One of Bernard's life-long (scientific) love stories: playing ping-pong between (multicommodity flow) models and (decomposition) algorithms

Antonio Frangioni Bernard Gendron Enrico Gorgone

Dipartimento di Informatica, Università di Pisa

Hommage au Professeur Bernard Gendron
Montreal, February the $23^{\text {rd }}$, 2023

## It all started with the classical Multicommodity flow model

- Graph $G=(N, A)$, classical Multicommodity flow model

$$
\begin{array}{rr}
\min \sum_{k \in K} \sum_{(i, j) \in A} c_{i j}^{k} x_{i j}^{k} & \\
\sum_{(i, j) \in A} x_{i j}^{k}-\sum_{(j, i) \in A} x_{j i}^{k}=b_{i}^{k} & i \in N, k \in K \\
\sum_{k \in K} x_{i j}^{k} \leq u_{i j} & (i, j) \in A \\
0 \leq x_{i j}^{k} \leq u_{i j}^{k} & (i, j) \in A, k \in K
\end{array}
$$

- Often $b_{i}^{k} \equiv\left(s^{k}, t^{k}, d^{k}\right)$, i.e., commodities $K \equiv$ O-D pairs, possibly with $x_{i j} \rightarrow d^{k} x_{i j}, x_{i j} \in\{0,1\}$ (unsplittable routing)
- Pervasive structure in logistic and transportation, often very large (time-space $\Longrightarrow$ acyclic) G, "few" commodities
- Common in many other areas (telecommunications, energy, ...), possibly "small" (undirected) G, "many" commodities
- Interesting links with many hard problems (e.g. Max-Cut)
- "Hard" even if continuous: very-large-scale LPs


## The paradise of decomposition

- Many sources of structure $\Longrightarrow$ the paradise of decomposition ${ }^{1,2}$
- Lagrangian relaxation ${ }^{3}$ of linking constraints:
- $(3) \Longrightarrow$ flow (shortest path) relaxation
- $(2) \Longrightarrow$ knapsack relaxation
- others possible (will see)
- Benders' decomposition ${ }^{4}$ of linking variables:
- Linking variables can be artificially added (resource decomposition) ${ }^{5}$

$$
x_{i j}^{k} \leq u_{i j}^{k} \quad, \quad \sum_{k \in K} u_{i j}^{k} \leq u_{i j}
$$

- I did mostly Lagrange, but many ideas can be applied to Benders ${ }^{6}$ and Bernard did work on Benders (for network design, will see) ${ }^{7}$

[^0]
## (Dantzig-Wolfe) Decomposition 101

- The general form of structure we consider:
(П) $\max \{c x: A x=b, x \in X\}$
$A x=b$ "complicating" $\equiv$ optimizing upon $X$ "easy" $\equiv$ convex
- Almost always $X=\bigotimes_{h \in \mathcal{K}} X^{h}(\mathcal{K} \neq K) \equiv A x=b$ linking constraints
- Our $X$ compact, represent it by vertices (otherwise just add extreme rays)

$$
X=\left\{x=\sum_{\bar{x} \in X} \bar{x} \theta_{\bar{x}}: \sum_{\bar{x} \in X} \theta_{\bar{x}}=1, \theta_{\bar{x}} \geq 0 \quad \bar{x} \in X\right\}
$$

$\Longrightarrow$ Dantzig-Wolfe reformulation ${ }^{2}$ of $(\Pi)$ :
(п̃) $\left\{\begin{aligned} \max c\left(\sum_{\bar{x} \in X} \bar{x} \theta_{\bar{x}}\right) & \\ A\left(\sum_{\bar{x} \in X} \bar{x} \theta_{\bar{x}}\right) & =b \\ \sum_{\bar{x} \in X} \theta_{\bar{x}} & =1, \quad \theta_{\bar{x}} \geq 0 \quad \bar{x} \in X\end{aligned}\right.$

- $X$ nonconvex $\Longrightarrow$ solving "best" convex relaxation
(ㅍ)
$\max \{c x: A x=b, x \in \operatorname{conv}(X)\}$


## D-W decomposition $\equiv$ Lagrangian relaxation

- $\mathcal{B} \subset X$ (small), solve master problem restricted to $\mathcal{B}$ $\left(\Pi_{\mathcal{B}}\right) \quad \max \{c x: A x=b, x \in \operatorname{conv}(\mathcal{B})\}$
feed (partial) dual optimal solution $\lambda^{*}$ (of $A x=b$ ) to pricing problem

$$
\left(\Pi_{\lambda^{*}}\right) \quad \max \left\{\left(c-\lambda^{*} A\right) x: x \in X\right\} \quad\left[+\lambda^{*} b\right]
$$

(Lagrangian relaxation), optimal solution $\bar{x}$ of $\left(\Pi_{\lambda^{*}}\right) \rightarrow \mathcal{B}$

- Dual: $\left(\Delta_{\mathcal{B}}\right) \min \left\{f_{\mathcal{B}}(\lambda)=\max \{c x+\lambda(b-A x): x \in \mathcal{B}\}\right\}$
- $f_{\mathcal{B}}=$ lower approximation of "true" Lagrangian function

$$
f(\lambda)=\max \{c x+\lambda(b-A x): x \in X\}
$$

$\Longrightarrow\left(\Delta_{\mathcal{B}}\right)$ outer approximation of Lagrangian dual $\equiv(\Pi)$

$$
\begin{equation*}
(\Delta) \quad \min \{f(\lambda)=\max \{c x+\lambda(b-A x): x \in X\}\} \tag{6}
\end{equation*}
$$

- Dantzig-Wolfe decomposition $\equiv$ Cutting Plane approach to $(\Delta)^{8}$

[^1]
## All well and nice, but does it work well?

## All well and nice, but does it work well?

- By-the-book? Not really



## All well and nice, but does it work well?

- By-the-book? Not really

- $\lambda^{*}$ immediately shoots much farther from optimum than initial point $\equiv$ having good initial point not much useful
- No apparent improvement for a long time as information slowly accrues
- A mysterious threshold is hit and "real" convergence begins


## How to deal with instability

- $\lambda_{k+1}^{*}$ can be very far from $\lambda_{k}^{*}$, where $f_{\mathcal{B}}$ is a "bad model" of $f$
- If $\left\{\lambda_{k}^{*}\right\}$ is unstable, then stabilize it around stability centre $\bar{\lambda}$
- Stabilizing term $\mathcal{D}_{t}$ with parameter $t$, stabilized master problems

$$
\begin{aligned}
& \left(\Delta_{\mathcal{B}, \bar{\lambda}, \mathcal{D}_{t}}\right) \min \left\{f_{\mathcal{B}}(\bar{\lambda}+d)+\mathcal{D}_{t}(d)\right\} \\
& \left(\Pi_{\mathcal{B}, \bar{\lambda}, \mathcal{D}_{t}}\right) \max \left\{c x+\bar{\lambda}(b-A x)-\mathcal{D}_{t}^{*}(A x-b): x \in \operatorname{conv}(\mathcal{B})\right\}
\end{aligned}
$$

( ${ }^{* * "}=$ Fenchel's conjugate): a generalized augmented Lagrangian

- Change $\bar{\lambda}$ when $f\left(\bar{\lambda}+d^{*}\right) \ll f(\bar{\lambda})$, appropriate $\mathcal{D} \Longrightarrow$ converges $^{9}$
- Choosing $t$ nontrivial
- Aggregation trick: right $\mathcal{D} \Longrightarrow$ still converges with "poorman bundle" $\mathcal{B}=\left\{x^{*}\right\}$ (although rather slowly ${ }^{10} \approx$ volume $^{11} \equiv$ subgradient)

[^2]
## What is an appropriate stabilization?

- Simplest: $\mathcal{D}_{t} \equiv\|d\|_{\infty} \leq t, \mathcal{D}_{t}^{*}=t\|\cdot\|_{2}^{2}(\text { "boxstep" })^{12}$
- Better ${ }^{13}: \mathcal{D}_{t}=\frac{1}{2 t}\|\cdot\|_{2}^{2}, \mathcal{D}_{t}^{*}=\frac{1}{2} t\|\cdot\|_{2}^{2}$ (may use specialized QP solvers ${ }^{14}$ )
- Keep LP master: piecewise-linear approximations ${ }^{15}$




- Several other ideas ${ }^{16}$ (level stabilization, centres, better "Hessian", ...)

[^3]
## All well and nice, but does it work well?

[^4]
## All well and nice, but does it work well?

- It depends on what "well" means, but surely better

- Black-box nonsmooth optimization is $\Omega\left(1 / \varepsilon^{2}\right)$ in general ${ }^{17}$
- Convergence slow-ish (but at lest some) until mysterious threshold hit
- At least, better information accrued sooner $\Longrightarrow$ "quick tail" starts sooner
- Can make a huge difference in applications
${ }^{17}$ Nemirovsky, Yudin "Problem Complexity and Method Efficiency in Optimization" Wiley, 1983


## Indeed, it worked well enough for Multicommodity flows

| $k$ | $n$ | $m$ | $b$ | Size | MMCFB | Cplex | PPRN | IPM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 64 | 362 | 148 | $1.4 \mathrm{e}+3$ | 0.07 | 0.22 | 0.13 | 1.44 |
| 8 | 64 | 371 | 183 | $3.0 \mathbf{e}+3$ | 0.26 | 0.50 | 0.52 | 4.26 |
| 16 | 64 | 356 | 191 | $5.7 \mathrm{e}+3$ | 1.08 | 2.01 | 3.41 | 16.03 |
| 32 | 64 | 362 | 208 | $1.2 \mathrm{e}+4$ | 3.42 | 12.99 | 22.04 | 43.27 |
| 64 | 64 | 361 | 213 | $2.3 \mathrm{e}+4$ | 8.53 | 115.99 | 147.10 | 114.19 |
| 4 | 128 | 694 | 293 | $2.8 \mathrm{e}+3$ | 0.58 | 0.54 | 0.85 | 6.45 |
| 8 | 128 | 735 | 363 | $5.9 \mathrm{e}+3$ | 2.57 | 1.81 | 4.79 | 26.32 |
| 16 | 128 | 766 | 424 | $1.2 \mathrm{e}+4$ | 11.30 | 17.31 | 40.57 | 116.26 |
| 32 | 128 | 779 | 445 | $2.5 e+4$ | 27.72 | 212.09 | 503.48 | 346.91 |
| 64 | 128 | 784 | 469 | $5.0 \mathrm{e}+4$ | 44.04 | 1137.05 | 2215.48 | 719.69 |
| 128 | 128 | 808 | 485 | $1.0 \mathrm{e}+5$ | 52.15 | 5816.54 | 6521.94 | 1546.91 |
| 4 | 256 | 1401 | 570 | $5.6 \mathrm{e}+3$ | 7.54 | 2.38 | 9.88 | 51.00 |
| 8 | 256 | 1486 | 743 | $1.2 \mathrm{e}+4$ | 25.09 | 15.48 | 105.89 | 208.10 |
| 16 | 256 | 1553 | 854 | $2.5 e+4$ | 60.85 | 180.06 | 955.20 | 844.09 |
| 32 | 256 | 1572 | 907 | $5.0 \mathbf{e}+4$ | 107.54 | 1339.46 | 6605.45 | 1782.47 |
| 64 | 256 | 1573 | 931 | $1.0 \mathrm{e}+5$ | 144.75 | 7463.14 | 18467.73 | 3441.62 |
| 128 | 256 | 1581 | 932 | $2.0 \mathrm{e}+5$ | 223.13 | 35891.37 | 61522.94 | 9074.31 |
| 256 | 256 | 1503 | 902 | $3.8 \mathrm{e}+5$ | 445.81 | 110897+ | 187156+ | 17279.00 |

- We could handily beat the state-of-the-art Cplex 3.0 and others ${ }^{18}$

[^5]| A. Frangioni (DI - UniPi) | Bernard and Multicommodity Flows | Bernard 2023 $10 / 41$ |
| :--- | :--- | :--- | :--- |

## Indeed, it worked well enough for Multicommodity flows

| Group | $T_{1}$ | $s \%$ | $T_{4}$ | $T_{16}$ | $T_{64}$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| $64-64$ | 21.31 | 1.10 | 5.98 | 2.08 | 1.00 |
| $128-64$ | 123.66 | 1.25 | 35.70 | 13.16 | 7.01 |
| $128-128$ | 159.78 | 0.66 | 42.04 | 12.65 | 4.95 |
| $256-64$ | 466.35 | 1.51 | 129.75 | 44.69 | 21.89 |
| $256-128$ | 718.35 | 0.62 | 188.96 | 57.23 | 22.99 |
| $256-256$ | 1404.48 | 0.30 | 348.46 | 98.30 | 33.85 |
| $512-512$ | 15898.89 | 0.22 | $*$ | 1025.26 | 291.40 |

- We could handily beat the state-of-the-art Cplex 3.0 and others ${ }^{18}$
- We could even parallelise on a supercomputer with a whopping $64 \mathrm{CPU}^{19}$

[^6]
## Indeed, it worked well enough for Multicommodity flows

| Group | $T_{1}$ | $s \%$ | $T_{4}$ | $T_{16}$ | $T_{64}$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| $64-64$ | 21.31 | 1.10 | 5.98 | 2.08 | 1.00 |
| $128-64$ | 123.66 | 1.25 | 35.70 | 13.16 | 7.01 |
| $128-128$ | 159.78 | 0.66 | 42.04 | 12.65 | 4.95 |
| $256-64$ | 466.35 | 1.51 | 129.75 | 44.69 | 21.89 |
| $256-128$ | 718.35 | 0.62 | 188.96 | 57.23 | 22.99 |
| $256-256$ | 1404.48 | 0.30 | 348.46 | 98.30 | 33.85 |
| $512-512$ | 15898.89 | 0.22 | $*$ | 1025.26 | 291.40 |

- We could handily beat the state-of-the-art Cplex 3.0 and others ${ }^{18}$
- We could even parallelise on a supercomputer with a whopping $64 \mathrm{CPU}^{19}$
- But this was not enough for Bernard ...

[^7]| A. Frangioni (DI — UniPi) | Bernard and Multicommodity Flows | Bernard 2023 | $10 / 41$ |
| :--- | :--- | :--- | :--- |

## for he wanted to solve Multicommodity Network Design

$$
\begin{array}{cr}
\min \sum_{k \in K} \sum_{(i, j) \in A} c_{i j}^{k} x_{i j}^{k}+\sum_{(i, j) \in A} f_{i j} y_{i j} & \\
\sum_{(i, j) \in A} x_{i j}^{k}-\sum_{(j, i) \in A} x_{j i}^{k}=b_{i}^{k} & i \in N, k \in K \\
\sum_{k \in K} x_{i j}^{k} \leq u_{i j} y_{i j} & (i, j) \in A \\
0 \leq x_{i j}^{k} \leq u_{i j}^{k} y_{i j} & (i, j) \in A, k \in K \\
y \in Y \subseteq\{0,1\}^{m} &
\end{array}
$$

- Reasonably good bounds but only with strong forcing constraints (9)
- Just one more subproblem, but a lot more constraints (9) to relax $\equiv$ much larger dual space (harder) and much more costly master problem
- In fact, relaxing (2) (knapsack relaxation) competitive: less multipliers (but unconstrained), still (arc) decomposable if $Y=\{0,1\}^{m}$
- Flow relaxation requires dynamic bundle methods ${ }^{20}$, many other uses ${ }^{21}$

[^8]
## Which worked well, sort of

| Problems | CPXW | WB | CPXS | SS | SB | KS | KB |
| :--- | :--- | :--- | ---: | :--- | :--- | :--- | :--- |
| $25,100,10$ | $2.3 \mathrm{e}-1$ | $2.3 \mathrm{e}-1$ | 0.0 | $5.3 \mathrm{e}-4$ | $1.8 \mathrm{e}-4$ | $7.6 \mathrm{e}-4$ | $2.7 \mathrm{e}-4$ |
| $(3)$ | 0.1 | 0.0 | 1.3 | 1.1 | 1.0 | 0.6 | 0.8 |
| $25,100,30$ | $2.2 \mathrm{e}-1$ | $2.2 \mathrm{e}-1$ | 0.0 | $4.0 \mathrm{e}-4$ | $1.4 \mathrm{e}-4$ | $9.8 \mathrm{e}-4$ | $5.5 \mathrm{e}-4$ |
| $(3)$ | 0.6 | 0.2 | 11.3 | 3.0 | 3.5 | 1.2 | 2.3 |
| $100,400,10$ | $2.8 \mathrm{e}-1$ | $2.8 \mathrm{e}-1$ | 0.0 | $1.1 \mathrm{e}-3$ | $6.7 \mathrm{e}-4$ | $1.6 \mathrm{e}-3$ | $1.3 \mathrm{e}-3$ |
| $(3)$ | 0.3 | 0.1 | 35.9 | 4.2 | 4.8 | 1.7 | 3.0 |
| $100,400,30$ | $2.9 \mathrm{e}-1$ | $2.9 \mathrm{e}-1$ | 0.0 | $1.0 \mathrm{e}-3$ | $1.1 \mathrm{e}-3$ | $1.9 \mathrm{e}-3$ | $2.5 \mathrm{e}-3$ |
| $(3)$ | 5.9 | 2.3 | 351.9 | 14.3 | 16.7 | 4.5 | 9.1 |

- Issue: $>10-100$ subgradients filled our mighty 64 Mb (not a typo) of RAM $\Longrightarrow$ never really got to the "fast tail" convergence
- Yet bundle competitive with subgradient, flow and knapsack traded blows, $1 e-5$ to $1 e-3$ accuracy good enough for a B\&B ${ }^{22}$
- Could have been better, still my most cited article ever ${ }^{23}$

[^9]| A. Frangioni (DI — UniPi) | Bernard and Multicommodity Flows | Bernard 2023 41 |
| :--- | :--- | :--- | :--- |

## But Bernard was not happy, so we kept pushing

- Dantzig-Wolfe reformulation: $\mathcal{S}=\left\{\right.$ (extreme) flows $\left.s=\left[\bar{x}^{1, s}, \ldots, \bar{x}^{k, s}\right]\right\}$

$$
\begin{array}{lr}
\min \sum_{s \in \mathcal{S}}\left(\sum_{k \in K} \sum_{(i, j) \in A} c_{i j}^{k} \bar{x}_{i j}^{k, s}\right) \theta_{s} & \\
\sum_{s \in \mathcal{S}}\left(\sum_{k \in K} \bar{x}_{i j}^{k, s}-u_{i j}\right) \theta_{s} \leq 0 & (i, j) \in A \\
\sum_{s \in \mathcal{S}} \theta_{s}=1, \quad \theta_{s} \geq 0 & s \in \mathcal{S}
\end{array}
$$

- Exploit separability: $X=X^{1} \times X^{2} \times \ldots \times X^{|K|} \Longrightarrow$ $\operatorname{conv}(X)=\operatorname{conv}\left(X^{1}\right) \times \operatorname{conv}\left(X^{2}\right) \times \ldots \times \operatorname{conv}\left(X^{|K|}\right) \Longrightarrow$ a different $\theta_{s}^{k}$ for each $\bar{x}^{k, s}$ (aggregated $\equiv \theta_{s}^{k}=\theta_{s}^{h}, h \neq k$, innatural)
- Simple scaling leads to arc-path formulation (in O-D case):
$p \in \mathcal{P}^{k}=\left\{s^{k}-t^{k}\right.$ paths $\}, c_{p}$ cost, $f_{p}\left(=d^{k} \theta_{s}^{k}\right)$ flow, $\mathcal{P}=\cup_{k \in K} \mathcal{P}^{k}$

$$
\begin{array}{lr}
\min \sum_{p \in \mathcal{P}} c_{p} f_{p} & \\
\sum_{p \in \mathcal{P}}:(i, j) \in p
\end{array} f_{p} \leq u_{i j} \quad(i, j) \in A
$$

## Disaggregated decomposition



- Disaggregated formulation: more columns but sparser, more rows
- Master problem size $\approx$ time increases, but convergence speed increases $\equiv$ consistent improvement if you have enough RAM
- Much more efficient for Multicommodity Flows ${ }^{24}$ and others ${ }^{25}$
- But not for Network Design! So we had to understand why

[^10]
## How not to do disaggregated decomposition

- $\mathcal{S}=$ extreme points of $y\left(2^{|A|}\right.$ vertices of the unitary hypercube $)$ :

$$
\begin{array}{lr}
\min \sum_{p \in \mathcal{P}} c_{p} f_{p}+\sum_{s \in \mathcal{S}}\left(\sum_{(i, j) \in A} f_{i j} \bar{y}_{i j}^{s}\right) \theta_{s} & \\
\sum_{p \in \mathcal{P}}:(i, j) \in p \\
f_{p} \leq u_{i j} \sum_{s \in \mathcal{S}} \bar{y}_{i j}^{s} \theta_{s} & (i, j) \in A \\
\sum_{p \in \mathcal{P}^{k}} f_{p}=d^{k} & k \in K \\
f_{p} \geq 0 & p \in \mathcal{P} \\
\sum_{s \in \mathcal{S}} \theta_{s}=1 \quad, \quad \theta_{s} \geq 0 & s \in \mathcal{S}
\end{array}
$$

## How not to do disaggregated decomposition

- $\mathcal{S}=$ extreme points of $y\left(2^{|A|}\right.$ vertices of the unitary hypercube $)$ :

$$
\begin{array}{lr}
\min \sum_{p \in \mathcal{P}} c_{p} f_{p}+\sum_{s \in \mathcal{S}}\left(\sum_{(i, j) \in A} f_{i j} \bar{y}_{i j}^{s}\right) \theta_{s} & \\
\sum_{p \in \mathcal{P}:(i, j) \in p} f_{p} \leq u_{i j} \sum_{s \in \mathcal{S}} \bar{y}_{i j}^{s} \theta_{s} & (i, j) \in A \\
\sum_{p \in \mathcal{P}^{k}} f_{p}=d^{k} & k \in K \\
f_{p} \geq 0 & p \in \mathcal{P} \\
\sum_{s \in \mathcal{S}} \theta_{s}=1 \quad, \quad \theta_{s} \geq 0 & s \in \mathcal{S}
\end{array}
$$

- Is this sane? Arguably not: replacing a $2 n$ formulation with a $2^{n}$ one!
- The problem on $y$ variables is too easy, do not D-W it


## How not to do disaggregated decomposition

- $\mathcal{S}=$ extreme points of $y\left(2^{|A|}\right.$ vertices of the unitary hypercube $)$ :

$$
\begin{array}{lr}
\min \sum_{p \in \mathcal{P}} c_{p} f_{p}+\sum_{s \in \mathcal{S}}\left(\sum_{(i, j) \in A} f_{i j} \bar{y}_{i j}^{s}\right) \theta_{s} & \\
\sum_{p \in \mathcal{P}}:(i, j) \in p \\
f_{p} \leq u_{i j} \sum_{s \in \mathcal{S}} \bar{y}_{i j}^{s} \theta_{s} & (i, j) \in A \\
\sum_{p \in \mathcal{P}^{k}} f_{p}=d^{k} & k \in K \\
f_{p} \geq 0 & p \in \mathcal{P} \\
\sum_{s \in \mathcal{S}} \theta_{s}=1 \quad, \quad \theta_{s} \geq 0 & s \in \mathcal{S}
\end{array}
$$

- Is this sane? Arguably not: replacing a $2 n$ formulation with a $2^{n}$ one!
- The problem on $y$ variables is too easy, do not D-W it
- Or D-W it more: $\{0,1\}^{m}$ is a Cartesian product: why not $\mathcal{S}^{i j}=\{0,1\}$ ?
- $y_{i j} \longrightarrow 0 \cdot \theta^{i j, 0}+1 \cdot \theta^{i j, 1}, \theta^{i j, 0}+\theta^{i j, 1}=1, \theta^{i j, 0} \geq 0, \quad \theta^{i j, 1} \geq 0$

$$
y_{i j} \in[0,1]
$$

## How not to do disaggregated decomposition

- $\mathcal{S}=$ extreme points of $y\left(2^{|A|}\right.$ vertices of the unitary hypercube $)$ :

$$
\begin{array}{lr}
\min \sum_{p \in \mathcal{P}} c_{p} f_{p}+\sum_{s \in \mathcal{S}}\left(\sum_{(i, j) \in A} f_{i j} \bar{y}_{i j}^{s}\right) \theta_{s} & \\
\sum_{p \in \mathcal{P}}:(i, j) \in p \\
f_{p} \leq u_{i j} \sum_{s \in \mathcal{S}} \bar{y}_{i j}^{s} \theta_{s} & (i, j) \in A \\
\sum_{p \in \mathcal{P}^{k}} f_{p}=d^{k} & k \in K \\
f_{p} \geq 0 & p \in \mathcal{P} \\
\sum_{s \in \mathcal{S}} \theta_{s}=1 \quad, \quad \theta_{s} \geq 0 & s \in \mathcal{S}
\end{array}
$$

- Is this sane? Arguably not: replacing a $2 n$ formulation with a $2^{n}$ one!
- The problem on $y$ variables is too easy, do not D-W it
- Or D-W it more: $\{0,1\}^{m}$ is a Cartesian product: why not $\mathcal{S}^{i j}=\{0,1\}$ ?
- $y_{i j} \longrightarrow 0 \cdot \theta^{i j, 0}+1 \cdot \theta^{i j, 1}, \theta^{i j, 0}+\theta^{i j, 1}=1, \theta^{i j, 0} \geq 0, \theta^{i j, 1} \geq 0$

$$
y_{i j} \in[0,1] \quad(\text { no }, \ldots \text { really?! })
$$

## How to do a disaggregated decomposition

- Arc-path formulation with original arc design variables

$$
\begin{array}{lr}
\min \sum_{p \in \mathcal{P}} c_{p} f_{p}+\sum_{(i, j) \in A} f_{i j} y_{i j} & \\
\sum_{p \in \mathcal{P}:(i, j) \in p} f_{p} \leq u_{i j} y_{i j} & (i, j) \in A \\
\sum_{p \in \mathcal{P}^{k}} f_{p}=d^{k} & k \in K \\
f_{p} \geq 0 & p \in \mathcal{P} \\
y_{i j} \in[0,1] & (i, j) \in A
\end{array}
$$

only generate the right variables, those that are too many

- But if one had (say) $\sum_{(i, j) \in A} y_{i j} \leq r$ : a linking constraint in $Y$ $\Longrightarrow$ the design subproblem can no longer be disaggregated
- Yet, one could just add that constraint to the master problem
- Can this be stabilized? Of course it can ${ }^{26}$
${ }^{26}$ F., Gorgone "Bundle methods for sum-functions with "easy" components: [. . ] network design" Math. Prog., 2013


## Stabilization with easy components

- Required structure: $X^{1}$ arbitrary, $X^{2}$ has compact convex formulation (П) $\max \left\{c_{1} x_{1}+c_{2}\left(x_{2}\right): x_{1} \in X^{1}, G\left(x_{2}\right) \leq g, A_{1} x_{1}+A_{2} x_{2}=b\right\}$
- Lagrangian function $f(\lambda)=f^{1}(\lambda)+f^{2}(\lambda)(-\lambda b)$, two components
- Primal master problem: "just plug in the easy set"
$\left(\Pi_{\mathcal{B}}\right) \max \left\{\begin{array}{l}c_{1} x_{1}+c_{2}\left(x_{2}\right) \\ A_{1} x_{1}-A_{2} x_{2}=b \\ x_{1} \in \operatorname{conv}(\mathcal{B}), x_{2} \in X^{2}\end{array} \equiv \max \left\{\begin{array}{l}c_{1}\left(\sum_{\bar{x}_{1} \in \mathcal{B}} \bar{x}_{1} \theta_{\bar{x}_{1}}\right)+c_{2}\left(x_{2}\right) \\ A_{1}\left(\sum_{\bar{x}_{1} \in \mathcal{B}} \bar{x}_{1} \theta_{\bar{x}_{1}}\right)+A_{2} x_{2}=b \\ \sum_{\bar{x}_{1} \in \mathcal{B}} \theta_{\bar{x}_{1}} 1, \quad G\left(x_{2}\right) \leq g\end{array}\right.\right.$
- Dual master problem: $\left(\Delta_{\mathcal{B}}\right) \min \left\{\lambda b+f_{\mathcal{B}}^{1}(\lambda)+f^{2}(\lambda)\right\}$ i.e., insert "full" description of $f^{2}$ in the master problem
- Larger master problem at the beginning, but "perfect" information known
- Of course, stabilization + multiple easy/hard components ...


## All well and nice, but does it work well?

## All well and nice, but does it work well?

- You bet, but you have to do it right: let information accumulate
- Fast tail starts immediately if $\geq 50000$ subgradients + no harsh removals


## All well and nice, but does it work well?

- You bet, but you have to do it right: let information accumulate
- Fast tail starts immediately if $\geq 50000$ subgradients + no harsh removals

| Cplex | easy |  | aggregate |  |  | volume |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| dual | $1 \mathrm{e}-6$ | $1 \mathrm{e}-12$ | time | it | gap | time | it | gap |
| 39 | 26 | 32 | 322 | 10320 | $1 \mathrm{e}-6$ | 6 | 871 | $8 \mathrm{e}-3$ |
| 132 | 28 | 56 | 294 | 5300 | $1 \mathrm{e}-6$ | 12 | 831 | $9 \mathrm{e}-3$ |
| 301 | 21 | 26 | 5033 | 27231 | $1 \mathrm{e}-6$ | 26 | 794 | $3 \mathrm{e}-3$ |
| 1930 | 133 | 133 | 3122 | 14547 | $1 \mathrm{e}-6$ | 51 | 760 | $4 \mathrm{e}-2$ |
| 131 | 2 | 3 | 344 | 7169 | $1 \mathrm{e}-6$ | 12 | 827 | $3 \mathrm{e}-3$ |
| 708 | 246 | 337 | 2256 | 17034 | $2 \mathrm{e}-5$ | 29 | 869 | $1 \mathrm{e}-2$ |
| 2167 | 284 | 508 | 5475 | 15061 | $3 \mathrm{e}-6$ | 58 | 817 | $2 \mathrm{e}-2$ |
| 8908 | 242 | 253 | 11863 | 13953 | $1 \mathrm{e}-6$ | 109 | 765 | $2 \mathrm{e}-2$ |

- Much better accuracy/time than Cplex and competing decompositions
- Finally competitive even for Network Design, very happy
- Of course, meanwhile Barnard had already moved on


## Knapsack decomposition for Network Loading

- y general integers, relax flow conservation constraints (2)

$$
\begin{array}{cr}
\min \sum_{(i, j) \in A}\left(\sum_{k \in K}\left(d^{k} c_{i j}^{k}-\pi_{i}^{k}+\pi_{j}^{k}\right) x_{i j}^{k}+f_{i j} y_{i j}\right) & (i, j) \in A \\
\sum_{k \in K} d^{k} x_{i j}^{k} \leq u_{i j} y_{i j} & (i, j) \in A, k \in K \\
x_{i j}^{k} \in[0,1] & (i, j) \in A \\
y_{i j} \in \mathbb{N} &
\end{array}
$$

- Decomposes by arc, easy ( $\approx 2$ continuous knapsack) but no integrality property $\Longrightarrow$ better bound than continuous relaxation
- Residual capacity inequalities, separate $\approx 2$ continuous knapsack ${ }^{27}$

$$
\begin{gather*}
a_{k}=d^{k} / u_{i j} \quad a(S)=\sum_{k \in S} a_{k} \quad S \subseteq K \\
\sum_{k \in S} a_{k}\left(1-x_{i j}^{k}\right) \geq(a(S)-\lfloor a(S)\rfloor)(\lceil a(S)\rceil-y) \tag{11}
\end{gather*}
$$

- $\bar{I}+=$ continuous relaxation of $(1)-(10)+(11) \equiv \mathrm{DW}^{28}$
${ }^{27}$ Atamtürk "On Capacitated Network Design Cut-Set Polyhedra" Math. Prog., 2002
${ }^{28}$ Magnanti, Mirchandani, Vachani "The Convex Hull of Two [...] Network Design Problems" Math. Prog., 1993

RG vs. StabDW, strange game: the only winning move . . .

- Large difficult instances, lightly $(C=1)$ to tightly $(C=16)$ capacitated
- Aggregated and/or non-stabilised DW too slow, only Stabilized DW "works" (but $\|\cdot\|_{\infty}$ stabilization, $\|\cdot\|_{2}^{2}$ too costly, see below)

| Problem |  |  | I+ |  | StabDW |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\|A\|$ | C | imp | cpu | it | cpu | it |
| 229 | 1 | 185.17 | 18326 | 86 | 9261 | 132963 |
|  | 4 | 125.39 | 15537 | 80 | 11791 | 147879 |
|  | 8 | 85.31 | 9500 | 74 | 10702 | 146727 |
|  | 16 | 46.09 | 1900 | 52 | 7268 | 107197 |
| 287 | 1 | 198.87 | 14559 | 66 | 8815 | 120614 |
|  | 4 | 136.97 | 11934 | 62 | 8426 | 112308 |
|  | 8 | 92.94 | 9656 | 64 | 10098 | 130536 |
|  | 16 | 53.45 | 3579 | 54 | 6801 | 98972 |

- Trade blows depending on $C$, but basically both lose


## Reformulation III: Binary formulation $B$

- Redundant upper bound constraints: $y_{i j} \leq\left\lceil\sum_{k \in K} d^{k} / a_{i j}\right\rceil=T_{i j}$
- Pseudo-polinomially many segments $S_{i j}=\left\{1, \ldots, T_{i j}\right\}$ for $y_{i j}$
- Reformulation in binary variables: $y_{i j}=\sum_{s \in S_{i j}} s y_{i j}^{s}$ (substituted away)

$$
\begin{aligned}
& y_{i j}^{s}= \begin{cases}1 & \text { if } y_{i j}=s \\
0 & \text { otherwise }\end{cases} s \in S_{i j} \\
& x_{i j}^{k s}=\left\{\begin{array}{lll}
x_{i j}^{k} & \text { if } y_{i j}=s \\
0 & \text { otherwise } & s \in S_{i j}, k \in K
\end{array}\right. \\
&(s-1) a_{i j} y_{i j}^{s} \leq \sum_{k \in K} d^{k} x_{i j}^{k s} \leq s a_{i j} y_{i j}^{s}(i, j) \in A, s \in S_{i j} \\
& \sum_{s \in S_{i j} y_{i j}^{s} \leq 1} \\
&(i, j) \in A
\end{aligned}
$$

-     + extended linking inequalities $x_{i j}^{k s} \leq y_{i j}^{\mathrm{s}} \quad(i, j) \in A, k \in K, s \in S_{i j}$ $\Longrightarrow B+$ same bound as $\bar{I}+$ and $\mathrm{DW}^{29}$


## Reformulations, reformulations, reformulations

- In fact, binary formulation describes conv $\left(X^{i j}\right) \equiv$ integrality property $\Longrightarrow$ optimizing over $X \Longrightarrow \operatorname{conv}(X)$ easy
- Pseudo-polynomial number of variables and constraints
- Substantially different from both RG and DW

- Need to generate both rows and columns: how?


## The Structured Dantzig-Wolfe Idea

- Assumption 1 (alternative (large) Formulation of "easy" set)

$$
\operatorname{conv}(X)=\{x=C \theta: \Gamma \theta \leq \gamma\}
$$

- Assumption 2 (padding with zeroes): $\Gamma_{\mathcal{B}} \bar{\theta}_{\mathcal{B}} \leq \gamma_{\mathcal{B}} \Longrightarrow \Gamma\left[\bar{\theta}_{\mathcal{B}}, 0\right] \leq \gamma$

$$
\Longrightarrow X_{\mathcal{B}}=\left\{x=C_{\mathcal{B}} \theta_{\mathcal{B}}: \Gamma_{\mathcal{B}} \theta_{\mathcal{B}} \leq \gamma_{\mathcal{B}}\right\} \subseteq \operatorname{conv}(X)
$$

- Assumption 3 (easy update of rows and columns):

Given $\mathcal{B}, \bar{x} \in \operatorname{conv}(X), \bar{x} \notin X_{\mathcal{B}}$, it is "easy" to find $\mathcal{B}^{\prime} \supset \mathcal{B}$ $\left(\Longrightarrow \Gamma_{\mathcal{B}^{\prime}}, \gamma_{\mathcal{B}^{\prime}}\right)$ such that $\exists \mathcal{B}^{\prime \prime} \supseteq \mathcal{B}^{\prime}$ such that $\bar{x} \in X_{\mathcal{B}^{\prime \prime}}$.

- Structured master problem

$$
\begin{equation*}
\left(\Pi_{\mathcal{B}}\right) \quad \max \left\{c x: A x=b, x=C_{\mathcal{B}} \theta_{\mathcal{B}}, \Gamma_{\mathcal{B}} \theta_{\mathcal{B}} \leq \gamma_{\mathcal{B}}\right\} \tag{12}
\end{equation*}
$$

$\equiv$ structured model

$$
\begin{equation*}
f_{\mathcal{B}}(\lambda)=\max \left\{(c-\lambda A) x+x b: x=C_{\mathcal{B}} \theta_{\mathcal{B}}, \Gamma_{\mathcal{B}} \theta_{\mathcal{B}} \leq \gamma_{\mathcal{B}}\right\} \tag{13}
\end{equation*}
$$

## The Structured Dantzig-Wolfe Algorithm

```
\langleinitialize \mathcal{B }\rangle\mathrm{ ;}
repeat
    < solve ( }\mp@subsup{\Pi}{\mathcal{B}}{})\mathrm{ for }\mp@subsup{x}{}{*},\mp@subsup{\lambda}{}{*}\mathrm{ (duals of }Ax=b);\mp@subsup{v}{}{*}=c\mp@subsup{x}{}{*}\rangle
    \overline{x}}=\operatorname{argmin}{(c-\mp@subsup{\lambda}{}{*}A)x:x\inX}
    <update \mathcal{B as in Assumption 3 >;}
until v* <c\overline{x}+\mp@subsup{\lambda}{}{*}(b-A\overline{x})
```

- Relatively easy ${ }^{29}$ to prove that:
- finitely terminates with an optimal solution of ( $\Pi$ )
- ...even if (proper) removal from $\mathcal{B}$ is allowed (when $c x^{*}$ increases)
- ... even if $X$ is non compact and $\mathcal{B}=\emptyset$ at start (Phase 0 )
- The subproblem to be solved is identical to that of DW
- Requires ( $\Longrightarrow$ exploits) extra information on the structure
- Master problem with any structure, possibly much larger


## And it does work somewhat better

| Problem |  |  | I+ |  |  | StabDW |  | StructDW |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\|A\|$ | C | imp | cpu | gap | it | cpu | it | cpu | gap |  |
| 229 | 1 | 185.17 | 18326 | 20.53 | 86 | 9261 | 132963 | 380 | 7.44 | 39 |
|  | 4 | 125.39 | 15537 | 18.81 | 80 | 11791 | 147879 | 612 | 9.36 | 49 |
|  | 8 | 85.31 | 9500 | 13.08 | 74 | 10702 | 146727 | 1647 | 8.87 | 68 |
|  | 16 | 46.09 | 1900 | 7.19 | 52 | 7268 | 107197 | 3167 | 7.99 | 108 |
| 287 | 1 | 198.87 | 14559 | 27.86 | 66 | 8815 | 120614 | 598 | 12.54 | 53 |
|  | 4 | 136.97 | 11934 | 22.52 | 62 | 8426 | 112308 | 603 | 15.07 | 37 |
|  | 8 | 92.94 | 9656 | 15.28 | 64 | 10098 | 130536 | 1221 | 10.38 | 41 |
|  | 16 | 53.45 | 3579 | 11.60 | 54 | 6801 | 98972 | 3515 | 9.06 | 99 |

- Save sometimes for highly capacitated instances
- Extra advantage: quickly solve reduced binary model to integer optimality ( "price and branch") giving better feasible solutions than integer model
- Still likely room for improvement: stabilizing SDW seems promising


## Stabilizing the Structured Dantzig-Wolfe Algorithm

- Exactly the same as stabilizing DW: stabilized master problem

$$
\begin{equation*}
\left(\Delta_{\mathcal{B}, \bar{y}, \mathcal{D}}\right) \quad \min \left\{f_{\mathcal{B}}(\bar{\lambda}+d)+\mathcal{D}(d)\right\} \tag{14}
\end{equation*}
$$

except $f_{\mathcal{B}}$ is a different model of $f$ (not the cutting plane one)

- Even simpler from the primal viewpoint ${ }^{30}$ :

$$
\begin{equation*}
\max \left\{c x+\bar{\lambda} z-\mathcal{D}^{*}(-z): z=b-A x, x=C_{\mathcal{B}} \theta_{\mathcal{B}}, \Gamma_{\mathcal{B}} \theta_{\mathcal{B}} \leq \gamma_{\mathcal{B}}\right\} \tag{15}
\end{equation*}
$$

- With proper choice of $\mathcal{D}$, still a Linear Program; e.g.

$$
\begin{array}{ll}
\max & \ldots-\left(\Delta^{-}+\Gamma^{-}\right) z_{2}^{-}-\Delta^{-} z_{1}^{-}-\Delta^{+} z_{1}^{+}-\left(\Delta^{+}+\Gamma^{+}\right) z_{2}^{+} \\
& z_{2}^{-}+z_{1}^{-}-z_{1}^{+}-z_{2}^{+}=b-A x, \ldots \\
& z_{2}^{+} \geq 0, \quad \varepsilon^{+} \geq z_{1}^{+} \geq 0, \quad \varepsilon^{-} \geq z_{1}^{-} \geq 0, z_{2}^{-} \geq 0
\end{array}
$$

- Dual optimal variables of " $z=b-A x$ " still give $d^{*}, \ldots$
- How to move $\bar{y}$, handle $t$, handle $\mathcal{B}$ : basically as in ${ }^{9}$, actually even somewhat simpler because $\mathcal{B}$ is inherently finite

[^11]
## And it actually works a lot better

- Can do smart warm-start (MCF + subgradient) to improve performances

|  | StructDW |  |  | $S^{2} \mathrm{DW}_{2}$ |  |  | $S^{2} \mathrm{DW}_{\infty}$ | $\mathrm{S}^{2} \mathrm{DW}_{\infty}-\mathrm{ws}^{2}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C |  | cpu gap | it | cpu | gap | it ss | cpu gap it ss | cpu | gap |  | ss |
| 1 |  | 3807.44 | 39 | 1.0e4 |  | 2914 | 5572.618071 | 592 | 1.30 | 101 | 55 |
| 4 |  | 6129.36 | 49 | 1.3 e 4 | 10.33 | 2515 | 7552.878068 | 930 | . 22 | 98 | 95 |
| 8 |  | 16478.87 | 68 | 3.3.4 | 10.61 | 3014 | 4682.755043 | 761 | 33 | 83 | 66 |
| 16 |  | 767 | 108 | 7.0e4 | 8.32 | 4717 | 4762.226730 | 357 | 1.10 | 53 | 39 |
| 1 |  | 59812.54 | 53 | 2.1e4 | 16.31 | 3915 | 10193.929893 | 1327 | . 65 |  |  |
| 4 |  | 60315.07 | 37 | 1.8 e 4 | 13.78 | 2715 | 10013.729079 | 891 | . 6 | 98 | 94 |
|  | 122 | 12210.38 | 41 | 5.2e4 | 11.81 | 2914 | 9093.687350 | 1040 | 1.63 | 02 | 96 |
| 16 |  | 1515 9.06 | 99 | 1.3 e 5 | 10.11 | 5417 | 5132.935925 | 555 | 1.26 | 62 | 45 |

- Quadratic stabilization converges faster but master problem too costly
- Warm-started stabilised (with $\|\cdot\|_{\infty}$ ) structured decomposition gives extremely good upper and lower bounds in (relatively) short time


## Not that we entirely gave up on subgradients, either

- In fact we tested them all very thoroughly (for knapsack decomposition) ${ }^{31}$
- We even tested fancy smoothed subgradient ( $\equiv$ quadratic knapsack ${ }^{32}$ ) but results were not good: $\approx$ linear in a doubly-logarithmic chart


- Subgradients faster but flatline at $\varepsilon \approx 1 \mathrm{e}-4$, smoothed does $\varepsilon=1 \mathrm{e}-6$ but it requires $1 \mathrm{e}+6$ iterations to get there
- Exploiting information about $f_{*}$ helps (black solid line) but not enough ${ }^{33}$

[^12]
## But Bernard loved models more than algorithms

- ... and was always capable of finding new gems in a highly mined cave


## But Bernard loved models more than algorithms

- ... and was always capable of finding new gems in a highly mined cave
- He took the venerable knapsack relaxation and came up with three new node-based ones by playing nifty reformulation tricks


## But Bernard loved models more than algorithms

- ... and was always capable of finding new gems in a highly mined cave
- He took the venerable knapsack relaxation and came up with three new node-based ones by playing nifty reformulation tricks
- $K_{i}^{O / T / D}=\{k \in K: i$ is origin/transhipment/destination for $i\}$
- Add redundant $\sum_{j \in N_{i}^{+}} x_{i j}^{k} \leq g_{i}^{k}=\min \left\{d^{k}, \sum_{j \in N_{i}^{-}} u_{j i}\right\} \quad i \in N, k \in K_{i}^{T}$
- Facility location relaxation, decomposes by $i \in N \equiv$ node:

$$
\begin{array}{lr}
\min \sum_{j \in N_{i}^{+}} \sum_{k \in K} c_{i j}^{k}(\pi) x_{i j}^{k}+f_{i j} y_{i j} & \\
\sum_{j \in N_{i}^{+}} x_{i j}^{k}=d^{k} & k \in K_{i}^{O} \\
\sum_{j \in N_{i}^{+}} x_{i j}^{k} \leq g_{i}^{k} & k \in K_{i}^{T} \\
x_{i j}^{k}=0 & j \in N_{i}^{+}, k \in K_{i}^{D} \cup K_{j}^{O} \\
\sum_{k \in K} x_{i j}^{k} \leq u_{i j} y_{i j} & j \in N_{i}^{+} \\
0 \leq x_{i j}^{k} \leq d^{k} y_{i j} & j \in N_{i}^{+}, k \in K \\
y_{i j} \in\{0,1\} & j \in N_{i}^{+}
\end{array}
$$

## And then another one

- Introduce copies of design $(z)$ and flow $(v)$ variables, then link them with copy constraints (Lagrangian decomposition)

$$
\begin{array}{rr}
z_{i j}-y_{i j}=0 & (i, j) \in A \\
v_{i j}^{k}-x_{i j}^{k}=0 & (i, j) \in A, k \in K \tag{17}
\end{array}
$$

- Add a bunch of redundant constraints

$$
\begin{array}{lr}
\sum_{j \in N_{i}^{-}} v_{j i}^{k}=d^{k} & i \in N, k \in K_{i}^{D} \\
v_{j i}^{k}=0 & (j, i) \in A, k \in K_{i}^{O} \cup K_{j}^{D} \\
\sum_{k \in K} v_{j i}^{k} \leq u_{j i} z_{j i} & (j, i) \in A \\
0 \leq v_{j i}^{k} \leq d^{k} z_{j i} & (j, i) \in A, k \in K \\
z_{j i} \in\{0,1\} & (j, i) \in A \\
\sum_{j \in N_{i}^{-}} v_{j i}^{k} \leq h_{i}^{k}=\min \left\{d^{k}, \sum_{j \in N_{i}^{+}} u_{i j}\right\} & i \in N, k \in K_{i}^{T}
\end{array}
$$

- Now relax (16) and (17) together with (2)


## Behold the forward-backward facility location relaxation

- One problem (for each $i \in N$ ) just like before, except with

$$
\min \sum_{j \in N_{i}^{+}} \sum_{k \in K} c_{i j}^{k}(\omega, \pi) x_{i j}^{k}+f_{i j}(\gamma) y_{i j}
$$

- The other (for each $i \in N$ ) analogous on the $(v, z)$

$$
\begin{array}{cr}
\min \sum_{j \in N_{i}^{-}} \sum_{k \in K} c_{j i}^{k}(\omega) v_{j i}^{k}+f_{j i}(\gamma) z_{j i} & \\
\sum_{j \in N_{i}^{-}} v_{j i}^{k}=d^{k} & k \in K_{i}^{D} \\
\sum_{j \in N_{i}^{-}} v_{j i}^{k} \leq h_{i}^{k} & k \in K_{i}^{T} \\
v_{j i}^{k}=0 & j \in N_{i}^{-}, k \in K_{i}^{O} \cup K_{j}^{D} \\
\sum_{k \in K} v_{j i}^{k} \leq u_{j i} z_{j i} & j \in N_{i}^{-} \\
z_{j i} \in\{0,1\} & j \in N_{i}^{-}
\end{array}
$$

- Still decomposes by $i \in N \equiv$ node, but now two CFL problems
- Correspondingly, better bound than the facility location relaxation


## And then yet another one

- Add to the forward-backward facility location relaxation the constraints

$$
\sum_{j \in N_{i}^{+}} x_{i j}^{k}-\sum_{j \in N_{i}^{-}} v_{j i}^{k}=0 \quad i \in N, k \in K_{i}^{T}
$$

- Two subproblems $\mapsto$ multicommodity single-node fixed-charge problem more difficult $\Longrightarrow$ better bound than forward-backward relaxation
- A whole new set of bound quality/time trade-offs to explore

|  | $Z^{L P}$ | $Z^{F W}$ | $Z^{K N}$ | $Z^{F L}$ | $Z^{F B}$ | $Z^{S N}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Average gap | - | 0.003 | 0.008 | -0.508 | -0.919 | -1.781 |
| Minimum gap | - | 0.000 | 0.000 | -4.767 | -7.713 | -20.518 |
| Total time (sec.) | 170.25 | 7.40 | 125.56 | 699.74 | 4073.34 | 4677.71 |
| Number of iterations | - | 20 | 5866 | 284 | 373 | 316 |
| Lagrangian time (\%) | - | 5 | 18 | 28 | 10 | 65 |
| Master problem time (\%) | - | 95 | 82 | 72 | 90 | 35 |

- A bunch of new Lagrangian-based math-heuristics, competitive results ${ }^{34}$
- A renewed interest in incremental/inexact Bundle methods ${ }^{35}$
- Lots of fun!
${ }_{35}^{34}$ Kazemzadeh, Bektas, Crainic, F., Gendron, Gorgone "Node-Based Lagrangian Relaxations [...]" DAM, 2022
${ }^{35}$ van Ackooij, F "Incremental Bundle Methods Using Upper Modelsì̀ SIOPT, 2018


## And he was not done with knapsack relaxation either

- Knapsack relaxation decomposes by arc if $Y=\{0,1\}^{|A|}$

$$
\begin{array}{lll}
\min & \sum_{(i, j) \in A}\left(\sum_{k \in K}\left(c_{i j}^{k}-\pi_{i}^{k}+\pi_{j}^{k}\right) x_{i j}^{k}+f_{i j} y_{i j}\right) & \\
& \sum_{k \in K} d^{k} x_{i j}^{k} \leq u_{i j} y_{i j} & (i, j) \in A \\
& 0 \leq x_{i j}^{k} \leq u_{i j}^{k} y_{i j} & (i, j) \in A, k \in K \\
& y \in Y &
\end{array}
$$

- Still solvable if $Y \subset\{0,1\}^{|A|}$ "not too nasty": first

$$
\begin{array}{lll}
f_{i j}^{*}(\pi)=\min & \sum_{k \in K}\left(c_{i j}^{k}-\pi_{i}^{k}+\pi_{j}^{k}\right) x_{i j}^{k} & \\
& \sum_{k \in K} d^{k} x_{i j}^{k} \leq u_{i j} \\
& 0 \leq x_{i j}^{k} \leq u_{i j}^{k}
\end{array} \quad k \in K
$$

and then $\min \left\{\sum_{(i, j) \in A}\left(f_{i j}^{*}(\pi)+f_{i j}\right) y_{i j}: y \in Y\right\}$

- Computational cost $\approx$ same but Lagrangian function no longer separable $\Longrightarrow$ wave goodbye to disaggregate master problem, easy components
- Still, the Lagrangian problem is somewhat separable
- We want to "show this quasi-separability to the master problem"


## General setting: quasi-separable problems

- Set of $N$ quasi-continuous (vector) variables $x_{i}$ governed by $y_{i}$

$$
\begin{array}{ll}
\max d y+\sum_{i \in N} c_{i} x_{i} & \\
& D y+\sum_{i \in N} C_{i} x_{i}=b \\
& A_{i} x_{i} \leq b_{i} y_{i} \\
x_{i} \in X_{i} & i \in N \\
y \in Y & i \in N \tag{22}
\end{array}
$$

- m linking constraints (19): Lagrangian relaxation

$$
\phi(\lambda)=\lambda b+\max \left\{(d-\lambda D) y+\sum_{i \in N}\left(c_{i}-\lambda C_{i}\right) x_{i}:(20),(21),(22)\right\}
$$

- Two-stage solution procedure

$$
\begin{array}{cl}
\phi_{i}(\lambda)=\max \left\{\left(c_{i}-\lambda C_{i}\right) x_{i}: x_{i} \in X_{i}\right\} \quad & i \in N \\
\phi(\lambda)=\lambda b+\max \left\{\sum_{i \in N}\left(d_{i}-\lambda D^{i}+\phi_{i}(\lambda)\right) y_{i}:\right. & y \in Y\} \tag{24}
\end{array}
$$

## Making it separable: the dumb way

- D-W reformulation is not disaggregate

$$
\begin{align*}
\max & \sum_{(\bar{y}, \bar{x}) \in Y X}\left(d \bar{y}+\sum_{i \in N} c_{i} \bar{x}_{i}\right) \theta_{(\bar{y}, \bar{x})}  \tag{25}\\
& \sum_{(\bar{y}, \bar{x}) \in Y X}\left(D \bar{y}+\sum_{i \in N} c_{i} \bar{x}_{i}\right) \theta_{(\bar{y}, \bar{x})}=b  \tag{26}\\
& \sum_{(\bar{y}, \bar{x}) \in Y X} \theta_{(\bar{y}, \bar{x})}=1 \quad, \quad \theta_{(\bar{y}, \bar{x})} \geq 0 \quad(\bar{y}, \bar{x}) \in Y X \tag{27}
\end{align*}
$$

- Can be made so the hard way: also relax (20) $\left(\mu=\left[\mu_{i}\right]_{i \in N} \geq 0\right)$

$$
\begin{array}{r}
\phi(\lambda, \mu)=\lambda b+\psi(\lambda, \mu)+\sum_{i \in N} \psi_{i}\left(\lambda, \mu_{i}\right) \quad \text { with } \\
\psi_{i}\left(\lambda, \mu_{i}\right)=\max \left\{\left(c_{i}-\lambda C_{i}-\mu_{i} A_{i}\right) x_{i}: x_{i} \in X_{i}\right\} \\
\psi(\lambda, \mu)=\max \left\{\sum_{i \in N}\left(d_{i}-\lambda D^{i}-\mu_{i} b_{i}\right) y_{i}: y \in Y\right\} \tag{30}
\end{array}
$$

- Many more multiplayers ( $|K||A|$ in FC-MMCF)
- Can easily destroy any advantage due to separability


## Making it separable: the better way

- "Easy component" $Y$ version:

$$
\begin{array}{lr}
\max d y+\sum_{i \in N} \sum_{\bar{x}_{i} \in X_{i}}\left(c_{i} \bar{x}_{i}\right) \theta_{\bar{x}_{i}} & \\
\quad D y+\sum_{i \in N} \sum_{\bar{x}_{i} \in X_{i}}\left(C_{i} \bar{x}_{i}\right) \theta_{\bar{x}_{i}}=b & \\
\sum_{\bar{x}_{i} \in X_{i}}\left(A_{i} \bar{x}_{i}\right) \theta_{\bar{x}_{i}} \leq y_{i} & \\
\sum_{\bar{x}_{i} \in X_{i}} \theta_{\bar{x}_{i}}=1 &  \tag{34}\\
y \in Y, \theta_{\bar{x}_{i}} \geq 0 & \bar{x}_{i} \in X_{i}, i \in N \\
y \in N
\end{array}
$$

- Nifty idea: replace (33)-(34) with

$$
\begin{equation*}
\sum_{\bar{x}_{i} \in \bar{x}_{i}} \theta_{\bar{x}_{i}}=y_{i} \quad i \in N \tag{35}
\end{equation*}
$$

then relax (35) with multipliers $\gamma=\left[\gamma_{i}\right]_{i \in N} \geq 0$

- Multipliers are from master problem constraints (which they are ....)
- Non-easy component version obvious
- Much fewer multipliers (1 instead of $m$ ), much more elegant


## And it also works in practice

- Results from last week (Enrico is the pit bull of numerical experiments)
- Time limit 18000 seconds (always hit if not shown)

|  | BKA-10 | BKA-4000 |  | BKD |  | BQS |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| name | gap | time | gap | gap | time | gap |  |
| p33 | $5.71 \mathrm{e}-06$ | 227.68 | $6.58 \mathrm{e}-07$ | $4.63 \mathrm{e}-02$ | 5.27 | $1.31 \mathrm{e}-07$ |  |
| p34 | $8.20 \mathrm{e}-06$ | 233.14 | $3.47 \mathrm{e}-07$ | $5.43 \mathrm{e}-02$ | 5.36 | $3.31 \mathrm{e}-07$ |  |
| p35 | $7.33 \mathrm{e}-06$ | 260.01 | $8.63 \mathrm{e}-07$ | $8.92 \mathrm{e}-02$ | 5.83 | $3.27 \mathrm{e}-09$ |  |
| p36 | $9.61 \mathrm{e}-06$ | 57.02 | $8.48 \mathrm{e}-07$ | $9.33 \mathrm{e}-02$ | 4.59 | $3.85 \mathrm{e}-07$ |  |
| p37 | $5.14 \mathrm{e}-04$ | - | $3.22 \mathrm{e}-04$ | $9.23 \mathrm{e}-02$ | 3954.59 | $1.44 \mathrm{e}-07$ |  |
| p38 | $4.79 \mathrm{e}-04$ | - | $3.24 \mathrm{e}-04$ | $5.75 \mathrm{e}-02$ | 3724.92 | $2.58 \mathrm{e}-07$ |  |
| p39 | $4.54 \mathrm{e}-06$ | - | $2.46 \mathrm{e}-05$ | $4.46 \mathrm{e}-02$ | 964.00 | $1.33 \mathrm{e}-09$ |  |
| p40 | $4.99 \mathrm{e}-06$ | - | $1.45 \mathrm{e}-05$ | $5.13 \mathrm{e}-02$ | 838.73 | $4.71 \mathrm{e}-09$ |  |
| p41 | $3.22 \mathrm{e}-06$ | 212.67 | $3.13 \mathrm{e}-08$ | $4.92 \mathrm{e}-02$ | 6.75 | $2.54 \mathrm{e}-08$ |  |
| p42 | $3.29 \mathrm{e}-06$ | 130.07 | $2.58 \mathrm{e}-08$ | $7.34 \mathrm{e}-02$ | 6.66 | $2.79 \mathrm{e}-10$ |  |
| p43 | $9.91 \mathrm{e}-06$ | 193.61 | $2.97 \mathrm{e}-08$ | $8.99 \mathrm{e}-02$ | 5.25 | $5.89 \mathrm{e}-10$ |  |
| p44 | $5.16 \mathrm{e}-06$ | 134.04 | $1.28 \mathrm{e}-06$ | $1.34 \mathrm{e}-01$ | 6.56 | $2.34 \mathrm{e}-07$ |  |

- Our last paper all together ${ }^{36}$
${ }^{36}$ F., Gendron, Gorgone "Separable Lagrangian Decomposition for Quasi-Separable Problems" Bernard's Book, 2023


## But Bernard's legacy will live on, also in software

- Putting these ideas in practice: easier said than done
- Specialized implementations for one application "relatively easy"
- General implementations for all problems with same structure harder: it took $\approx 10$ years from idea to paper for easy components on top of existing, nicely structured $\mathrm{C}++$ bundle code
- It's 10 years since $\mathrm{S}^{2} \mathrm{DW}$ and we still don't have a general implementation
- Issue: extracting structure from problems
- Issue: really using this in a B\&C approach
$\approx 20$ years doing this well for Multicommodity Network Design
- Especially hard: multiple nested forms of structure, reformulation
- Current modelling/solving tools just don't do it
- So I have been building my own


## Meet SMS++


https://gitlab.com/smspp/smspp-project
"For algorithm developers, from algorithm developers"

- Open source (LGPL3)
- 1 "core" repo, 1 "umbrella" repo, $10+$ problem and/or algorithmic-specific repos (public, more in development)
- Extensive Doxygen documentation https://smspp.gitlab.io
- But no real user manual as yet


## What SMS++ is

- A core set of C++-17 classes implementing a modelling system that:
- explicitly supports the notion of Block $\equiv$ nested structure
- separately provides "semantic" information from "syntactic" details (list of constraints/variables $\equiv$ one specific formulation among many)
- allows exploiting specialised Solver on Block with specific structure
- manages any dynamic change in the Block beyond "just" generation of constraints/variables
- supports reformulation/restriction/relaxation of Block
- has built-in parallel processing capabilities
- should be able to deal with almost anything (bilevel, PDE, ...)
- An hopefully growing set of specialized Block and Solver
- In perspective an ecosystem fostering collaboration and code sharing: a community-building effort as much as a (suite of) software product(s)
- I believe Bernard would have loved it


## And finally the really important things



## And finally the really important things

## VIETATO ATTRAVERSARE I BINARI SERVIRSI DEL SOTTOPASSAGGIO

ES IST VERBOTEN ÜBER DAS GLEIS ZU GEHEN
BENUTZEN SIE BITTE DIE BAHNÜNTER ÜHRUNG
DÉ ENSE DE TRAVERSER IES BINAIRES
UTILISEZ LE PASSAGE SOUTERRAIN
DO NOT CROSS THE TRACKS
PLEASE USE THE SUBWA'

## And finally the really important things

## VIETATO ATTRAVERSARE I BINARI SERVIRSI DEL SOTTOPASSAGGIO

ES IST VERBOTEN ÜbER DAS GLEIS ZU GEHEN
BENUTZEN SIE BITTE DIE BAHNÜNTER ÜHRUNG
DÉ ENSE DE TRAVERSER LES BINAIRES
UTILISEZ LE PASSAGE SOUTERRAIN

## DO NOT CROSS THE TRACKS <br> PLEASE USE THE SUBWA'

## And finally the really important things

## VIETATO ATTRAVERSARE I BINARI SERVIRSI DEL SOTTOPASSAGGIO

ES IST VERBOTEN ÜbER DAS GLEIS ZU GEHEN
benutzen sie bitte die bahnünter ührung
DÉ ENSE DE TRAVERSER LES VOIES
UTILISEZ LE PASSAGE SOUTERRAIN

## DO NOT CROSS THE TRACKS <br> PLEASE USE THE SUBWA'

## And finally the really important things




[^0]:    ${ }^{1}$ Ford, Fulkerson "A Suggested Computation for Maximal Multicommodity Network Flows" Man. Sci., 1958
    ${ }^{2}$ Dantzig, Wolfe "The Decomposition Principle for Linear Programs" Op. Res., 1960
    ${ }^{3}$ Geoffrion "Lagrangean relaxation for integer programming" Math. Prog. Study, 1974
    ${ }^{4}$ Benders "Partitioning procedures for solving mixed-variables programming problems" Num. Math., 1962
    ${ }^{5}$ Kennington, Shalaby "An Effective Subgradient Procedure for Minimal Cost Multicomm. Flow Problems" Man. Sci. 1977
    6 van Ackooij, F., de Oliveira "Inexact Stabilized Benders' Decomposition Approaches, with Application [...]" CO\&A, 2016 7 Costa, Cordeau, Gendron "Benders, metric and cutset inequalities for multicommodity [...] network design" CO\&A, 2009

[^1]:    ${ }^{8}$ Kelley "The Cutting-Plane Method for Solving Convex Programs" Journal of the SIAM, 1960

[^2]:    ${ }^{9}$ F. "Generalized Bundle Methods" SIOPT, 2002
    ${ }^{10}$ Briant, Lemaréchal, et. al. "Comparison of bundle and classical column generation" Math. Prog., 2006
    ${ }^{11}$ Bahiense, Maculan, Sagastizábal "The volume algorithm revisited: relation with bundle methods" Math. Prog., 2002

[^3]:    ${ }^{12}$ Marsten, Hogan, Blankenship "The Boxstep Method for Large-scale Optimization" OR, 1975
    ${ }^{13}$ Lemaréchal "Bundle Methods in Nonsmooth Optimization" in Nonsmooth Optimization vol. 3, 1978
    ${ }^{14}$ F. "Solving semidefinite quadratic problems within nonsmooth optimization algorithms" Computers \& O.R., 1996
    ${ }^{15}$ Ben Amor, Desrosiers, F. "On the choice of explicit stabilizing terms in column generation" Disc. Appl. Math., 2009
    ${ }^{16}$ F., "Standard Bundle Methods: Untrusted Models and Duality" in Numerical Nonsmooth Optimization: . . . , 2020

[^4]:    ${ }^{17}$ Nemirovsky, Yudin "Problem Complexity and Method Efficiency in Optimization" Wiley, 1983

[^5]:    ${ }^{18}$ F., Gallo "A Bundle Type Dual-Ascent Approach to Linear Multicommodity Min Cost Flow Problems" IJoC, 1999
    ${ }^{19}$ Cappanera, F. "[...] Parallelization of a Cost-Decomposition Algorithm for Multi-Commodity Flow Problems" IJoC, 2003

[^6]:    ${ }^{18}$ F., Gallo "A Bundle Type Dual-Ascent Approach to Linear Multicommodity Min Cost Flow Problems" IJoC, 1999
    ${ }^{19}$ Cappanera, F. "[...] Parallelization of a Cost-Decomposition Algorithm for Multi-Commodity Flow Problems" IJoC, 2003

    | A. Frangioni (DI — UniPi) | Bernard and Multicommodity Flows | Bernard 2023 | $10 / 41$ |
    | :--- | :--- | :--- | :--- |

[^7]:    ${ }^{18}$ F., Gallo "A Bundle Type Dual-Ascent Approach to Linear Multicommodity Min Cost Flow Problems" IJoC, 1999
    ${ }^{19}$ Cappanera, F. "[...] Parallelization of a Cost-Decomposition Algorithm for Multi-Commodity Flow Problems" IJoC, 2003

[^8]:    ${ }^{20}$ Belloni, Sagastizábal "Dynamic bundle methods" Math. Prog., 2009
    ${ }^{21}$ F., Lodi, Rinaldi "New approaches for optimizing over the semimetric polytope" Math. Prog., 2005

[^9]:    ${ }^{22}$ Holmberg, Yuan "A Lagrangian [...] B\&B Approach for the Capacitated Network Design Problem" Op. Res., 2000
    ${ }^{23}$ Crainic, F., Gendron "Bundle-based Relaxation Methods for Multicommodity [. . ] Network Design Problems" DAM, 2001

[^10]:    ${ }^{24}$ Jones, Lustig, et. al. "Multicommodity Network Flows: The Impact of Formulation on Decomposition" Math. Prog., 1993
    ${ }^{25}$ Borghetti, F., Lacalandra, Nucci "Lagrangian Heuristics Based on Disaggregated Bundle [...]" IEEE TPWRS, 2003
    A. Frangioni (DI — UniPi)

    Bernard and Multicommodity Flows
    Bernard 2023

[^11]:    ${ }^{30}$ F., Gendron "A Stabilized Structured Dantzig-Wolfe Decomposition Method" Math. Prog., 2013

[^12]:    ${ }^{31}$ F., Gendron, Gorgone "On the Computational Efficiency of Subgradient Methods [...]" Math. Prog. Comp., 2017
    ${ }^{32}$ F., Gorgone "A Library for Continuous Convex Separable Quadratic Knapsack Problems" EJOR, 2013
    ${ }^{33}$ F., Gendron, Gorgone "Dynamic Smoothness Parameter for Fast Gradient Methods" Opt. Lett., 2018

