction between cutting off and cycling. In general, however, failure
to cut off previously visited integer solutions might lead to cycling, as shown in Figure 6.

ut

x̂

x̄
x1

x2

OA cut from γ

γ

Fig. 5 The OA cut from γ does not cut off x̂.

One elegant possibility to prevent cycling is that of adding no-good cuts at iteration i to
make (x̂k, ŷk) infeasible for all k < i. This is possible if (as it happens in some of the variants)
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•0

•̄1 •̂1,... •̄2,...

Fig. 6 OA cuts may not prevent the FP from cycling.

any of the minimum distance problems is solved (even if only approximately) with an exact
approach, which not only provides good feasible solutions, but also a lower bound on the
optimal value of the problem to provide a guarantee of the accuracy. Indeed, if the solution
method proves that the inequality

||x− x̂i||A ≥ ε (20)

is satisfied for all (x,y) ∈A , then one has

A ∩B = ( A ∩{ (x,y) : (20) } )∩B = A ∩ ( B∩{ (x,y) : (20) } ) .

In other words, the nonlinear and nonconvex “cut” (20) can be added to B without changing
the feasible set of the problem. The interesting part is that, of course, x̂i violates (20), and
therefore (20) provides–at least in theory–a convenient globalization mechanism.

No-good cuts [17] were originally introduced in [4] with the name of “canonical” cuts
and recently used within the context of MINLP [17,32]. If x are binary variables and ‖ · ‖ is
the L1 norm, we can take ε = 1 and reformulate (20) linearly as

∑
j≤p

x̂ j=0

x j + ∑
j≤p

x̂ j=1

(1− x j)≥ 1.

For general integer variables, an exact linear reformulation is given, for example, in [17]
and involves adding 2p new continuous variables, p new binary variables and adding 3p+1
linear equations to the problem. Thus, the size of such a reformulation could rapidly become
prohibitive in the context of an iterative method like FP. This is why no-good cuts are used
in a limited form in our scheme and we instead implement two alternative, less elegant,
approaches:

i. We employ a tabu list in order to prevent a MILP solver from finding the same solutions
(x̂, ŷ) at different iterations.

ii. We configure our solver to find a pool of solutions from which we choose the best
non-forbidden one.

Clearly, the issue of preventing the FP scheme to cycle is not confined to the solution
of problem (9) but is more a globalization strategy. Indeed, problem (8) could in turn be
amended by no-good cuts in the form ||x− x̂i−1||22 ≥ ε which are reverse-convex constraints
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not different from those already in (8). However, we decided to concentrate our attention to
(9) for two reasons. On the one side, this is the way both previous FP algorithms worked,
namely the one for MILP, through random flipping of the rounding step, and that for convex
MINLP, by means of OA cuts. On the other hand, the value to be assigned to ε would be any
lower bound greater than 0 on the optimal solution of (9). However, we never really solve
such a problem to optimality and in at least one case, the rounding option a3 above, we do
not compute any lower bound either.

In summary, three main decisions have to be taken to define and solve (9):

I. the norm to be used in the formulation of (9): L2 (1. above) versus L1/L∞ (2. above),
II. how to define the feasible region of (9) and solve it: MINLP (a1 above) versus MIQP

(a2 above) versus rounding (a3 above) or MILP (b above), and
III. how to avoid cycling: tabu list (i. above) versus solution pool (ii. above).

5 Computational Results

In this section we discuss the outcome of our extensive computational investigation.

5.1 Computational Setting

The algorithms were implemented within the AMPL environment [22]. We chose to use this
framework to make it easy to change subsolver. In practice, the user can select the preferred
solver to solve NLPs, MINLPs, MIQPs or MILPs, exploiting their advantages.

We also use a new solver/reformulator called ROSE (Reformulation Optimization Soft-
ware Engine, see [28,27]), of which we exploit the following features:

– Model analysis: getting information about nonlinearity and convexity of the constraints
and integrality requirements of the variables, so as to define subproblems (8) and (9).

– Solution feasibility analysis: necessary to verify feasibility of the provided solutions.
– OA cut generation: necessary to update (9). In order to determine whether a constraint

is convex, ROSE performs a recursive analysis of its expression tree [26] to determine
whether it is an affine combination of convex functions. We call such a function “ev-
idently convex” [28]. Evident convexity is a stricter notion than convexity: evidently
convex functions are convex but the converse may not hold. Thus, it might happen that
a convex constraint is labeled nonconvex; the information provided is in any case safe
for our purposes, i.e., we generate OA cuts only from constraints which are certified to
be convex. Unfortunately, the number of problems in the testbed (see next section) in
which we are able to generate OA cuts is limited, around 15% of them, surely because
of such a conservative (but safe) policy adopted by ROSE.

5.2 FP Variants and Preliminary Results

Because of the multiple options which can be put in place to solve both (8) and (9), we
had to implement and test more than twenty FP versions/variants to assert the effectiveness
of each of the algorithmic decisions discussed in the two previous sections. Some of these
options have been ruled out after a preliminary set of experiments involving 243 MINLP
instances from MINLPlib [12] and used, among others, in [30,16]. Only 65 among such
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243 instances are those in which the open-source Global Optimization solver COUENNE
0.1 [6] (available from COIN-OR [14]) is unable to find a feasible solution within a time
limit of 5 minutes on an Intel Xeon 2.4 GHz with 8 GB RAM running Linux.

Thus, the goal of the preliminary set of computational experiments was twofold. On
the one side, we wanted to be quick and competitive on the “easy” instances, i.e., the 178
instances on which COUENNE is able to find a solution within 5 minutes of CPU time.
This is because FP can clearly be used as a stand-alone heuristic algorithm for nonconvex
MINLP, and must be competitive with a general-purpose solver used as well as a heuristic,
i.e., truncated within a short time limit. That was achieved by the “best” FP versions/variants
that will be discussed in the remainder of the section. To give an example, the version de-
noted as FP-1 (see Section 5.4) finds a feasible solution for 156 of the 178 “easy” instances
within 5 minutes, encounters numerical troubles in 13 of them (because of the NLP solver)
and requires more than 5 minutes in the remaining 9 instances. Because COUENNE 0.1
(like most GO solvers) mainly implemented simple heuristics based on reformulations and
linearizations, it would have been relatively easy to recover those few instances with longer
computing times (9) by ad-hoc policies. On the other hand, however, we wanted to be effec-
tive (in possibly longer computing times) on the 65 “hard” instances where simple heuristics
and partial enumeration failed. In particular, FP should be effective on the instances in which
the nonlinear aspects of the problems play a crucial role, thus suggesting its fruitful integra-
tion within COUENNE or any other GO solver (as happened for FP algorithms in MILP).
Indeed, the current trunk version of COUENNE is more sophisticated in terms of heuris-
tics also due to our investigation preliminary reported in [15,16] and some results at the of
Section 5.4 seem promising in this concern.

The FP variants which did not “survive” the preliminary tests3 are those that, at the
same time, did not perform particularly well in the “easy”instances and did not add anything
special on the “hard” ones. Namely,

1. Solving (8) by VNS was always inferior with respect to solve it by the stochastic multi-
start approach. Such a poor performance of the VNS approach might be due to its iterative
implementation within AMPL: at each iteration, a different search space is defined, start-
ing from a small one and incrementing it so that at the last iteration the entire feasible
region is considered. In particular, this approach seems to be too “conservative” with
respect to the previous solution.

2. The additional fixing step which can be performed in case of fail when solving (8) by
fixing the integer variables has a slight positive effect when the norm constraint is added
while turns out to be crucial in case it is not. In a sense the theoretical convergence
guaranteed by the use of norm constraints seems to make problems (8) easier, thus the
benefit of the fixing step is particularly high if such constraints are not added. We then
decided to always include the fixing step as well.

3. In case the Euclidean norm is kept in problem (9), we decided to solve the convex MIQP
instead of the convex MINLP. The main reason (besides some technical issues related
to modify a convex MINLP solver like BONMIN to implement mechanisms to prevent
cycling) is that the number of evidently convex constraints as discovered by ROSE is very
limited in the testbed. Thus, if the constraints in (9) are linear, then the MIQP solver of
CPLEX is clearly more efficient than a fully general convex MINLP solver line BONMIN.

3 No detailed computational results are reported here for the preliminary computational investigation,
some of them are discussed in detail in [16].
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4. Preventing cycling by using a pool of solutions was always inferior with respect to use
the tabu list. Again, this might be due to the lack of flexibility of the (nice) solution
pool feature of CPLEX 11 that we used in our experiments. Every time we need to solve
(9), we ask CPLEX to produce a number of solutions equal to the number of tabu list
solutions plus one. Once obtained the solutions pool, we analyze the solutions starting
from the first and set (x̂i, ŷi) as the first solution of the pool which is not present in the
tabu list. However, we have to consider the two following drawbacks: (i) the solution
pool is populated after the branch and bound is finished. Because we have a time limit
for solving (9), it is not guaranteed that we would have a number of solutions sufficient to
provide a non-forbidden solution (especially because providing a solution pool is a time-
consuming feature); (ii) we cannot force CPLEX to measure the diversity of the solutions
in the pool by neglecting the continuous part of the problem. Unfortunately, CPLEX can
provide us a set of solutions which has the same integer values, but different continuous
values. More generally, it might happen that only forbidden solutions are generated, for
example if the continuous relaxation of (9) is integer feasible but forbidden. In this case
the solution would be discarded, but no further solution can be generated.

Due to the above discussion, the only surviving subproblems to be solved are nonconvex
NLPs and convex MILPs and MIQPs. The NLP solver used is IPOPT 3.5 trunk [13], while
the MILP and MIQP solvers are those of CPLEX 11 [25]. Before ending the section we
need to specify two more implementation details for the surviving FP variants.
Implementing a tabu list in CPLEX. Discarding a solution in the tabu list within the CPLEX
branch and bound is possible using the incumbent callback function. The tabu list is stored
in a text file which is then exchanged between AMPL and CPLEX. Every time CPLEX finds
an integer feasible solution, a specialized incumbent callback function checks whether the
new solution appears in the tabu list. If this is the case, the solution is rejected, otherwise the
solution is accepted. CPLEX continues executing until either the optimal solution (excluding
those forbidden) is found or a time limit is reached. In the case where an integer solution
found by CPLEX at the root node appears in the tabu list, CPLEX stops and no new integer
feasible solution is provided to FP4. In such a case, we amend problem (9) with a no-good
cut [17] which excludes the solution and we call CPLEX again.
Avoid cycling when solving (9) by rounding. When the MILP relaxation of (9) is solved by
rounding to the nearest integer the fractional values of vector x̄, the methods for preventing
the cycling cannot be implemented in the way we described above. The method adopted is
taken from the original FP paper [20]: whenever a forbidden solution is found, the algorithm
randomly flip some of the integer values so as to obtain a new solution.

5.3 Code Tuning

The algorithm terminates after the first MINLP feasible solution is found or a time limit is
reached. The parameters are set in the following way: time limit of 2 hours of user CPU
time, the absolute feasibility tolerance to evaluate constraints is 1e-6, and the relative fea-
sibility tolerance is 1e-3 (used if absolute feasibility test fails). The tabu list length was set
adaptively to a value which was inversely proportional to the number of integer variables of
the instance, i.e., the number of values to be stored for each solution of the tabu list. The
value was 60,000 divided by the number of integer variables. The actual mean value, over
the full set of 243 instances, of the solutions stored in the tabu list was 35.

4 Note that this is the same issue discussed in the solution pool case.
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5.4 Results

The six surviving FP variants have been extensively tested on the full set of 243 MINLP
instances and, in particular, we discuss the results on the 65 “hard” instances introduced in
Section 5.2. More precisely, the six variants have the characteristics reported in Table 1.

Table 1 FP variants.

Problem (8) Problem (9)
variant algorithm fixing step norm constraint norm algorithm cycling

FP-1 multi-start YES YES L1 MILP tabu list
FP-2 multi-start YES NO L1 MILP tabu list
FP-3 multi-start YES YES L2 rounding tabu list
FP-4 multi-start YES N/A L2 MIQP tabu list
FP-5 multi-start YES YES L∞ MILP tabu list
FP-6 multi-start YES NO L∞ MILP tabu list

Table 2 reports the aggregated results on the 65 “hard” instances. In particular, we con-
sider for each FP variant the number of times the algorithm terminated with a feasible solu-
tion within the 2-hours of user CPU time limit (successes), the number of times the algorithm
was the only one to find a feasible solution (successes alone), the number of times the time
limit was reached without a feasible solution (time limit reached), the number of times the
algorithm encountered numerical issues (fails), the number of times the algorithm found the
best–smallest– solution (wins) and the geometric mean of the computing time for the solved
instances (time geomean).

Table 2 Comparing the six FP variants, aggregated results.

FP-1 FP-2 FP-3 FP-4 FP-5 FP-6
successes 49 45 22 23 44 46

successes alone 0 3 0 0 1 1
time limit reached 11 14 42 32 2 12

fails 5 6 1 9 19 7
wins 26 20 10 4 10 8

time geomean 151.02 104.45 17.59 76.14 23.25 14.99

The detailed results are reported in Tables 3 and 4 where, for each variant, we give the
solution value (value), the computing time (time) and the number of iterations (it.s) which
are roughly equal to the number of problems (8) and (9) solved. In case of numerical issues
for a pair instance / FP variant, we report in all entries for such an instance some “++”,
whereas in case of time limit reached the entry value is set to “-” (while we correctly report
the computing time of 7,200 CPU seconds and the number of iterations within such a time).

The results of Tables 2, 3 and 4 show that FP-1 is the most successful FP variant and
is remarkably able to find a feasible solution in limited CPU time on 75% of the “hard”
instances in the testbed. A direct comparison with the closest variant, namely FP-2, shows
that the use of the norm constraint is useful: although FP-1 does not dominate FP-2, it is
overall superior on all entries and there are many instances in which FP-2 converges slowly
whereas FP-1 reaches feasibility in a very small number of iterations. Variant FP-3 is very
fast but seems to be a bit “unsophisticated” for those instances which look more difficult (in
the “hard” testbed). However, it might be a viable option for a “cheap” FP variant executed
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extensively within a GO solver. Variant FP-4 does not look—at the moment—very compet-
itive, although it is not fully dominated because it finds the smallest solution four times, in
one case (deb8) a much smaller one, with respect to the other variants. One relevant issue
for FP-4 seems that the MIQP solved as problem (9) is time consuming thus allowing only a
limited number of FP iterations. Things might change in the future, depending on the solver
or its settings. Finally, variants FP-5 and FP-6 are very close to FP-1 and FP-2, respectively,
and they indeed lead to similar results. Specifically, FP-5, compared to FP-1, seems to have
much more numerical troubles (due to the NLP solve, see Section 3) and is inferior in terms
of quality of the solutions obtained (wins) but is much faster. Instead, variant FP-6 is al-
most equivalent, perhaps superior, to FP-2, the two main differences being the number of
wins (20 for FP-2 with respect to 8 for FP-6) and the speed (104.45 CPU seconds for FP-2
with respect to 14.99 for FP-6). Overall, both FP-5 and FP-6 seem promising for further
investigation.

Concerning the interaction of FP-1 with the GO solver COUENNE (or any other), note
that in 14 cases FP-1 finds a feasible solution within 1 minute of CPU time (in 24 cases
within 5 minutes), thus suggesting a profitable integration within the solver.

6 Conclusion

We have presented the theoretical foundation of an abstract Feasibility Pump scheme inter-
preted as a Successive Projection Method in which, roughly speaking, the set of constraints
of the original problem is split (possibly in different ways) in two sets and the overall algo-
rithm aims at deciding if the feasibility space given by the intersection of such two sets is
empty. Such a scheme has been specialized for dealing with nonconvex Mixed-Integer Non-
linear Programming problems, the hardest class of (deterministic) optimization problems.

Because the devil is in the details, we analyzed a large number of options for (i) formu-
lating and solving the two distinct problems originated by the above split and (ii) guarantee-
ing convergence of the global algorithm. The result has been more than twenty FP variants
which have been computationally tested on a large number of MINLP instances from the
literature to assert the viability of FP both as a stand-alone approximation algorithm and
as a primal heuristic within a global optimization solver. Six especially interesting of these
variants have been discussed in detail and extensive results have been presented on a set of
65 “hard” instances. The results show that feasibility pumps are indeed successful in finding
feasible solutions for nonconvex MINLPs.
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Table 3 Comparing FP variants FP-1, FP-2, FP-3 and FP-4, detailed results.

FP-1 FP-2 FP-3 FP-4
instance value time it.s value time it.s value time it.s value time it.s
beuster ++ ++ ++ ++ ++ ++ - 7,200 28 ++ ++ ++

csched2a -102,002.02 5 2 -102,867.73 4 2 ++ ++ ++ -112,174.73 624 2
csched2 -120,042.73 138 2 -120,066.02 241 2 - 7,200 41 ++ ++ ++

deb10 ++ ++ ++ ++ ++ ++ 223.29 25 14 ++ ++ ++
deb6 234.78 197 29 237.11 4 4 290.90 7 2 235.81 9 4
deb7 411.00 139 4 345.76 10 3 419.78 218 8 451.05 13 2
deb8 8,453,005,065.59 23 2 185,839,836.37 2 1 8,453,005,005.71 30 1 416,332.32 3 1
deb9 444.67 33 2 425.34 16 4 444.67 39 1 438.39 59 2
detf1 11,497.56 368 2 15,976.03 131 2 8,455.75 961 1 15,976.03 731 2

eg all s 223.14 27 3 100,003.77 52 5 94,165.69 10 1 ++ ++ ++
eg disc2 s 65,822.96 7 1 100,004.34 5 1 65,822.96 7 1 100,004.34 5 1
eg disc s 94,165.42 8 1 100,003.69 7 1 94,165.42 8 1 100,003.69 7 1

eg int s 94,167.12 10 1 100,005.46 7 1 94,167.12 10 1 100,005.46 7 1
fo8 ar25 1 994,207.06 185 124 - 7,200 6 - 7,200 3,211 - 7,200 2
fo8 ar3 1 994,235.33 784 367 - 7,200 6 - 7,200 3,210 - 7,200 2

fo8 894,678.42 9 8 1,400,000.00 1,543 533 - 7,200 3,110 1,400,000.00 860 444
fo9 ar2 1 1,136,279.49 1,286 167 - 7,200 8 - 7,200 2,619 - 7,200 2

fo9 ar25 1 1,136,997.73 635 97 - 7,200 14 - 7,200 2,620 - 7,200 2
fo9 ar4 1 9,959.68 202 68 1,599,990.28 4,212 699 - 7,200 2,616 - 7,200 2
fo9 ar5 1 1,428,148.20 17 2 1,599,993.97 14 2 - 7,200 2,610 - 7,200 2

fo9 1,006,964.21 61 32 1,600,000.00 221 153 - 7,200 2,552 1,600,000.00 1,387 657
johnall -201.15 615 2 -201.29 614 2 -201.16 2 2 -221.92 618 2
lop97ic - 7,200 9 - 7,200 120 - 7,200 94 - 7,200 13

mbtd 91.33 4,266 2 98.53 4,045 2 - 7,200 3 1,000,005.67 5,834 2
nuclear104 - 7,200 2 ++ ++ ++ - 7,200 2 ++ ++ ++
nuclear10a - 7,200 2 - 7,200 5 - 7,200 3 - 7,200 4
nuclear10b - 7,200 2 - 7,200 4 - 7,200 2 - 7,200 3
nuclear14a -1.09 1,602 3 -1.11 2,641 173 - 7,200 38 - 7,200 14
nuclear14b -1.10 646 2 -1.10 686 7 - 7,200 34 -1.09 1,922 81
nuclear14 -1.12 1,645 3 -1.12 847 15 - 7,200 107 - 7,200 14

nuclear24a -1.09 1,602 3 -1.11 2,730 173 - 7,200 38 - 7,200 14
nuclear24b -1.05 2,626 4 -1.09 1,584 59 - 7,200 35 -1.09 1,959 81
nuclear24 -1.12 1,655 3 -1.12 1,649 51 - 7,200 101 - 7,200 14

nuclear25a -1.06 6,501 8 - 7,200 372 - 7,200 39 - 7,200 14
nuclear25b -0.99 1,666 3 -1.05 707 8 - 7,200 33 - 7,200 19
nuclear49a - 7,200 8 -1.11 6,266 67 - 7,200 15 - 7,200 12
nuclear49b -1.06 4,367 4 -1.13 4,980 27 - 7,200 8 - 7,200 34
nuclear49 -1.14 1,165 2 - 7,200 13 - 7,200 5 - 7,200 11
nuclearva -1.01 133 2 -1.01 244 2 -1.01 496 35 - 7,200 71
nuclearvb -1.03 614 2 -1.02 710 3 -1.01 1,107 181 -1.02 613 2
nuclearvc -1.00 2,064 6 -0.99 110 4 -0.99 1,702 149 - 7,200 51

nvs08 24,116.94 0 1 24,119.23 1 1 24,116.94 0 1 24,119.23 0 1
nvs20 146,475,177.22 0 1 138,691,481.67 0 1 146,475,177.22 0 1 138,691,481.67 0 1
nvs24 -342.20 1 4 -536.20 1 4 -517.80 0 2 - 7,200 2

o8 ar4 1 5,822,973.45 22 10 8,199,969.73 736 236 - 7,200 3,214 - 7,200 2
o9 ar4 1 6,877,522.82 198 59 8,199,964.62 6,206 698 - 7,200 2,611 - 7,200 2

qapw 468,078.00 372 2 460,118.00 637 2 - 7,200 21 464,259.68 684 2
saa 2 11,497.56 377 2 15,976.03 252 2 8,455.75 978 2 15,976.03 721 2

space25a 661.97 376 3 650.69 245 18 - 7,200 124 1,124.32 612 2
space25 661.97 413 3 650.69 773 18 - 7,200 45 1,124.38 619 2

space960 24,070,000.00 3,629 7 - 7,200 7 - 7,200 8 - 7,200 8
super1 ++ ++ ++ ++ ++ ++ - 7,200 18 - 7,200 2
super2 ++ ++ ++ ++ ++ ++ - 7,200 18 - 7,200 2
super3 ++ ++ ++ ++ ++ ++ - 7,200 18 - 7,200 2

super3t - 7,200 18 - 7,200 19 - 7,200 20 ++ ++ ++
tln12 - 7,200 14 - 7,200 10 - 7,200 2,403 - 7,200 2
tls12 - 7,200 10 - 7,200 10 - 7,200 445 - 7,200 9
tls2 5.30 720 6 5.30 1 5 - 7,200 6,569 ++ ++ ++
tls5 - 7,200 24 22.50 58 21 - 7,200 2,783 - 7,200 100
tls6 - 7,200 9 - 7,200 26 - 7,200 2,226 - 7,200 17
tls7 - 7,200 9 37.80 2,892 38 - 7,200 1,464 - 7,200 8

uselinear 1,951.37 188 1 227,751.06 47 1 1,951.37 187 1 1,951.37 48 1
var con10 475.36 449 54 463.17 12 5 562.62 29 4 ++ ++ ++
var con5 397.21 110 16 315.16 6 3 434.66 21 3 ++ ++ ++

waste 62,025.78 50 1 306,239.04 19 1 62,025.78 50 1 306,232.46 70 2
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Table 4 Comparing FP variants FP-1, FP-2, FP-5 and FP-6, detailed results.

FP-1 FP-2 FP-5 FP-6
instance value time it.s value time it.s value time it.s value time it.s
beuster ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

csched2a -102,002.02 5 2 -102,867.73 4 2 -102,932.87 1 2 -102,932.87 0 2
csched2 -120,042.73 138 2 -120,066.02 241 2 -120,064.55 2 2 -120,066.02 2 2

deb10 ++ ++ ++ ++ ++ ++ 331.39 1 2 ++ ++ ++
deb6 234.78 197 29 237.11 4 4 950.00 1 2 949.94 2 2
deb7 411.00 139 4 345.76 10 3 447.77 9 2 449.38 7 2
deb8 8,453,005,065.59 23 2 185,839,836.37 2 1 185,839,836.37 3 1 185,839,836.37 2 1
deb9 444.67 33 2 425.34 16 4 443.97 8 2 434.33 7 2
detf1 11,497.56 368 2 15,976.03 131 2 15,976.27 113 2 15,976.03 110 2

eg all s 223.14 27 3 100,003.77 52 5 15.45 406 4 100,003.00 85 7
eg disc2 s 65,822.96 7 1 100,004.34 5 1 100,004.34 8 1 100,004.34 5 1
eg disc s 94,165.42 8 1 100,003.69 7 1 100,003.69 11 1 100,003.69 8 1

eg int s 94,167.12 10 1 100,005.46 7 1 100,005.46 12 1 100,005.46 8 1
fo8 ar25 1 994,207.06 185 124 - 7,200 6 1,399,992.47 18 16 1,399,991.20 240 222
fo8 ar3 1 994,235.33 784 367 - 7,200 6 1,333,314.45 10 9 1,399,992.80 2 4

fo8 894,678.42 9 8 1,400,000.00 1,543 533 1,400,000.00 3 6 1,400,000.00 11 29
fo9 ar2 1 1,136,279.49 1,286 167 - 7,200 8 1,599,990.04 1,245 58 1,599,990.04 1,896 642

fo9 ar25 1 1,136,997.73 635 97 - 7,200 14 1,599,989.57 527 264 1,599,988.83 343 232
fo9 ar4 1 9,959.68 202 68 1,599,990.28 4,212 699 55,204.13 1,267 227 1,599,989.86 20 10
fo9 ar5 1 1,428,148.20 17 2 1,599,993.97 14 2 1,598,839.97 3 2 1,599,992.22 3 2

fo9 1,006,964.21 61 32 1,600,000.00 221 153 1,600,000.00 13 16 1,600,000.00 47 76
johnall -201.15 615 2 -201.29 614 2 -201.15 1 2 -201.15 1 2
lop97ic - 7,200 9 - 7,200 120 - 7,501 20 5,401.15 3,652 97

mbtd 91.33 4,266 2 98.53 4,045 2 89.53 5,253 2 89.53 6,103 2
nuclear104 - 7,200 2 ++ ++ ++ ++ ++ ++ ++ ++ ++
nuclear10a - 7,200 2 - 7,200 5 ++ ++ ++ - 9,078 4
nuclear10b - 7,200 2 - 7,200 4 -1.10 3,794 2 - 8,769 4
nuclear14a -1.09 1,602 3 -1.11 2,641 173 ++ ++ ++ -1.10 142 19
nuclear14b -1.10 646 2 -1.10 686 7 -1.00 30 2 -1.07 25 3
nuclear14 -1.12 1,645 3 -1.12 847 15 -1.12 11 2 - 7,202 251

nuclear24a -1.09 1,602 3 -1.11 2,730 173 ++ ++ ++ -1.10 271 19
nuclear24b -1.05 2,626 4 -1.09 1,584 59 -1.00 28 2 -1.07 45 3
nuclear24 -1.12 1,655 3 -1.12 1,649 51 -1.12 13 2 - 7,200 216

nuclear25a -1.06 6,501 8 - 7,200 372 ++ ++ ++ -1.05 214 16
nuclear25b -0.99 1,666 3 -1.05 707 8 -1.06 18 2 -1.07 303 13
nuclear49a - 7,200 8 -1.11 6,266 67 ++ ++ ++ - 7,334 18
nuclear49b -1.06 4,367 4 -1.13 4,980 27 -1.03 454 2 - 7,288 47
nuclear49 -1.14 1,165 2 - 7,200 13 -1.14 439 2 - 7,492 30
nuclearva -1.01 133 2 -1.01 244 2 ++ ++ ++ -1.01 5 4
nuclearvb -1.03 614 2 -1.02 710 3 -1.02 2 2 -1.02 2 2
nuclearvc -1.00 2,064 6 -0.99 110 4 -0.99 2 2 -0.99 3 3

nvs08 24,116.94 0 1 24,119.23 1 1 24,119.23 0 1 24,119.23 0 1
nvs20 146,475,177.22 0 1 138,691,481.67 0 1 138,691,481.67 0 1 138,691,481.67 0 1
nvs24 -342.20 1 4 -536.20 1 4 -506.60 360 4 -413.80 0 3

o8 ar4 1 5,822,973.45 22 10 8,199,969.73 736 236 8,171,278.66 947 305 8,199,970.33 85 108
o9 ar4 1 6,877,522.82 198 59 8,199,964.62 6,206 698 43,754.16 1,800 285 8,199,964.17 20 10

qapw 468,078.00 372 2 460,118.00 637 2 459,102.00 611 2 459,102.00 610 2
saa 2 11,497.56 377 2 15,976.03 252 2 15,976.27 117 2 15,976.03 116 2

space25a 661.97 376 3 650.69 245 18 ++ ++ ++ 671.09 5 5
space25 661.97 413 3 650.69 773 18 ++ ++ ++ 671.09 17 4

space960 24,070,000.00 3,629 7 - 7,200 7 24,070,000.00 1,513 7 24,070,000.00 2,558 9
super1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
super2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
super3 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

super3t - 7,200 18 - 7,200 19 ++ ++ ++ ++ ++ ++
tln12 - 7,200 14 - 7,200 10 - 7,215 1,114 - 7,203 1,034
tls12 - 7,200 10 - 7,200 10 ++ ++ ++ - 7,280 92
tls2 5.30 720 6 5.30 1 5 ++ ++ ++ 15.30 3 11
tls5 - 7,200 24 22.50 58 21 ++ ++ ++ - 7,201 504
tls6 - 7,200 9 - 7,200 26 ++ ++ ++ - 7,211 497
tls7 - 7,200 9 37.80 2,892 38 ++ ++ ++ - 8,171 19

uselinear 1,951.37 188 1 227,751.06 47 1 227,751.06 58 1 227,751.06 96 1
var con10 475.36 449 54 463.17 12 5 589.80 4 2 589.43 4 2
var con5 397.21 110 16 315.16 6 3 532.55 3 2 532.50 5 2

waste 62,025.78 50 1 306,239.04 19 1 306,239.04 23 1 306,239.04 38 1


