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Dual decomposition, a.k.a.
Inner Approximation

Dantzig-Wolfe decomposition
Lagrangian Relaxation
Column Generation



Block-diagonal Convex (Linear) Program

Block-diagonal program: convex X , n “complicating” constraints

(Π) max { cx : Ax = b , x ∈ X }

e.g, X = { x : Ex ≤ d } =
⊗

k∈K
(
X k = { xk : E kxk ≤ dk }

)
(|K | large =⇒ (Π) very large), Ax = b linking constraints

We can efficiently optimize upon X (much more so than solving

the whole of (Π), anyway) for different reasons:

a bunch of (many, much) smaller problems instead of a large one

X has (the X k have) structure (shortest path, . . . )

We could efficiently solve (Π) if linking constraints were not there

But they are (there): how to exploit it?
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Dantzig-Wolfe reformulation

Dantzig-Wolfe reformulation1: X convex =⇒ represent it by points

X =
{
x =

∑
x̄∈X x̄θx̄ :

∑
x̄∈X θx̄ = 1 , θx̄ ≥ 0 x̄ ∈ X

}
then reformulate (Π) in terms of the convex multipliers θ

(Π)


max c

( ∑
x̄∈X x̄θx̄

)
A
( ∑

x̄∈X x̄θx̄
)

= b∑
x̄∈X θx̄ = 1 , θx̄ ≥ 0 x̄ ∈ X

only n + 1 rows, but ∞-ly many columns

note that “x̄ ∈ X” is an index, not a constraint (θ is the variable)

A rather semi-infinite program, but “only” x̄ ∈ ext X needed

Not that this makes it any less infinite, unless
X is a polytope (compact polyhedron) =⇒ finite set of vertices

1
Dantzig, Wolfe “The Decomposition Principle for Linear Programs” Op. Res., 1960
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Dantzig-Wolfe reformulation (cont.d)

Could this ever be a good idea? Actually, it could:
polyhedra may have few faces and many vertices . . . or vice-versa

n-cube |xi | ≤ 1 ∀ i 2n faces 2n vertices

n-co-cube
∑

i |xi | ≤ 1 2n faces 2n vertices

Except, most often the number of vertices is too large

 AX  = bAX  = b
 e  = 1 e  = 1

 Ax = bAx = b
 Ex  dEx  d

AX  = bAX  = b
 e  = 1 e  = 1

a (linear) program with (exponentially/infinitely) many columns

But, efficiently optimize over X =⇒ generate vertices (≡ columns)
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Dantzig-Wolfe decomposition ≡ Column Generation

B ⊂ X (small), solve restriction of (Π) with X → B, i.e.,

(ΠB)


max

∑
x̄∈B (cx̄) θx̄∑
x̄∈B (Ax̄) θx̄ = b∑

x̄∈B θx̄ = 1 , θx̄ ≥ 0 x̄ ∈ B

“master problem” (B small, not too costly)

note how the parentheses have moved: linearity is needed (for now)

If B contains the “right” columns, x∗ =
∑

x̄∈B x̄θ∗x̄ optimal for (Π)

How do I tell if B contains the “right” columns? Use duality

(∆B)
min

{
yb + v : v ≥ cx̄ − y(Ax̄) x̄ ∈ B

}
= min

{
fB( y ) = max { cx̄ + y(b − Ax̄) : x̄ ∈ B }

}
one constraint for each x̄ ∈ B
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Dantzig-Wolfe decomposition ≡ Lagrangian relaxation

Dual of (Π): (∆) ≡ (∆X ) (many constraints)

fB = lower approximation of Lagrangian function

(Πy ) f ( y ) = max { cx + y(b − Ax) : x ∈ X } ≥ fB( y )

Assumption: optimizing over X is “easy” for each objective =⇒
obtaining x̄ s.t. f ( y ) = cx̄ + y(b − Ax̄) is “easy”

Important: (Πy ) Lagrangian relaxation2

f ( y ) ≥ v(Π) = v(∆) ∀y

provided (Πy ) is solved exactly, or at least a f̄ ≥ f ( y ) is used

Thus, (∆B) outer approximation of the Lagrangian Dual

(∆) min
{
f ( y ) = max { cx + y(b − Ax) : x ∈ X }

}
2
Geoffrion “Lagrangean Relaxation for Integer Programming” Math. Prog. Study, 1974
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Lagrangian duality vs. Linear duality

Note about the LP case (X = { x : Ex ≤ d }):

(∆) min
{
yb +max { (c − yA)x : Ex ≤ d }

}
≡ min

{
yb +min { wd : wE = c − yA , w ≥ 0 }

}
≡ min

{
yb + wd : wE + yA = c , w ≥ 0

}
≡ exactly the linear dual of (Π)

y “partial” duals: duals w of Ex ≤ d “hidden” in the subproblem

There is only one duality

Will repeatedly come in handy
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Dantzig-Wolfe decomposition ≡ Dual row generation

Primal/dual optimal solution x∗/( v∗ , y∗ ) out of (ΠB)/(∆B)

x∗ feasible to (Π), so optimal ⇐⇒ ( v∗ , y∗ ) feasible to (∆)

⇐⇒ v∗ ≥ (c − y∗A)x ∀x ∈ X

⇐⇒ v∗ ≥ max { (c − y∗A)x : x ∈ X }

In fact: v∗ ≥ (c − y∗A)x̄ ≡ y∗b + v∗ ≥ f ( y∗ ) =⇒

v(Π) ≥ cx∗ = y∗b + v∗ ≥ f ( y∗ ) ≥ v(∆) ≥ v(Π) =⇒

x∗/( v∗ , y∗ ) optimal

Otherwise, B = B ∪ { x̄ }: add new column to (ΠB) / row to (∆B),

rinse & repeat

Clearly finite if ext X is, globally convergent anyway:

the Cutting-Plane algorithm for convex programs3 (applied to (∆))

3
Kelley “The Cutting-Plane Method for Solving Convex Programs” J. of the SIAM, 1960
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Geometry of the Lagrangian dual

y

f

x2

f
B

x3

x4

x1

x5

x6

fB ≤ f (CP model),

v∗ = fB( y
∗ ) lower bound on v(ΠB)

Optimal solution x̄ gives separator between ( v∗ , y∗ ) and epi f ≡
( cx̄ , Ax̄ ) = new row in (∆B) (subgradient of f at y∗)

Improve CP model, re-solve the master problem, rinse & repeat
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Dantzig-Wolfe decomposition ≡ Inner Approximation

“Abstract” view of (ΠB): conv(B ) inner approximation of X

(ΠB) max { cx : Ax = b , x ∈ conv(B ) }

x∗ solves the Lagrangian relaxation of (ΠB) with y∗, i.e.,

x∗ ∈ argmax
{
(c − y∗A)x : x ∈ conv(B )

}
=⇒ (c − y∗A)x ≤ (c − y∗A)x∗ for each x ∈ conv(B ) ⊆ X

(c − y∗A)x̄ = max{ (c − y∗A)x : x ∈ X } ≥ (c − y∗A)x∗

Column x̄ has positive reduced cost

(c − y∗A)(x̄ − x∗) = (c − y∗A)x̄ − cx∗ + y∗b = (c − y∗A)x̄ − v∗ > 0

=⇒ x̄ /∈ conv(B ) =⇒ makes sense to add x̄ to B
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Geometry of Dantzig-Wolfe/Column Generation

Ax = bAx = b

c

XB = conv(B ) inner approximation of X

c − y∗A separates XB ∩ Ax = b from all x ∈ X better than x∗

=⇒ optimizing c − y∗A finds new x̄ ∈ X (if any)

Increase XB, re-solve master problem, rinse & repeat

Issue: XB ∩ Ax = b must be nonempty
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The Unbounded Case

X unbounded ⇐⇒ rec X ⊃ { 0 } =⇒ f ( y ) = v(Πy ) = ∞ happens

X = conv( ext X = X0 ) + cone( ext rec X = X∞ )

B = (B0 ⊂ X0 ) ∪ (B∞ ⊂ X∞ ) = { points x̄ } ∪ { rays χ̄ } =⇒

(ΠB)


max c

(∑
x̄∈B0

x̄θx̄ +
∑

χ̄∈B∞
χ̄θχ̄

)
A
(∑

x̄∈B0
x̄θx̄ +

∑
χ̄∈B∞

χ̄θχ̄
)
= b∑

x̄∈B0
θx̄ = 1

θx̄ ≥ 0 x̄ ∈ B0 , θχ̄ ≥ 0 χ̄ ∈ B∞

In (∆B), constraints y(Aχ̄) ≥ cχ̄ (a.k.a. “feasibility cuts”)

(Πy∗) unbounded ⇐⇒ (c − y∗A)χ̄ > 0 for some χ̄ ∈ rec X

(violated constraint) =⇒ B∞ = B∞ ∪ { χ̄ }

(∆) = min{ f ( y ) : y ∈ Y }, (Πy∗) provides either subgradients of f

(a.k.a. “optimality cuts”), or violated valid inequalities for Y 3
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Primal decomposition, a.k.a.

Outer Approximation

Benders’ decomposition
Resource decomposition



Staircase-structured Convex (Linear) Program

Staircase-structured program: convex X , “complicating” variables

(Π) max { cx + ez : Dx + Ez ≤ d , x ∈ X }

e.g, Dx + Ez ≤ d ≡ Dkx + Ekzk ≤ dk k ∈ K (|K | large) =⇒

Z (x) = { z : Ez ≤ d − Dx }

=
⊗

k∈K
(
Zk(x) = { zk : Ekzk ≤ dk − Dkx }

)
We can efficiently optimize upon Z (x) (much more so than solving

the whole of (Π), anyway) for different reasons:

a bunch of (many, much) smaller problems instead of a large one

Z (x) has (the Zk(x) have) structure (shortest path, . . . )

We could efficiently solve (Π) if linking variables were fixed

But they are not (fixed): how to exploit it?
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Benders’ reformulation

Benders’ reformulation: define the concave value function

(B) max
{
cx + v( x ) = max{ ez : Ez ≤ d − Dx } : x ∈ X

}
(note: clearly v( x ) = −∞ may happen)

Clever trick4: use duality to reformulate the inner problem

v( x ) = min
{
w(d − Dx) : w ∈ W = {w : wE = e , w ≥ 0 }

}
so that W does not depend on x

As before, W = conv( ext W = W0 ) + cone( ext rec W = W∞ ) =⇒

(B) max cx + v

v ≤ w̄(d − Dx) w̄ ∈ W0

0 ≤ ω̄(d − Dx) ω̄ ∈ W∞

x ∈ X

still very large, but we can generate w̄ / ω̄ by computing v( x )
4
Benders “Partitioning Procedures for Solving Mixed-Variables Programming Problems” Numerische Mathematik, 1962
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Benders’ decomposition

Select (small) B = (B0 ⊂ W0 ) ∪ (B∞ ⊂ W∞ ), solve master problem

(BB) max cx + v

v ≤ w̄(d − Dx) w̄ ∈ B0

0 ≤ ω̄(d − Dx) ω̄ ∈ B∞

x ∈ X

= max
{
cx + vB( x ) : x ∈ X ∩ VB

}
, where

vB( x ) = min{ w̄(d − Dx) : w̄ ∈ B0 } ≤ v( x ), VB ⊇ dom v

Find (primal) optimal solution x∗, compute v( x∗ ), get either w̄ or ω̄,

update either B0 or B∞, rinse & repeat

Benders’ decomposition ≡ Cutting-Plane approach3 to (B)

Spookily similar to the Lagrangian dual, ain’t it?

Except, constraints are now attached to dual objects w̄ / ω̄
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All Are One, One Is All



Benders is Lagrange . . .

Block-diagonal case

(Π) max { cx : Ax = b , Ex ≤ d }

(∆) min
{
yb + wd : wE + yA = c , w ≥ 0

}
Think of y as complicating variables in (∆), you get

(Π) max { cx : Ax = b , Ey ≤ d }

(∆) min
{
yb +min{ wd : wE = c − yA , w ≥ 0 }

}
= min

{
yb +max{ (c − yA)x : Ex ≤ d }

}
i.e., the Lagrangian dual of (Π)

The value function of (∆) is the Lagrangian function of (Π)
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. . . Lagrange is Benders . . .

Dual of (Π) (linear case X = { x : Ax = b })
(Π) max { cx + ez : Dx + Ez ≤ d , Ax = b }

(∆) min { yb + wd : yA+ wD = c , wE = e , w ≥ 0 }

Lagrangian dual of the dual constraints yA+ wD = c (multiplier x):

(∆) max
{
min{ yb + wd + (c − yA+ wD)x : wE = e , w ≥ 0 }

}
= max

{
cx +min{ y(b − Ax) + w(d − Dx) : wE = e , w ≥ 0 }

}
= max

{
cx +min{ y(b − Ax) } +

min{ w(d − Dx) : wE = e , w ≥ 0 }
}

= max
{
cx +max{ ez : Dx + Ez ≤ e } : Ax = b

}
i.e., Benders’ reformulation of (Π)

The Lagrangian function of (∆) is the value function of (Π)

A. Frangioni (DI — UniPi) SMS++ @ EdF May 25-26, 2023 18 / 49



. . . and Both are the Cutting-Plane Algorithm

Both Lagrange and Benders boil down (changing sign if necessary) to

min
{
ϕ(λ ) : λ ∈ Λ

}
with Λ and ϕ convex, ϕ nondifferentiable

Both Λ and ϕ only implicitly known via a (costly) oracle: λ̄ −→
either ϕ( λ̄ ) < ∞ and ḡ ∈ ∂ϕ( λ̄ ) ≡ ϕ(λ ) ≥ ϕ( λ̄ ) + ḡ(λ− λ̄) ∀λ
or ϕ( λ̄ ) = ∞ and a valid inequality for Λ violated by λ̄

“Natural” algorithm: the Cutting-Plane method[3] ≡
revised simplex method with mechanized pricing in the discrete case

Natural ≠⇒ fast: convex nondifferentiable optimization Ω( 1 / ε2 ),

Cutting-Plane method much worse than that (will see soon)

Many variants/other algorithms possible, another story (course)
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You can apply Lagrange to a Staircase-structured program

Reformulate a staircase-structured program

max cx + e ′z ′ + e ′′z ′′

Dx + E ′z ′ ≤ d ′ , Dx + E ′′z ′′ ≤ d ′′

x ∈ X

. . . as a block-diagonal one

max c(x ′ + x ′′)/2 + e ′z ′ + e ′′z ′′

Dx ′ + E ′z ′ ≤ d ′ , x ′ ∈ X

Dx ′′ + E ′′z ′′ ≤ d ′′ , x ′′ ∈ X

x ′ = x ′′

Issue: Dx + Ez ≤ d must have structure, not Ez ≤ d − Dx

Classical approach in stochastic programs
(but beware the multi-stage case)
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You can apply Benders’ to a Block-diagonal program

Reformulate a block-diagonal program

max c ′x ′ + c ′′x ′′

E ′x ′ ≤ d ′ , E ′′x ′′ ≤ d ′′

A′x ′ + A′′x ′′ = b

. . . as a staircase-structured one

max c ′z ′ + c ′′z ′′

E ′z ′ ≤ d ′ , A′z ′ = x ′

E ′′z ′′ ≤ d ′′ , A′′z ′′ = x ′′

x ′ + x ′′ = b

Issue: Ez ≤ d , Az = x must have structure, not Ez ≤ d

Resource decomposition5 in multicommodity parlance

5
Kennington, Shalaby “An Effective Subgradient Procedure for Minimal Cost Multicomm. Flow Problems” Man. Sci., 1977
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Dual Decomposition:

the Nonlinear and Integer Cases



Block-diagonal Convex Nonlinear Programs

Nonlinear c(·) concave, A(·) component-wise convex, X convex

(Π) max
{
c( x ) : A( x )≤ b , x ∈ X

}
(∆) max

{
f ( y ) = yb +max { c( x )− yA( x ) : x ∈ X } : y ≥ 0

}
Any x̄ ∈ X still gives f ( y ) ≥ c( x̄ ) + y( b − A( x̄ ) ), same (∆B) / (ΠB)

yA( x̄ ) still linear in y even if nonlinear in x

c(
∑

x̄∈B x̄θx̄ ) ≥
∑

x̄∈B c(x̄)θx̄ (c(·) concave) +

A(
∑

x̄∈B x̄θx̄ ) ≤
∑

x̄∈B A(x̄)θx̄ ≤ b (A(·) convex) =⇒

(ΠB) safe inner approximation (v(ΠB) ≤ v(Π))

Basically everything keeps working, but you may need

constraint qualification6 (usually easy to get)

6
Lemaréchal, Hiriart-Urrity “Convex Analysis and Minimization Algorithms” Springer, 1993
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Block-diagonal Nonconvex Nonlinear Programs

c( · ) and/or A( · ) and/or X not concave / convex: not much changes

except (Πy ) is hard and you are not really solving (Π)

yA( x̄ ) still linear in y , (∆) still convex ≡ “convexified” (Π):

c( x ) = cx , A( x ) = Ax =⇒ (∆) ≡ max
{
cx : Ax ≤ b , x ∈ X ∗∗ }

(“∗∗” ≡ biconjugate ≡ closed convex envelope / hull)

A( x ) = Ax =⇒ (∆) ≡ max
{
c∗∗X ( x ) : Ax ≤ b

}
(cX (·) = c(·) + ıX (·), ıX ≡ indicator function ≡ 0 in X , ∞ outside)

better than max
{
c∗∗( x ) : Ax ≤ b , x ∈ X ∗∗ }

General formula ugly to write7, but better than

max
{
c∗∗( x ) : A∗∗( x ) ≤ b , x ∈ X ∗∗ }

“A Lagrangian Dual does not distinguish a set from its convex hull”
for better (efficiency) and for worse (not the same problem)

7
Lemaréchal, Renaud “A Geometric Study of Duality Gaps, with Applications” Math. Prog., 2001
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Block-diagonal Integer Programs

Special case: X combinatorial (e.g. , X = { x ∈ Zn : Ex ≤ d })

(Π) max { cx : Ax = b , x ∈ X }

(∆) min
{
yb +max { (c − yA)x : x ∈ X }

}
nothing changes if we can still efficiently optimize over X
due to size (decomposition) and/or structure (integrality)

Except we are solving a (potentially good) relaxation of (Π)

(Π̄)


max c

( ∑
x̄∈X x̄θx̄

)
A
( ∑

x̄∈X x̄θx̄
)

= b∑
x̄∈X θx̄ = 1 , θx̄ ≥ 0 x̄ ∈ X

≡ max { cx : Ax = b , x ∈ X ∗∗ = conv(X ) }

θx̄ ∈ Z gives a reformulation of (Π); could branch on θx̄ , but usually
better doing it on x , easier to integrate in the relaxation computation
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Block-diagonal Integer Programs (cont.d)

Good news: (Π̄) better (not worse) than continuous relaxation

(conv(X ) ⊆ { x ∈ Rn : Ex ≤ d })

Bad news: (Πy ) “too easy” (conv(X ) = { x ∈ Rn : Ex ≤ d }
≡ integrality property) =⇒ (Π̄) same as continuous relaxation

(Πy ) must be easy, but not too easy (no free lunch)

Anyway, at best gives good bounds =⇒
Branch & Bound with DW/Lagrangian/CG ≡ Branch & Price

Although it can be used to drive good heuristics8,9

Branching nontrivial: may destroy subproblem structure
=⇒ branch on x (but (ΠB) is on θ)

Little support from off-the-shelf tools, only SCIP / GCG10 (for now)
8
Daniilidis, Lemaréchal “On a Primal-Proximal Heuristic in Discrete Optimization” Math. Prog., 2005

9
Scuzziato, Finardi, F. “Solving Stochastic [. . . ] Unit Commitment with a New Primal Recovery [. . . ]” IJEPES, 2021

10
https://scipopt.org, https://gcg.or.rwth-aachen.de
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Digression: How to Choose your Lagrangian relaxation

There may be many choices

(Π) max
{
cx : Ax = b , Ex ≤ d , x ∈ Zn

}
(Π′

y ) max
{
cx + y(b − Ax) : x ∈ X ′ = { x ∈ Zn : Ex ≤ d }

}
(Π′′

w ) max
{
cx + w(d − Ex) : x ∈ X ′′ = { x ∈ Zn : Ax = b }

}
The best between (∆′) and (∆′′) depends on integrality of X ′, X ′′:

if both have it, both (∆′) and (∆′′) ≡ continuous relaxation

if only one has it, the one that does not, but if both don’t have it?

Here comes Lagrangian decomposition11 (looks familiar?)

(Π) ≡ max
{
(cx ′ + cx ′′)/2 : x ′ ∈ X ′ , x ′′ ∈ X ′′ , x ′ = x ′′

}
(Πλ) max { (c/2 + λ)x ′ : x ′ ∈ X ′ }+max { (c/2− λ)x ′′ : x ′′ ∈ X ′′ }

(∆̄) ≡ (Π̄) max
{
cx : x ∈ conv(X ′) ∩ conv(X ′′)

}
better than both (but need to solve two hard subproblems)
11

Guignard, Kim “Lagrangean Decomposition: a Model Yielding Stronger Lagrangean Bounds” Math. Prog., 1987
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Geometry of Lagrangian Decomposition

Intersection between red and blue ≡ grey ≡ continuous relaxation

Lagrangian relaxation of blue constraints shrinks the red (=⇒ grey) part

Lagrangian relaxation of red constraints shrinks the blue (=⇒ grey) part

Lagrangian decomposition (both red and blue constraints) shrinks both

=⇒ the grey part more

But the intersection of convex hulls is larger (bad) than
the convex hull of the intersection =⇒ still a relaxation in general
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A Computational Example: Capacitated Facility Location

Set O of facilities to be installed, cost fi and capacity ui for i ∈ O

Set D of customers to be served, demand dj (unique product) for j ∈ D

Unitary transport cost cij on arc (i , j) ∈ A (facility i → customer j)

min
∑

(i , j)∈A cijdjxij +
∑

i∈O fizi (1)∑
i : (i , j)∈A xij = 1 j ∈ D (2)∑
j : (i , j)∈A djxij ≤ uizi i ∈ O (3)

xij ∈ [0, 1] / {0, 1} (i , j) ∈ A (4)

zi ∈ {0, 1} i ∈ O (5)

Splittable / unsplittable: customers can/not be served by > 1 facility

> 1 products → multicommodity network design with very simple paths
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Lagrangian Relaxations of Capacitated Facility Location

Relax (2): |O| (mixed-integer) knapsacks∑
j∈D yj +min

∑
i∈O

[ ∑
j : (i , j)∈A(cijdj − yj)xij + fizi

]
(6)∑

j : (i , j)∈A djxij ≤ uizi i ∈ O (3)

xij ∈ [0, 1] / {0, 1} (i , j) ∈ A (4)

zi ∈ {0, 1} i ∈ O (5)

Relax (3): |O| 1-variable problems +|D| simple choice problems

min
∑

j∈D
∑

i : (i , j)∈A dj(cij + wi )xij +
∑

i∈O(fi − wiui )zi (7)∑
i : (i , j)∈A xij = 1 j ∈ D (2)

xij ∈ [0, 1] / {0, 1} (i , j) ∈ A (4)

zi ∈ {0, 1} i ∈ O (5)

Exercise: which relaxation gives the best bound

in the splittable / unsplittable case?
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Dantzig-Wolfe Reformulation ≡ Column Generation

Column-generation view of the problem: patterns for facility i

P i = { p ∈ [0, 1]|D| :
∑

j∈D djpj ≤ ui , (i , j) /∈ A =⇒ pj = 0 }
except p = 0, + integrality if needed

p ∈ P i =⇒ cp = fi +
∑

j : (i , j)∈A cijdjpj , P =
⋃

i∈O P i

(disaggregated) Dantzig-Wolfe reformulation ≡
min

∑
i∈O

∑
p∈P i cpθp (8)∑

p∈P pjθp = 1 j ∈ D (9)∑
p∈P i θp ≤ 1 i ∈ O (10)

θp ≥ 0 p ∈ P (11)

D-W/CP: start with (small) Bi ⊂ P i , solve (8)–(11) restricted to B,
take yi duals of (9), solve Lagrangian relaxations, rinse & repeat

Eventually yields good bounds . . .

if the master problem is nonempty
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Algorithmic Issues

Issue: the master problem can be (primal) empty (≡ dual unbounded)

Phase 0 approach: seek for feasible solution first

min
∑

j∈D vj (12)∑
p∈B pjθp + vj = 1 j ∈ D (13)∑
p∈Bi θp ≤ 1 i ∈ O (10)

θp ≥ 0 p ∈ B (11)

vj ≥ 0 j ∈ D (14)

Minimise cost of slack variables vj , disregard true costs

Ends with some v∗j > 0 ≡ DW reformulation =⇒ original problem empty

Otherwise master problem feasible with B, start “true” optimization

Real issue: can take forever because D-W/CP inefficient

And you have to do branching (Branch & Price) on top of that
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Don’t try this at home, by-the book

How a by-the-book implementations behave: pds7

Page 1

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

y∗ immediately shoots much farther from optimum than initial point
≡ having good initial point not much useful

No apparent improvement for a long time as information slowly accrues

A mysterious threshold is hit and “real” convergence begins

Can be improved (stablised), but that’s another story (course)
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Good Formulations for conv(X )



Alternative Good Formulations for conv(X )

(Under mild assumptions) conv(X ) is a polyhedron =⇒
conv(X ) =

{
x ∈ Rn : Ẽ x ≤ d̃

}
There are (at least as) good (as DW) formulations for the problem

in the natural variable space, which is an advantage

Except, practically all good formulations are too large

 Ex  d~ ~Ex  d~ ~Ex  d~ ~Ex  d~ ~ Ex  dEx  d  Ax = bAx = b Ax = bAx = b

Very few exceptions (integrality property ≈ networks)

Good news: rows can be generated incrementally

But a few more variables do as a lot more constraints
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Row generation/polyhedral approaches

Ax = bAx = b

Ex ) d

Ax = bA

Ex ≤ d

Ax AAx A
c

Ax ≤ b ∩ Ex ≤ d outer approximation of feasible region

Optimal solution of continuous relaxation gives bound,
valid inequality ≡ separator from conv(X )

Smaller feasible region, re-solve continuous relaxation, rinse & repeat
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Example: Capacitated Facility Location

Strong forcing constraints for Capacitated Facility Location

min (1)

(2) , (3) , (4) , (5)

xij ≤ djzi (i , j) ∈ A (15)

Obviously valid, “only” #A many =⇒ trivially separable

#A more constraints can make continuous relaxation unbearably slower

=⇒ much better to separate them on-the-fly

Just lazy constraints for solvers that support the notion

Theoretical result: (15) =⇒ same bound as DW (in the splittable case)

Many different ways to skin a cat (don’t do this at home!)
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A picture is worth 100 words

DW

CP
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A Computational Example: CP vs. DW for CFL

Let’s see some code running
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Branch & Cut

R = (small) subset of row( indice)s, ERx ≤ dR reduced set

Solve outer approximation to (Π̄)

(Π̄R) max { cx : Ax = b , ERx ≤ dR }

feed the separator with primal optimal solution x∗

Separator for (several sub-families of) facets of conv(X )

Several general approaches, countless specialized ones

Most often separators are hard combinatorial problems themselves

(though using general-purpose MIP solvers is an option12

May tail off, branching useful far before having solved (Π̄X )

12
Fischetti, Lodi, Salvagnin “Just MIP It!” MATHEURISTICS, Ann. Inf. Syst., 2009
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Branch & Cut vs. Branch & Price

Which is best?

Row generation naturally allows multiple separators

Very well integrated in general-purpose solvers

(but harder to exploit “complex” structures)

Column generation naturally allows very unstructured separators

Simpler to exploit “complex” structures

(but much less developed software tools)

Column generation is row generation in the dual

Then, of course, Branch & Cut & Price

(nice, but software issues remain and possibly worsen)
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Primal Decomposition:

the Nonlinear and Integer Cases



Staircase-structured z-convex Nonlinear Programs

f ( x , · ) and G ( x , · ) concave, Z convex:

(Π) max { f ( x , z ) : G ( x , z ) ≥ 0 , x ∈ X , z ∈ Z }

(B) max
{
v( x ) : x ∈ X

}
where v( x ) = max{ f ( x , z ) : G ( x , z ) ≥ 0 , z ∈ Z }

= value function of a convex program =⇒ convex

(B) ≡ (Π) without assumptions on f ( · , z ), G ( · , z ) and X , i.e.,
if (Π) is hard, then (B) is just as hard as (Π)

(B) may still be more efficient (e.g., x “very few” but z “very many”)

Standard example: X = { x ∈ Zn : Ex ≤ d } combinatorial:

(Π) max { cx + ez : Ax + Bz ≤ b , x ∈ X }
nothing changes . . . except (BB) now is combinatorial =⇒ hard

However (BW ) now is equivalent to (Π) =⇒ no branching needed
unless for solving (BB)
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Staircase-structured z-convex Nonlinear Programs (cont.d)

Still need duality: which one? Lagrangian13, of course

v( x ) = min
{
max{ f ( x , z ) + λG ( x , z ) : z ∈ Z } : λ ≥ 0

}
Under appropriate constraint qualification, two cases occur:

either ∃ λ̄ ≥ 0 , z̄ ∈ Z s.t. v( x∗ ) = f ( x∗ , z̄ ) + λ̄G ( x∗ , z̄ ) > −∞
or v( x∗ ) = −∞ =⇒ { z ∈ Z : G ( x∗ , z ) ≥ 0 } = ∅ =⇒
∃ ν̄ ≥ 0 , z̄ ∈ Z s.t. max{ ν̄G ( x∗ , z ) : z ∈ Z } = ν̄G ( x∗ , z̄ )< 0

General form of the master problem

(B) max v

v ≤ max{ f ( x , z ) + λ̄G ( x , z ) : z ∈ Z } λ̄ ∈ Λ0

0 ≤ max{ ν̄G ( x , z ) : z ∈ Z } ν̄ ∈ Λ∞

x ∈ X

Beware those nasty “max”: must be that the “max” is independent of x!

Possible in a few cases, complicated in general

13
Geoffrion “Generalized Benders Decomposition” JOTA, 1972
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Possible in a few cases, complicated in general

13
Geoffrion “Generalized Benders Decomposition” JOTA, 1972
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Staircase-structured z-convex Nonlinear Programs (cont.d)

Still need duality: which one? Lagrangian13, of course
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Working Staircase-structured z-convex Nonlinear Programs

Case I, separability: f ( x , z ) = f ( x ) + h( z ), G ( x , z ) = G ( x ) + H( z )

(B) max f ( x ) + v

v ≤ λ̄G ( x ) + max{ h( z ) + λ̄H( z ) : z ∈ Z } λ̄ ∈ Λ0

0 ≤ ν̄G ( x ) + max{ ν̄G ( z ) : z ∈ Z } ν̄ ∈ Λ∞

x ∈ X

convex ⇐⇒ f ( · ) convex and G ( · ) concave (λ̄ ≥ 0, ν̄ ≥ 0),

otherwise nonlinear nonconvex cuts, (B) “hard” (but (Π) was)

Case II, special forms: f (zi ) concave, univariate

max
{ ∑

i xi f ( zi ) :
∑

i xizi ≤ c , zi ≥ 0 , Ax ≤ b , x ≥ 0
}

v( x ) =minλ
∑

i max{ xi (f ( zi )− λzi ) : zi ≥ 0
}
+ λc

v( x ) ≤
∑

i xi max{ (f ( zi )− λ̄zi ) : zi ≥ 0
}
+ λ̄c

can optimize on the z independently from the x =⇒
“normal” linear cuts
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Staircase-structured non convex Nonlinear Programs

f ( x , · ) and/or G ( x , · ) not concave and/or Z not convex:

though luck: you basically cannot do anything

Benders’ requires duality, duality requires convexity: no Benders’ for
(Π) max { cx + ez : Ax + Bz ≤ b , x ∈ X , z ∈ Zm }

Some workarounds possible:

Use exact duality for nonconvex / integer problems14 (though!)

Approximate the convex hull by some hierarchy15 (RLT, . . . )

Give up duality and use combinatorial Benders’ (feasibility) cuts16

In general much harder / less efficient

Alternative route: use Benders’ to solve continuous relaxation:
Benders’ subproblem as yet another (strong17) cut generator

Often more efficient and supported by some off-the-shelf solver

14
Guzelsoy, Ralphs “Duality for Mixed-Integer Linear Programs” ITOR, 2007

15
Sen, Sherali “Decomposition [. . . ] for Two-Stage Stochastic Mixed-Integer Programming” Math. Prog., 2006

16
Codato, Fischetti “Combinatorial Benders’ Cuts for Mixed-Integer Linear Programming” Op. Res., 2006

17
Costa, Cordeau, Gendron “Benders, Metric and Cutset Inequalities for Multicommodity [. . . ] Network Design” COAP, 2009
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Modelling languages, and what they are for

Most interactions with optimization solvers via Algebraic Modelling
Languages (AML): commercial AMPL or GAMS18, AIMMS19 and OPL20, or
open-source Coliop or ZIMPL21

Interfaced with a varying set (few/many) of general-purpose solvers for
large problem classes (MILP, MINLP, conic, . . . )

AML is a separate language, typically interpreted (not efficient)

Mostly “flat” languages (no OOP), modularity an issue

Focus on “model once, solve once”; some offer some support for iterative
procedures but clearly an afterthought

Hide the complexities of the model/solution process to inexperienced users

18
https://ampl.com, https://www.gams.com

19
https://www.aimms.com/platform/aimms-development

20
https://www.ibm.com/docs/en/icos/12.8.0.0?topic=opl-optimization-programming-language

21
http://www.coliop.org, https://zimpl.zib.de
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Modelling systems, and what they are for

Modelling systems: libraries written in general-purpose languages
providing similar functionalities to AML

Often open-source: FLOPCpp, COIN Rehearse and Gravity22 (C++),
PuLP and Pyomo23(Python), JuMP (Julia) and YALMIP24 (Matlab)

May not fully replicate AML constructs, sometimes more limited

Solver interfacing and overhead lower with efficient languages (C++)

Multiple models and iterative procedures more natural

Can exploit OOP features of host language for better modularity

Mostly focus on general-purpose solvers and “model once, solve once”

Tailored for end-users, not algorithms developers
22

https://github.com/coin-or/FlopCpp, https://github.com/coin-or/Gravity
https://github.com/coin-or/Rehearse

23
https://github.com/coin-or/pulp, http://www.pyomo.org

24
https://github.com/jump-dev/JuMP.jl, https://yalmip.github.io
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Decomposition / structure-aware solvers

Some solvers provide decomposition capabilities:

Cplex does Benders’, structure automatic or user hints

SCIP10 does B&C&P (one-level D-W), pricing & reformulation up to the
user (plugins)

GCG10 extends SCIP with automatic and user-defined (one-level) D-W and
recently also a generic (one-level) Benders’ approach

DDSIP25 and PIPS26 implement D-W for two-stage stochastic programs

The BaPCoD B&C&P code has been used to develop Coluna.jl27, doing
one-level D-W and (alpha) Benders’, multi-level planned

Other solvers use structure in different ways: BlockIP28, OOPS29

25
https://github.com/RalfGollmer/ddsip

26
https://github.com/Argonne-National-Laboratory/PIPS

27
https://github.com/atoptima/Coluna.jl

28
http://www-eio.upc.edu/~jcastro/BlockIP.html

29
https://www.maths.ed.ac.uk/~gondzio/parallel/solver.html
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Decomposition-aware modelling systems: are there any?

In a word?

Very few (that’s two words . . . )

OOPS is interfaced with SML30, providing some parallel capabilities

PIPS is interfaced with StructJuMP31, using BlockDecomposition32

No modelling system is focused on multi-level structure,

non-general-purpose solvers, parallel, and modularity/extendability

Although JuMP is doing a good job at promoting some of these

We tried working with Julia, but most solvers are in C / C++, and

the full circle Julia → C++ → Julia did not work well

So we choose no-performance-compromise C++, accepting the drawbacks

30
https://www.maths.ed.ac.uk/ERGO/sml

31
https://github.com/StructJuMP/StructJuMP.jl

32
https://github.com/atoptima/BlockDecomposition.jl

A. Frangioni (DI — UniPi) SMS++ @ EdF May 25-26, 2023 48 / 49

https://www.maths.ed.ac.uk/ERGO/sml
https://github.com/StructJuMP/StructJuMP.jl
https://github.com/atoptima/BlockDecomposition.jl


Decomposition-aware modelling systems: are there any?

In a word? Very few (that’s two words . . . )

OOPS is interfaced with SML30, providing some parallel capabilities

PIPS is interfaced with StructJuMP31, using BlockDecomposition32

No modelling system is focused on multi-level structure,

non-general-purpose solvers, parallel, and modularity/extendability

Although JuMP is doing a good job at promoting some of these

We tried working with Julia, but most solvers are in C / C++, and

the full circle Julia → C++ → Julia did not work well

So we choose no-performance-compromise C++, accepting the drawbacks

30
https://www.maths.ed.ac.uk/ERGO/sml

31
https://github.com/StructJuMP/StructJuMP.jl

32
https://github.com/atoptima/BlockDecomposition.jl

A. Frangioni (DI — UniPi) SMS++ @ EdF May 25-26, 2023 48 / 49

https://www.maths.ed.ac.uk/ERGO/sml
https://github.com/StructJuMP/StructJuMP.jl
https://github.com/atoptima/BlockDecomposition.jl


Decomposition-aware modelling systems: are there any?

In a word? Very few (that’s two words . . . )

OOPS is interfaced with SML30, providing some parallel capabilities

PIPS is interfaced with StructJuMP31, using BlockDecomposition32

No modelling system is focused on multi-level structure,

non-general-purpose solvers, parallel, and modularity/extendability

Although JuMP is doing a good job at promoting some of these

We tried working with Julia, but most solvers are in C / C++, and

the full circle Julia → C++ → Julia did not work well

So we choose no-performance-compromise C++, accepting the drawbacks

30
https://www.maths.ed.ac.uk/ERGO/sml

31
https://github.com/StructJuMP/StructJuMP.jl

32
https://github.com/atoptima/BlockDecomposition.jl

A. Frangioni (DI — UniPi) SMS++ @ EdF May 25-26, 2023 48 / 49

https://www.maths.ed.ac.uk/ERGO/sml
https://github.com/StructJuMP/StructJuMP.jl
https://github.com/atoptima/BlockDecomposition.jl


Decomposition-aware modelling systems: are there any?

In a word? Very few (that’s two words . . . )

OOPS is interfaced with SML30, providing some parallel capabilities

PIPS is interfaced with StructJuMP31, using BlockDecomposition32

No modelling system is focused on multi-level structure,

non-general-purpose solvers, parallel, and modularity/extendability

Although JuMP is doing a good job at promoting some of these

We tried working with Julia, but most solvers are in C / C++, and

the full circle Julia → C++ → Julia did not work well

So we choose no-performance-compromise C++, accepting the drawbacks

30
https://www.maths.ed.ac.uk/ERGO/sml

31
https://github.com/StructJuMP/StructJuMP.jl

32
https://github.com/atoptima/BlockDecomposition.jl

A. Frangioni (DI — UniPi) SMS++ @ EdF May 25-26, 2023 48 / 49

https://www.maths.ed.ac.uk/ERGO/sml
https://github.com/StructJuMP/StructJuMP.jl
https://github.com/atoptima/BlockDecomposition.jl


Conclusions

(Part III)



Conclusions (Part III)

General block structure can (and must in some cases) be exploited

Well-understood main tools: reformulation + duality

Two different approaches, “primal” and “dual”: for linear programs
Lagrange is Benders’ in the dual, and vice-versa

Both boil down to the 60+-years old Cutting-Plane algorithm3

“plus some branching” to deal with nonconvexity

Different twists, different conditions to work:

who is complicating (constraints vs. variables), but tricks (≡ other
reformulations) can be used to create the desired structure

who is reformulated (subproblem vs. master problem)

where integer / nonconvexity can be (subproblem vs. master problem)

where branching / cutting is done (subproblem vs. master problem)

where/which nonlinearities can be easily dealt with

But from theory to practice there is a large gulf to be crossed

Assume this is done for you (another story – course)
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