An introduction to energy optimization in SMS++ Part III: a quick recap of decomposition techniques

Antonio Frangioni

Dipartimento di Informatica, Università di Pisa
EdF Labs - May 25-26, 2023

Meta-Outline

- Part I: SMS++ basics \& energy-related components
- Part II: hands-on with SMS++ for energy optimization
- Part III: a quick recap of decomposition techniques
- Part IV: decomposition \& energy optimization in SMS++

Outline - Part III

(1) Dual decomposition (Dantzig-Wolfe/Lagrangian/Column Generation)
(2) Primal decomposition (Benders'/Resource)
(3) All Are One, One Is All
(4) Dual Decomposition: the Nonlinear and Integer Cases
(5) Alternative Good Formulations for $\operatorname{conv}(X)$
(6) Primal Decomposition: the Nonlinear and Integer Cases
(7) Decomposition-aware modelling systems
(8) Conclusions (for now)

Dual decomposition, a.k.a. Inner Approximation
Dantzig-Wolfe decomposition Lagrangian Relaxation Column Generation

Block-diagonal Convex (Linear) Program

- Block-diagonal program: convex X, n "complicating" constraints

$$
\text { (П) } \quad \max \{c x: A x=b, x \in X\}
$$

e.g, $X=\{x: E x \leq d\}=\bigotimes_{k \in K}\left(X^{k}=\left\{x^{k}: E^{k} x^{k} \leq d^{k}\right\}\right)$ $(|K|$ large $\Longrightarrow(\Pi)$ very large $), A x=b$ linking constraints

- We can efficiently optimize upon X (much more so than solving the whole of (Π), anyway) for different reasons:
- a bunch of (many, much) smaller problems instead of a large one
- X has (the X^{k} have) structure (shortest path, ...)
- We could efficiently solve (Π) if linking constraints were not there
- But they are (there): how to exploit it?

Dantzig-Wolfe reformulation

- Dantzig-Wolfe reformulation ${ }^{1}: X$ convex \Longrightarrow represent it by points

$$
X=\left\{x=\sum_{\bar{x} \in X} \bar{x} \theta_{\bar{x}}: \sum_{\bar{x} \in X} \theta_{\bar{x}}=1, \theta_{\bar{x}} \geq 0 \quad \bar{x} \in X\right\}
$$

then reformulate (Π) in terms of the convex multipliers θ

$$
\left\{\begin{align*}
\max c\left(\sum_{\bar{x} \in X} \bar{x} \theta_{\bar{x}}\right) & \tag{П}\\
A\left(\sum_{\bar{x} \in X} \bar{x} \theta_{\bar{x}}\right) & =b \\
\sum_{\bar{x} \in X} \theta_{\bar{x}} & =1, \theta_{\bar{x}} \geq 0 \quad \bar{x} \in X
\end{align*}\right.
$$

- only $n+1$ rows, but ∞-ly many columns
- note that " $\bar{x} \in X$ " is an index, not a constraint (θ is the variable)
- A rather semi-infinite program, but "only" $\bar{x} \in$ ext X needed
- Not that this makes it any less infinite, unless X is a polytope (compact polyhedron) \Longrightarrow finite set of vertices

[^0]
Dantzig-Wolfe reformulation (cont.d)

- Could this ever be a good idea? Actually, it could: polyhedra may have few faces and many vertices ... or vice-versa

$$
\begin{array}{c|c|c|c}
n \text {-cube } & \left|x_{i}\right| \leq 1 \quad \forall i & 2 n \text { faces } & 2^{n} \text { vertices } \\
n \text {-co-cube } & \sum_{i}\left|x_{i}\right| \leq 1 & 2^{n} \text { faces } & 2 n \text { vertices }
\end{array}
$$

- Except, most often the number of vertices is too large

a (linear) program with (exponentially/infinitely) many columns
- But, efficiently optimize over $X \Longrightarrow$ generate vertices (\equiv columns)

Dantzig-Wolfe decomposition \equiv Column Generation

- $\mathcal{B} \subset X$ (small), solve restriction of (Π) with $X \rightarrow \mathcal{B}$, i.e.,
$\left(\Pi_{\mathcal{B}}\right) \quad\left\{\begin{array}{rll}\max \sum_{\bar{x} \in \mathcal{B}}(c \bar{x}) \theta_{\bar{x}} & & \\ \sum_{\bar{x} \in \mathcal{B}}(A \bar{x}) \theta_{\bar{x}} & =b \\ \sum_{\bar{x} \in \mathcal{B}} \theta_{\bar{x}} & =1, \quad \theta_{\bar{x}} \geq 0 \quad \bar{x} \in \mathcal{B}\end{array}\right.$
- "master problem" (B small, not too costly)
- note how the parentheses have moved: linearity is needed (for now)
- If \mathcal{B} contains the "right" columns, $x^{*}=\sum_{\bar{x} \in \mathcal{B}} \bar{x} \theta_{\bar{x}}^{*}$ optimal for (Π)
- How do I tell if \mathcal{B} contains the "right" columns? Use duality

$$
\begin{aligned}
\left(\Delta_{\mathcal{B}}\right)= & \min \{y b+v: v \geq c \bar{x}-y(A \bar{x}) \quad \bar{x} \in \mathcal{B}\} \\
= & \min \left\{f_{\mathcal{B}}(y)=\max \{c \bar{x}+y(b-A \bar{x}): \bar{x} \in \mathcal{B}\}\right\}
\end{aligned}
$$

one constraint for each $\bar{x} \in \mathcal{B}$

Dantzig-Wolfe decomposition \equiv Lagrangian relaxation

- Dual of $(\Pi):(\Delta) \equiv\left(\Delta_{X}\right)$ (many constraints)
- $f_{\mathcal{B}}=$ lower approximation of Lagrangian function

$$
\left(\Pi_{y}\right) \quad f(y)=\max \{c x+y(b-A x): x \in X\} \geq f_{\mathcal{B}}(y)
$$

- Assumption: optimizing over X is "easy" for each objective \Longrightarrow obtaining \bar{x} s.t. $f(y)=c \bar{x}+y(b-A \bar{x})$ is "easy"
- Important: $\left(\Pi_{y}\right)$ Lagrangian relaxation ${ }^{2}$

$$
f(y) \geq v(\Pi)=v(\Delta) \quad \forall y
$$

provided $\left(\Pi_{y}\right)$ is solved exactly, or at least a $\bar{f} \geq f(y)$ is used

- Thus, $\left(\Delta_{\mathcal{B}}\right)$ outer approximation of the Lagrangian Dual
$(\Delta) \quad \min \{f(y)=\max \{c x+y(b-A x): x \in X\}\}$

[^1]
Lagrangian duality vs. Linear duality

- Note about the LP case $(X=\{x: E x \leq d\})$:

$$
\begin{aligned}
(\Delta) & \min \{y b+\max \{(c-y A) x: E x \leq d\}\} \\
\equiv & \min \{y b+\min \{w d: w E=c-y A, w \geq 0\}\} \\
\equiv & \min \{y b+w d: w E+y A=c, w \geq 0\} \\
\equiv & \text { exactly the linear dual of }(\Pi)
\end{aligned}
$$

- y "partial" duals: duals w of $E x \leq d$ "hidden" in the subproblem
- There is only one duality
- Will repeatedly come in handy

Dantzig-Wolfe decomposition \equiv Dual row generation

- Primal/dual optimal solution $x^{*} /\left(v^{*}, y^{*}\right)$ out of $\left(\Pi_{\mathcal{B}}\right) /\left(\Delta_{\mathcal{B}}\right)$
- x^{*} feasible to (Π), so optimal $\Longleftrightarrow\left(v^{*}, y^{*}\right)$ feasible to (Δ)

$$
\begin{aligned}
& \Longleftrightarrow v^{*} \geq\left(c-y^{*} A\right) x \quad \forall x \in X \\
& \Longleftrightarrow v^{*} \geq \max \left\{\left(c-y^{*} A\right) x: x \in X\right\}
\end{aligned}
$$

- In fact: $v^{*} \geq\left(c-y^{*} A\right) \bar{x} \equiv y^{*} b+v^{*} \geq f\left(y^{*}\right) \Longrightarrow$

$$
\begin{aligned}
& v(\Pi) \geq c x^{*}=y^{*} b+v^{*} \geq f\left(y^{*}\right) \geq v(\Delta) \geq v(\Pi) \Longrightarrow \\
& x^{*} /\left(v^{*}, y^{*}\right) \text { optimal }
\end{aligned}
$$

- Otherwise, $\mathcal{B}=\mathcal{B} \cup\{\bar{x}\}$: add new column to $\left(\Pi_{\mathcal{B}}\right) /$ row to $\left(\Delta_{\mathcal{B}}\right)$, rinse \& repeat
- Clearly finite if ext X is, globally convergent anyway: the Cutting-Plane algorithm for convex programs ${ }^{3}$ (applied to (Δ))

[^2]
Geometry of the Lagrangian dual

- $f_{\mathcal{B}} \leq f(C P$ model $)$,

Geometry of the Lagrangian dual

- $f_{\mathcal{B}} \leq f(\mathrm{CP}$ model $), v^{*}=f_{\mathcal{B}}\left(y^{*}\right)$ lower bound on $v\left(\Pi_{\mathcal{B}}\right)$

Geometry of the Lagrangian dual

- $f_{\mathcal{B}} \leq f(\mathrm{CP}$ model $), v^{*}=f_{\mathcal{B}}\left(y^{*}\right)$ lower bound on $v\left(\Pi_{\mathcal{B}}\right)$
- Optimal solution \bar{x} gives separator between $\left(v^{*}, y^{*}\right)$ and epi $f \equiv$ $(c \bar{x}, A \bar{x})=$ new row in $\left(\Delta_{\mathcal{B}}\right)$ (subgradient of f at $\left.y^{*}\right)$

Geometry of the Lagrangian dual

- $f_{\mathcal{B}} \leq f(\mathrm{CP}$ model $), v^{*}=f_{\mathcal{B}}\left(y^{*}\right)$ lower bound on $v\left(\Pi_{\mathcal{B}}\right)$
- Optimal solution \bar{x} gives separator between $\left(v^{*}, y^{*}\right)$ and epi $f \equiv$ $(c \bar{x}, A \bar{x})=$ new row in $\left(\Delta_{\mathcal{B}}\right)$ (subgradient of f at $\left.y^{*}\right)$
- Improve CP model,

Geometry of the Lagrangian dual

- $f_{\mathcal{B}} \leq f(\mathrm{CP}$ model $), v^{*}=f_{\mathcal{B}}\left(y^{*}\right)$ lower bound on $v\left(\Pi_{\mathcal{B}}\right)$
- Optimal solution \bar{x} gives separator between $\left(v^{*}, y^{*}\right)$ and epi $f \equiv$ $(c \bar{x}, A \bar{x})=$ new row in $\left(\Delta_{\mathcal{B}}\right)$ (subgradient of f at $\left.y^{*}\right)$
- Improve CP model, re-solve the master problem, rinse \& repeat

Dantzig-Wolfe decomposition \equiv Inner Approximation

- "Abstract" view of $\left(\Pi_{\mathcal{B}}\right): \operatorname{conv}(\mathcal{B})$ inner approximation of X

$$
\left(\Pi_{\mathcal{B}}\right) \quad \max \{c x: A x=b, x \in \operatorname{conv}(\mathcal{B})\}
$$

- x^{*} solves the Lagrangian relaxation of $\left(\Pi_{\mathcal{B}}\right)$ with y^{*}, i.e.,

$$
x^{*} \in \operatorname{argmax}\left\{\left(c-y^{*} A\right) x: x \in \operatorname{conv}(\mathcal{B})\right\}
$$

$\Longrightarrow\left(c-y^{*} A\right) x \leq\left(c-y^{*} A\right) x^{*}$ for each $x \in \operatorname{conv}(\mathcal{B}) \subseteq X$

- $\left(c-y^{*} A\right) \bar{x}=\max \left\{\left(c-y^{*} A\right) x: x \in X\right\} \geq\left(c-y^{*} A\right) x^{*}$
- Column \bar{x} has positive reduced cost

$$
\begin{aligned}
& \left(c-y^{*} A\right)\left(\bar{x}-x^{*}\right)=\left(c-y^{*} A\right) \bar{x}-c x^{*}+y^{*} b=\left(c-y^{*} A\right) \bar{x}-v^{*}>0 \\
& \Longrightarrow \bar{x} \notin \operatorname{conv}(\mathcal{B}) \Longrightarrow \text { makes sense to add } \bar{x} \text { to } \mathcal{B}
\end{aligned}
$$

Geometry of Dantzig-Wolfe/Column Generation

- $X_{\mathcal{B}}=\operatorname{conv}(\mathcal{B})$ inner approximation of X

Geometry of Dantzig-Wolfe/Column Generation

- $c-y^{*} A$ separates $X_{\mathcal{B}} \cap A x=b$ from all $x \in X$ better than x^{*}

Geometry of Dantzig-Wolfe/Column Generation

- $c-y^{*} A$ separates $X_{\mathcal{B}} \cap A x=b$ from all $x \in X$ better than x^{*} \Longrightarrow optimizing $c-y^{*} A$ finds new $\bar{x} \in X$ (if any)

Geometry of Dantzig-Wolfe/Column Generation

- $c-y^{*} A$ separates $X_{\mathcal{B}} \cap A x=b$ from all $x \in X$ better than x^{*} \Longrightarrow optimizing $c-y^{*} A$ finds new $\bar{x} \in X$ (if any)
- Increase $X_{\mathcal{B}}$,

Geometry of Dantzig-Wolfe/Column Generation

- $c-y^{*} A$ separates $X_{\mathcal{B}} \cap A x=b$ from all $x \in X$ better than x^{*} \Longrightarrow optimizing $c-y^{*} A$ finds new $\bar{x} \in X$ (if any)
- Increase $X_{\mathcal{B}}$, re-solve master problem, rinse \& repeat

Geometry of Dantzig-Wolfe/Column Generation

- $c-y^{*} A$ separates $X_{\mathcal{B}} \cap A x=b$ from all $x \in X$ better than x^{*} \Longrightarrow optimizing $c-y^{*} A$ finds new $\bar{x} \in X$ (if any)
- Increase $X_{\mathcal{B}}$, re-solve master problem, rinse \& repeat
- Issue: $X_{\mathcal{B}} \cap A x=b$ must be nonempty

The Unbounded Case

- X unbounded $\Longleftrightarrow \operatorname{rec} X \supset\{0\} \Longrightarrow f(y)=v\left(\Pi_{y}\right)=\infty$ happens
- $X=\operatorname{conv}\left(\operatorname{ext} X=X_{0}\right)+\operatorname{cone}\left(\right.$ ext rec $\left.X=X_{\infty}\right)$
- $\mathcal{B}=\left(\mathcal{B}_{0} \subset X_{0}\right) \cup\left(\mathcal{B}_{\infty} \subset X_{\infty}\right)=\{$ points $\bar{x}\} \cup\{$ rays $\bar{\chi}\} \Longrightarrow$

$$
\left(\Pi_{\mathcal{B}}\right) \quad\left\{\begin{aligned}
\max & c\left(\sum_{\bar{x} \in \mathcal{B}_{0}} \bar{x} \theta_{\bar{x}}+\sum_{\bar{\chi} \in \mathcal{B}_{\infty}} \bar{\chi} \theta_{\bar{\chi}}\right) \\
& A\left(\sum_{\bar{x} \in \mathcal{B}_{0}} \bar{x} \theta_{\bar{\chi}}+\sum_{\bar{\chi} \in \mathcal{B}_{\infty}} \bar{\chi} \theta_{\bar{\chi}}\right)=b \\
& \sum_{\bar{x} \in \mathcal{B}_{0}} \theta_{\bar{\chi}}=1 \\
& \theta_{\bar{\chi}} \geq 0 \quad \bar{x} \in \mathcal{B}_{0} \quad, \quad \theta_{\bar{\chi}} \geq 0 \quad \bar{\chi} \in \mathcal{B}_{\infty}
\end{aligned}\right.
$$

- In $\left(\Delta_{\mathcal{B}}\right)$, constraints $y(A \bar{\chi}) \geq c \bar{\chi}$ (a.k.a. "feasibility cuts")
- $\left(\Pi_{y^{*}}\right)$ unbounded $\Longleftrightarrow\left(c-y^{*} A\right) \bar{\chi}>0$ for some $\bar{\chi} \in \operatorname{rec} X$ (violated constraint) $\Longrightarrow \mathcal{B}_{\infty}=\mathcal{B}_{\infty} \cup\{\bar{\chi}\}$
- $(\Delta)=\min \{f(y): y \in Y\},\left(\Pi_{y^{*}}\right)$ provides either subgradients of f (a.k.a. "optimality cuts"), or violated valid inequalities for Y^{3}

Primal decomposition, a.k.a. Outer Approximation
Benders' decomposition
Resource decomposition

Staircase-structured Convex (Linear) Program

- Staircase-structured program: convex X, "complicating" variables
(П) $\max \{c x+e z: D x+E z \leq d, x \in X\}$

$$
\text { e.g, } D x+E z \leq d \equiv D_{k} x+E_{k} z_{k} \leq d_{k} \quad k \in K(|K| \text { large }) \Longrightarrow
$$

$$
\begin{aligned}
Z(x) & =\{z: E z \leq d-D x\} \\
& =\bigotimes_{k \in K}\left(Z_{k}(x)=\left\{z_{k}: E_{k} z_{k} \leq d_{k}-D_{k} x\right\}\right)
\end{aligned}
$$

- We can efficiently optimize upon $Z(x)$ (much more so than solving the whole of (Π), anyway) for different reasons:
- a bunch of (many, much) smaller problems instead of a large one
- $Z(x)$ has (the $Z_{k}(x)$ have) structure (shortest path, ...)
- We could efficiently solve (Π) if linking variables were fixed
- But they are not (fixed): how to exploit it?

Benders' reformulation

- Benders' reformulation: define the concave value function
(B) $\max \{c x+v(x)=\max \{e z: E z \leq d-D x\}: x \in X\}$ (note: clearly $v(x)=-\infty$ may happen)
- Clever trick ${ }^{4}$: use duality to reformulate the inner problem

$$
v(x)=\min \{w(d-D x): w \in W=\{w: w E=e, w \geq 0\}\}
$$

so that W does not depend on x

- As before, $W=\operatorname{conv}\left(\right.$ ext $\left.W=W_{0}\right)+\operatorname{cone}\left(\operatorname{ext} \operatorname{rec} W=W_{\infty}\right) \Longrightarrow$
(B) $\max c x+v$

$$
\begin{array}{lc}
v \leq \bar{w}(d-D x) & \bar{w} \in W_{0} \\
0 \leq \bar{\omega}(d-D x) & \bar{\omega} \in W_{\infty} \\
x \in X &
\end{array}
$$

still very large, but we can generate $\bar{w} / \bar{\omega}$ by computing $v(x)$

[^3]
Benders' decomposition

- Select (small) $\mathcal{B}=\left(\mathcal{B}_{0} \subset W_{0}\right) \cup\left(\mathcal{B}_{\infty} \subset W_{\infty}\right)$, solve master problem

$$
\begin{array}{cr}
\left(B_{\mathcal{B}}\right) \quad \max c x+v & \\
v \leq \bar{w}(d-D x) & \bar{w} \in \mathcal{B}_{0} \\
0 \leq \bar{\omega}(d-D x) & \bar{\omega} \in \mathcal{B}_{\infty} \\
x \in X & \\
=\max \left\{c x+v_{\mathcal{B}}(x): x \in X \cap V_{\mathcal{B}}\right\}, \text { where } & \\
v_{\mathcal{B}}(x)=\min \left\{\bar{w}(d-D x): \bar{w} \in \mathcal{B}_{0}\right\} \leq v(x), V_{\mathcal{B}} \supseteq \operatorname{dom} v
\end{array}
$$

- Find (primal) optimal solution x^{*}, compute $v\left(x^{*}\right)$, get either \bar{w} or $\bar{\omega}$, update either \mathcal{B}_{0} or \mathcal{B}_{∞}, rinse $\&$ repeat
- Benders' decomposition \equiv Cutting-Plane approach ${ }^{3}$ to (B)
- Spookily similar to the Lagrangian dual, ain't it?
- Except, constraints are now attached to dual objects $\bar{w} / \bar{\omega}$

All Are One, One Is All

Benders is Lagrange . . .

- Block-diagonal case

$$
\begin{aligned}
& \text { (П) } \max \{c x: A x=b, E x \leq d\} \\
& \text { (ロ) } \min \{y b+w d: w E+y A=c, w \geq 0\}
\end{aligned}
$$

Think of y as complicating variables in (Δ), you get

$$
\begin{aligned}
& \text { (П) } \max \{c x: A x=b, E y \leq d\} \\
& (\Delta) \min \{y b+\min \{w d: w E=c-y A, w \geq 0\}\} \\
& =\min \{y b+\max \{(c-y A) x: E x \leq d\}\}
\end{aligned}
$$

i.e., the Lagrangian dual of (Π)

- The value function of (Δ) is the Lagrangian function of (Π)

Lagrange is Benders ...

- Dual of (П) (linear case $X=\{x: A x=b\})$
(П) $\max \{c x+e z: D x+E z \leq d, A x=b\}$
(Δ) $\min \{y b+w d: y A+w D=c, w E=e, w \geq 0\}$
Lagrangian dual of the dual constraints $y A+w D=c($ multiplier $x)$:

$$
\begin{aligned}
& (\Delta) \max \{\min \{y b+w d+(c-y A+w D) x: w E=e, w \geq 0\}\} \\
& =\max \{c x+\min \{y(b-A x)+w(d-D x): w E=e, w \geq 0\}\} \\
& =\max \{c x+\min \{y(b-A x)\}+ \\
& \quad \min \{w(d-D x): w E=e, w \geq 0\}\} \\
& =\max \{c x+\max \{e z: D x+E z \leq e\}: A x=b\}
\end{aligned}
$$

i.e., Benders' reformulation of (Π)

- The Lagrangian function of (Δ) is the value function of (Π)

. and Both are the Cutting-Plane Algorithm

- Both Lagrange and Benders boil down (changing sign if necessary) to

$$
\min \{\phi(\lambda): \lambda \in \Lambda\}
$$

with Λ and ϕ convex, ϕ nondifferentiable

- Both Λ and ϕ only implicitly known via a (costly) oracle: $\bar{\lambda} \longrightarrow$
- either $\phi(\bar{\lambda})<\infty$ and $\bar{g} \in \partial \phi(\bar{\lambda}) \equiv \phi(\lambda) \geq \phi(\bar{\lambda})+\bar{g}(\lambda-\bar{\lambda}) \forall \lambda$
- or $\phi(\bar{\lambda})=\infty$ and a valid inequality for Λ violated by $\bar{\lambda}$
- "Natural" algorithm: the Cutting-Plane method ${ }^{[3]} \equiv$ revised simplex method with mechanized pricing in the discrete case
- Natural \nRightarrow fast: convex nondifferentiable optimization $\Omega\left(1 / \varepsilon^{2}\right)$, Cutting-Plane method much worse than that (will see soon)
- Many variants/other algorithms possible, another story (course)

You can apply Lagrange to a Staircase-structured program

- Reformulate a staircase-structured program
$\max c x+e^{\prime} z^{\prime}+e^{\prime \prime} z^{\prime \prime}$

$$
\begin{aligned}
& D x+E^{\prime} z^{\prime} \leq d^{\prime}, D x+E^{\prime \prime} z^{\prime \prime} \leq d^{\prime \prime} \\
& x \in X
\end{aligned}
$$

You can apply Lagrange to a Staircase-structured program

- Reformulate a staircase-structured program

$$
\begin{aligned}
& \max c x+e^{\prime} z^{\prime}+e^{\prime \prime} z^{\prime \prime} \\
& \quad D x+E^{\prime} z^{\prime} \leq d^{\prime}, D x+E^{\prime \prime} z^{\prime \prime} \leq d^{\prime \prime} \\
& \quad x \in X
\end{aligned}
$$

... as a block-diagonal one

$$
\begin{aligned}
& \max c\left(x^{\prime}+x^{\prime \prime}\right) / 2+e^{\prime} z^{\prime}+e^{\prime \prime} z^{\prime \prime} \\
& D x^{\prime}+E^{\prime} z^{\prime} \leq d^{\prime}, x^{\prime} \in X \\
& D x^{\prime \prime}+E^{\prime \prime} z^{\prime \prime} \leq d^{\prime \prime}, x^{\prime \prime} \in X \\
& x^{\prime}=x^{\prime \prime}
\end{aligned}
$$

- Issue: $D x+E z \leq d$ must have structure, not $E z \leq d-D x$
- Classical approach in stochastic programs
(but beware the multi-stage case)

You can apply Benders' to a Block-diagonal program

- Reformulate a block-diagonal program

$$
\begin{aligned}
& \max c^{\prime} x^{\prime}+c^{\prime \prime} x^{\prime \prime} \\
& E^{\prime} x^{\prime} \leq d^{\prime}, E^{\prime \prime} x^{\prime \prime} \leq d^{\prime \prime} \\
& A^{\prime} x^{\prime}+A^{\prime \prime} x^{\prime \prime}=b
\end{aligned}
$$

[^4]
You can apply Benders' to a Block-diagonal program

- Reformulate a block-diagonal program

$$
\begin{aligned}
& \max c^{\prime} x^{\prime}+c^{\prime \prime} x^{\prime \prime} \\
& E^{\prime} x^{\prime} \leq d^{\prime}, E^{\prime \prime} x^{\prime \prime} \leq d^{\prime \prime} \\
& A^{\prime} x^{\prime}+A^{\prime \prime} x^{\prime \prime}=b
\end{aligned}
$$

....as a staircase-structured one

$$
\begin{aligned}
& \max c^{\prime} z^{\prime}+c^{\prime \prime} z^{\prime \prime} \\
& E^{\prime} z^{\prime} \leq d^{\prime}, A^{\prime} z^{\prime}=x^{\prime} \\
& E^{\prime \prime} z^{\prime \prime} \leq d^{\prime \prime}, A^{\prime \prime} z^{\prime \prime}=x^{\prime \prime} \\
& x^{\prime}+x^{\prime \prime}=b
\end{aligned}
$$

- Issue: $E z \leq d, A z=x$ must have structure, not $E z \leq d$
- Resource decomposition ${ }^{5}$ in multicommodity parlance

[^5]
Dual Decomposition:

 the Nonlinear and Integer Cases
Block-diagonal Convex Nonlinear Programs

- Nonlinear $c(\cdot)$ concave, $A(\cdot)$ component-wise convex, X convex
(П) $\max \{c(x): A(x) \leq b, x \in X\}$
(Δ) $\max \{f(y)=y b+\max \{c(x)-y A(x): x \in X\}: y \geq 0\}$
- Any $\bar{x} \in X$ still gives $f(y) \geq c(\bar{x})+y(b-A(\bar{x}))$, same $\left(\Delta_{\mathcal{B}}\right) /\left(\Pi_{\mathcal{B}}\right)$
- $y A(\bar{x})$ still linear in y even if nonlinear in x
- $c\left(\sum_{\bar{x} \in \mathcal{B}} \bar{x} \theta_{\bar{x}}\right) \geq \sum_{\bar{x} \in \mathcal{B}} c(\bar{x}) \theta_{\bar{x}}(c(\cdot)$ concave $)+$
$A\left(\sum_{\bar{x} \in \mathcal{B}} \bar{x} \theta_{\bar{x}}\right) \leq \sum_{\bar{x} \in \mathcal{B}} A(\bar{x}) \theta_{\bar{x}} \leq b(A(\cdot)$ convex $) \Longrightarrow$
$\left(\Pi_{\mathcal{B}}\right)$ safe inner approximation $\left(v\left(\Pi_{\mathcal{B}}\right) \leq v(\Pi)\right)$
- Basically everything keeps working, but you may need constraint qualification ${ }^{6}$ (usually easy to get)

[^6]
Block-diagonal Nonconvex Nonlinear Programs

- $c(\cdot)$ and/or $A(\cdot)$ and/or X not concave / convex: not much changes

[^7]
Block-diagonal Nonconvex Nonlinear Programs

- $c(\cdot)$ and/or $A(\cdot)$ and/or X not concave / convex: not much changes except $\left(\Pi_{y}\right)$ is hard and you are not really solving (Π)
- $y A(\bar{x})$ still linear in $y,(\Delta)$ still convex \equiv "convexified" (П):
$c(x)=c x, A(x)=A x \Longrightarrow(\Delta) \equiv \max \left\{c x: A x \leq b, x \in X^{* *}\right\}$ (${ }{ }^{* * *} \equiv$ biconjugate \equiv closed convex envelope / hull)

[^8]
Block-diagonal Nonconvex Nonlinear Programs

- $c(\cdot)$ and/or $A(\cdot)$ and/or X not concave / convex: not much changes except $\left(\Pi_{y}\right)$ is hard and you are not really solving (Π)
- $y A(\bar{x})$ still linear in $y,(\Delta)$ still convex \equiv "convexified" (Π):
$c(x)=c x, A(x)=A x \Longrightarrow(\Delta) \equiv \max \left\{c x: A x \leq b, x \in X^{* *}\right\}$ (${ }^{{ }^{* * * " ~}} \equiv$ biconjugate \equiv closed convex envelope / hull)
$A(x)=A x \Longrightarrow(\Delta) \equiv \max \left\{c_{x}^{* *}(x): A x \leq b\right\}$
$\left(c_{x}(\cdot)=c(\cdot)+1 x(\cdot), 1 x \equiv\right.$ indicator function $\equiv 0$ in X, ∞ outside $)$ better than $\max \left\{c^{* *}(x): A x \leq b, x \in X^{* *}\right\}$
- General formula ugly to write ${ }^{7}$, but better than $\max \left\{c^{* *}(x): A^{* *}(x) \leq b, x \in X^{* *}\right\}$
- "A Lagrangian Dual does not distinguish a set from its convex hull" for better (efficiency) and for worse (not the same problem)

[^9]
Block-diagonal Integer Programs

- Special case: X combinatorial (e.g., $X=\left\{x \in \mathbb{Z}^{n}: E x \leq d\right\}$)

$$
\begin{aligned}
& \text { (П) } \max \{c x: A x=b, x \in X\} \\
& \text { (D) } \min \{y b+\max \{(c-y A) x: x \in X\}\}
\end{aligned}
$$

nothing changes if we can still efficiently optimize over X due to size (decomposition) and/or structure (integrality)

- Except we are solving a (potentially good) relaxation of (П)

$$
\begin{aligned}
& \text { (̄) }\left\{\begin{array}{c}
\max \begin{array}{c}
c\left(\sum_{\bar{x} \in X} \bar{x} \theta_{\bar{x}}\right) \\
A\left(\sum_{\bar{x} \in X} \bar{x} \theta_{\bar{x}}\right)=b \\
\sum_{\bar{x} \in X} \theta_{\bar{x}}=1 \quad, \quad \theta_{\bar{x}} \geq 0 \quad \bar{x} \in X
\end{array} \\
\equiv \max \left\{c x: A x=b, x \in X^{* *}=\operatorname{conv}(X)\right\}
\end{array}\right.
\end{aligned}
$$

- $\theta_{\bar{x}} \in \mathbb{Z}$ gives a reformulation of (Π); could branch on $\theta_{\bar{x}}$, but usually better doing it on x, easier to integrate in the relaxation computation

Block-diagonal Integer Programs (cont.d)

- Good news: $(\bar{\Pi})$ better (not worse) than continuous relaxation $\left(\operatorname{conv}(X) \subseteq\left\{x \in \mathbb{R}^{n}: E x \leq d\right\}\right)$
- Bad news: $\left(\Pi_{y}\right)$ "too easy" $\left(\operatorname{conv}(X)=\left\{x \in \mathbb{R}^{n}: E x \leq d\right\}\right.$ \equiv integrality property $) \Longrightarrow(\bar{\Pi})$ same as continuous relaxation
- $\left(\Pi_{y}\right)$ must be easy, but not too easy (no free lunch)
- Anyway, at best gives good bounds \Longrightarrow Branch \& Bound with DW/Lagrangian/CG \equiv Branch \& Price
- Although it can be used to drive good heuristics ${ }^{8,9}$
- Branching nontrivial: may destroy subproblem structure \Longrightarrow branch on $\times\left(\right.$ but $\left(\Pi_{\mathcal{B}}\right)$ is on $\left.\theta\right)$
- Little support from off-the-shelf tools, only SCIP / GCG ${ }^{10}$ (for now)

[^10]
Digression: How to Choose your Lagrangian relaxation

- There may be many choices

$$
\begin{aligned}
& (\Pi) \max \left\{c x: A x=b, E x \leq d, x \in \mathbb{Z}^{n}\right\} \\
& \left(\Pi_{y}^{\prime}\right) \max \left\{c x+y(b-A x): x \in X^{\prime}=\left\{x \in \mathbb{Z}^{n}: E x \leq d\right\}\right\} \\
& \left(\Pi_{w}^{\prime \prime}\right) \max \left\{c x+w(d-E x): x \in X^{\prime \prime}=\left\{x \in \mathbb{Z}^{n}: A x=b\right\}\right\}
\end{aligned}
$$

- The best between $\left(\Delta^{\prime}\right)$ and $\left(\Delta^{\prime \prime}\right)$ depends on integrality of $X^{\prime}, X^{\prime \prime}$:
- if both have it, both $\left(\Delta^{\prime}\right)$ and $\left(\Delta^{\prime \prime}\right) \equiv$ continuous relaxation
- if only one has it, the one that does not, but if both don't have it?
- Here comes Lagrangian decomposition ${ }^{11}$ (looks familiar?)
$(\Pi) \equiv \max \left\{\left(c x^{\prime}+c x^{\prime \prime}\right) / 2: x^{\prime} \in X^{\prime}, x^{\prime \prime} \in X^{\prime \prime}, x^{\prime}=x^{\prime \prime}\right\}$
$\left(\Pi_{\lambda}\right) \quad \max \left\{(c / 2+\lambda) x^{\prime}: x^{\prime} \in X^{\prime}\right\}+\max \left\{(c / 2-\lambda) x^{\prime \prime}: x^{\prime \prime} \in X^{\prime \prime}\right\}$
$(\bar{\Delta}) \equiv(\bar{\Pi}) \quad \max \left\{c x: x \in \operatorname{conv}\left(X^{\prime}\right) \cap \operatorname{conv}\left(X^{\prime \prime}\right)\right\}$
- better than both (but need to solve two hard subproblems)
${ }^{11}$ Guignard, Kim "Lagrangean Decomposition: a Model Yielding Stronger Lagrangean Bounds" Math. Prog., 1987

Geometry of Lagrangian Decomposition

- Intersection between red and blue \equiv grey \equiv continuous relaxation

Geometry of Lagrangian Decomposition

- Intersection between red and blue \equiv grey \equiv continuous relaxation - Lagrangian relaxation of blue constraints

Geometry of Lagrangian Decomposition

- Intersection between red and blue \equiv grey \equiv continuous relaxation - Lagrangian relaxation of blue constraints shrinks the red (\Longrightarrow grey) part

Geometry of Lagrangian Decomposition

- Intersection between red and blue \equiv grey \equiv continuous relaxation
- Lagrangian relaxation of blue constraints shrinks the red (\Longrightarrow grey) part
- Lagrangian relaxation of red constraints

Geometry of Lagrangian Decomposition

- Intersection between red and blue \equiv grey \equiv continuous relaxation
- Lagrangian relaxation of blue constraints shrinks the red (\Longrightarrow grey) part
- Lagrangian relaxation of red constraints shrinks the blue $(\Longrightarrow$ grey $)$ part

Geometry of Lagrangian Decomposition

- Intersection between red and blue \equiv grey \equiv continuous relaxation
- Lagrangian relaxation of blue constraints shrinks the red (\Longrightarrow grey) part - Lagrangian relaxation of red constraints shrinks the blue (\Longrightarrow grey) part - Lagrangian decomposition (both red and blue constraints)

Geometry of Lagrangian Decomposition

- Intersection between red and blue \equiv grey \equiv continuous relaxation
- Lagrangian relaxation of blue constraints shrinks the red $(\Longrightarrow$ grey) part
- Lagrangian relaxation of red constraints shrinks the blue $(\Longrightarrow$ grey $)$ part
- Lagrangian decomposition (both red and blue constraints) shrinks both
\Longrightarrow the grey part more

Geometry of Lagrangian Decomposition

A Computational Example: Capacitated Facility Location

- Set O of facilities to be installed, cost f_{i} and capacity u_{i} for $i \in O$
- Set D of customers to be served, demand d_{j} (unique product) for $j \in D$
- Unitary transport cost $c_{i j}$ on arc $(i, j) \in A$ (facility $i \rightarrow$ customer j)

$$
\begin{array}{lr}
\min \sum_{(i, j) \in A} c_{i j} d_{j} x_{i j}+\sum_{i \in O} f_{i} z_{i} & j \in D \\
\sum_{i:(i, j) \in A} x_{i j}=1 & i \in O \\
\sum_{j:(i, j) \in A} d_{j} x_{i j} \leq u_{i} z_{i} & (i, j) \in A \\
x_{i j} \in[0,1] /\{0,1\} & i \in O
\end{array}
$$

- Splittable / unsplittable: customers can/not be served by >1 facility
- >1 products \rightarrow multicommodity network design with very simple paths

Lagrangian Relaxations of Capacitated Facility Location

- Relax (2): $|O|$ (mixed-integer) knapsacks

$$
\begin{array}{cr}
\sum_{j \in D} y_{j}+\min \sum_{i \in O}\left[\sum_{j:(i, j) \in A}\left(c_{i j} d_{j}-y_{j}\right) x_{i j}+f_{i} z_{i}\right] & \\
\sum_{j:(i, j) \in A} d_{j} x_{i j} \leq u_{i} z_{i} & \\
x_{i j} \in[0,1] /\{0,1\} & (i, j) \in O \\
z_{i} \in\{0,1\} & i \in O \tag{5}
\end{array}
$$

- Relax (3): $|O|$ 1-variable problems $+|D|$ simple choice problems

$$
\begin{array}{cr}
\min \sum_{j \in D} \sum_{i:(i, j) \in A} d_{j}\left(c_{i j}+w_{i}\right) x_{i j}+\sum_{i \in O}\left(f_{i}-w_{i} u_{i}\right) z_{i} & \\
\quad \sum_{i:(i, j) \in A} x_{i j}=1 & (i, j) \in D \\
x_{i j} \in[0,1] /\{0,1\} & i \in O
\end{array}
$$

Exercise: which relaxation gives the best bound in the splittable / unsplittable case?

Dantzig-Wolfe Reformulation \equiv Column Generation

- Column-generation view of the problem: patterns for facility i

$$
\mathcal{P}^{i}=\left\{p \in[0,1]^{|D|}: \sum_{j \in D} d_{j} p_{j} \leq u_{i},(i, j) \notin A \Longrightarrow p_{j}=0\right\}
$$

except $p=0,+$ integrality if needed

- $p \in \mathcal{P}^{i} \Longrightarrow c_{p}=f_{i}+\sum_{j:(i, j) \in A} c_{i j} d_{j} p_{j}, \mathcal{P}=\bigcup_{i \in O} \mathcal{P}^{i}$
- (disaggregated) Dantzig-Wolfe reformulation \equiv

$$
\begin{array}{cc}
\min \sum_{i \in O} \sum_{p \in \mathcal{P}^{i}} c_{p} \theta_{p} & \\
\sum_{p \in \mathcal{P}} p_{j} \theta_{p}=1 & j \in D \\
\sum_{p \in \mathcal{P}^{i}} \theta_{p} \leq 1 & i \in O \\
\theta_{p} \geq 0 & p \in \mathcal{P}
\end{array}
$$

- D-W/CP: start with (small) $\mathcal{B}^{i} \subset \mathcal{P}^{i}$, solve (8)-(11) restricted to \mathcal{B}, take y_{i} duals of (9), solve Lagrangian relaxations, rinse \& repeat
- Eventually yields good bounds...

Dantzig-Wolfe Reformulation \equiv Column Generation

- Column-generation view of the problem: patterns for facility i

$$
\mathcal{P}^{i}=\left\{p \in[0,1]^{|D|}: \sum_{j \in D} d_{j} p_{j} \leq u_{i},(i, j) \notin A \Longrightarrow p_{j}=0\right\}
$$

except $p=0,+$ integrality if needed

- $p \in \mathcal{P}^{i} \Longrightarrow c_{p}=f_{i}+\sum_{j:(i, j) \in A} c_{i j} d_{j} p_{j}, \mathcal{P}=\bigcup_{i \in O} \mathcal{P}^{i}$
- (disaggregated) Dantzig-Wolfe reformulation \equiv

$$
\begin{array}{cc}
\min \sum_{i \in O} \sum_{p \in \mathcal{P}^{i}} c_{p} \theta_{p} & \\
\sum_{p \in \mathcal{P}} p_{j} \theta_{p}=1 & j \in D \\
\sum_{p \in \mathcal{P}^{i}} \theta_{p} \leq 1 & i \in O \\
\theta_{p} \geq 0 & p \in \mathcal{P}
\end{array}
$$

- D-W/CP: start with (small) $\mathcal{B}^{i} \subset \mathcal{P}^{i}$, solve (8)-(11) restricted to \mathcal{B}, take y_{i} duals of (9), solve Lagrangian relaxations, rinse \& repeat
- Eventually yields good bounds ... if the master problem is nonempty

Algorithmic Issues

- Issue: the master problem can be (primal) empty (\equiv dual unbounded)
- Phase 0 approach: seek for feasible solution first

$$
\begin{array}{cl}
\min \sum_{j \in D} v_{j} & \\
\sum_{p \in \mathcal{B}} p_{j} \theta_{p}+v_{j}=1 & j \in D \\
\sum_{p \in \mathcal{B}^{i}} \theta_{p} \leq 1 & i \in O \\
\theta_{p} \geq 0 & p \in \mathcal{B} \\
v_{j} \geq 0 & j \in D \tag{14}
\end{array}
$$

- Minimise cost of slack variables v_{j}, disregard true costs
- Ends with some $v_{j}^{*}>0 \equiv \mathrm{DW}$ reformulation \Longrightarrow original problem empty
- Otherwise master problem feasible with \mathcal{B}, start "true" optimization

Algorithmic Issues

- Issue: the master problem can be (primal) empty (\equiv dual unbounded)
- Phase 0 approach: seek for feasible solution first

$$
\begin{array}{cl}
\min \sum_{j \in D} v_{j} & \\
\sum_{p \in \mathcal{B}} p_{j} \theta_{p}+v_{j}=1 & j \in D \\
\sum_{p \in \mathcal{B}^{i}} \theta_{p} \leq 1 & i \in O \\
\theta_{p} \geq 0 & p \in \mathcal{B} \\
v_{j} \geq 0 & j \in D \tag{14}
\end{array}
$$

- Minimise cost of slack variables v_{j}, disregard true costs
- Ends with some $v_{j}^{*}>0 \equiv \mathrm{DW}$ reformulation \Longrightarrow original problem empty
- Otherwise master problem feasible with \mathcal{B}, start "true" optimization
- Real issue: can take forever because D-W/CP inefficient
- And you have to do branching (Branch \& Price) on top of that

Don't try this at home, by-the book

- How a by-the-book implementations behave:

- y^{*} immediately shoots much farther from optimum than initial point \equiv having good initial point not much useful
- No apparent improvement for a long time as information slowly accrues
- A mysterious threshold is hit and "real" convergence begins

Don't try this at home, by-the book

- How a by-the-book implementations behave:

- y^{*} immediately shoots much farther from optimum than initial point \equiv having good initial point not much useful
- No apparent improvement for a long time as information slowly accrues
- A mysterious threshold is hit and "real" convergence begins
- Can be improved (stablised), but that's another story (course)

Alternative Good Formulations for $\operatorname{conv}(X)$

Alternative Good Formulations for conv (X)

- (Under mild assumptions) $\operatorname{conv}(X)$ is a polyhedron \Longrightarrow $\operatorname{conv}(X)=\left\{x \in \mathbb{R}^{n}: \tilde{E} x \leq \tilde{d}\right\}$
- There are (at least as) good (as DW) formulations for the problem in the natural variable space, which is an advantage
- Except, practically all good formulations are too large

$$
A x=b
$$

- Very few exceptions (integrality property \approx networks)
- Good news: rows can be generated incrementally
- But a few more variables do as a lot more constraints

Row generation/polyhedral approaches

- $A x \leq b \cap E x \leq d$ outer approximation of feasible region

Row generation/polyhedral approaches

- $A x \leq b \cap E x \leq d$ outer approximation of feasible region
- Optimal solution of continuous relaxation gives bound,

Row generation/polyhedral approaches

- $A x \leq b \cap E x \leq d$ outer approximation of feasible region
- Optimal solution of continuous relaxation gives bound, valid inequality \equiv separator from $\operatorname{conv}(X)$

Row generation/polyhedral approaches

- $A x \leq b \cap E x \leq d$ outer approximation of feasible region
- Optimal solution of continuous relaxation gives bound, valid inequality \equiv separator from $\operatorname{conv}(X)$
- Smaller feasible region,

Row generation/polyhedral approaches

- $A x \leq b \cap E x \leq d$ outer approximation of feasible region
- Optimal solution of continuous relaxation gives bound, valid inequality \equiv separator from $\operatorname{conv}(X)$
- Smaller feasible region, re-solve continuous relaxation, rinse \& repeat

Example: Capacitated Facility Location

- Strong forcing constraints for Capacitated Facility Location $\min (1)$ (2), (3), (4), (5)

$$
\begin{equation*}
x_{i j} \leq d_{j} z_{i} \quad(i, j) \in A \tag{15}
\end{equation*}
$$

- Obviously valid, "only" \#A many \Longrightarrow trivially separable
- \#A more constraints can make continuous relaxation unbearably slower \Longrightarrow much better to separate them on-the-fly
- Just lazy constraints for solvers that support the notion
- Theoretical result: $(15) \Longrightarrow$ same bound as DW (in the splittable case)
- Many different ways to skin a cat (don't do this at home!)

A picture is worth 100 words

A Computational Example: CP vs. DW for CFL

Let's see some code running

Branch \& Cut

- $\mathcal{R}=($ small $)$ subset of row(indice)s, $E_{\mathcal{R}^{X}} \leq d_{\mathcal{R}}$ reduced set
- Solve outer approximation to ($\bar{\Pi}$)

$$
\left(\bar{\Pi}_{\mathcal{R}}\right) \quad \max \left\{c x: A x=b, E_{\mathcal{R}} x \leq d_{\mathcal{R}}\right\}
$$

feed the separator with primal optimal solution x^{*}

- Separator for (several sub-families of) facets of $\operatorname{conv}(X)$
- Several general approaches, countless specialized ones
- Most often separators are hard combinatorial problems themselves (though using general-purpose MIP solvers is an option ${ }^{12}$
- May tail off, branching useful far before having solved $\left(\bar{\Pi}_{X}\right)$

[^11]
Branch \& Cut vs. Branch \& Price

- Which is best?
- Row generation naturally allows multiple separators
- Very well integrated in general-purpose solvers (but harder to exploit "complex" structures)
- Column generation naturally allows very unstructured separators
- Simpler to exploit "complex" structures (but much less developed software tools)
- Column generation is row generation in the dual
- Then, of course, Branch \& Cut \& Price (nice, but software issues remain and possibly worsen)

Primal Decomposition:

 the Nonlinear and Integer Cases
Staircase-structured z-convex Nonlinear Programs

- $f(x, \cdot)$ and $G(x, \cdot)$ concave, Z convex:
(П) $\max \{f(x, z): G(x, z) \geq 0, x \in X, z \in Z\}$
(B) $\max \{v(x): x \in X\}$
where $v(x)=\max \{f(x, z): G(x, z) \geq 0, z \in Z\}$ $=$ value function of a convex program \Longrightarrow convex
- $(B) \equiv(\Pi)$ without assumptions on $f(\cdot, z), G(\cdot, z)$ and X, i.e., if (Π) is hard, then (B) is just as hard as (Π)
- (B) may still be more efficient (e.g., x "very few" but z "very many")
- Standard example: $X=\left\{x \in \mathbb{Z}^{n}: E x \leq d\right\}$ combinatorial: (П) $\max \{c x+e z: A x+B z \leq b, x \in X\}$
nothing changes ...except $\left(B_{\mathcal{B}}\right)$ now is combinatorial \Longrightarrow hard
- However $\left(B_{W}\right)$ now is equivalent to $(\Pi) \Longrightarrow$ no branching needed unless for solving $\left(B_{\mathcal{B}}\right)$

Staircase-structured z-convex Nonlinear Programs (cont.d)

- Still need duality: which one? Lagrangian ${ }^{13}$, of course

$$
v(x)=\min \{\max \{f(x, z)+\lambda G(x, z): z \in Z\}: \lambda \geq 0\}
$$

- Under appropriate constraint qualification, two cases occur:
- either $\exists \bar{\lambda} \geq 0, \bar{z} \in Z$ s.t. $v\left(x^{*}\right)=f\left(x^{*}, \bar{z}\right)+\bar{\lambda} G\left(x^{*}, \bar{z}\right)>-\infty$
- or $v\left(x^{*}\right)=-\infty \Longrightarrow\left\{z \in Z: G\left(x^{*}, z\right) \geq 0\right\}=\emptyset \Longrightarrow$

$$
\exists \bar{\nu} \geq 0, \bar{z} \in Z \text { s.t. } \max \left\{\bar{\nu} G\left(x^{*}, z\right): z \in Z\right\}=\bar{\nu} G\left(x^{*}, \bar{z}\right)<0
$$

[^12]
Staircase-structured z-convex Nonlinear Programs (cont.d)

- Still need duality: which one? Lagrangian ${ }^{13}$, of course

$$
v(x)=\min \{\max \{f(x, z)+\lambda G(x, z): z \in Z\}: \lambda \geq 0\}
$$

- Under appropriate constraint qualification, two cases occur:
- either $\exists \bar{\lambda} \geq 0, \bar{z} \in Z$ s.t. $v\left(x^{*}\right)=f\left(x^{*}, \bar{z}\right)+\bar{\lambda} G\left(x^{*}, \bar{z}\right)>-\infty$
- or $v\left(x^{*}\right)=-\infty \Longrightarrow\left\{z \in Z: G\left(x^{*}, z\right) \geq 0\right\}=\emptyset \Longrightarrow$

$$
\exists \bar{\nu} \geq 0, \bar{z} \in Z \text { s.t. } \max \left\{\bar{\nu} G\left(x^{*}, z\right): z \in Z\right\}=\bar{\nu} G\left(x^{*}, \bar{z}\right)<0
$$

- General form of the master problem
(B) $\max v$

$$
\begin{array}{lc}
v \leq \max \{f(x, z)+\bar{\lambda} G(x, z): z \in Z\} & \bar{\lambda} \in \Lambda_{0} \\
0 \leq \max \{\bar{\nu} G(x, z): z \in Z\} & \bar{\nu} \in \Lambda_{\infty} \\
x \in X &
\end{array}
$$

Staircase-structured z-convex Nonlinear Programs (cont.d)

- Still need duality: which one? Lagrangian ${ }^{13}$, of course

$$
v(x)=\min \{\max \{f(x, z)+\lambda G(x, z): z \in Z\}: \lambda \geq 0\}
$$

- Under appropriate constraint qualification, two cases occur:
- either $\exists \bar{\lambda} \geq 0, \bar{z} \in Z$ s.t. $v\left(x^{*}\right)=f\left(x^{*}, \bar{z}\right)+\bar{\lambda} G\left(x^{*}, \bar{z}\right)>-\infty$
- or $v\left(x^{*}\right)=-\infty \Longrightarrow\left\{z \in Z: G\left(x^{*}, z\right) \geq 0\right\}=\emptyset \Longrightarrow$

$$
\exists \bar{\nu} \geq 0, \bar{z} \in Z \text { s.t. } \max \left\{\bar{\nu} G\left(x^{*}, z\right): z \in Z\right\}=\bar{\nu} G\left(x^{*}, \bar{z}\right)<0
$$

- General form of the master problem
(B) $\max v$

$$
\begin{array}{lc}
v \leq \max \{f(x, z)+\bar{\lambda} G(x, z): z \in Z\} & \bar{\lambda} \in \Lambda_{0} \\
0 \leq \max \{\bar{\nu} G(x, z): z \in Z\} & \bar{\nu} \in \Lambda_{\infty} \\
x \in X &
\end{array}
$$

- Beware those nasty "max": must be that the "max" is independent of x !
- Possible in a few cases, complicated in general
${ }^{13}$ Geoffrion "Generalized Benders Decomposition" JOTA, 1972

Working Staircase-structured z-convex Nonlinear Programs

- Case I, separability: $f(x, z)=f(x)+h(z), G(x, z)=G(x)+H(z)$
(B) $\max f(x)+v$

$$
\begin{array}{lc}
v \leq \bar{\lambda} G(x)+\max \{h(z)+\bar{\lambda} H(z): z \in Z\} & \bar{\lambda} \in \Lambda_{0} \\
0 \leq \bar{\nu} G(x)+\max \{\bar{\nu} G(z): z \in Z\} & \bar{\nu} \in \Lambda_{\infty} \\
x \in X &
\end{array}
$$

convex $\Longleftrightarrow f(\cdot)$ convex and $G(\cdot)$ concave $(\bar{\lambda} \geq 0, \bar{\nu} \geq 0)$, otherwise nonlinear nonconvex cuts, (B) "hard" (but (Π) was)

- Case II, special forms: $f\left(z_{i}\right)$ concave, univariate

$$
\begin{gathered}
\max \left\{\sum_{i} x_{i} f\left(z_{i}\right): \sum_{i} x_{i} z_{i} \leq c, \quad z_{i} \geq 0, A x \leq b, x \geq 0\right\} \\
v(x)=\min _{\lambda} \sum_{i} \max \left\{x_{i}\left(f\left(z_{i}\right)-\lambda z_{i}\right): z_{i} \geq 0\right\}+\lambda c \\
v(x) \leq \sum_{i} x_{i} \max \left\{\left(f\left(z_{i}\right)-\bar{\lambda} z_{i}\right): z_{i} \geq 0\right\}+\bar{\lambda} c
\end{gathered}
$$

can optimize on the z independently from the $x \Longrightarrow$
"normal" linear cuts

Staircase-structured non convex Nonlinear Programs

- $f(x, \cdot)$ and/or $G(x, \cdot)$ not concave and/or Z not convex:

[^13]
Staircase-structured non convex Nonlinear Programs

- $f(x, \cdot)$ and/or $G(x, \cdot)$ not concave and/or Z not convex: though luck: you basically cannot do anything
- Benders' requires duality, duality requires convexity: no Benders' for (П) $\max \left\{c x+e z: A x+B z \leq b, x \in X, z \in \mathbb{Z}^{m}\right\}$

[^14]
Staircase-structured non convex Nonlinear Programs

- $f(x, \cdot)$ and/or $G(x, \cdot)$ not concave and/or Z not convex: though luck: you basically cannot do anything
- Benders' requires duality, duality requires convexity: no Benders' for (П) $\max \left\{c x+e z: A x+B z \leq b, x \in X, z \in \mathbb{Z}^{m}\right\}$
- Some workarounds possible:
- Use exact duality for nonconvex / integer problems ${ }^{14}$ (though!)
- Approximate the convex hull by some hierarchy ${ }^{15}$ (RLT, ...)
- Give up duality and use combinatorial Benders' (feasibility) cuts ${ }^{16}$
- In general much harder / less efficient
- Alternative route: use Benders' to solve continuous relaxation: Benders' subproblem as yet another (strong ${ }^{17}$) cut generator
- Often more efficient and supported by some off-the-shelf solver

[^15]
Outline

(1) Dual decomposition (Dantzig-Wolfe/Lagrangian/Column Generation)
(2) Primal decomposition (Benders'/Resource)
(3) All Are One, One Is All
(4) Dual Decomposition: the Nonlinear and Integer Cases
(5) Alternative Good Formulations for $\operatorname{conv}(X)$
(2) Primal Decomposition: the Nonlinear and Integer Cases
(7) Decomposition-aware modelling systems
(8) Conclusions (for now)

Modelling languages, and what they are for

- Most interactions with optimization solvers via Algebraic Modelling Languages (AML): commercial AMPL or GAMS ${ }^{18}$, AIMMS 19 and OPL^{20}, or open-source Coliop or ZIMPL ${ }^{21}$
- Interfaced with a varying set (few/many) of general-purpose solvers for large problem classes (MILP, MINLP, conic, ...)
- AML is a separate language, typically interpreted (not efficient)
- Mostly "flat" languages (no OOP), modularity an issue
- Focus on "model once, solve once"; some offer some support for iterative procedures but clearly an afterthought
- Hide the complexities of the model/solution process to inexperienced users

[^16]
Modelling systems, and what they are for

- Modelling systems: libraries written in general-purpose languages providing similar functionalities to AML
- Often open-source: FLOPCpp, COIN Rehearse and Gravity ${ }^{22}$ (C++), PuLP and Pyomo ${ }^{23}$ (Python), JuMP (Julia) and YALMIP ${ }^{24}$ (Matlab)
- May not fully replicate AML constructs, sometimes more limited
- Solver interfacing and overhead lower with efficient languages (C++)
- Multiple models and iterative procedures more natural
- Can exploit OOP features of host language for better modularity
- Mostly focus on general-purpose solvers and "model once, solve once"
- Tailored for end-users, not algorithms developers

[^17]
Decomposition / structure-aware solvers

- Some solvers provide decomposition capabilities:
- Cplex does Benders', structure automatic or user hints
- SCIP ${ }^{10}$ does B\&C\&P (one-level D-W), pricing \& reformulation up to the user (plugins)
- GCG ${ }^{10}$ extends SCIP with automatic and user-defined (one-level) D-W and recently also a generic (one-level) Benders' approach
- DDSIP ${ }^{25}$ and PIPS ${ }^{26}$ implement D-W for two-stage stochastic programs
- The BaPCoD B\&C\&P code has been used to develop Coluna. $\mathrm{j} 1^{27}$, doing one-level D-W and (alpha) Benders', multi-level planned
- Other solvers use structure in different ways: BlockIP ${ }^{28}, 00$ PS 29

[^18]
Decomposition-aware modelling systems: are there any?

- In a word?

30 https://www.maths.ed.ac.uk/ERGO/sml
$31_{\text {https://github.com/StructJuMP/StructJuMP.jl }}$
32
https://github.com/atoptima/BlockDecomposition.jl

Decomposition-aware modelling systems: are there any?

- In a word? Very few (that's two words ...)
- OOPS is interfaced with SML ${ }^{30}$, providing some parallel capabilities
- PIPS is interfaced with StructJuMP ${ }^{31}$, using BlockDecomposition ${ }^{32}$

[^19]
Decomposition-aware modelling systems: are there any?

- In a word? Very few (that's two words ...)
- OOPS is interfaced with SML^{30}, providing some parallel capabilities
- PIPS is interfaced with StructJuMP ${ }^{31}$, using BlockDecomposition ${ }^{32}$
- No modelling system is focused on multi-level structure, non-general-purpose solvers, parallel, and modularity/extendability
- Although JuMP is doing a good job at promoting some of these

[^20]
Decomposition-aware modelling systems: are there any?

- In a word? Very few (that's two words ...)
- OOPS is interfaced with SML ${ }^{30}$, providing some parallel capabilities
- PIPS is interfaced with StructJuMP ${ }^{31}$, using BlockDecomposition ${ }^{32}$
- No modelling system is focused on multi-level structure, non-general-purpose solvers, parallel, and modularity/extendability
- Although JuMP is doing a good job at promoting some of these
- We tried working with Julia, but most solvers are in C / C++, and the full circle Julia \rightarrow C++ \rightarrow Julia did not work well
- So we choose no-performance-compromise C++, accepting the drawbacks

[^21]
Conclusions

(Part III)

Conclusions (Part III)

- General block structure can (and must in some cases) be exploited

Conclusions (Part III)

- General block structure can (and must in some cases) be exploited - Well-understood main tools: reformulation + duality

Conclusions (Part III)

- General block structure can (and must in some cases) be exploited
- Well-understood main tools: reformulation + duality
- Two different approaches, "primal" and "dual": for linear programs Lagrange is Benders' in the dual, and vice-versa

Conclusions (Part III)

- General block structure can (and must in some cases) be exploited
- Well-understood main tools: reformulation + duality
- Two different approaches, "primal" and "dual": for linear programs Lagrange is Benders' in the dual, and vice-versa
- Both boil down to the $60+$-years old Cutting-Plane algorithm ${ }^{3}$ "plus some branching" to deal with nonconvexity

Conclusions (Part III)

- General block structure can (and must in some cases) be exploited
- Well-understood main tools: reformulation + duality
- Two different approaches, "primal" and "dual": for linear programs Lagrange is Benders' in the dual, and vice-versa
- Both boil down to the $60+$-years old Cutting-Plane algorithm ${ }^{3}$ "plus some branching" to deal with nonconvexity
- Different twists, different conditions to work:

Conclusions (Part III)

- General block structure can (and must in some cases) be exploited
- Well-understood main tools: reformulation + duality
- Two different approaches, "primal" and "dual": for linear programs Lagrange is Benders' in the dual, and vice-versa
- Both boil down to the $60+$-years old Cutting-Plane algorithm ${ }^{3}$ "plus some branching" to deal with nonconvexity
- Different twists, different conditions to work:
- who is complicating (constraints vs. variables), but tricks (\equiv other reformulations) can be used to create the desired structure

Conclusions (Part III)

- General block structure can (and must in some cases) be exploited
- Well-understood main tools: reformulation + duality
- Two different approaches, "primal" and "dual": for linear programs Lagrange is Benders' in the dual, and vice-versa
- Both boil down to the $60+$-years old Cutting-Plane algorithm ${ }^{3}$ "plus some branching" to deal with nonconvexity
- Different twists, different conditions to work:
- who is complicating (constraints vs. variables), but tricks (\equiv other reformulations) can be used to create the desired structure
- who is reformulated (subproblem vs. master problem)

Conclusions (Part III)

- General block structure can (and must in some cases) be exploited
- Well-understood main tools: reformulation + duality
- Two different approaches, "primal" and "dual": for linear programs Lagrange is Benders' in the dual, and vice-versa
- Both boil down to the $60+$-years old Cutting-Plane algorithm ${ }^{3}$ "plus some branching" to deal with nonconvexity
- Different twists, different conditions to work:
- who is complicating (constraints vs. variables), but tricks (\equiv other reformulations) can be used to create the desired structure
- who is reformulated (subproblem vs. master problem)
- where integer / nonconvexity can be (subproblem vs. master problem)

Conclusions (Part III)

- General block structure can (and must in some cases) be exploited
- Well-understood main tools: reformulation + duality
- Two different approaches, "primal" and "dual": for linear programs Lagrange is Benders' in the dual, and vice-versa
- Both boil down to the $60+$-years old Cutting-Plane algorithm ${ }^{3}$ "plus some branching" to deal with nonconvexity
- Different twists, different conditions to work:
- who is complicating (constraints vs. variables), but tricks (\equiv other reformulations) can be used to create the desired structure
- who is reformulated (subproblem vs. master problem)
- where integer / nonconvexity can be (subproblem vs. master problem)
- where branching / cutting is done (subproblem vs. master problem)

Conclusions (Part III)

- General block structure can (and must in some cases) be exploited
- Well-understood main tools: reformulation + duality
- Two different approaches, "primal" and "dual": for linear programs Lagrange is Benders' in the dual, and vice-versa
- Both boil down to the $60+$-years old Cutting-Plane algorithm ${ }^{3}$ "plus some branching" to deal with nonconvexity
- Different twists, different conditions to work:
- who is complicating (constraints vs. variables), but tricks (\equiv other reformulations) can be used to create the desired structure
- who is reformulated (subproblem vs. master problem)
- where integer / nonconvexity can be (subproblem vs. master problem)
- where branching / cutting is done (subproblem vs. master problem)
- where/which nonlinearities can be easily dealt with

Conclusions (Part III)

- General block structure can (and must in some cases) be exploited
- Well-understood main tools: reformulation + duality
- Two different approaches, "primal" and "dual": for linear programs Lagrange is Benders' in the dual, and vice-versa
- Both boil down to the $60+$-years old Cutting-Plane algorithm ${ }^{3}$ "plus some branching" to deal with nonconvexity
- Different twists, different conditions to work:
- who is complicating (constraints vs. variables), but tricks (\equiv other reformulations) can be used to create the desired structure
- who is reformulated (subproblem vs. master problem)
- where integer / nonconvexity can be (subproblem vs. master problem)
- where branching / cutting is done (subproblem vs. master problem)
- where/which nonlinearities can be easily dealt with
- But from theory to practice there is a large gulf to be crossed

Conclusions (Part III)

- General block structure can (and must in some cases) be exploited
- Well-understood main tools: reformulation + duality
- Two different approaches, "primal" and "dual": for linear programs Lagrange is Benders' in the dual, and vice-versa
- Both boil down to the $60+$-years old Cutting-Plane algorithm ${ }^{3}$ "plus some branching" to deal with nonconvexity
- Different twists, different conditions to work:
- who is complicating (constraints vs. variables), but tricks (\equiv other reformulations) can be used to create the desired structure
- who is reformulated (subproblem vs. master problem)
- where integer / nonconvexity can be (subproblem vs. master problem)
- where branching / cutting is done (subproblem vs. master problem)
- where/which nonlinearities can be easily dealt with
- But from theory to practice there is a large gulf to be crossed
- Assume this is done for you (another story - course)

[^0]: ${ }^{1}$ Dantzig, Wolfe "The Decomposition Principle for Linear Programs" Op. Res., 1960

[^1]: ${ }^{2}$ Geoffrion "Lagrangean Relaxation for Integer Programming" Math. Prog. Study, 1974

[^2]: ${ }^{3}$ Kelley "The Cutting-Plane Method for Solving Convex Programs" J. of the SIAM, 1960

[^3]: 4 Benders "Partitioning Procedures for Solving Mixed-Variables Programming Problems" Numerische Mathematik, 1962

[^4]: ${ }^{5}$ Kennington, Shalaby "An Effective Subgradient Procedure for Minimal Cost Multicomm. Flow Problems" Man. Sci., 1977

[^5]: ${ }^{5}$ Kennington, Shalaby "An Effective Subgradient Procedure for Minimal Cost Multicomm. Flow Problems" Man. Sci., 1977

[^6]: ${ }^{6}$ Lemaréchal, Hiriart-Urrity "Convex Analysis and Minimization Algorithms" Springer, 1993

[^7]: ${ }^{7}$ Lemaréchal, Renaud "A Geometric Study of Duality Gaps, with Applications" Math. Prog., 2001

[^8]: ${ }^{7}$ Lemaréchal, Renaud "A Geometric Study of Duality Gaps, with Applications" Math. Prog., 2001

[^9]: ${ }^{7}$ Lemaréchal, Renaud "A Geometric Study of Duality Gaps, with Applications" Math. Prog., 2001

[^10]: ${ }^{8}$ Daniilidis, Lemaréchal "On a Primal-Proximal Heuristic in Discrete Optimization" Math. Prog., 2005
 ${ }^{9}$ Scuzziato, Finardi, F. "Solving Stochastic [...] Unit Commitment with a New Primal Recovery [...]" IJEPES, 2021
 10 https://scipopt.org, https://gcg.or.rwth-aachen.de

[^11]: ${ }^{12}$ Fischetti, Lodi, Salvagnin "Just MIP It!" MATHEURISTICS, Ann. Inf. Syst., 2009

[^12]: ${ }^{13}$ Geoffrion "Generalized Benders Decomposition" JOTA, 1972

[^13]: ${ }^{14}$ Guzelsoy, Ralphs "Duality for Mixed-Integer Linear Programs" ITOR, 2007
 ${ }^{15}$ Sen, Sherali "Decomposition [...] for Two-Stage Stochastic Mixed-Integer Programming" Math. Prog., 2006
 ${ }^{16}$ Codato, Fischetti "Combinatorial Benders' Cuts for Mixed-Integer Linear Programming" Op. Res., 2006
 ${ }^{17}$ Costa, Cordeau, Gendron "Benders, Metric and Cutset Inequalities for Multicommodity [...] Network Design" COAP, 2009
 A. Frangioni (DI - UniPi)

[^14]: ${ }^{14}$ Guzelsoy, Ralphs "Duality for Mixed-Integer Linear Programs" ITOR, 2007
 ${ }^{15}$ Sen, Sherali "Decomposition [...] for Two-Stage Stochastic Mixed-Integer Programming" Math. Prog., 2006
 ${ }^{16}$ Codato, Fischetti "Combinatorial Benders' Cuts for Mixed-Integer Linear Programming" Op. Res., 2006
 ${ }^{17}$ Costa, Cordeau, Gendron "Benders, Metric and Cutset Inequalities for Multicommodity [. . .] Network Design" COAP, 2009

[^15]: ${ }^{14}$ Guzelsoy, Ralphs "Duality for Mixed-Integer Linear Programs" ITOR, 2007
 ${ }^{15}$ Sen, Sherali "Decomposition [...] for Two-Stage Stochastic Mixed-Integer Programming" Math. Prog., 2006
 ${ }^{16}$ Codato, Fischetti "Combinatorial Benders' Cuts for Mixed-Integer Linear Programming" Op. Res., 2006
 ${ }^{17}$ Costa, Cordeau, Gendron "Benders, Metric and Cutset Inequalities for Multicommodity [...] Network Design" COAP, 2009

[^16]: 18 https://ampl.com, https://www.gams.com
 19 https://www.aimms.com/platform/aimms-development
 ${ }^{20}{ }_{\text {https://www.ibm.com/docs/en/icos/12.8.0.0?topic=opl-optimization-programming-language }}$ $21_{\text {http }} / /$ www. coliop.org,
 https://zimpl.zib.de

[^17]: 22 https://github.com/coin-or/FlopCpp, https://github.com/coin-or/Gravity https://github.com/coin-or/Rehearse
 23
 https://github.com/coin-or/pulp, http://www.pyomo.org
 $24_{\text {https://github.com/jump-dev/JuMP.jl, https://yalmip.github.io }}$

[^18]: 25 https://github.com/RalfGollmer/ddsip
 ${ }^{26}{ }_{\text {https }}$://github.com/Argonne-National-Laboratory/PIPS
 27 https://github.com/atoptima/Coluna.jl
 28 http://www-eio.upc.edu/~jcastro/BlockIP.html
 29
 https://www.maths.ed.ac.uk/~gondzio/parallel/solver.html

[^19]: $30_{\text {https: }} / /$ www.maths.ed.ac.uk/ERGO/sml
 $31_{\text {https://github.com/StructJuMP/StructJuMP.jl }}$
 32
 https://github.com/atoptima/BlockDecomposition.jl

[^20]: 30 https://www.maths.ed.ac.uk/ERGO/sml
 $31_{\text {https://github.com/StructJuMP/StructJuMP.jl }}$
 32
 https://github.com/atoptima/BlockDecomposition.jl

[^21]: ${ }^{30}$ https://www.maths.ed.ac.uk/ERGO/sml
 $31_{\text {https://github.com/StructJuMP/StructJuMP.jl }}$
 32
 https://github.com/atoptima/BlockDecomposition.jl

