DBMS ARCHITECTURE

DBMS
RELATIONAL ENGINE
5oL QUERY MANAGER
CATALOG
SaL — O NAGER QUERY MANAGER
COMMANDS OPTIMIZER
PHYSICAL PLANS
MANAGER
< > |
|
DATA,
INDEXES STORAGE ENGINE
CATALOG ACCESS
- METHODS |< >
I MANAGER
|
STORAGE
LOG mﬂgﬂ:gg:“ < »| STRUCTURES || TRANSACTION
- MANAGER AND
RECOVERY
- — BUFFER
e
MANAGER == MAMNAGER
DB BACKUP
PERMANENT
— MEMORY —
PERMANENT MANAGER
MEMORY

Transactions

e Atransaction: a sequence of one or more SQL
operations (interactive or embedded):

— declared by the programmer to constitute a unit
— treated by the DBMS as one unit

Transactions

e Atransaction is a sequence of operations on the
database and on temporary data, with the following
properties:

— Atomicity: Only successful transactions change the state
of the database

— Isolation: Transactions behave as if they were executed in
isolation from each other

— Durability: If the DBMS crashes after a transaction
commits, all effects of the transaction must remain in the
database

Transaction management

* Transaction properties:
— Atomicity, Consistency, Isolation, Durability - ACID

— The Recovery Manager guarantees Atomicity &
Durability.

— Isolation: Concurrency Control Manager

— Consistency:

* Integrity constraints
e Code correctness
 Combined with Atomicity, Isolation, Durability

* |solation and Serializability

Transactions for the DBMS

For the DBMS, a transaction T makes read/write
operations on the database

To read a page r;[x] it is first brought into the buffer
from the disk, if it is not already in the buffer pool
To write a page w,[x] an in-memory copy of the page
is first modified and is later written to disk, only
when the buffer manager decides to do it

This has to be made compatible with Atomicity and
Durability

Lifecycle of a transaction

=nh

write < pARATIALLY .,
P h__ﬁ.--?-}.-.r. _ COMMITTED - EI}HMITTEI}..H
I S — i __
.. ACTIVE ™
A
& . » ..
begin rarsaclion e —

* Read/Write and Commit are execute by the system
when required by the transaction

* The rollback (abort) transition is executed under
request or by the system

Kinds of failure

* Transaction failure is an interruption of a transaction
which only affects the state of the transaction

* System failure is a failure of the system (either the
DBMS or the computer) which may have affected
the content of main memory — persistent store is
safe

 Media failure (aka disaster) also affects persistent
store

Protection from failures

DB backup.

Log file (for simplicity assume not buffered):

— (begin, T)

— (commit, T)

— (abort, T)

— For each write: (write, T, P, Beforelmage, Afterimage)

SN

Recovery: re-execute log operations on the DB
packup (details later)

Faster recovery through Checkpoint

* Commit consistent CKP:
— Do not accept new transactions
— Wait until all transactions finish
— Flush all buffer “dirty” pages to disk
— Write CKP record to the log file

e Buffer consistent CKP - V1:

— Do not accept new transactions

— Suspend active transactions

— Flush all buffer “dirty” pages to disk.

— Write CKP record (with list of active T ids) to the log fil

Faster recovery through Checkpoint

* No stop checkpoint:
— Write begin-CKP record (with list of active T ids) to the log file

— Start a new thread that scans the buffer and flush buffer “dirty”
pages to disk in parallel with the standard transactions —

guaranteeing that all pages that were dirty at begin-CKP time
are flushed before end of CKP

— Write end-CKP record to the log file
* Guarantee:

— For any end-CKP in the log, every update performed before the
corresponding begin-CKP is on disk

ARIES algorithm checkpoint

* Rather then flushing the pages, it stores the
information that is needed, at restart time, to know
which operations have to be redone, i.e.:

— for each dirty page:

* |ts address
* The LSN of the first record that made page dirty

— For each transaction:
e Status, and last LSN if active

* Fuzzy checkpoint: empty <begin chkpoint> and,
later, the actual checkpoint information record

* ARIES redoes everything and then undoes

Undo, Redo algorithms

Maw Databasa

Siele "

o

- __':] . Tid Database
8— Und B atate

____.il-—___
Databese Liog I""’_’

ld Oetiabaze
Slata

o "J Moaw Catabassa
"=3,.__H'Edﬂ___. ‘ Stele

Databasa Lag I/""_--

Recovery algorithms

 The methods for transactions management differ
for the use of the undo and redo algorithms to
recover a database after a failure, e.g. how write
operations on the DB and commits are managed.

— Undo—Redo: Steal Policy (a new T may steal the buffer),
NoForce Policy (write of buffer is not forced)

— Undo—NoRedo: Steal, Force
— NoUndo—Redo: NoSteal (Pin), NoForce
— NoUndo—NoRedo: NoSteal (Pin), Force

* Hyp: a write to the log is forced to the permanent
memory

Undo - NoUndo

e Constraints on write:

—NoUndo:
e Deferred updates

—Undo:

* Free update (or immediate update or buffer
stealing):

* Rule for undoing updates: Log Ahead Rule or Write
Ahead Log: save the before images before writing

Redo - NoRedo

e Constraint on commit:

—NoRedo:

* Deferred commit: all modified pages have to be
flushed before commit: force writes

—Redo:

* No constraints on commit, immediate commit:
commit now, flush when you like (NoForce)

* Rule for redoing: Save the after images before committing

Shadow Pages: No-undo and No-redo

NoUndo NoRedo: needs the ability to write many
pages atomically — shadow pages

pages table

descriptor

commit

TR

new pages table

Choice among the different solutions

e Undo— Redo is the best one

Example of undo-redo implementation

* beginTransaction()

— T := newTransactionlde();
Log.append(begin, T);
return(T).

* write(T, P, V)

— Buffer.getAndPinPage(P);

Bl := page P; Al :=V,
Log.append(Write, T, P, BI, Al);
Buffer.updatePage(P, V);
Buffer.unpinPage(P).

Implementation

e commit(T)
— Log.append(commit, T)
* abort(T)

— Log.append(abort, T);
for each (write, T, P, Bl, Al) eLog with
do Buffer.undoPage(P, Bl)

Restart

* restart()

— for each (begin, T)elog
do if (commit, T)ZLog
then add(T,listUndo);
for each (write, T, P, Bl, Al)elLog
order by LSN
do if TelistUndo then Buffer.undoPage(P, Al)
else Buffer.redoPage(P, Bl)

Recovery (undo-redo)

* Transction failure:
— Undo(T)

e System failure
— Undo/redo

e Media failure

— Use the DB backup and redo committed transactions

tl
t2
t3
t4
t5

t-fail

1

Start undo Start redo

Restart with CKP

e Restart:

— ckp=false; toUndo=toRedo={};
for backward r in log -- rollback
until (ckp and empty(toUndo)) {
if r = (commit,T) then toRedo+={T};
elsif r = (write,T,x,bi,ai) and not (T in toRedo)
then {toUndo+={T}; undo(x,bi)}
elsif r = (begin,T) then toUndo-={T}
elsif r = (b-ckp,TList) then {ckp=true;
toUndo+=TList-toRedo}
}

rollForward(toRedo);

RollForward

* RollForward(toRedo):

— for r in log starting from last begin-ckp
until (empty(toRedo)) {
if r = (commit,T) then toRedo-={T};
elsif r = (write,T,x,bi,ai) and (T in toRedo)
then {redo(x,ai)}

Buffer and Log

* Where is restart executed — log or persistent store?
 What happens if there is a failure during restart?

Common optimizations

L og granularity is at record (or field) level, not at
nage level

Log is buffered

Pages contain the LSN of the last operation executed
Undo actions are logged

Each log entry has the LSN of the previous log entry
of the same transaction

