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It all started with the classical Multicommodity flow model

Graph G = (N,A), classical Multicommodity flow model

min
∑

k∈K
∑

(i , j)∈A ckij x
k
ij (1)∑

(i , j)∈A xkij −
∑

(j ,i)∈A xkji = bki i ∈ N , k ∈ K (2)∑
k∈K xkij ≤ uij (i , j) ∈ A (3)

0 ≤ xkij ≤ ukij (i , j) ∈ A , k ∈ K (4)

Often bki ≡ (sk , tk , dk), i.e., commodities K ≡ O-D pairs,
possibly with xij → dkxij , xij ∈ { 0 , 1 } (unsplittable routing)

Pervasive structure in logistic and transportation,
often very large (time-space =⇒ acyclic) G , “few” commodities

Common in many other areas (telecommunications, energy, . . . ),
possibly “small” (undirected) G , “many” commodities

Interesting links with many hard problems (e.g. Max-Cut)

“Hard” even if continuous: very-large-scale LPs
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The paradise of decomposition

Many sources of structure =⇒ the paradise of decomposition1,2

Lagrangian relaxation3 of linking constraints:

(3) =⇒ flow (shortest path) relaxation

(2) =⇒ knapsack relaxation

others possible (will see)

Benders’ decomposition4 of linking variables:

Linking variables can be artificially added (resource decomposition)5

xkij ≤ ukij ,
∑

k∈K ukij ≤ uij

I did mostly Lagrange, but many ideas can be applied to Benders6

and Bernard did work on Benders (for network design, will see)7

1
Ford, Fulkerson “A Suggested Computation for Maximal Multicommodity Network Flows” Man. Sci., 1958

2
Dantzig, Wolfe “The Decomposition Principle for Linear Programs” Op. Res., 1960

3
Geoffrion “Lagrangean relaxation for integer programming” Math. Prog. Study, 1974

4
Benders “Partitioning procedures for solving mixed-variables programming problems” Num. Math., 1962

5
Kennington, Shalaby “An Effective Subgradient Procedure for Minimal Cost Multicomm. Flow Problems” Man. Sci. 1977

6
van Ackooij, F., de Oliveira “Inexact Stabilized Benders’ Decomposition Approaches, with Application [. . . ]” CO&A, 2016

7
Costa, Cordeau, Gendron “Benders, metric and cutset inequalities for multicommodity [. . . ] network design” CO&A, 2009
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(Dantzig-Wolfe) Decomposition 101

The general form of structure we consider:

(Π) max { cx : Ax = b , x ∈ X }
Ax = b “complicating” ≡ optimizing upon X “easy” ≡ convex

Almost always X =
⊗

h∈K X h (K ̸= K ) ≡ Ax = b linking constraints

Our X compact, represent it by vertices (otherwise just add extreme rays)

X =
{
x =

∑
x̄∈X x̄θx̄ :

∑
x̄∈X θx̄ = 1 , θx̄ ≥ 0 x̄ ∈ X

}
=⇒ Dantzig-Wolfe reformulation2 of (Π):

(Π̃)


max c

( ∑
x̄∈X x̄θx̄

)
A
( ∑

x̄∈X x̄θx̄
)

= b∑
x̄∈X θx̄ = 1 , θx̄ ≥ 0 x̄ ∈ X

X nonconvex =⇒ solving “best” convex relaxation

(Π̄) max { cx : Ax = b , x ∈ conv(X ) } (5)
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D-W decomposition ≡ Lagrangian relaxation

B ⊂ X (small), solve master problem restricted to B
(ΠB) max { cx : Ax = b , x ∈ conv(B ) }

feed (partial) dual optimal solution λ∗ (of Ax = b) to pricing problem

(Πλ∗) max { (c − λ∗A)x : x ∈ X } [ + λ∗b ]

(Lagrangian relaxation), optimal solution x̄ of (Πλ∗) → B

Dual: (∆B) min
{
fB(λ ) = max { cx + λ(b − Ax) : x ∈ B }

}
fB = lower approximation of “true” Lagrangian function

f (λ ) = max { cx + λ(b − Ax) : x ∈ X }
=⇒ (∆B) outer approximation of Lagrangian dual ≡ (Π)

(∆) min
{
f (λ ) = max { cx + λ(b − Ax) : x ∈ X }

}
(6)

Dantzig-Wolfe decomposition ≡ Cutting Plane approach to (∆)8

8
Kelley “The Cutting-Plane Method for Solving Convex Programs” Journal of the SIAM, 1960
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All well and nice, but does it work well?

By-the-book? Not really
pds7
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λ∗ immediately shoots much farther from optimum than initial point

≡ having good initial point not much useful

No apparent improvement for a long time as information slowly accrues

A mysterious threshold is hit and “real” convergence begins
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How to deal with instability

λ∗k+1 can be very far from λ∗k , where fB is a “bad model” of f

If {λ∗k } is unstable, then stabilize it around stability centre λ̄

Stabilizing term Dt with parameter t, stabilized master problems

(∆B,λ̄,Dt
) min

{
fB( λ̄+ d ) +Dt( d )

}
(ΠB,λ̄,Dt

) max
{
cx + λ̄( b − Ax )−D∗

t (Ax − b ) : x ∈ conv(B )
}

(“∗” = Fenchel’s conjugate): a generalized augmented Lagrangian

Change λ̄ when f ( λ̄+ d∗ ) ≪ f ( λ̄ ), appropriate D =⇒ converges9

Choosing t nontrivial

Aggregation trick: right D =⇒ still converges with “poorman bundle”

B = { x∗ } (although rather slowly10 ≈ volume11 ≡ subgradient)

9
F. “Generalized Bundle Methods” SIOPT, 2002

10
Briant, Lemaréchal, et. al. “Comparison of bundle and classical column generation” Math. Prog., 2006

11
Bahiense, Maculan, Sagastizábal “The volume algorithm revisited: relation with bundle methods” Math. Prog., 2002
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What is an appropriate stabilization?

Simplest: Dt ≡ ∥ d ∥∞ ≤ t, D∗
t = t∥ · ∥22 (“boxstep”)12

Better13: Dt =
1
2t ∥ · ∥

2
2, D∗

t = 1
2 t∥ · ∥

2
2 (may use specialized QP solvers14)

Keep LP master: piecewise-linear approximations15

d++-

+-

D

- s

+

+

-

+-

-

D*

d++-

+-

+- D

- s

+
+

-

+- +-

-
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Several other ideas16 (level stabilization, centres, better “Hessian”, . . . )

12
Marsten, Hogan, Blankenship “The Boxstep Method for Large-scale Optimization” OR, 1975

13
Lemaréchal “Bundle Methods in Nonsmooth Optimization” in Nonsmooth Optimization vol. 3, 1978

14
F. “Solving semidefinite quadratic problems within nonsmooth optimization algorithms” Computers & O.R., 1996

15
Ben Amor, Desrosiers, F. “On the choice of explicit stabilizing terms in column generation” Disc. Appl. Math., 2009

16
F., “Standard Bundle Methods: Untrusted Models and Duality” in Numerical Nonsmooth Optimization: . . . , 2020
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All well and nice, but does it work well?

It depends on what “well” means, but surely better pds7

Page 1
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Black-box nonsmooth optimization is Ω( 1 / ε2 ) in general17

Convergence slow-ish (but at lest some) until mysterious threshold hit

At least, better information accrued sooner =⇒ “quick tail” starts sooner

Can make a huge difference in applications

17
Nemirovsky, Yudin “Problem Complexity and Method Efficiency in Optimization” Wiley, 1983
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Indeed, it worked well enough for Multicommodity flows

the weakness of MMCFB on large instances with few com-
modities. This is better seen in Tables VIII–X, and the cor-
responding Figures 8–10, where the ratio between the run-
ning times of CPLEX (respectively, PPRN and IPM) and
MMCFB is reported for different values of (n, k)—the entries
marked with a “*” are those based on estimates, and should
actually be larger. MMCFB is slower than CPLEX by up to a
factor of 4 for instances with a large m/k ratio: more disag-
gregated data about some “critical” 256-nodes problems are

reported in Table XI for a better understanding of the phe-
nomenon. Noticeably, “hard” problems (h) are really harder
to solve, for all the codes, than “easy” ones (e) of the same
size; moreover, they are much harder than, e.g., Canad
problems of comparable size, since a 1.6 ! 105 variables (100,
100, 1600) Canad instance can be solved in 1.5 seconds, while
a hard 1.5 ! 105 variables (64, 256, 2300) Mnetgen instance
requires over 350 seconds.

On problems with few commodities, MMCFB is about 2

Figure 6. Canad problems, generic graphs (group C).

Table VII. Aggregated Results on the Mnetgen Problems

k n m b Size MMCFB Cplex PPRN IPM LOQO IPCplex

4 64 362 148 1.4e!3 0.07 0.22 0.13 1.44 1.73 1.45
8 64 371 183 3.0e!3 0.26 0.50 0.52 4.26 9.22 7.56

16 64 356 191 5.7e!3 1.08 2.01 3.41 16.03 58.96 40.14
32 64 362 208 1.2e!4 3.42 12.99 22.04 43.27 190.76 98.73
64 64 361 213 2.3e!4 8.53 115.99 147.10 114.19 244.66 216.44

4 128 694 293 2.8e!3 0.58 0.54 0.85 6.45 7.18 6.49
8 128 735 363 5.9e!3 2.57 1.81 4.79 26.32 66.65 50.56

16 128 766 424 1.2e!4 11.30 17.31 40.57 116.26 683.47 394.19
32 128 779 445 2.5e!4 27.72 212.09 503.48 346.91 * *
64 128 784 469 5.0e!4 44.04 1137.05 2215.48 719.69 * *

128 128 808 485 1.0e!5 52.15 5816.54 6521.94 1546.91 * *

4 256 1401 570 5.6e!3 7.54 2.38 9.88 51.00 50.70 40.37
8 256 1486 743 1.2e!4 25.09 15.48 105.89 208.10 568.02 377.87

16 256 1553 854 2.5e!4 60.85 180.06 955.20 844.09 * *
32 256 1572 907 5.0e!4 107.54 1339.46 6605.45 1782.47 * *
64 256 1573 931 1.0e!5 144.75 7463.14 18467.73 3441.62 * *

128 256 1581 932 2.0e!5 223.13 35891.37 61522.94 9074.31 * *
256 256 1503 902 3.8e!5 445.81 110897! 187156! 17279.00 * *

379
A Bundle-Type Approach to Multicommodity Flow Problems

We could handily beat the state-of-the-art Cplex 3.0 and others18

We could even parallelise on a supercomputer with a whopping 64 CPU19

But this was not enough for Bernard . . .

18
F., Gallo “A Bundle Type Dual-Ascent Approach to Linear Multicommodity Min Cost Flow Problems” IJoC, 1999

19
Cappanera, F. “[. . . ] Parallelization of a Cost-Decomposition Algorithm for Multi-Commodity Flow Problems” IJoC, 2003
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Indeed, it worked well enough for Multicommodity flows

CAPPANERA AND FRANGIONI
Symmetric and Asymmetric Parallelization of a Cost-Decomposition Algorithm for Multicommodity Flow Problems

Table 3 Aggregated Computational Results for the Cray T3D

Group T1 s% T4 T16 T64 !I
4 !I

16 !I
64 !4 !16 !64

64-64 21"31 1"10 5"98 2"08 1"00 0"97 0"86 0"61 0"90 0"64 0"34
128-64 123"66 1"25 35"70 13"16 7"01 0"96 0"86 0"62 0"88 0"65 0"34
128-128 159"78 0"66 42"04 12"65 4"95 0"98 0"91 0"73 0"96 0"78 0"51
256-64 466"35 1"51 129"75 44"69 21"89 0"96 0"83 0"58 0"90 0"69 0"39
256-128 718"35 0"62 188"96 57"23 22"99 0"98 0"92 0"74 0"96 0"79 0"50
256-256 1404"48 0"30 348"46 98"30 33"85 0"99 0"96 0"85 0"99 0"88 0"65
512-512 15898"89 0"22 ∗ 1025"26 291"40 ∗ 0"97 0"88 ∗ 0"99 0"86

7.2. Results of the Symmetric
pMMCFB (Cray T3D)

In this section, the computational results obtained
by the symmetric pMMCFB on the Cray T3D are
reported. In each table, Tp denotes the running time,
in seconds, taken by the solution of the problem
(excluding loading and preprocessing) with p proces-
sors, !I

p the ideal efficiency according to Amdahl’s law,
!p the actual relative efficiency achieved, and s% an
estimate of the percentage of inherently sequential
code.

In Table 3, the aggregated computational results for
all the problem classes are reported. The results are
visualized in the corresponding Figure 2, where !p

is plotted as a function of both p and the problem
class, and in Figures 3, 4, and 5, where !I

p and !p are
compared for p = 4"16, and 64 respectively.

These results show that satisfactory efficiencies
(always over 64%) are consistently obtained when
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64-64 128-64 128-128 256-64 256-128 256-256 512-512

4
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64

Figure 2 Efficiency as a Function of p and the Problem Group from Table 3

using at most 16 PEs, which is the typical number of
processors for most of the experiences reported in the
literature. However, as p further increases, !p soon
degrades down to 34% on some classes of instances.

Yet, Figure 2 shows that !p also depends on the
“size” of the problem in the following ways:

— for a fixed graph size, !p increases as k does (cf.
the 256-64, 256-128, and 256-256 problems): increasing
k, the relative weight of the non-parallelizable code
(measured by s# decreases;

— for a fixed m/k"!p increases when m does (cf.
64-64, 128-128, and 256-256 problems): thus, although
both the communication and the QP solution costs
increase with m, this increase is largely compensated
by the corresponding decrease of s;

— for a fixed k"!p is “stable” (cf. 64-64, 128-64, and
256-64 problems): thus, the QP solution cost at least
does not increase much faster than the subproblem
solution cost as m increases.

INFORMS Journal on Computing/Vol. 15, No. 4, Fall 2003 379

We could handily beat the state-of-the-art Cplex 3.0 and others18

We could even parallelise on a supercomputer with a whopping 64 CPU19

But this was not enough for Bernard . . .

18
F., Gallo “A Bundle Type Dual-Ascent Approach to Linear Multicommodity Min Cost Flow Problems” IJoC, 1999

19
Cappanera, F. “[. . . ] Parallelization of a Cost-Decomposition Algorithm for Multi-Commodity Flow Problems” IJoC, 2003

A. Frangioni (DI — UniPi) Bernard and Multicommodity Flows Bernard 2023 10 / 41



Indeed, it worked well enough for Multicommodity flows

CAPPANERA AND FRANGIONI
Symmetric and Asymmetric Parallelization of a Cost-Decomposition Algorithm for Multicommodity Flow Problems

Table 3 Aggregated Computational Results for the Cray T3D

Group T1 s% T4 T16 T64 !I
4 !I

16 !I
64 !4 !16 !64

64-64 21"31 1"10 5"98 2"08 1"00 0"97 0"86 0"61 0"90 0"64 0"34
128-64 123"66 1"25 35"70 13"16 7"01 0"96 0"86 0"62 0"88 0"65 0"34
128-128 159"78 0"66 42"04 12"65 4"95 0"98 0"91 0"73 0"96 0"78 0"51
256-64 466"35 1"51 129"75 44"69 21"89 0"96 0"83 0"58 0"90 0"69 0"39
256-128 718"35 0"62 188"96 57"23 22"99 0"98 0"92 0"74 0"96 0"79 0"50
256-256 1404"48 0"30 348"46 98"30 33"85 0"99 0"96 0"85 0"99 0"88 0"65
512-512 15898"89 0"22 ∗ 1025"26 291"40 ∗ 0"97 0"88 ∗ 0"99 0"86

7.2. Results of the Symmetric
pMMCFB (Cray T3D)

In this section, the computational results obtained
by the symmetric pMMCFB on the Cray T3D are
reported. In each table, Tp denotes the running time,
in seconds, taken by the solution of the problem
(excluding loading and preprocessing) with p proces-
sors, !I

p the ideal efficiency according to Amdahl’s law,
!p the actual relative efficiency achieved, and s% an
estimate of the percentage of inherently sequential
code.

In Table 3, the aggregated computational results for
all the problem classes are reported. The results are
visualized in the corresponding Figure 2, where !p

is plotted as a function of both p and the problem
class, and in Figures 3, 4, and 5, where !I

p and !p are
compared for p = 4"16, and 64 respectively.

These results show that satisfactory efficiencies
(always over 64%) are consistently obtained when

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

64-64 128-64 128-128 256-64 256-128 256-256 512-512

4
16
64

Figure 2 Efficiency as a Function of p and the Problem Group from Table 3

using at most 16 PEs, which is the typical number of
processors for most of the experiences reported in the
literature. However, as p further increases, !p soon
degrades down to 34% on some classes of instances.

Yet, Figure 2 shows that !p also depends on the
“size” of the problem in the following ways:

— for a fixed graph size, !p increases as k does (cf.
the 256-64, 256-128, and 256-256 problems): increasing
k, the relative weight of the non-parallelizable code
(measured by s# decreases;

— for a fixed m/k"!p increases when m does (cf.
64-64, 128-128, and 256-256 problems): thus, although
both the communication and the QP solution costs
increase with m, this increase is largely compensated
by the corresponding decrease of s;

— for a fixed k"!p is “stable” (cf. 64-64, 128-64, and
256-64 problems): thus, the QP solution cost at least
does not increase much faster than the subproblem
solution cost as m increases.

INFORMS Journal on Computing/Vol. 15, No. 4, Fall 2003 379

We could handily beat the state-of-the-art Cplex 3.0 and others18

We could even parallelise on a supercomputer with a whopping 64 CPU19

But this was not enough for Bernard . . .

18
F., Gallo “A Bundle Type Dual-Ascent Approach to Linear Multicommodity Min Cost Flow Problems” IJoC, 1999

19
Cappanera, F. “[. . . ] Parallelization of a Cost-Decomposition Algorithm for Multi-Commodity Flow Problems” IJoC, 2003

A. Frangioni (DI — UniPi) Bernard and Multicommodity Flows Bernard 2023 10 / 41



. . . for he wanted to solve Multicommodity Network Design

min
∑

k∈K
∑

(i , j)∈A ckij x
k
ij +

∑
(i , j)∈A fijyij (7)∑

(i , j)∈A xkij −
∑

(j ,i)∈A xkji = bki i ∈ N , k ∈ K (2)∑
k∈K xkij ≤ uijyij (i , j) ∈ A (8)

0 ≤ xkij ≤ ukijyij (i , j) ∈ A , k ∈ K (9)

y ∈ Y ⊆ { 0 , 1 }m (10)

Reasonably good bounds but only with strong forcing constraints (9)

Just one more subproblem, but a lot more constraints (9) to relax ≡
much larger dual space (harder) and much more costly master problem

In fact, relaxing (2) (knapsack relaxation) competitive: less multipliers
(but unconstrained), still (arc) decomposable if Y = { 0 , 1 }m

Flow relaxation requires dynamic bundle methods20, many other uses21

20
Belloni, Sagastizábal “Dynamic bundle methods” Math. Prog., 2009

21
F., Lodi, Rinaldi “New approaches for optimizing over the semimetric polytope” Math. Prog., 2005
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Which worked well, sort of

T.G. Crainic et al. / Discrete Applied Mathematics 112 (2001) 73–99 93

Table 2
Method comparisons with respect to problem dimension – Class I

Problems CPXW WB CPXS SS SB KS KB

20,230,40 6.9e-2 6.9e-2 0.0 5.9e-5 7.0e-5 1.2e-4 6.7e-5
(3) 0.5 0.1 4.9 9.9 10.7 2.5 3.7
20,230,200 2.4e-1 2.4e-1 0.0 1.8e-3 6.7e-4 9.7e-4 1.4e-3
(4) 2.7 0.3 2448.3 56.6 63.6 24.9 29.7
20,300,40 8.8e-2 8.8e-2 0.0 2.4e-4 7.9e-5 2.0e-4 7.7e-5
(4) 0.7 0.1 7.2 12.7 11.7 3.2 3.7
20,300,200 1.9e-1 1.9e-1 0.0 1.1e-3 4.0e-4 6.0e-4 6.1e-4
(4) 4.6 0.5 10298.1 70.8 74.6 29.0 32.1
30,520,100 1.7e-1 1.7e-1 0.0 8.8e-4 9.3e-4 1.0e-3 9.5e-4
(4) 4.6 0.7 1086.1 62.9 64.1 17.8 21.1
30,520,100 1.4e-1 1.4e-1 X 6.6e-4 1.9e-5 1.1e-4 3.8e-4
(4) 63.8 6.5 11112.8 264.8 257.6 139.9 166.1
30,700,100 1.6e-1 1.6e-1 0.0 9.2e-4 5.2e-4 7.3e-4 8.8e-4
(4) 5.1 0.9 857.5 82.3 83.1 22.5 24.9
30,700,400 1.6e-1 1.6e-1 X 6.5e-4 0.0 1.5e-4 4.0e-4
(4) 76.9 9.3 11700.6 343.8 334.7 179.8 199.3
Average 1.6e-1 1.6e-1 0.0 8.0e-4 3.4e-4 5.0e-4 6.1e-4
(31) 20.5 2.4 4840.5 116.3 115.8 54.1 61.9

Table 3
Method comparisons with respect to problem dimension – Class II

Problems CPXW WB CPXS SS SB KS KB

25,100,10 2.3e-1 2.3e-1 0.0 5.3e-4 1.8e-4 7.6e-4 2.7e-4
(3) 0.1 0.0 1.3 1.1 1.0 0.6 0.8
25,100,30 2.2e-1 2.2e-1 0.0 4.0e-4 1.4e-4 9.8e-4 5.5e-4
(3) 0.6 0.2 11.3 3.0 3.5 1.2 2.3
100,400,10 2.8e-1 2.8e-1 0.0 1.1e-3 6.7e-4 1.6e-3 1.3e-3
(3) 0.3 0.1 35.9 4.2 4.8 1.7 3.0
100,400,30 2.9e-1 2.9e-1 0.0 1.0e-3 1.1e-3 1.9e-3 2.5e-3
(3) 5.9 2.3 351.9 14.3 16.7 4.5 9.1
Average 2.5e-1 2.5e-1 0.0 7.6e-4 5.1e-4 1.3e-3 1.2e-3
(12) 1.7 0.7 100.1 5.7 6.4 2.0 3.8

even be solved due to lack of memory. In comparison, our implementations of the
relaxation methods are very e!cient, especially on large-scale problem instances, where
they run in a fraction of the time taken by CPXS, provided the size of the bundle is
controlled (as mentioned above, if a maximum bundle size of 100 is used, the shortest
path–bundle method fall into the same memory problems as CPXS).
The knapsack-based methods, due to the simplicity of the Lagrangian subproblem, are

approximately 2–3 times faster than the shortest path-based methods. Note, however,
that method SB is remarkably e"ective, as it displays the best average gaps over all
classes, except class III-B. The very good performances of procedure KS came as a
surprise: it is the fastest and its average gaps are very comparable to those obtained by
method KB. It should be pointed out, however, that strategy KB could o"er a better
performance if less iterations (say 100) were allowed and the maximum bundle size was

Issue: > 10-100 subgradients filled our mighty 64Mb (not a typo) of RAM
=⇒ never really got to the “fast tail” convergence

Yet bundle competitive with subgradient, flow and knapsack traded blows,
1e-5 to 1e-3 accuracy good enough for a B&B22

Could have been better, still my most cited article ever23

22
Holmberg, Yuan “A Lagrangian [. . . ] B&B Approach for the Capacitated Network Design Problem” Op. Res., 2000

23
Crainic, F., Gendron “Bundle-based Relaxation Methods for Multicommodity [. . . ] Network Design Problems” DAM, 2001
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But Bernard was not happy, so we kept pushing

Dantzig-Wolfe reformulation: S = { (extreme) flows s = [x̄1,s , . . . , x̄k,s ] }

min
∑

s∈S
(∑

k∈K
∑

(i , j)∈A ckij x̄
k,s
ij

)
θs∑

s∈S
(∑

k∈K x̄k,sij − uij
)
θs ≤ 0 (i , j) ∈ A∑

s∈S θs = 1 , θs ≥ 0 s ∈ S

Exploit separability: X = X 1 × X 2 × . . .× X |K | =⇒
conv(X ) = conv(X 1)× conv(X 2)× . . .× conv(X |K |) =⇒
a different θks for each x̄k,s (aggregated ≡ θks = θhs , h ̸= k , innatural)

Simple scaling leads to arc-path formulation (in O-D case):
p ∈ Pk = { sk–tk paths }, cp cost, fp(= dkθks ) flow, P = ∪k∈KPk

min
∑

p∈P cpfp∑
p∈P : (i , j)∈p fp ≤ uij (i , j) ∈ A∑
p∈Pk fp = dk k ∈ K

fp ≥ 0 p ∈ P
disaggregated formulation: more columns but sparser, more rows

A. Frangioni (DI — UniPi) Bernard and Multicommodity Flows Bernard 2023 13 / 41



Disaggregated decomposition

1.E-06

1.E-05

1.E-04

1.E-03

Iterations

Aggr.
Disaggr.

Rel
ativ

e G
ap

Disaggregated formulation: more columns but sparser, more rows

Master problem size ≈ time increases, but convergence speed increases ≡
consistent improvement if you have enough RAM

Much more efficient for Multicommodity Flows24 and others25

But not for Network Design! So we had to understand why
24

Jones, Lustig, et. al. “Multicommodity Network Flows: The Impact of Formulation on Decomposition” Math. Prog., 1993
25

Borghetti, F., Lacalandra, Nucci “Lagrangian Heuristics Based on Disaggregated Bundle [. . . ]” IEEE TPWRS, 2003
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How not to do disaggregated decomposition

S = extreme points of y (2|A| vertices of the unitary hypercube):

min
∑

p∈P cpfp +
∑

s∈S
(∑

(i ,j)∈A fij ȳ
s
ij

)
θs∑

p∈P : (i ,j)∈p fp ≤ uij
∑

s∈S ȳ sijθs (i , j) ∈ A∑
p∈Pk fp = dk k ∈ K

fp ≥ 0 p ∈ P∑
s∈S θs = 1 , θs ≥ 0 s ∈ S

Is this sane? Arguably not: replacing a 2n formulation with a 2n one!

The problem on y variables is too easy, do not D-W it

Or D-W it more: { 0 , 1 }m is a Cartesian product: why not S ij = {0, 1}?

yij −→ 0 · θij ,0 + 1 · θij ,1 , θij ,0 + θij ,1 = 1 , θij ,0 ≥ 0 , θij ,1 ≥ 0

yij ∈ [ 0 , 1 ] (no, . . . really?!)
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s∈S ȳ sijθs (i , j) ∈ A∑
p∈Pk fp = dk k ∈ K

fp ≥ 0 p ∈ P∑
s∈S θs = 1 , θs ≥ 0 s ∈ S

Is this sane? Arguably not: replacing a 2n formulation with a 2n one!

The problem on y variables is too easy, do not D-W it

Or D-W it more: { 0 , 1 }m is a Cartesian product: why not S ij = {0, 1}?

yij −→ 0 · θij ,0 + 1 · θij ,1 , θij ,0 + θij ,1 = 1 , θij ,0 ≥ 0 , θij ,1 ≥ 0

yij ∈ [ 0 , 1 ] (no, . . . really?!)

A. Frangioni (DI — UniPi) Bernard and Multicommodity Flows Bernard 2023 15 / 41



How not to do disaggregated decomposition

S = extreme points of y (2|A| vertices of the unitary hypercube):

min
∑

p∈P cpfp +
∑

s∈S
(∑

(i ,j)∈A fij ȳ
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How to do a disaggregated decomposition

Arc-path formulation with original arc design variables

min
∑

p∈P cpfp +
∑

(i , j)∈A fijyij∑
p∈P : (i , j)∈p fp ≤ uijyij (i , j) ∈ A∑
p∈Pk fp = dk k ∈ K

fp ≥ 0 p ∈ P
yij ∈ [0, 1] (i , j) ∈ A

only generate the right variables, those that are too many

But if one had (say)
∑

(i , j)∈A yij ≤ r : a linking constraint in Y

=⇒ the design subproblem can no longer be disaggregated

Yet, one could just add that constraint to the master problem

Can this be stabilized? Of course it can26

26
F., Gorgone “Bundle methods for sum-functions with “easy” components: [. . . ] network design” Math. Prog., 2013
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Stabilization with easy components

Required structure: X 1 arbitrary, X 2 has compact convex formulation

(Π) max
{
c1x1 + c2(x2) : x1 ∈ X 1 , G (x2) ≤ g , A1x1 + A2x2 = b

}
Lagrangian function f (λ ) = f 1(λ ) + f 2(λ ) (−λb), two components

Primal master problem: “just plug in the easy set”

(ΠB) max


c1x1 + c2(x2)

A1x1 − A2x2 = b

x1 ∈ conv(B) , x2 ∈ X 2

≡ max


c1

(∑
x̄1∈B x̄1θx̄1

)
+ c2(x2)

A1

(∑
x̄1∈B x̄1θx̄1

)
+ A2x2 = b∑

x̄1∈B θx̄1 = 1 , G (x2) ≤ g

Dual master problem: (∆B) min
{
λb + f 1B (λ ) + f 2(λ )

}
i.e., insert “full” description of f 2 in the master problem

Larger master problem at the beginning, but “perfect” information known

Of course, stabilization + multiple easy/hard components . . .
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All well and nice, but does it work well?

You bet, but you have to do it right: let information accumulate

Fast tail starts immediately if ≥ 50000 subgradients + no harsh removals

Cplex easy aggregate volume
dual 1e-6 1e-12 time it gap time it gap
39 26 32 322 10320 1e-6 6 871 8e-3
132 28 56 294 5300 1e-6 12 831 9e-3
301 21 26 5033 27231 1e-6 26 794 3e-3

1930 133 133 3122 14547 1e-6 51 760 4e-2
131 2 3 344 7169 1e-6 12 827 3e-3
708 246 337 2256 17034 2e-5 29 869 1e-2

2167 284 508 5475 15061 3e-6 58 817 2e-2
8908 242 253 11863 13953 1e-6 109 765 2e-2

Much better accuracy/time than Cplex and competing decompositions

Finally competitive even for Network Design, very happy

Of course, meanwhile Barnard had already moved on
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Knapsack decomposition for Network Loading

y general integers, relax flow conservation constraints (2)

min
∑

(i , j)∈A
(∑

k∈K (d
kckij − πki + πkj )x

k
ij + fijyij

)∑
k∈K dkxkij ≤ uijyij (i , j) ∈ A

xkij ∈ [0, 1] (i , j) ∈ A, k ∈ K

yij ∈ N (i , j) ∈ A

Decomposes by arc, easy (≈ 2 continuous knapsack) but no integrality
property =⇒ better bound than continuous relaxation

Residual capacity inequalities, separate ≈ 2 continuous knapsack27

ak = dk/uij a(S) =
∑

k∈S ak S ⊆ K∑
k∈S ak(1− xkij ) ≥ ( a(S)− ⌊a(S)⌋ )( ⌈a(S)⌉ − y )

(11)

Ī+ = continuous relaxation of (1)–(10) + (11) ≡ DW28

27
Atamtürk “On Capacitated Network Design Cut-Set Polyhedra” Math. Prog., 2002

28
Magnanti, Mirchandani, Vachani “The Convex Hull of Two [. . . ] Network Design Problems” Math. Prog., 1993
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RG vs. StabDW, strange game: the only winning move . . .

Large difficult instances, lightly (C = 1) to tightly (C = 16) capacitated

Aggregated and/or non-stabilised DW too slow, only Stabilized DW

“works” (but ∥ · ∥∞ stabilization, ∥ · ∥22 too costly, see below)

Problem I+ StabDW

|A| C imp cpu it cpu it

229 1 185.17 18326 86 9261 132963
4 125.39 15537 80 11791 147879
8 85.31 9500 74 10702 146727

16 46.09 1900 52 7268 107197

287 1 198.87 14559 66 8815 120614
4 136.97 11934 62 8426 112308
8 92.94 9656 64 10098 130536

16 53.45 3579 54 6801 98972

Trade blows depending on C , but basically both lose
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Reformulation III: Binary formulation B

Redundant upper bound constraints: yij ≤
⌈∑

k∈K dk/aij
⌉
= Tij

Pseudo-polinomially many segments Sij = { 1, . . . ,Tij } for yij

Reformulation in binary variables: yij =
∑

s∈Sij sy
s
ij (substituted away)

y sij =

{
1 if yij = s
0 otherwise

s ∈ Sij

xksij =

{
xkij if yij = s

0 otherwise
s ∈ Sij , k ∈ K

(s − 1)aijy
s
ij ≤

∑
k∈K dkxksij ≤ saijy

s
ij (i , j) ∈ A , s ∈ Sij∑

s∈Sij y
s
ij ≤ 1 (i , j) ∈ A

+ extended linking inequalities xksij ≤ y sij (i , j) ∈ A , k ∈ K , s ∈ Sij

=⇒ B+ same bound as Ī+ and DW29

29
F., Gendron “0-1 reformulations of the multicommodity capacitated network design problem” DAM, 2009
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Reformulations, reformulations, reformulations

In fact, binary formulation describes conv(X ij ) ≡ integrality property
=⇒ optimizing over X =⇒ conv(X ) easy

Pseudo-polynomial number of variables and constraints

Substantially different from both RG and DW

I+
DW

B+

Need to generate both rows and columns: how?

A. Frangioni (DI — UniPi) Bernard and Multicommodity Flows Bernard 2023 22 / 41



The Structured Dantzig-Wolfe Idea

Assumption 1 (alternative (large) Formulation of “easy” set)

conv(X ) =
{
x = Cθ : Γθ ≤ γ

}
Assumption 2 (padding with zeroes): ΓBθ̄B ≤ γB =⇒ Γ

[
θ̄B , 0

]
≤ γ

=⇒ XB =
{
x = CBθB : ΓBθB ≤ γB

}
⊆ conv(X )

Assumption 3 (easy update of rows and columns):

Given B, x̄ ∈ conv(X ), x̄ /∈ XB, it is “easy” to find B′ ⊃ B
(=⇒ ΓB′ , γB′) such that ∃ B′′ ⊇ B′ such that x̄ ∈ XB′′ .

Structured master problem

(ΠB) max
{
cx : Ax = b , x = CBθB , ΓBθB ≤ γB

}
(12)

≡ structured model

fB(λ ) = max{ (c − λA)x + xb : x = CBθB , ΓBθB ≤ γB } (13)

A. Frangioni (DI — UniPi) Bernard and Multicommodity Flows Bernard 2023 23 / 41



The Structured Dantzig-Wolfe Algorithm

⟨ initialize B ⟩;
repeat

⟨ solve (ΠB) for x
∗, λ∗ (duals of Ax = b); v∗ = cx∗ ⟩;

x̄ = argmin { (c − λ∗A)x : x ∈ X };
⟨ update B as in Assumption 3 ⟩;

until v∗ < cx̄ + λ∗(b − Ax̄)

Relatively easy29 to prove that:

finitely terminates with an optimal solution of (Π)

. . . even if (proper) removal from B is allowed (when cx∗ increases)

. . . even if X is non compact and B = ∅ at start (Phase 0)

The subproblem to be solved is identical to that of DW

Requires (=⇒ exploits) extra information on the structure

Master problem with any structure, possibly much larger
A. Frangioni (DI — UniPi) Bernard and Multicommodity Flows Bernard 2023 24 / 41



And it does work somewhat better

Problem I+ StabDW StructDW

|A| C imp cpu gap it cpu it cpu gap it

229 1 185.17 18326 20.53 86 9261 132963 380 7.44 39
4 125.39 15537 18.81 80 11791 147879 612 9.36 49
8 85.31 9500 13.08 74 10702 146727 1647 8.87 68

16 46.09 1900 7.19 52 7268 107197 3167 7.99 108

287 1 198.87 14559 27.86 66 8815 120614 598 12.54 53
4 136.97 11934 22.52 62 8426 112308 603 15.07 37
8 92.94 9656 15.28 64 10098 130536 1221 10.38 41

16 53.45 3579 11.60 54 6801 98972 3515 9.06 99

Save sometimes for highly capacitated instances

Extra advantage: quickly solve reduced binary model to integer optimality
(“price and branch”) giving better feasible solutions than integer model

Still likely room for improvement: stabilizing SDW seems promising
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Stabilizing the Structured Dantzig-Wolfe Algorithm

Exactly the same as stabilizing DW: stabilized master problem

(∆B,ȳ ,D) min
{
fB( λ̄+ d ) +D( d )

}
(14)

except fB is a different model of f (not the cutting plane one)

Even simpler from the primal viewpoint30:

max
{
cx + λ̄z −D∗(−z) : z = b − Ax , x = CBθB , ΓBθB ≤ γB

}
(15)

With proper choice of D, still a Linear Program; e.g.

max . . .− (∆− + Γ−)z−2 −∆−z−1 −∆+z+1 − (∆+ + Γ+)z+2
z−2 + z−1 − z+1 − z+2 = b − Ax , . . .

z+2 ≥ 0 , ε+ ≥ z+1 ≥ 0 , ε− ≥ z−1 ≥ 0 , z−2 ≥ 0

Dual optimal variables of “z = b − Ax” still give d∗, . . .

How to move ȳ , handle t, handle B: basically as in9, actually even
somewhat simpler because B is inherently finite
30

F., Gendron “A Stabilized Structured Dantzig-Wolfe Decomposition Method” Math. Prog., 2013
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And it actually works a lot better

Can do smart warm-start (MCF + subgradient) to improve performances

StructDW S2DW2 S2DW∞ S2DW∞–ws2

C cpu gap it cpu gap it ss cpu gap it ss cpu gap it ss

1 380 7.44 39 1.0e4 **** 29 14 557 2.61 80 71 592 1.30 101 95
4 612 9.36 49 1.3e4 10.33 25 15 755 2.87 80 68 930 1.22 98 95
8 1647 8.87 68 3.3e4 10.61 30 14 468 2.75 50 43 761 1.33 83 66
16 3167 7.99 108 7.0e4 8.32 47 17 476 2.22 67 30 357 1.10 53 39

1 598 12.54 53 2.1e4 16.31 39 15 1019 3.92 98 93 1327 1.65 149 143
4 603 15.07 37 1.8e4 13.78 27 15 1001 3.72 90 79 891 1.60 98 94
8 1221 10.38 41 5.2e4 11.81 29 14 909 3.68 73 50 1040 1.63 102 96
16 3515 9.06 99 1.3e5 10.11 54 17 513 2.93 59 25 555 1.26 62 45

Quadratic stabilization converges faster but master problem too costly

Warm-started stabilised (with ∥ · ∥∞) structured decomposition gives
extremely good upper and lower bounds in (relatively) short time
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Not that we entirely gave up on subgradients, either

In fact we tested them all very thoroughly (for knapsack decomposition)31

We even tested fancy smoothed subgradient (≡ quadratic knapsack32)
but results were not good: ≈linear in a doubly-logarithmic chart

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06

Subgradients faster but flatline at ε ≈ 1e-4, smoothed does ε = 1e-6

but it requires 1e+6 iterations to get there

Exploiting information about f∗ helps (black solid line) but not enough33

31
F., Gendron, Gorgone “On the Computational Efficiency of Subgradient Methods [. . . ]” Math. Prog. Comp., 2017

32
F., Gorgone “A Library for Continuous Convex Separable Quadratic Knapsack Problems” EJOR, 2013

33
F., Gendron, Gorgone “Dynamic Smoothness Parameter for Fast Gradient Methods” Opt. Lett., 2018
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But Bernard loved models more than algorithms

. . . and was always capable of finding new gems in a highly mined cave

He took the venerable knapsack relaxation and came up with three new
node-based ones by playing nifty reformulation tricks

K
O/T/D
i = { k ∈ K : i is origin/transhipment/destination for i }

Add redundant
∑

j∈N+
i
xkij ≤ gk

i = min{ dk ,
∑

j∈N−
i
uji } i ∈ N , k ∈ KT

i

Facility location relaxation, decomposes by i ∈ N ≡ node:

min
∑

j∈N+
i

∑
k∈K ckij (π)x

k
ij + fijyij∑

j∈N+
i
xkij = dk k ∈ KO

i∑
j∈N+

i
xkij ≤ gk

i k ∈ KT
i

xkij = 0 j ∈ N+
i , k ∈ KD

i ∪ KO
j∑

k∈K xkij ≤ uijyij j ∈ N+
i

0 ≤ xkij ≤ dkyij j ∈ N+
i , k ∈ K

yij ∈ {0, 1} j ∈ N+
i
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Add redundant
∑

j∈N+
i
xkij ≤ gk

i = min{ dk ,
∑

j∈N−
i
uji } i ∈ N , k ∈ KT

i

Facility location relaxation, decomposes by i ∈ N ≡ node:

min
∑

j∈N+
i

∑
k∈K ckij (π)x

k
ij + fijyij∑

j∈N+
i
xkij = dk k ∈ KO

i∑
j∈N+

i
xkij ≤ gk

i k ∈ KT
i

xkij = 0 j ∈ N+
i , k ∈ KD

i ∪ KO
j∑

k∈K xkij ≤ uijyij j ∈ N+
i

0 ≤ xkij ≤ dkyij j ∈ N+
i , k ∈ K

yij ∈ {0, 1} j ∈ N+
i
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And then another one

Introduce copies of design (z) and flow (v) variables, then
link them with copy constraints (Lagrangian decomposition)

zij − yij = 0 (i , j) ∈ A (16)

vkij − xkij = 0 (i , j) ∈ A , k ∈ K (17)

Add a bunch of redundant constraints∑
j∈N−

i
vkji = dk i ∈ N , k ∈ KD

i

vkji = 0 (j , i) ∈ A , k ∈ KO
i ∪ KD

j∑
k∈K vkji ≤ ujizji (j , i) ∈ A

0 ≤ vkji ≤ dkzji (j , i) ∈ A , k ∈ K

zji ∈ {0, 1} (j , i) ∈ A∑
j∈N−

i
vkji ≤ hki = min{ dk ,

∑
j∈N+

i
uij } i ∈ N , k ∈ KT

i

Now relax (16) and (17) together with (2)
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Behold the forward-backward facility location relaxation

One problem (for each i ∈ N) just like before, except with

min
∑

j∈N+
i

∑
k∈K ckij (ω, π)x

k
ij + fij(γ)yij

The other (for each i ∈ N) analogous on the (v , z)

min
∑

j∈N−
i

∑
k∈K ckji (ω)v

k
ji + fji (γ)zji∑

j∈N−
i
vkji = dk k ∈ KD

i∑
j∈N−

i
vkji ≤ hki k ∈ KT

i

vkji = 0 j ∈ N−
i , k ∈ KO

i ∪ KD
j∑

k∈K vkji ≤ ujizji j ∈ N−
i

zji ∈ {0, 1} j ∈ N−
i

Still decomposes by i ∈ N ≡ node, but now two CFL problems

Correspondingly, better bound than the facility location relaxation
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And then yet another one

Add to the forward-backward facility location relaxation the constraints∑
j∈N+

i
xkij −

∑
j∈N−

i
vkji = 0 i ∈ N , k ∈ KT

i

Two subproblems 7→ multicommodity single-node fixed-charge problem
more difficult =⇒ better bound than forward-backward relaxation

A whole new set of bound quality/time trade-offs to explore

Z LP ZFW ZKN ZFL ZFB Z SN

Average gap — 0.003 0.008 -0.508 -0.919 -1.781
Minimum gap — 0.000 0.000 -4.767 -7.713 -20.518
Total time (sec.) 170.25 7.40 125.56 699.74 4073.34 4677.71
Number of iterations — 20 5866 284 373 316
Lagrangian time (%) — 5 18 28 10 65
Master problem time (%) — 95 82 72 90 35

A bunch of new Lagrangian-based math-heuristics, competitive results34

A renewed interest in incremental/inexact Bundle methods35

Lots of fun!
34

Kazemzadeh, Bektas, Crainic, F., Gendron, Gorgone “Node-Based Lagrangian Relaxations [. . . ]” DAM, 2022
35

van Ackooij, F “Incremental Bundle Methods Using Upper Models̀ı̀ı SIOPT, 2018
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And he was not done with knapsack relaxation either

Knapsack relaxation decomposes by arc if Y = { 0 , 1 }|A|

min
∑

(i , j)∈A
(∑

k∈K (c
k
ij − πki + πkj )x

k
ij + fijyij

)∑
k∈K dkxkij ≤ uijyij (i , j) ∈ A

0 ≤ xkij ≤ ukijyij (i , j) ∈ A , k ∈ K

y ∈ Y

Still solvable if Y ⊂ { 0 , 1 }|A| “not too nasty”: first

f ∗ij (π ) = min
∑

k∈K ( c
k
ij − πki + πkj )x

k
ij∑

k∈K dkxkij ≤ uij

0 ≤ xkij ≤ ukij k ∈ K

and then min
{ ∑

(i , j)∈A( f
∗
ij (π ) + fij )yij : y ∈ Y }

Computational cost ≈ same but Lagrangian function no longer separable
=⇒ wave goodbye to disaggregate master problem, easy components

Still, the Lagrangian problem is somewhat separable

We want to “show this quasi-separability to the master problem”
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General setting: quasi-separable problems

Set of N quasi-continuous (vector) variables xi governed by yi

max dy +
∑

i∈N cixi (18)

Dy +
∑

i∈N Cixi = b (19)

Aixi ≤ biyi i ∈ N (20)

xi ∈ Xi i ∈ N (21)

y ∈ Y (22)

m linking constraints (19): Lagrangian relaxation

ϕ(λ) = λb+max
{
(d − λD)y +

∑
i∈N(ci − λCi )xi : (20) , (21) , (22)

}
Two-stage solution procedure

ϕi (λ) = max
{
(ci − λCi )xi : xi ∈ Xi

}
i ∈ N (23)

ϕ(λ) = λb +max
{ ∑

i∈N(di − λD i + ϕi (λ))yi : y ∈ Y
}

(24)
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Making it separable: the dumb way

D-W reformulation is not disaggregate

max
∑

(ȳ ,x̄)∈YX
(
dȳ +

∑
i∈N ci x̄i

)
θ(ȳ ,x̄) (25)∑

(ȳ ,x̄)∈YX
(
Dȳ +

∑
i∈N Ci x̄i

)
θ(ȳ ,x̄) = b (26)∑

(ȳ ,x̄)∈YX θ(ȳ ,x̄) = 1 , θ(ȳ ,x̄) ≥ 0 (ȳ , x̄) ∈ YX (27)

Can be made so the hard way: also relax (20) (µ = [µi ]i∈N ≥ 0)

ϕ(λ, µ) = λb + ψ(λ, µ) +
∑

i∈N ψi (λ, µi ) with (28)

ψi (λ, µi ) = max
{
(ci − λCi − µiAi )xi : xi ∈ Xi

}
(29)

ψ(λ, µ) = max
{ ∑

i∈N(di − λD i − µibi )yi : y ∈ Y
}

(30)

Many more multiplayers (|K ||A| in FC-MMCF)

Can easily destroy any advantage due to separability
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Making it separable: the better way

“Easy component” Y version:

max dy +
∑

i∈N
∑

x̄i∈Xi
(ci x̄i )θx̄i (31)

Dy +
∑

i∈N
∑

x̄i∈Xi
(Ci x̄i )θx̄i = b (32)∑

x̄i∈Xi
(Ai x̄i )θx̄i ≤ yi i ∈ N (33)∑

x̄i∈Xi
θx̄i = 1 i ∈ N (34)

y ∈ Y , θx̄i ≥ 0 x̄i ∈ Xi , i ∈ N

Nifty idea: replace (33)–(34) with∑
x̄i∈X̄i

θx̄i = yi i ∈ N (35)

then relax (35) with multipliers γ = [γi ]i∈N ≥ 0

Multipliers are from master problem constraints (which they are . . . )

Non-easy component version obvious

Much fewer multipliers (1 instead of m), much more elegant
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And it also works in practice

Results from last week (Enrico is the pit bull of numerical experiments)

Time limit 18000 seconds (always hit if not shown)

BKA-10 BKA-4000 BKD BQS
name gap time gap gap time gap

p33 5.71e-06 227.68 6.58e-07 4.63e-02 5.27 1.31e-07
p34 8.20e-06 233.14 3.47e-07 5.43e-02 5.36 3.31e-07
p35 7.33e-06 260.01 8.63e-07 8.92e-02 5.83 3.27e-09
p36 9.61e-06 57.02 8.48e-07 9.33e-02 4.59 3.85e-07
p37 5.14e-04 — 3.22e-04 9.23e-02 3954.59 1.44e-07
p38 4.79e-04 — 3.24e-04 5.75e-02 3724.92 2.58e-07
p39 4.54e-06 — 2.46e-05 4.46e-02 964.00 1.33e-09
p40 4.99e-06 — 1.45e-05 5.13e-02 838.73 4.71e-09
p41 3.22e-06 212.67 3.13e-08 4.92e-02 6.75 2.54e-08
p42 3.29e-06 130.07 2.58e-08 7.34e-02 6.66 2.79e-10
p43 9.91e-06 193.61 2.97e-08 8.99e-02 5.25 5.89e-10
p44 5.16e-06 134.04 1.28e-06 1.34e-01 6.56 2.34e-07

Our last paper all together36

36
F., Gendron, Gorgone “Separable Lagrangian Decomposition for Quasi-Separable Problems” Bernard’s Book, 2023
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But Bernard’s legacy will live on, also in software

Putting these ideas in practice: easier said than done

Specialized implementations for one application “relatively easy”

General implementations for all problems with same structure harder:
it took ≈ 10 years from idea to paper for easy components
on top of existing, nicely structured C++ bundle code

It’s 10 years since S2DW and we still don’t have a general implementation

Issue: extracting structure from problems

Issue: really using this in a B&C approach
≈ 20 years doing this well for Multicommodity Network Design

Especially hard: multiple nested forms of structure, reformulation

Current modelling/solving tools just don’t do it

So I have been building my own
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Meet SMS++

https://gitlab.com/smspp/smspp-project

“For algorithm developers, from algorithm developers”

Open source (LGPL3)

1 “core” repo, 1 “umbrella” repo, 10+ problem and/or
algorithmic-specific repos (public, more in development)

Extensive Doxygen documentation https://smspp.gitlab.io

But no real user manual as yet
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What SMS++ is

A core set of C++-17 classes implementing a modelling system that:

explicitly supports the notion of Block ≡ nested structure

separately provides “semantic” information from “syntactic” details
(list of constraints/variables ≡ one specific formulation among many)

allows exploiting specialised Solver on Block with specific structure

manages any dynamic change in the Block
beyond “just” generation of constraints/variables

supports reformulation/restriction/relaxation of Block

has built-in parallel processing capabilities

should be able to deal with almost anything (bilevel, PDE, . . . )

An hopefully growing set of specialized Block and Solver

In perspective an ecosystem fostering collaboration and code sharing:
a community-building effort as much as a (suite of) software product(s)

I believe Bernard would have loved it
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And finally the really important things
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