
BD2 – April 3rd, 2019 – Solutions – V1.0 

Please feel free to answer this test in English, Italian, or any mixture 

 

1. Consider a schema R(IdR, A, B, …, IdT*), S(IdR*, IdT*,C), T(IdT, D, E,…) and  the following 

query 

 

 SELECT DISTINCT R.IdR, R.A, R.B, R.IdT 

 FROM  R, S, T 

 WHERE R.IdT = S.IdT And S.IdT = T.IdT And S.C = 3 

 

Assume that R, S and T are stored as heap files. Primary keys are R.IdR and T.IdT, while R.IdT, S.IdR 

and R.IdT are foreign keys. The only key for S is the set of its three attributes (S.IdR, S.IdT, S.C). 

Assume that unclustered RID-sorted index are defined on all the primary and foreign keys, and on S.C. 

Assume that the size of all indexes only depend on the number of RIDs, as indicated in the table below. 

Assume that every page is 4.000 bytes long, and that every attribute uses 4 bytes. Assume a buffer size 

of 200 pages. If you need Cardenas formula (n,k), approximate it with min(n,k). 

 

 

 NReg NPag NLeaf of 

Indexes 

NKey Min Max 

R 10.000.000 100.000 20.000    

S 1.000.000 5.000 2.000    

T 100.000.000 1.000.000 400.000    

Idx.S.C   See S 1000 0 100.000 

 

a) Is DISTINCT redundant? Why? 

 

It is not redundant: the closure of {R.IdR, R.A, R.B, R.IdT} with respect to the query is { R.IdR, R.A, 

R.B, R.IdT, S.IdT, T.IdT, S.C, R.*, T.* } which does not include a key for each relation, in particular, 

it does not include the S.IdR attribute: observe that we do not have a condition R.IdR=S.IdR in the 

query. 

 

b) Compute the selectivity factor of the three predicates in the condition 

 

The predicates R.IdT = S.IdT And S.IdT = T.IdT have the same selectivity, 1/NKey(T) = 

1/100.000.000.  

fs(S.C=3) = 1/NKey(S.C) = 1/1.000 

 

c)   Compute the cost of a HashJoin plan with structure HashJoin (HashJoin(IndexFilter(S),T), R) – 

for simplicity does not use any projection before the end. If you need the size of a record in 

Join(S,T), you may compute the size of each record of S and T, as 4.000*NPag/NRec, and then 

do LRec(S)+LRec(T).  

 

 

 

 



 

 

 
 

C(IndexFilter(S,IdxSC,3,3) = CI + CD = sf*NLeaf(IdxSC)  + (NRec(S)/NKey(C), NPag) = 

2.000/1.000 + (1.000.000/1.000, 5.000) = 2 + 1.000 = 1.002 

EPag(IndexFilter) = sf(S.C=3)*NPag(S) = (1/1.000)*5.000 = 5    hence, S fits the buffer and the 

HashJoin has no cost. 

 

C(HashJoin(IndexFilter(S),T)) = C(IndexFilter) + C(TableScan(T)) + 0 = 1.002 + 1.000.000 = 1.001.002 

 

ERec(HashJoin(IndexFilter(S),T) = NRec(S)*NRec(T)* sf(S.C=3)* sf(S.IdT = T.IdT)  

= NRec(S)*NRec(T)* sf(S.C=3) / NRec(T) = NRec(S)*sf(S.C=3) = 1.000.000/1.000 = 1.000 

 

LRec(S) = 4000*5000/1.000.000 = 20 

LRec(T) = 4000*1.000.000/100.000.000 = 40 

LRec(S+T)=60 

 

NPag(HashJoin(S,T)) = NRec(HashJoin)*LRec(HashJoin)/4.000 = 1.000*60/4.000 = 15 

 

Also in this case, the internal relation fits the buffer size, hence the cost of the outermost HashJoin is 

zero, hence: 

C(HashJoin(HashJoin(S,T),R)) = C(HashJoin(S,T)) + C(TableScan(R))  

= 1.001.002 + 100.000 + 0 = 1.101.002 

 

ERec(HashJoin(HashJoin(S,T),R)) = ERec(HashJoin(IndexFilter(S),T) * ERec(R) * sf(R.IdT = S.IdT) 

= 1.000 * 10.000.000 / 100.000.000 = 100 

LRec(R) = 4000*100.000/10.000.000 = 40 

LRec(R+S+T) = 100 

 

NPag(HashJoin(HashJoin(S,T),R)) = ERec*LRec(R+S+T)/DPag = 100*100 / 4000 = 3 

Hence, the Sorthas no cost 

 

C(Distinct) = C(Sort) = C(HashJoin(HashJoin(S,T),R)) = 1.101.002 

 



d)   Would the use of projection before the HashJoin reduce their cost? Just explain your answer, but 

without performing the computation. 

 

One could use the projection in order to optimize the use of the buffer space, but it would not affect the 

total cost of the access plan. 

 

e) Compute the cost for an IndexNestedLoop plan with the same structure: 

IndexNestedLoop(IndexNestedLoop (IndexFilter(S),T), R)  (draw the plan first) 

 

 
 

C(IndexFilter(S,IdxSC,3,3)) = 1.002  

C(IndexFilter(T,IdxTIdT,T.IdT=S.IdT) = CI+CD  

= sf*NLeaf(IdxTIdT) + 1*(NRec(T)/NKey(IdT), NPag(T))  

= 400.000/100.000.000 + 1*(1, 1.000.000)= 1+1 = 2 

 

C(IndexNestedLoop(IndexFilter(S),T)) = C(IndexFilter) + ERec(IndexFilter(S))*C(IndexFilter(T)) =  

= 1002 + NRec(S)*sf(S.C=3)*2 = 1002 + (1.000.000/1.000)*2 = 3.002 

 

C(IndexFilter(R,IdxRIdT,T.IdT=S.IdT) = CI+CD  

= sf*NLeaf(IdxRIdT) + 1*(NRec(R)/NKey(IdT), NPag(R))  

= 1+1*(10.000.000/100.000.000, 100.000) = 2 

 

ERec(IndexNestedLoop(IndexFilter(S),T)) = 1.000 (as computed in point c) 

 

C(IndexNestedLoop (IndexNestedLoop (S,T)),R)  

= C(IndexNestedLoop(S,T)) + ERec(IndexNestedLoop(IndexFilter(S),T))*C(IndexFilter(R))  

= 3.002 + 1.000*2 = 5.002 

 

Sort and Distinct have no cost. 

 

f) Which of the two plans is better? Can you explain the main reason why is it cheaper in one 

sentence (something like: “It is better since it avoids sorting the R3 relation”)? 

 

The second plan is better, since it avoids the complete scan of table T, which is huge. Another acceptable 

explanation: it is better since it starts from the selected tuples of relation S, which are few, and then it 



only retrieves tuples that are related to those in this little set. 

 

 

2. Consider a relation R(X, Y, A, B, C) that contains 1.000.000 tuples, one for each pair (i,j) such that 

0 < i   1000, 0 < j   1000. Assume that the relation is stored in a head file, in a completely 

random order, and that a combined index on (X,Y) is defined on R. The relation occupies 10.000 

pages, and the combined index 4.000 pages.  

a. Consider the following condition: 100 < X  110 AND 100 < Y  110. How much does it 

cost to retrieve all records that satisfy it using the index? For simplicity, assume that you 

first load all relevant RIDs in main memory, you sort them, and you use them to access the 

records. 

 

We have min(X)=min(Y)=0, max(X)=max(Y)=1.000, NKey(X)=NKey(Y)=1.000. 

Sf(100 < X  110) = Sf(100 < Y  110) =  10/1.000, hence sf(100 < X  110 AND 100 < Y  110) = 

1/10.000. In practice, we have 10 distinct values for X and 10 distinct values for Y. 

Given the structure of the combined index, for each of the 10 values of X we will access a different 

section of the index, where we retrieve a set of RID which satisfy a condition “X=K and 100 < Y  

110”, hence: 

CI = 10*NLeaf*sf(X=K and 100 < Y  110) = 10*4000*(1/1.000*1/100) = 10*1 = 10 

 

CD depends on the fact that we sort the RIDs before accessing the data, hence we have just one list: 

CD = (sf*NRec(R), NPag(R)) =  (1.000.000/10.000, 10.000) = 100. 

 

CI+CD = 10+100 = 110 

 

b. How does the cost of point (a) changes if we assume that the index is clustered? 

 

Observe that we have NRec/NPag = 1.000.000/10.000 = 100 record per pages. 

With a clustered index, data is clustered wrt X and then wer Y, hance we need to get 10 groups 

(10=sf( 100 < X  110)*NKey(X)) of 10 consecutive records (10=NRec*sf(X=K and 100 < Y  110)) 

CI remains 10*1, and CD is also 10*1, since 10 records fit a page:  

 sf(X=K and 100 < Y  110)*NPag = 10.000 / 100.000 = 1 

 

. Hence, the total cost is 20 pages. 

 

c. Assume that a B*-tree, indexed on (X,Y) like the combined index, is used to store the same 

relation. The B*-tree, keeps all data in the leaves and uses the intermediate nodes for a 

sparse index. Assuming that the B*-tree has 10.000 leaves, and each intermediate node has 

space for 500 children, how many intermediate nodes will have the B*-tree? How many 

levels will it have, leaves included? 

 

The intermediate nodes need to store 10.000 pointers, hence we need 20 nodes. Hence, the B*-tree 

will have 3 levels: the root, the 16 intermediate nodes, the 10.000 leaves. 

 

d. How does the cost of point (a) changes if we assume that a B*-tree is used? 

 

We need to get 10 groups of 10 consecutive records., hence we only need to read 10 pages. 



 

e. (This should be a simple question, do not do too many complex calculations) Assume that 

a G-tree, is used to store the same relation. Like the B*-tree, it keeps all data in the leaves 

and uses the intermediate nodes for a sparse index. Assuming that it divides the space in a 

grid of 32000 cells, how many levels would the partition tree have? And the G-tree, how 

many levels would it have?  

 

Since the data is very regular, the partition tree will be balanced, hence its depth will be: 

 

  log2(32000) = 15.  

 

The G-tree itself will have the same number of nodes and pages as the B*-trees, hence, it will need 

three levels only. 

 

 


