
DBMS ARCHITECTURE

Transactions

• A transaction: a sequence of one or more SQL
operations (interactive or embedded):

– declared by the programmer to constitute a unit

– treated by the DBMS as one unit

Transactions

• A transaction is a sequence of operations on the
database and on temporary data, with the following
properties:

– Atomicity: Only successful transactions change the state
of the database

– Isolation: Transactions behave as if they were executed in
isolation from each other

– Durability: If the DBMS crashes after a transaction
commits, all effects of the transaction must remain in the
database

Transaction management

• Transaction properties:

– Atomicity, Consistency, Isolation, Durability - ACID

– The Recovery Manager guarantees Atomicity &
Durability.

– Isolation: Concurrency Control Manager

– Consistency:

• Integrity constraints

• Code correctness

• Combined with Atomicity, Isolation, Durability

• Isolation and Serializability

Transactions for the DBMS

• For the DBMS, a transaction T makes read/write
operations on the database

• To read a page ri[x] it is first brought into the buffer
from the disk, if it is not already in the buffer pool

• To write a page wi[x] an in-memory copy of the page
is first modified and is later written to disk, only
when the buffer manager decides to do it

• This has to be made compatible with Atomicity and
Durability

Lifecycle of a transaction

• Read/Write and Commit are execute by the system
when required by the transaction

• The rollback (abort) transition is executed under
request or by the system

Kinds of failure

• Transaction failure is an interruption of a transaction
which only affects the state of the transaction

• System failure is a failure of the system (either the
DBMS or the computer) which may have affected
the content of main memory – persistent store is
safe

• Media failure (aka disaster) also affects persistent
store

Protection from failures

• DB backup.

• Log file (for simplicity assume not buffered):

– (begin, T)

– (commit, T)

– (abort, T)

– For each write: (write, T, P, BeforeImage, AfterImage)

• LSN

• Recovery: re-execute log operations on the DB
backup (details later)

Faster recovery through Checkpoint

• Commit consistent CKP:

– Do not accept new transactions

– Wait until all transactions finish

– Flush all buffer “dirty” pages to disk

– Write CKP record to the log file

• Buffer consistent CKP - V1:

– Do not accept new transactions

– Suspend active transactions

– Flush all buffer “dirty” pages to disk.

– Write CKP record (with list of active T ids) to the log fil

Faster recovery through Checkpoint

• No stop checkpoint:

– Write begin-CKP record (with list of active T ids) to the log file

– Start a new thread that scans the buffer and flush buffer “dirty”
pages to disk in parallel with the standard transactions –
guaranteeing that all pages that were dirty at begin-CKP time
are flushed before end of CKP

– Write end-CKP record to the log file

• Guarantee:

– For any end-CKP in the log, every update performed before the
corresponding begin-CKP is on disk

ARIES algorithm checkpoint

• Rather then flushing the pages, it stores the
information that is needed, at restart time, to know
which operations have to be redone, i.e.:

– for each dirty page:

• Its address

• The LSN of the first record that made page dirty

– For each transaction:

• Status, and last LSN if active

• Fuzzy checkpoint: empty <begin chkpoint> and,
later, the actual checkpoint information record

• ARIES redoes everything and then undoes

Undo, Redo algorithms

Recovery algorithms

• The methods for transactions management differ
for the use of the undo and redo algorithms to
recover a database after a failure, e.g. how write
operations on the DB and commits are managed.

– Undo–Redo: Steal Policy (a new T may steal the buffer),
NoForce Policy (write of buffer is not forced)

– Undo–NoRedo: Steal, Force

– NoUndo–Redo: NoSteal (Pin), NoForce

– NoUndo–NoRedo: NoSteal (Pin), Force

• Hyp: a write to the log is forced to the permanent
memory

Undo - NoUndo

• Constraints on write:

–NoUndo:

• Deferred updates

–Undo:

• Free update (or immediate update or buffer
stealing):

• Rule for undoing updates: Log Ahead Rule or Write
Ahead Log: save the before images before writing

Redo - NoRedo

• Constraint on commit:

–NoRedo:

• Deferred commit: all modified pages have to be
flushed before commit: force writes

–Redo:

• No constraints on commit, immediate commit:
commit now, flush when you like (NoForce)

• Rule for redoing: Save the after images before committing

Shadow Pages: No-undo and No-redo

NoUndo NoRedo: needs the ability to write many
pages atomically – shadow pages

Choice among the different solutions

• Undo – Redo is the best one

Example of undo-redo implementation

• beginTransaction()

– T := newTransactionIde();
Log.append(begin, T);
return(T).

• write(T, P, V)

– Buffer.getAndPinPage(P);
BI := page P; AI := V;
Log.append(Write, T, P, BI, AI);
Buffer.updatePage(P, V);
Buffer.unpinPage(P).

Implementation

• commit(T)

– Log.append(commit, T)

• abort(T)

– Log.append(abort, T);
for each (write, T, P, BI, AI) Log with
do Buffer.undoPage(P, BI)

Restart

• restart()

– for each (begin, T)Log
do if (commit, T)Log

then add(T,listUndo);
for each (write, T, P, BI, AI)Log
order by LSN
do if TlistUndo then Buffer.undoPage(P, AI)

else Buffer.redoPage(P, BI)

Recovery (undo-redo)

• Transction failure:

– Undo(T)

• System failure

– Undo/redo

• Media failure

– Use the DB backup and redo committed transactions

Restart

t-ckp t-fail

t1

t2

t3

t4

t5

Start undo Start redo

Restart with CKP

• Restart:

– ckp=false; toUndo=toRedo={};
for backward r in log -- rollback
until (ckp and empty(toUndo)) {

if r = (commit,T) then toRedo+={T};
elsif r = (write,T,x,bi,ai) and not (T in toRedo)

then {toUndo+={T}; undo(x,bi)}
elsif r = (begin,T) then toUndo-={T}
elsif r = (b-ckp,TList) then {ckp=true;

toUndo+=TList-toRedo}
}
rollForward(toRedo);

RollForward

• RollForward(toRedo):

– for r in log starting from last begin-ckp
until (empty(toRedo)) {

if r = (commit,T) then toRedo-={T};
elsif r = (write,T,x,bi,ai) and (T in toRedo)

then {redo(x,ai)}
}

Buffer and Log

• Where is restart executed – log or persistent store?

• What happens if there is a failure during restart?

Common optimizations

• Log granularity is at record (or field) level, not at
page level

• Log is buffered

• Pages contain the LSN of the last operation executed

• Undo actions are logged

• Each log entry has the LSN of the previous log entry
of the same transaction

