Languages for Informatics
5 — Arrays and Pointers

Department of Computer Science
University of Pisa
Largo B. Pontecorvo 3
56127 Pisa

@ Linux programming environment (2h)

@ Introduction to C programming (12h)
@ Getting started with C Programming
@ Variables, Data-types, Operators and Control Flow
© Functions and Libraries
© Arrays and Pointers
©@ User defined datatype and data structure
Q@ Input and Output

@ Basic system programming in Linux (10h)

G Arrays

@ Definition, Declaration and Initialization

e Pointers
@ Definition, Declaration and Initialization
@ Casting Pointers
@ Address Arithmetic

@ Pointer and Arrays
@ Pointer Arrays
@ Pointers to Pointers

O Muttidimensional arrays

e Dynamic Memory Allocation for Arrays

Definition, Declaration and Initialization

@ Array is a group of elements that share a common name,
and that are different from one another by their positions
within the array.

@ The number of elements is prefixed.
@ All elements have the same type.

@ Example: keep in memory the age of 15 people, so that
you will able to compute their average later on.

int age[15];

@ Example: keep in memory the minimum temperature of the
last 30 days, so that you will be able to compute the overall
minimum.

double temp[30];

Arrays

Definition, Declaration and Initialization

Declaration & Initialization

@ Declaration: Memory is assigned but contents is unknown
at init.

int age[15];
@ (Static) Initialization: Contents is known at init.

int agel[]

= {28, 24, 17, 27, 25, 24, 24}
int age2[15] =

{23, 24, 17, 27, 25, 24, 24}

@ What will be the result of age1[12] - age1[7] ?
@ Demonstration ...

Arrays

Definition, Declaration and Initialization

Array elements
@ Access the j-th element: array[i] (i is called index)
@ Example: assign a value

int array[30];
array[17] = 5;

@ Example: read a value

int array[30];
int n;

n = array[17];

In C, a n-dimensional array is indexed from 0 i.e., arr[0], arr[1],
arr[2], arr[3], .. ., arr[n-1]. There is no element arr[n]!

Arrays

Definition, Declaration and Initialization

Example
Average Age

Scalar form: Vector form:

int main(void){

float average;

int sum=0,agel1=23;

int age2=24,age3=17,age4=27;
sum += ageil;

sum += age2;

sum += age3;

sum += age4;

average = sum/4.0; }

int main(void){
float average;
int i,n=4,sum=0;
int age[]={23,24,17,27};
for (i=0;i<n;i++) {
sum += agelil;
}

average = (float) sum/n;

Pointers Definition, Declaration and Initialization

Introduction into Pointers

p=&x
pointer to
address of x

memory’s
space of
process

&x =2048
memory
address of x

@ In C, it is possible to know the address of the memory cell
where a variable (or even a function!) is stored

e The unary operator « returns the memory address of a
variable, e.g. &x
@ Pointer variable xp points to another variable in memory
space of the process, e.g. *p = x.

Pointers Definition, Declaration and Initialization

A Scholarly Example

int a = 10; //a is an integer variable (init. to 10)

Variable Address Content

a 0x000064 10

Pointers Definition, Declaration and Initialization

A Scholarly Example

int a = 10; //a is an integer variable (init. to 10)
int «b; //Declare b a ptr to int variable

Variable Address Content

a 0x000064 10

b 0x000068

Pointers Definition, Declaration and Initialization

A Scholarly Example

int a = 10; //a is an integer variable (init. to 10)
int «b; //Declare b a ptr to int variable
b = &; //equiv. *b = a; b contains the address of a

Variable Address Content

a 0x000064 10

b 0x000068 0x000064

Pointers Definition, Declaration and Initialization

A Scholarly Example

int a = 10; //a is an integer variable (init. to 10)

int «b; //Declare b a ptr to int variable
b = &; //equiv. *b = a; b contains the address of a

//'Using the memory address, it is possible to
manipulate to content of a variable

*b = *b — 2,
Variable Address Content
a 0x000064 10
b 0x000068 0x000064

Variable Address Content

Pointers Definition, Declaration and Initialization

Pointers

type * var

@ Declares a pointer called var
@ Its type is address of variables having type type

@ The operator « is used to return the address of a variable

@ The operator - is used to access the conient of a memory
address stored into a pointer (dereferencing)

@ Indirection operator - is "inverse” to «.

@ p = &i; i = *p; If we know the variable’s address, we
can access its data and vice versa.

@ ltis possible to declare pointers for any primitive type

Pointers Definition, Declaration and Initialization

The operator *

Used in the declaration of a pointer variable
int =*a;

Used in statements to obtain dereferentiation
@ Within an expression, it gives access to the content of
memory cell it is pointing at
@ if (xa > 10) { ... } else { ... }
@ xa = 10;

Pointers Definition, Declaration and Initialization

lllegal expressions

&i = p; /+~ addresses allocated by declaration =/
p = &10;

p = &(i+j); /+~ const. & expressions don’t have
addresses «/

Pointers Definition, Declaration and Initialization

Constants and pointers

These two declarations are equivalent, that is poiniers to
integer constants

const int +a;
int const =a;

How about these?

const int «a; //Pointer to integer constant
int «const a; //7?7 and this 77

Pointers Definition, Declaration and Initialization

Constants and pointers

These two declarations are equivalent, that is pointers to
integer constants

const int =a;

int const =a;

How about these?

const int =a; //Pointer to integer constant
int =const a; //Constant pointer to integer

They are not equivalent! In the second case you cannot modify
the content of a (i.e., the address contained in a) but you can
modify the content of the variable pointed by a, i.e. *a.

Pointers
Casting Pointers

Casting Pointers

It is possible to cast one type of pointer to another type

int a = 8;
int *b; //Pointer to integer
double *c; //Pointer to double

&a;
(double) b;

b
Cc
What do we have by dereferencing c?

Casting Pointers

Pointers

Casting Pointers

&a

(JuT) JosztTs

Pointers

Address Arithmetic

Address arithmetic

@ A pointer in C is an address which is a numerical value.

@ ltis possible to use the arithmetic operators +, -, ++, ——
and

@ the comparison operators <, <=,>,>=,==,1=to write
expressions with pointers

int a[4], =p; //Declare an array of integers and a
pointer to integer

p = &a[0]; a[3] ADDR+12
a[2] ADDR+8
p points to address al1] ADDR+4

of p[0]
al[0] ADDR

Pointers

Address Arithmetic

Address arithmetic

Increment/Decrement a Pointer

@ A pointer in C is an address which is a numerical value.

@ |t is possible to use the arithmetic operators +, —, ++, ——
and

@ the comparison operators <, <=,>,>= == 1= to write
expressions with pointers

int a[4], =p; //Declare an array of integers and a
pointer to integer

p = &a[0]; a[3] ADDR+12

p=p+l;
a[2] ADDR+8

&a[1] = &a[0] + sizeof(int) a[1] ADDR+4

a[0] ADDR

Pointers

Address Arithmetic

Address arithmetic

Increment/Decrement a Pointer

@ A pointer in C is an address which is a numerical value.

@ |t is possible to use the arithmetic operators +, —, ++, ——
and

@ the comparison operators <, <=,>,>= == 1= to write
expressions with pointers

int a[4], =p; //Declare an array of integers and a
pointer to integer

p = &a[0]; a[3] ADDR+12
p =p+1;

a[2] ADDR+8
p=-p;

a[1] ADDR+4

a[0] ADDR

Pointers

Address Arithmetic

Address arithmetic

Increment/Decrement a Pointer

@ A pointer in C is an address which is a numerical value.

@ |t is possible to use the arithmetic operators +, —, ++, ——
and

@ the comparison operators <, <=,>,>= == 1= to write
expressions with pointers

int a[4], =p; //Declare an array of integers and a
pointer to integer

p = &a[0]; a[3] ADDR+12
p =p+1;

a[2] ADDR+8
p=-p;
p +=3; a[1] ADDR+4

a[0] ADDR

Pointers

Address Arithmetic

Address arithmetic

Pointer Comparison

The following code snippet increments the variable pointer and
assigns a value to it so long as the the address to which it
points is either less than or equal to the address of the last
element of the array.

int =ptr = a; /+ a is an integer array filled with some values
«/
int i=0;

while (ptr < &a[MAX]) {
printf (”Address of a[%d] = % \t”, i, ptr);
printf(”Value of a[%d] = %d \n”,i,«ptr);

ptr++; /= point to next address «/
i++;

Pointers

Address Arithmetic

Pointer arithmetic

Pointer Comparison

Address of a[0] = 6lfdfc Value of a[0] = 1
Address of a[l] = 61£fe00 Value of af[l] = 2
Address of a[l] = 61fe04 Value of a[l] = 3

Pointers

Address Arithmetic

Arrays and pointers (I)

Consider the following scenario:

int a[3], *p, tmp;
p = a; //Pointer to the (first element of the) array

tmp = a[2]; /+ The 2nd index of a is equal «/
tmp = p[2]; /+ to the second index of p «/

p = &tmp? p points to the memory address of tmp.
a = &tmp?

Pointers

Address Arithmetic

Arrays and pointers (ll)

gcc says

$ error: assignment to expression with array
type

int a[3] declares a constant pointer to integers (int “const)
—> We cannot modify the memory cell where a points to!

Pointer Arrays
Pointer and Arrays

Pointer Arrays (1)

@ Pointers are variables themselves.
@ Pointers can be stored in arrays as other variables can.

@ When two out-of-order lines have to be exchanged, the

pointers in the pointer array are exchanged, not the
text lines themselves.

._

—> 2 [3] 4| LN 2| s]4]
o> s[6] 7] 'd

sef7]

Pointer Arrays
Pointer and Arrays

Pointer Arrays (2)

@ To maintain an array that stores pointers to int,

int =ptr [MAX];

declaring ptr as an array of MAX integer pointers. Each
element in ptr, holds a pointer to an int value.

@ Consider the int array
int a[MAX] = {1,2,3};

@ For each array index, the pointer ptr has to point to the
corresponding address of the integer array:

for (int i = 0;i<MAX;i++) {
ptr[i] = &a[i];

Pointer Arrays
Pointer and Arrays

Pointer Arrays (3)

To print the addresses of the respective integers,

for (int i = 0;i<3;i++) {

printf ("ptr[%d] = %p \t”,i,ptr+i);

/Il optr + i ===
ptri]

To print the values of the respective integers,

for (int i = 0;i<MAX;i++) {
printf(”«ptr[%d] = %d \t”,i,«ptr[i]);

}

Addresses

pl0]
Values
*ptr[0] =1

6422000 p[1l] = 6422008 p[2]

*ptr[l] = 2 *ptr[2]

6422016

Pointer Arrays

Pointer and Arrays

Let us return to our averaging function. This time, in pointer
form.

double average(int =age, int n) // argument: pointer to an array of int
int «p;
double res;
res = 0.0;
for (p=age;p<&age[n];++p) // start: points to 1st address in age

res += *p; //stop: points to the last address

return (res/n); // contents of p is added to res.

}

int main(void){
float result;
int n=4, age[]={23,24,17,27};
result = average(age, n);
printf(”average = %2.2f” ,result);
return 0;

average = 22.75

hoiiisiandiinave Pointers to Pointers

Pointers to Pointers

@ A pointer to a pointer is a chain of pointers.

@ Many practical applications in C: pointer arrays, string
arrays.

@ The first pointer contains the address of a variable.

@ The second pointer points to the location that contains the

actual value as shown below

int num = 123; // an integer

int =ptr1, *xptr2;

ptr1 = &wum; // ptr to the address of num

ptr2 = &ptr1; // pir to the address of the 1st
pointer

*ptr2 *¥ptr2
NAME ptr2 ptrl num /*ptrl

VALUE FE10 FElC% 123k
ADDRESS FEO8 —|_> FE10 _|—> FE1C

hoiiisiandiinave Pointers to Pointers

Pointers to Pointers

int main() {

int num = 1283;

int «ptr1, =«ptr2;

ptr1 = #

ptr2 = &ptr1;

printf (”"\n Adr. of num = %p”,&num) ;

(
printf(”\n Value of num = %d” ,num);
printf ("\n Adr. of ptr 1 = %p”,&ptrt);
printf ("\n ptr 1 = %" ,ptr1);
printf(”"\n Value of «ptr1 =%d” ,«~ptr1);
printf(”\n Adr. of ptr 2 = %p”,&ptr2);
printf("\n ptr 2 = %p”,ptr2);
printf(”\n Value of «ptr2 = %p” ,«ptr2);
printf ("\n Value of ««ptr2 = %d” ,+«ptr2);
return 0;

Adr. of num = 0x7ffd562b5394
Value of num = 123

Adr. of ptr 1 = 0x7£ffd562b5398
ptr 1 = 0x7ffd562b5394

Value of xptrl = 123

Adr. of ptr 2 = 0x7ffd562b53a0
ptr 2 = 0x7£ffd562b5398

Value of *ptr2 = 0x7f£fd562b5394
Value of *xptr2 = 123

Pointer and Arrays

Pointers to Pointers

Example

Swap two pointers

void swap(int= a, int« b)

{

int tmp = =a;

*a = *b;
b = tmp;
}
int main () {
int a = 10;
int b = 20;
printf(’a=%d, b=%d \n”, a, b);
swap(&a,&b) ; //swap pointers

printf(”a=%d, b=%d \n”, a, b);

}

Pointers to Pointers

V-

10

20

a=10,
a=20,

b=20
b=10

Pointers to Pointers

Example

Pointer and Arrays

What is this function doing ?

void swap(int=+ a, ints« b)
{
int« tmp = =a;
*a = *b;
b = tmp;
}

Swapping pointers to an array.

int main () {

int c[3] = {2,3,4}, d[3] = {5,6,7};

int «cptr = ¢, =dptr = d;

for (int i=0; i<3; i++) {

printf ("c[%d]=%d, d[%d]=%d \n", i,cptr[i],

dptr[i]); //2.3.4: 5.6.7

swap(&c, &d);
for (int i=0; i<3; i++) {

printf (”c[%d]=%d, d[%d]=%d \n”, i,cptr[i],

dptr[i]); //5,6.7; 2.,3,4

Pointers to Pointers

.

2 | 3[4]

slel7]

Multidimensional arrays

Multi-dimensional arrays (1)

@ Structure

Scalar variable a

Vector variable (1D) | ag, a1, ao, - . .
Matrix variable (2D) | ago, ao1, ao2, - - -
aig, a, a2, . .-
apQ, do1, a2, - - -

@ C also permits multidimensional arrays specified by the
bracket [-] operator.

e rectangular form

o fixed dimensions

Multidimensional arrays

Multi-dimensional arrays (2)

@ Declaration:

int L=10, M= 10;
int age[L][M]; // L-rows and M-columns

or

#define L 10
#define M 10

|nt age[L][M];
@ Initialization:
int age[2][2]

int age[2][2]
int age[0][1]

{23, 24, 17, 27}; // row-wise init.
{{23, 24}, {17, 27}}; // row-by-row
24; // element—wise init.

Multidimensional arrays

Multi-dimensional arrays (3)

A few differences to vector arrays.

@ The variable xage points to base address of sage [0] [0]
(rather than its value age [0] [0]).

@ Hence, x+xage is the value of age[0] [0]).

@ x (age+1i) points to the address of the i-th row
&agel[i1][0].

@ * (age+i)+7jisthe address of sage[i] [

@ * (* (age+i)+7j) isthe element of age [i

a - 1D pointer array

jl.
1031,

o[[TT7 n

1_'\ 0o 1 2 n-1

2

O n
0o 1 2 n-1
*

Multidimensional arrays

Multi-dimensional arrays (4)

@ Higher dimensions are possible:

double bigmatrix [12][3][5][35]; // dimension = 4

@ Multidimensional arrays are rectangular.
@ Pointer arrays can be arbitrary shaped.

Multidimensional arrays

Function that computes the trace of a square matrix

n—1
tf'(A) = Z aji
i=0

double trace(double a[][COLS], int rows) {
double sum = 0.0;
for (int i=0;i<rows;i++)
sum += af[i][i];
return sum;

Multidimensional arrays

#include <stdio.h>
#define ROWS 3
#define COLS 3
double trace (double a[][COLS], int rows) {
double sum 0.0;
for (int i 0; i<rows; i++)
sum += alil[il];
return sum;

}

int main() { trace =
double A[ROWS][COLS]; 3.400000
A[0][0] = 0.1;
A[1][1] = 1.1;
A[2][2] = 2.2;
printf(”trace = %If \n”,trace (A,RONS));
return O0;

1-dim pointer arrays

Dynamic Memory Allocation for Arrays

Dynamic Memory Allocation for Arrays

The task is to
@ Dynamically declared arrays at runtime are more flexible.
@ declare an array of <TYPE> (int, double, etc...) pointers
@ allocate and initialize memory for each element

#include <stdio.h>
#include <stdlib.h> // [ib for dyn memory allocation.
#define n 10 // dimension
void main () {
int «A;
A = malloc (sizeof(int) = n); //allocate memory and
return pointer to it
for (i = 0; i < n; i ++)
Ali] = 0; // example allocation

f.r‘e;e(A);

Dynamic Memory Allocation for Arrays

Dynamic Memory Allocation for Arrays

1-dim pointer arrays (2)

@ Methodmalloc (byte-size) declares a single large
block in the heap segment of the memory, that is initialized
with default garbage value.

@ To free the space, use the library call free (2).

@ Method calloc (n, element-size) does the same as
a malloc but initializes each block with the default value
NULL. Two arguments are required.

@ Method realloc (ptr, newSize) dynamically change
the memory size of a previously allocated memory.
Already present value do remain.

Dynamic Memory Allocation for Arrays

Dynamic Memory Allocation for Arrays

2-dim pointer arrays

We need to initialize the array of pointers to pointers and then
initialize each 1d array in a loop.

a - 1D pointer array

o[TT]
1_'\ 0o 1 2 n-1
2
O [
0o 1 2 n-1
L]
L]
L]
LTI [
m-1
— 0o 1 2 n-1

Dynamic Memory Allocation for Arrays

Dynamic Memory Allocation for Arrays

2-dim pointer arrays (2)

In computer memory, the m x n-matrix has the form

#include <stdio.h>
#include <stdlib.h>
#define M 2 /] rows
#define N 3 // columns

void main() {

double ++A;

A = calloc (M, sizeof(double *));
double to rows

for (int i = 0; i <M, i++)

// array of pointer to

A[i] = calloc(N,sizeof(double)); //init cols.

f.r'e.e(A);
}

Dynamic Memory Allocation for Arrays

Dynamic Memory Allocation for Jagged Arrays (1)

@ Pointer arrays can be arbitrary shaped.

@ Consider a jagged array with M = 3 rows and N = N[m]
columns:

Columns

0 1 2 3

©10.0]0.110.210.3

Rows ® |1.0]1.1
2 [2.0]2.1]2.2

Dynamic Memory Allocation for Arrays

Dynamic Memory Allocation for Jagged Arrays (2)

#include <stdio.h>
#include <stdlib.h>
#define M 3

void main() {

double ++A;
int N[M] = {4,2,3};

A = calloc(M,sizeof(double =));
for (int i = 0; i <M; i++)
A[i] = calloc(N[i],sizeof(double));
free A:
}
We have created a matrix with variable-length rows.

Dynamic Memory Allocation for Arrays

Example (1)

Computing the trace of a matrix, revisited in pointer notation

#include <stdio.h>
#include <stdlib.h>
#define ROWS 3
#define COLS 3

double trace (double =s+a, int rows);
int main() {

double *+A = calloc (ROWS, sizeof(double=x));
for (int i=0;i<ROWS;i++)

Ali] = calloc (COLS, sizeof(double));
A[0][0] = 0.1;
A[1][1] = 1.1;
A[2][2] = 2.2;
printf(”trace = %If \n”,trace (A,RONS));
return 0;

}

trace =
3.400000

Dynamic Memory Allocation for Arrays
Example (2)
Multiplication of matrices (1)
Let us write a function that multiplies two input matrices and
returns a matrix inline.
n
[Clij =Y [Alix[Blk,
k=1

void mat_mult(double ++A, double =+«B, double «xC, int

dim) {
for (int k = 0; k < dim; k++){
for (int i = 0; i < dim; i++) {
for (int j = 0; j < dim; j++) {

Clil[j] += A[i]1[k] ~ B[K][]];

Dynamic Memory Allocation for Arrays
Example (2)

Multiplication of matrices (2)

Calling by the main function, it follows
#include <stdio.h>

#include <stdlib.h>

#define M 2

void mat_mult(double »+A, double ««B, double *+C, int dim);
int main() {
double «+A, «+C;

A = calloc (M, sizeof (double +));
for (int i = 0; i <M; i++)

Al[i] = calloc(M,sizeof(double));
C = calloc (M, sizeof (double +));

for (int i = 0; i <M; i++) C[0][0] = 3.200000
C[i] = calloc(M,sizeof(double)); SE?H%} = Z.gégggg

A[0][0] = ; = 6.

A[O][1] = 1.1; CI1][1] = 6.610000

A[1][0] = 2.0;

A[1][1] = 2.1;

mat_mult(A,A,C,M) ;
f.r.e.e(A);
free (C);

Dynamic Memory Allocation for Arrays
Example (3)

Multiplying a matrix with a vector (1)

Let us write a function that multiplies a matrices with a vector
and returns a pointer to the result.

[x]i =) [Alixlbl
k=1

double » matvec_mult(double «+xA, double b, int dim) {
double *x = calloc(dim,sizeof(double));
for (int k = 0; k < dim; k++){
i

for (int = 0; i <dim; i++) {
x[i] += A[i][k] « b[K];
}
}
return x;

Dynamic Memory Allocation for Arrays
Example (3)

Multiplying a matrix with a vector (2)

Calling by the main fuTction, it follows

#include <stdio.h>
#include <stdlib.h>
#define M 2
double » matvec_mult(double «+A, double =b, int dim);
int main() {
double «*A, b, =x;
A = calloc (M, sizeof (double +));
for (int i = 0; i <M; i++)
Al[i] = calloc(M,sizeof(double));
b = calloc (M, S|zeof(double *));
Afo0][0] = 1.0; A[O][1] 15 A[1][0] = 2.0; A[1][1] = 2.1;
b[0] = 0.8; b[1] =

x = matvec._mult(A,b,M);

for (int i = 0;i<M;i++)
printf ("x[%d] = %.21f \n",i, x[i]);
free (A);

free(b)
free (x)

Dynamic Memory Allocation for Arrays

Consider the following program snippset:

int main (void){

int n=4, i, +A;

void «ptr;

A = (int) malloc(sizeof(int) =*n);
for (i=0;i<4;i++) A[i]l = i;

ptr = A;

i = 2;

Based on the above code, mark all of the following expressions
that access Al/]

Q ~(r+1)

Q » (ptr+i)

@ «(int x) (ptr + 1)

Q «((int *)ptr + 1)

Q * (ptr + sizeof (int) *1i)

Dynamic Memory Allocation for Arrays

Consider the following program snippset:

void init(<YOUR TASK>)) {<YOUR TASK>}

int main (void){

int a;

double b;

char c;

init(&a, &b, &c);

printf(’a =%d, b =%If, ¢ =%”, a, b, ¢);
return (EXIT_.SUCCESS) ;

}

$./myexample
a=l, b = 2.0, € = P

	Arrays
	Definition, Declaration and Initialization

	Pointers
	Definition, Declaration and Initialization
	Casting Pointers
	Address Arithmetic

	Pointer and Arrays
	Pointer Arrays
	Pointers to Pointers

	Multidimensional arrays
	Dynamic Memory Allocation for Arrays

