Languages for Informatics
7 — Input and Output

Department of Computer Science
University of Pisa
Largo B. Pontecorvo 3
56127 Pisa

@ Linux programming environment (2h)
@ Introduction to C programming (12h)

@ Getting started with C Programming

@ Variables, Data-types, Operators and Control Flow
@ Functions and Libraries

© Arrays and Pointers

©@ User defined datatype and data structure

@ Input and Output

@ Basic system programming in Linux (10h)

@ strings
e Standard Input and Output
@ Streams
@ FILE objects
@ Buffering
@ File Access
@ Character I1/0
@ Formated I/O
e Error Handling
© Arguments
@ Command-line Arguments
© Line Input and Output

O Miscellaneous

Strings

0 Strings

Strings

Strings and Character Arrays (1)

@ String is a 1-dimensional character array in C
@ terminated by "\0’ (ASCII-Code zero) language.
@ Typical initialization.

char mystring[8] =

{'P' ’ i - ’ "o’ ’ 'g' , i ’ ra’ ’ "m’ ’ '\0'},‘
@ Each character is embedded in single quotes '~

@ The size of a string must also include the space to store
the end character.

@ Indeed, printf ("%$s",mystring) correctly outputs

Program)

Strings

Strings and Character Arrays (2)

@ What does this program snippet do?

#include <stdio.h>

char stri1[] {'h’,’e’, 71", 17,70, 17}

char str2[] L

int main() {
printf(™%s \n”,str1);
return 0;

}

@ There is no compiling or runtime error....
@ ... but printing only ends at the next NULL char.

hello! OUT! l

Strings

String and Character Arrays (3)

@ A different way to initialize a character array variable is to
char str[4] = "Pine”;
char str[] = "Pine”; /xequivalent«/

@ The double quotes "." append NUL to the char array by
default.

@ How to reload character arrays.

Handle with Care

The character array is not a modifiable Ivalue. It can only be
modified char-by-char, e.g.

str[0] = "W’;
Use library function, e.g. strepy (), to do this job for you!

Strings

Manipulating strings

To manipulate a string, you need to access the single chars.

Example:
int length(char *x string)
{

int i = 0;

while (string[i] != *\0")

i ++;

return i ;
}
This function returns the length of the string passed as a
parameter.

Note: the pointer is passed, hence the string can be modified
and the effect seen outside the function.

Strings

String constants

@ Yet another way to initialize a string
char xstrp = "Program”;

@ Here, the string constant is treated as pointer (like the
name of arrays):
printf("%s %s\n”,strp,strp+1);

Program rogram I

@ as strp points to the address where the array of chars
"Program” starts.

Strings

String Constants

Example

How about this?
char =strp = "Program”;
xstrp = "fun”;

Compiler might only raise

warning: assignment makes integer from
pointer without a cast [-Wint-conversion]

but then, we have an undetermined behavior at run-time.

Segmentation fault

String constants cannot be modified. I

Strings

String arrays

@ A string array is an array of strings, each stored as a
pointer to an array of chars

@ Each string may be of different length.
@ Example:

char str1[] = "hi”; /+ length = 3 =/
char str2[] = "qirls”; /« length = 6 =/
char str3[] = "guys”; /% length = 5 x/

char =StrArray[] = {str1, str2, str1, str3};
int dim = sizeof(StrArray)/sizeof(xStrArray);
for (int n=0;n<dim;n++)

printf("%s ”, StrArray[n]);

char
char
char
char

String arrays

Strings

str1[] = "hi”; /+ length = 3 =/

str2[] = "qgirls”; /+ length = 6 =/
str3[] = "guys”; /+ length = 5 x/
«StrArray[] = {str1, str2, str1, str3};

int ArrayDim = sizeof(StrArray)/sizeof(xStrArray);
for (int n=0;n<ArrayDim;n++)
printf("%s ”, StrArray[n]);

hi girls hi guys I

The array only contains the pointers, not the chars themselves.
Hence, the array elements can be modified.

Standard Input and Output

9 Standard Input and Output
@ Streams
@ FILE objects
@ Buffering
@ File Access
@ Character 1/0
@ Formated I/O

SUCE
Standard Input and Output

Standard Input and Output

Stream (1)

@ ANSI C abstracts all /0 as stream of bytes moving into
and out of a C program.

@ UNIX provides a file descriptor (FD), an abstract
indicator, to access a file or other input/output resources
such as pipe [module 10] or network socket [module 12].

e Standard input or stdin from default input (FD 0).
e Standard output or stdout to default output (FD 1).
e Standard error or stderr for error messages and other

diagnostic warnings (FD 2).
@ By default, all three are connected to your terminal.

SUCE
Standard Input and Output

Standard Input and Output

Stream (2)

It is possible to
@ redirect the output streams into files,
@ make stdin read from a file,
@ chain one stdout in one process to stdin in another.

Standard Input and Output FILE objects

Standard Input and Output

FILE objects

@ When a stream is associated with a file, the data structure
FILE within the standard C library maintains the state.
@ The FILE object keeps information on
o the file descriptor
a pointer to a buffer for the stream
the buffer size
a counter for the actual number of chars in the buffer
an error flag
an End-Of-File (EOF) flag

The FILE object is transparent to the app. I

Standard Input and Output
Buffering

Standard Input and Output
Buffering (1)

@ Buffering is used to minimize the number of read/write
calls.

@ The standard C library stdio supports 3 types of
streaming: block buffered, line buffered and unbuffered.

e Block buffering — On output, data is written once the buffer
is full. On Input the buffer is filled when an input operation is
requested and the buffer is empty.

Standard Input and Output
Buffering

Standard Input and Output
Buffering (2)

@ Line buffering — On output, data is written when a newline
character is inserted into the stream or when the buffer is
full, what so ever happens first. On Input, the buffer is filled
till the next newline character when an input operation is
requested and buffer is empty.

e Unix convention is that stdin and stdout are
line-buffered when associated with a terminal, and fully
buffered otherwise.

@ No buffering — No buffer is used. Each I/O operation is
written as soon as possible. The buffer and size
parameters are ignored.

e Unix convention is that stderr is always unbuffered.

Standard Input and Output
Buffering

Standard Input and Output
Buffering (3)

Buffering can be modified by the following C library functions:

#include <stdio.h>

int setvbuf(FILE =xstream, char xbuffer, int mode, size_t
size)

void setbuf(FILE xstream, char xbuffer)

The routines can be used after a stream has been opened, but
before it is read or written.

Standard Input and Output
Buffering

Standard Input and Output
Buffering (4)

For the setvbuf subroutine, the mode parameter determines
how the Stream parameter is buffered:
@ _TOFBF Causes input/output to be fully buffered.

@ _TOLBF Causes output to be line-buffered. The buffer is
flushed when a new line is written, the buffer is full, or input
is requested.

@ _TONBF Causes input/output to be completely unbuffered.

When an unbuffered stream is specified, the buffer and size
arguments are ignored.

Standard Input and Output
Buffering

Standard Input and Output
Buffering (5)

@ the array, containing the data, points to buf fer having
size size is used for buffering.

@ The optimum size is given by the constant BUFSIz in the
stdio.h library.

The setbuf subroutine is equivalent to

setvbuf(stream, buf, buf ? _IOFBF : _IONBF, BUFSIZ);

Standard Input and Output

Example

#include <stdio.h>
#include <unistd.h> //sleep

void printstr(char xstring) {
while (xstring) {
putchar (xstring ++) ;
sleep(1);

int main(void) {
char =string="Pisa\n”;

printstr (string); /%
setbuf(stdout, NULL);
printstr(string); /%
return 0;

Buffering

stdout

stdout

line buffered by default

unbuffered =/

*/

Standard Input and Output
Buffering

Flushing buffers

@ At any time, it is possible to force an associated buffer to
be written even if it is only partially filled.

@ Syntax
int fflush (FILE *fp);

@ This function returns a zero value on success. If an error
occurs, EOF is returned and the error indicator is set.

@ Without arguments, ££f1ush () flushed all output streams.

File Access

Open a stream (1)

Standard Input and Output

File Access

Two functions can be used to open a standard I/O stream:
@ To open a file,

FILE xfopen(const char xfilename, const char xmode)

Example:
FILE +fp = fopen(”myfile.txt”,”r”);

@ To associate a new filename with the given open stream

and at the same time to close the old file in the stream,

FILE «fp = freopen(const char xfilename, const char
xmode, FILE xstream);

Example:

FILE xfp=freopen(”myfile.txt”,”r”,stdout);

Standard Input and Output

File Access

File Access

Open a stream (2)

@ The argument type const char smode specifies the file
access mode.

@ There are r for read, w for write, a for append at the end of
the file, r+ and w+ for read and and, a+ for read and/or
write at the end of the file.

| Restrictions [riwla]r+ [w+][a+|
File must exist already * *
Previous contents of file lost * *
Stream can be read * * * *
Stream can be written ek * *
Stream can be written only at the end * *

Standard Input and Output

File Access

File Access

Close a stream

Any file associated with the stream can be disassociated by
int fclose(FILE =fp);

returning 0 on success.

@ Any buffered output data is flushed
@ any buffered input data is discarded,
@ any allocated buffer is released.

@ if it attempts to close a file pointer that isn’t currently
assigned to a file, the program likely crashes.

Standard Input and Output

Character I/O

Single-Character
Input (1)

The following functions read the next character from the

specified stream (e.g. stdin or afile) and advance the position
indicator for the stream:

#include <stdio.h>

int getc (FILE xfp);
int fgetc (FILE xfp);
int getchar (void);

This function returns

ASCII the character read as an unsigned char cast to an int.
-1 in case of error / EOF

Standard Input and Output

Character I/O

Single-Character
Input (2)

@ fgetc () is a function that reads the next character from
stream

e The C unsigned char type is only 8 bits, ranging from 0 to 255
representing all ASCII chars.

e converted to int of size larger than 16 bits,

e to manage errors and EOF as negative numbers, on top of it.

@ getc() is equivalent to fgetc () except that it may be
implemented as a macro which evaluates stream more
than once.

@ getchar () is equivalent to getc (stdin).

Standard Input and Output

Character I/O

Single-Character
Output (1)

The following functions appends the character c to the
specified output stream:

#include <stdio.h>

int putc (int c, FILE xfp);
int fputc (int c, FILE xfp);
int putchar (int c);

This function returns

ASCII the character read as an unsigned char cast to an int.
-1 in case of error / EOF

Standard Input and Output

Formated I/O

Formated I/O

fscanf ()

So far we have seen how to read char.
What to do for other types like int, double, etc.?
@ int fscanf(FILE «file , const char xformat, ...);

@ It return number of read items, e.g., for the statement
int r = fscanf(f, "%s %d %If\n”,str,&i,&d);

@ the input
Student 27 92.3
sets the variable r £ 3.
@ To read strings, it is necessary to respect the size of the

allocated memory,
char str[10];
int r = fscanf(f,”%9 %d %If\n”,str ,&i,&d);

Standard Input and Output

Formated I/O

Formated I/O

fprintf ()
Analogous can be said for formatted write.
int fprintf(FILE xfile , const xformat, ...);

Example. Dump the numbers 1 to 20 to file.

#include <stdio.h>
int main() {

FILE xfp;

int N = 20;

fp = fopen(’nums.txt”, "w”);

for (int i = 1; i<aN; i++)
fprintf (fp, "%d 7, i);

fclose (fp);
return O;

Error Handling

e Error Handling

Error Handling

Error Handling

Stderr

@ When stdout is redirected to a file, and one of the files by
the program cannot be accessed, all messages go to
stdout (instead of the screen).

@ To handle this situation better, the output stream stderr
is assigned to any function, handling arguments of type

FILEx*.
stdout,

stdin — >
>1a.out|stderr

@ The error stream stderr is unbuffered i.e., it is
immediately written always to the screen so that the user
can be warned at once.

Error Handling

Error Handling

Application

Write formatted data to stream with £fprint £
fprintf (stderr, "<Custom message>")
Example:

#include <stdio.h>
#include <stdlib.h>

int main () {
FILE xf = fopen(”nonexistent.txt”, "r”);
if (f == NULL) {
fprintf (stderr,”Cannot open file \n”");
return (EXIT_FAILURE) ;

fclose (f);
return (EXIT_SUCCESS) ;

Error Handling

Error Handling

Exit

@ So far, we used the return statement to return the flow of
the execution to the function from where it is called.
o Predefined keyword.
@ is a jumping statement.
e For a non-void function, a return value must be returned.
@ In contrast, exit () is a pre-defined library function of
stdlib.h.

e terminates the program’s execution and returns the
program’s control to the OS or thread which is calling the
program.

o Its argument is available to whatever process called this
one, to handle success/failure.

o At exit, the function exit may call the register program
termination function atexit () to do customized clean-up.
The function is thread-safe i.e., does not induce a data race.

Error Handling

Example

Difference between return and exit

#include <stdio.h>
#include <stdlib.h>
static char xmessage;
void cleanup(void) {
printf(’message = \"%s\”\n”, message);

}

int main(void) {
char local_-message[] = "hello, world”;
message = local_message;

atexit (cleanup);
#ifdef USE_EXIT
puts(”exit(0);”);
exit (0);
#else
puts(”return 0;”);
return O;
#endif

}

Error Handling

Example

Difference between return 0 and exit (0)

Shell

$ gcc -DUSE_EXIT exit.c -o exit && ./exit
exit (0);

message = "hello, world"

$gcc exit.c -o exit && ./exit

return O;

message = ""

Error Handling

@ For each stream, two flags are maintained in the FILE
object:
e Flag for any error
e Flag for end-of-file

@ To test these flags, there exists the following two functions:

Error Handling

Advanced File Error Handling

ferror and clearerr

@ The function ferror () tests for read/write errors within
the stream only after the file has been opened.

e Function prototype
int ferror (FILE *Stream) ;
e returns non-zero value upon error.

@ int feof (FILE *Stream) tests the end-of-file flag.

@ The function clearerr () resets the error indicators for
the given stream

e Function prototype
int clearerr (FILE *Stream) ;

Error Handling

Advanced File Error Handling

Example (1)

Code snippet for testing of the two error flags:
if (!fgets(str, LINELLEN, stdin)) {
/« fgets returns NULL on EOF and error; let’s see
what happened x/
if (ferror(stdin)) {
/« handle error x/
} else {
/+ handle EOF x/
}

Error Handling

Advanced File Error Handling

Example (2)

#include <stdio.h>
#include <stdlib.h>

int main(void)

{
FILE =stream;
char xstring = "Programming in C makes fun”;
stream = fopen(”ferror.txt”,”r”);

if (stream == NULL) { // if file does not exist

fprintf (stderr, "File not found”);
exit(1);

fputs (string , stream);

if (ferror(stream)) { /1 if file is not writeable

fprintf (stderr,”write error\n”);
exit(1);

if (fclose(stream)) /] if diskspace<ok,
fprintf (stderr, "Writing interrupted”);
return 0;

media removed etc.

Error Handling

Advanced File Error Handling

Example (2)

If the file is missing,

stderr () writes stream = fopen(”ferror.txt”,”r”);
if (stream == NULL) {

fprintf (stderr, "File not
File not found found”);

exit(1);

else if the file exists, }

ferror () writes fputs(string , stream);
if (ferror(stream)) {

_ fprintf (stderr,”write error\n”
.);
write error clearerr (stream);

as file is open for read- }
only!

Arguments

e Arguments
@ Command-line Arguments

Command-line Arguments
Arguments

Command-line Arguments (1)

@ When executed in a shell (sh, bash, zsh), the return value
of the program is stored in the variable $?

@ Example of the program execution with different number of
arguments

int main () {
FILE =f = fopen(”nonexistent.
txt”, !!r!!);
if (f == NULL) {
fprintf (stderr,”Cannot open

$./stderr

. file \n”);
Cannot epsn Lile return (EXIT_FAILURE) ;
$./stderr; echo $?)
Cannot open file fclose (f);

1 return (EXIT_.SUCCESS) ;

Command-line Arguments
Arguments

Command-line Arguments (2)

@ There is a way to pass command-line arguments to a
program when it begins executing.
@ When main is called with two arguments,
e The number of arguments is stored in int argc (number
plus one).

e and char =argv is a pointer to an array of char.
strings that contain the arguments, one per string.

Command-line Arguments
Arguments

Example (1)

Concatenate strings

#include <stdio.h>
int main(int argc, char =xargv[]) {

int i;

if (argc == 1) {
fprintf (stderr, "Usage: %s <string 1> ... <string N>\n", argv[0]);
exit(1);

for (i = 1; i < arge; i++) {

printf ("Arg.No %d%s”,i,(i < argc—1) ? "sx” ++");//if —else

printf ("%s\n”, argv[i]);

return 0;

}

$. /concat

Usage: ./concat <string 1> ... <string N>
$./concat first second third

Arg.No lxxfirst

Arg.No 2xxsecond

Arg.No 3++third

Command-line Arguments
Arguments

Example (2)

Write to and read chars from file

#include <stdio.h>
#include <string.h>

int main(int argc, char =argv[]) {

FILE xfp;

char buf[] = "Programming in C makes fun
Eh

int 'Ieh = strlen (buf);

if (arge = 2) {
fprintf (stderr, “Usage: %s <filename
>\n", argv[0]);
return 1;

$./WriteCharToFile chars.txt

}
else { fp = fopen(argv[1], "w");

for (int i = 0; i<len; i++)
fputc (buf[i],fp);
fclose (fp);
}
return 0;

}

Command-line Arguments
Arguments

Example (2)

Write to and read chars from file

#include <stdio.h>

int main(int argc, char =argv[]) {

FILE xfp;
int c;

if (arge = 2) {
fprintf (stderr, "Usage: %s <filename
>\n", argv[0]);

return 1;
} .
else { fp = fopen(argv[i], "r"); $./ReadCharFromFile chars.txt
Programming in C makes fun!
while ((c = fgetc(fp)) != EOF)

fputc(c, stdout);

fclose (fp);
}

return 0;

Line Input and Output

© Line Input and Output

Line Input and Output

Line Input and Output

Input

The standard C library function
char xfgets(char *str, int n, FILE xstream);

@ reads a line from the specified stream and stores it into the
string pointed to by str.

@ It stops when either (n-1) characters are read, the newline
character is read, or the end-of-file is reached, whichever
comes first.

@ It returns the same same string if no error, and the null
pointer otherwise.

Line Input and Output

Line Input and Output
Output

The standard C library function
char «fputs(const char *str, FILE xstream);

@ writes a string to the specified stream up to but not
including the null character.

@ The array str must contain the null-terminated sequence
of characters to be written.

@ and stream is the pointer to a FILE object that identifies
the stream where the string is to be written.

Line Input and Output

Earlier, we wrote a sequence of integers to the file nums . txt.

$ cat nums.txt
123456 78 9 10 11 12 13 14 15 16 17 18

19 20

Let us read out the numbers in line-buffered and in
fully-buffered mode, respectively.

Line Input and Output

Demonstration

#include <stdio.h>
#include <unistd.h> //sleep
#include <stdlib.h>

int main(int argc, char =xargv[]) {

FILE xfp;
int BUFSIZE = 25;
char buffer [BUFSIZE];

if (arge != 3) {
fprintf (stderr, "Usage: %s <mode> <filename>\n", argv[0]);
return 1;
}

else { fp = fopen(argv[2], "r");

if (atoi(argv[1]) == 0)
setvbuf (fp , buffer, _IOLBF , BUFSIZE); /= line buffered mode =/

else
setvbuf (fp , buffer, _IOFBF , BUFSIZE); /= fully buffered mode =/
while (fgets(buffer, sizeof(buffer), fp) != 0)

{
fputs (buffer, stdout);

fflush (fp);
sleep(1);

fclose (fp);

Miscellaneous

e Miscellaneous

Miscellaneous

Many functions to manipulate strings are already defined in
string.h. To use them, just include the library.
@ int strlen(const charx str): returns the length of
the string parameter;

@ int strcmp(const char xsl, const char =*s2):
compares lexicographically the two strings, and returns:
e 0 if they are equal;
e avalue < 0if s1 < 82;
e avalue > 0if s2 > s1;

Miscellaneous

Functions in string.h (2)

@ char *strcpy(char xs2, const char *s2):
copies the string s2 in s1, including the end char. The
previous content of s1 is lost. s1 has to be big enough to
contain s2. It returns the pointer to s1;

@ char xstrcat (char xsl, const char *s2):
concatenates strings s1 and s2, adding a copy of s2 to the
end of s1. Enough space has to be allocated, and it
returns the pointer to s1;

@ many of these functions have a version that works on up to
nout of all chars: strncmp,strncpy, strncat....

Miscellaneous

Functions in string.h (3)

@ char xstrtok(char s, const char *delim):
splits s in substrings (token) using the chars specified in
delim as separators. To correctly use the function:

o at the first call you need to pass the pointer to s. It returns
the pointer to the first token;

e in following calls, the function takes in input a pointer to
NULL and returns at each invocation the pointer to the next
token. If no token can be computed, it returns NULL.

Warning: the original string is modified from the function
(hence, destroyed).

strtok example

Miscellaneous

#include <string.h>
#include <stdio.h>
int main () {

}

char str[80] = "Hi — PDS class — strtok test.”;
const char s[2] = ”-"; char xtoken;

token = strtok(str, s); /= get the first token =/

/« walk through other tokens x/

while (token != NULL) {
printf(” %s\n”, token);
token = strtok (NULL, s);

}

return O;

You get as tokens: Hi , PDS class , strtok test.

Miscellaneous

strtok example (2)

#include <stdio.h>
#include <string.h>

int main()
{
char s[] = "hi everyone. We are having fun!”;
charx p;
p = strtok(s, ” ”); // first call
while (p != NULL)
{
printf("%s\n", p);
p = strtok (NULL, ” 7);
}
return O;
}

You get as tokens: hi, everyone., We, are, having, fun!

Miscellaneous

#include <stdio.h>
int main ()

printf(”Hello ”);
printf (”everybody”);
getchar () ;

return O;

}
What will be the output?

@ Hello everybody

© Hello
everybody

@ nothing
© Depends on terminal configuration

	Strings
	Standard Input and Output
	Streams
	FILE objects
	Buffering
	File Access
	Character I/O
	Formated I/O

	Error Handling
	Arguments
	Command-line Arguments

	Line Input and Output
	Miscellaneous

