
Decision Support Databases
Essentials

Antonio Albano

University of Pisa
Department of Computer Science

Copyright c© 2015 by Antonio Albano

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that the
first page of each copy bears this notice and the full citation including
title and authors. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission from the copyright
owner.

February 13, 2015

CONTENTS

Preface iii

1 Decision Support Systems 1
1.1 Information Systems . 1
1.2 Types of Information Systems . 2
1.3 Data Warehouse: a Decision Support Database 4
1.4 Data Warehousing Architecture . 7
1.5 What to Model . 9
1.6 Concluding Remarks . 13
1.7 Summary . 14

2 Data Warehouse Modeling 15
2.1 Conceptual Multidimensional Model 15
2.2 Multidimensional Relational Model 26
2.3 Multidimensional Cube Model . 29
2.4 Summary . 34

3 Data Warehouse Design 35
3.1 Introduction . 35
3.2 Data Warehouse Design Approaches 36
3.3 A Case Study . 52
3.4 Project Quality Control . 61
3.5 Summary . 65

4 Data Analysis 67
4.1 OLAP Systems Solutions . 67
4.2 Data Analysis Using SQL . 69
4.3 Simple Reports with SQL . 70
4.4 Moderately Difficult Reports with SQL 77
4.5 Very Difficult Reports Without Analytic SQL 83
4.6 Summary . 97

A Case Studies 99
A.1 Hospital . 99
A.2 Airline Companies . 101
A.3 Airline Flights . 102
A.4 Inventory . 104

ii CONTENTS c© 2015 by Albano et al.

A.5 Hotels . 107

B Case Studies: Solutions 109
B.1 Hospital . 109
B.2 Airline Companies . 112
B.3 Airline Flights . 114
B.4 Inventory . 119
B.5 Hotels . 122

C Glossary 125

Bibliography 131

PREFACE

In our information-based society one of the most important applications for comput-
ers is information storage and management with a DBMS to support organizations
both in performing the business and in bringing the business to the Web to allow new
routes to market.

It is also well known that information overload is a huge challenge for businesses,
but it is also an enormous opportunity in making smarter decisions based mainly on
data analysis to improve productivity. Consequently, starting from the 1990s another
important application of information storage and management to support organiza-
tions is analyzing the business with data-driven Decision Support Systems designed
for summarizing large amounts of data into a form that is useful and easily inter-
pretable to help managers to analyze the performance of key business processes, wor-
thy of improvement.

Decision support applications involve quite complex analysis which cannot be effi-
ciently executed against operational databases, optimized for online transaction pro-
cessing. For this reason, organizations maintain a separate database, called a data
warehouse, which is specifically organized for such complex analysis. The term data
warehouse is a metaphor: a warehouse is a large structure where things are stored
and organized for easy accessibility. However, a data warehouse is not only a large
repository for historical data extracted from operational systems, but is organized to
create the right models for measurable key business processes, to support informed
decisions about how to improve them.

Organization

Chapter 1 provides a general overview of the purpose of decision support systems,
and of the concepts of data warehouse and of data warehousing process. We also
introduce the reason why data warehouses are used to analyze key business processes
that are measurable and worthy of improvements, and consequently what is modeled
in a data warehouse.

Chapter 2 presents the fundamental concepts about a conceptual model for de-
signing data warehouses, and the logical data model to implement them.

Chapter 3 presents a data warehouse design process and a methodology for the
implementation of a logical design schema.

Chapter 4 focuses on the extensions of SQL for online analytic processing, called
Analytic SQL, the fundamental user-oriented relational languages to analyze data for
producing interesting reports to evaluate the performance of the modeled key pro-
cesses in order to improve them.

iv Preface c© 2015 by Albano et al.

Appendix. A set of case studies is presented to apply the concepts presented in the
chapters of the book.

A. A.

Chapter 1

DECISION SUPPORT SYSTEMS

An overview of decision support systems is given below, particularly those data-
driven, used to synthesize large amounts of data into a form that is useful to manage
the business. The data are first organized in a special database called data warehouse
and then analyzed with appropriate techniques, called On Line Analytical Process-
ing (OLAP) or with semi-automatic and exploratory techniques, called data mining.
Finally, the characteristics of systems for managing data warehouse are presented,
which information should be represented using an appropriate data model, and how
data can be used for decision-making.

1.1 Information Systems

Organizations have used information systems for centuries and they have used a va-
riety of technologies to deal with information.

� Definition 1.1
An information system is an organized collection of resources, people, and
procedures finalized to collect, store, process and communicate the informa-
tion needed to support the on-going activities.

Nowadays, information is considered to be a critical resource of any organization, as
fundamental as capital or machinery, and, in fact, the majority of the labor force in
the industrialized countries works in some way with information.

Information can be represented as data, images, text, and voice. Clearly, different
types of organizations will have differing needs with respect to the kinds of infor-
mation they use. However, the attention here will be on information represented as
structured data shared by a variety of users within an organization, and managed
using computers. Reductions in the costs of computer technology, improvements in
performances, and new facilities to support the development of applications have
created an increasing demand for data processing systems. We use the term comput-
erized information system to refer to the hardware and software which is used for
storing, retrieving, and processing the information which supports the functions of
an organization.1 In the following, in brief, we use the term information system for
computerized information system.

1. Frequently in the literature, information system is used as synonym of computerized information

2 CHAPTER 1 Decision Support Systems c© 2015 by Albano et al.

Over time, there are continuous interactions between the two components of the
information system and the rest of the organization that will change each other, and
this requires attention of management to plan the evolution of both the organizational
structure and the employee tasks (Figure 1.1)

DATA

ORGANIZATIONINFORMATION
TECHNOLOGY

DATA
REQUIREMENTS

IT REQUIREMENTS ORGANIZATION
REQUIREMENTS

DATA
REQUIREMENTS

ORGANIZATION
REQUIREMENTS

IT REQUIREMENTS

Figure 1.1: System Conception of an Information Systems

For example, new requirements of the organization may include the need of new
categories of data being managed by the information system, and to adapt the infor-
mation technology to provide new services (e.g, think of an organization that decides
to offer web services). New categories of data to be managed can result in (a) a re-
view of the organizational structure to review, for example, the tasks and professional
employees, (b) an adjustment of the information technology used. The evolution of
information technology can enable new opportunities for data management and set
new requirements for employees and the organizational structure, and so on. The
data, the organization, and the technology all interact and change each other.

1.2 Types of Information Systems

Information systems can be classified in several ways, but for our purposes it is useful
to classify them in the following categories on the basis of the business activities that
are required to support.

� Definition 1.2 A Taxonomy of Information Systems
Information systems can be classified into the following categories:

– Operational, to perform the business operational activities.
– Decision support, to provide the information that managers need for an-

alyzing the business.
– Web-based for E-commerce, to bring the business to the Web to allow

new routes to market.

These information system categories are all ongoing and in a constant state of im-
provement. They use different technology, have different objectives and require dif-
ferent skills to develop. In the following the attention will be on the first two cat-
egories, and in particular on the decision support one, a key driver in the business
world today (Figure 1.2).

system. Here, we prefer to make a distinction between the two terms to evidence the fact that a
computerized information system will never completely substitute the global information system of
an organization.

c© 2015 by Albano et al. 1.2 Types of Information Systems 3

INFORMATION
SYSTEM

E-COMMERCE OPERATIONAL DECISION
SUPPORT

MODEL DRIVEN DATA DRIVEN

Figure 1.2: Types of Information Systems

1.2.1 Operational Systems

When an information system is implemented using the database technology, it will
consist of an operational database and a collection of application programs (trans-
actions) which are used to access and update the data quickly and efficiently (Fig-
ure 1.3). The main goal of such a transaction processing system is to maintain the
correspondence between the database and the real-world situation it is modeling, as
events occur in the real world.

DB DBMS

Logistics

Production

Accounting

Inventory

Human
Resources

Sales and
Distribution

Figure 1.3: Transaction processing system

The data are under the control of a Data Base Management System (DBMS), a
centralized or distributed software system, which provides the tools to define the
database, to select the data structures needed to store and retrieve the data easily, and
to access the data, interactively or by means of a programming language.

1.2.2 Decision Support Systems

Decision support information systems can be classified in Management Information
Systems and Decision Support Systems.

4 CHAPTER 1 Decision Support Systems c© 2015 by Albano et al.

The first one is used by middle tactical or administrative managers in monitoring
and controlling their units to correct problems by making decisions based on compar-
ing the actual performance and the planned performance (variance report). Decision
support systems are used to make strategic decisions about the future directions of
the business enterprise, using both historical internal data and external data.

For brevity, in the following we will use the term Decision Support Systems (DSS)
for both types of decision support information systems.

DSS have been introduced in the organizations since the late ’70s to help managers
to make decisions of three types:

– Structured, when a well-defined decision-making procedure exists.
– Unstructured, when a well-defined decision-making procedure does not exists and

the experience and creativity of the manager are required.
– Semistructured, when the decision-making procedure is partly defined and so it is

also required the manager’s creative intervention.

There is no strict correspondence between types of decision and levels of decision-
making processes, however, at the operational level decisions tend to be more struc-
tured, at the tactical level decisions are mainly semistructured and at the strategic
level decisions are typically unstructured.

The DSS have very different characteristics, but it is useful to classify them into
two main types: model-driven, to take structured or semistructured decisions, or data-
driven to take unstructured decisions.

The model-driven DSS are an evolution of the first proposals made at the end of
the 70s for decision support systems and their value depends on the quality of the
model used. The simplest solutions utilize spreadsheets for analysis of “what if”,
while more sophisticated models are used from operations research, simulation and
artificial intelligence.

The data-driven DSS are designed to synthesize large amounts of data into a form
that is useful and easily interpretable to help managers to assess the performance
of business processes and make decisions to address and resolve any critical issues
found. Their value depends on the type and quality of data generated using synthetic
instruments called Business Intelligence. The term intelligence is used with the mean-
ing of investigating to find out something interesting, like in Intelligence Service.

The operational data accumulated over time, integrated with those from external
sources, are a potential source of information used by managers regardless of their
decision-making level in the organization. The information is derived from the data
summarized in an appropriate form and its relevance depends on the recipient. When
experience, competence, and attitude are added to information, knowledge is created,
and actions can be taken. To become actionable, knowledge should also be closely
integrated with an organization’s business processes.

In the following, data-driven DSS will be considered to see how they can be designed
to support informed decisions.

Decision support applications involve quite complex analysis which cannot be ef-
ficiently executed against operational databases, optimized for On Line Transaction
Processing (OLTP). For this reason, organizations maintain a separate database, called
data warehouse, which is specifically organized for such complex analysis.

1.3 Data Warehouse: a Decision Support Database

The first and still now the most widely cited definition of data warehouse was pro-
vided by William Inmon in 1990:

c© 2015 by Albano et al. 1.3 Data Warehouse: a Decision Support Database 5

� Definition 1.3
A data warehouse is a subject-oriented, integrated, nonvolatile, and time-
varying collection of data in support of management’s decisions.

Let us examine each of these distinctive aspects of a data warehouse.

1. Subject-oriented. A data warehouse stores data by subject, not by applications,
which is what distinguishes a data warehouse from an operational database, that
stores information in order to optimize transaction processing. Business subjects
differ from organization to organization. They are the critical subjects for an orga-
nization. For example, for a manufacturing company, these would include, sales,
shipments, returns, and inventory.
A data mart is database that has the same characteristics as a data warehouse, but
is usually smaller and is focused on the data for one subject.

2. Integrated. Data are gathered into the data warehouse from a variety of sources
and merged into a coherent whole. For example, a bank can collect different data
on customers for the management of loans, current accounts, or stocks, but they
must then be integrated for the purposes of the analysis of the services offered to
customers.

3. Time-variant. For an operational system, the stored data contains the current val-
ues. On the other hand, the data in the data warehouse is meant for analysis and
decision support, and is thus historical data identified with a particular time period.
An operational system contains current data, while a data warehouse contains
historical data over long time for analysis and decision support, therefore a time
dimension is explicitly included in data so that trends and changes over time can
be analyzed.

4. Non-volatile. The data in a data warehouse is primarily for query and analysis,
and it is never changed interactively. This enables management to gain a consistent
picture of the business. Periodically, new data may be added or those considered
obsolete may be removed.

5. Decision support. The primary function of the data warehouse is for decision
support, and so it must be specifically designed to answer business questions. Data
is the reality that a computer records, stores, and processes. The lowest level in the
perception of reality is sometimes referred to as “raw data”. This data is of little
benefit unless it can be turned into useful information and knowledge. Data must
be condensed into a more informative format in such a way that managers (or
more in general knowledge workers – executives, managers, and analysts) can get
the essence of the underlying data.
Three categories of decision support can be provided. Specifically:

(a) Reports. Reporting is considered the lowest level of decision support. A re-
porting facility capable of generating informative reports for managers in time
to be useful is of the utmost importance for the successful operation of any
business.

(b) Multidimensional data analysis, sometimes called On Line Analytic Pro-
cessing (OLAP). Data analysis is usually accomplished interactively with some
kind of data analysis tool. The goal of data analysis is to get useful informa-
tion from the data.

(c) Exploratory data analysis. This data analysis technique is very different
from reports and multidimensional analysis: it uses what is called a discov-
ery technique of useful data models with data mining algorithms. That is, the

6 CHAPTER 1 Decision Support Systems c© 2015 by Albano et al.

user does not ask a particular question about data, but rather he uses specific
algorithms that analyze the data and report what they have discovered. Unlike
reports and multidimensional analysis, where the user has to create and exe-
cute queries based on hypotheses, data mining algorithms search for answers.
A comparison of the two approaches is shown in Table 1.1 with some example
queries. Data mining algorithms are beyond the scope of this book.

Table 1.1: Comparison between OLAP and Exploratory data analysis

OLAP Query Exploratory data analysis

Which customers spent most with us
in the past year?

Which types of customer are likey to
spend most with us in the coming
year?

How much did the bank lose from
loan defaulters in the past two years?

What are the characteristics of the
customers most likely to default on
their loans before the year is out?

What where the highest selling fash-
ion items in our London stores?

What additional products are most
likely to be sold to customers who buy
sportswear?

A data warehouse is usually separated from an operational database for the following
reasons:

– Performance. Special data organization, access and implementation methods are
needed to support multidimensional views and data analysis which usually requires
complex queries that would degrade the performance of operational transactions.
Moreover, concurrency control and recovery DBMS modes are not compatible
with data analysis.

– Function. Decision support requires (a) historical data, which operational databases
do not typically maintain, (b) consolidation (aggregation, summarization) of data
from heterogeneous sources, such as operational databases, external sources, and
(c) different sources typically use inconsistent data representations, codes and for-
mats which have to be reconciled to enforce data quality.

Table 1.2 summarizes the differences between the traditional applications that use
databases (On Line Transaction Processing, OLTP), and the decision support appli-
cations that use data warehouses (On Line Analytical Processing, OLAP).

OLAP is a term that was coined in an unpublished 1993 white paper, “Providing
OLAP to User Analysts: An IT Mandate”, by E. F. Codd. By introducing this new
term as a play on the then-familiar term on-line transaction processing (OLTP), the
paper signaled a shift in the paradigm for business analysis, in parallel with the shift
that had already occurred for transaction processing. Instead of reviewing piles of
static reports printed on green-bar paper, the OLAP analyst could explore business
results interactively, dynamically adjusting the view of the data – asking questions
and getting answers almost immediately. This freedom from static answers to fixed
questions on a fixed schedule allows business analysts to operate more effectively
and to effect improvements in business operations. In the white paper, the authors
outlined 12 characteristics of an OLAP system. In a 1995 update to the white paper,
six more characteristics were added.

In the 2004, Nigel Pendse, an analyst with Business Intelligence Ltd. who pub-
lishes The OLAP Report, provides another valuable point of view. In a Web page
entitled “What Is OLAP”, Pendse introduces a simpler model, FASMI (Fast Analysis

c© 2015 by Albano et al. 1.4 Data Warehousing Architecture 7

Table 1.2: Comparison between OLTP and OLAP

OLTP OLAP

Function Operational processing Decision support
Users Clerk, IT professional Knowledge worker
DB design Application-oriented Subject-oriented
Usage 90% repetitive 90% ad-hoc
Data Current, detailed, relational Historical, summarized, multidi-

mensional, integrated
Access Read/write Complex read query
No of users A lot Few
DB size 100 MB to GB 100 GB to TB
Orientation Transactions Analysis

of Shared Multidimensional Information), to characterize OLAP systems. Although
no single definition is likely to receive universal support, Pendse’s characterization is
much simpler than the Codd rules. Briefly, the FASMI characteristics are:

Fast. In keeping with the spirit of the “O” in OLAP, such systems need to provide
results very quickly – usually in just a few seconds, and seldom in more than
20 or 30 seconds. This level of performance is key in allowing analysts to work
effectively without distraction.

Analytic. Considering the “A” in OLAP, such systems generally must provide rich
analytic functions appropriate to a given application, with minimal program-
ming.

Shared. An OLAP system is usually a shared resource. This means that there is
a requirement for OLAP systems to provide appropriate security and integrity
features. Ultimately, this can mean providing different access controls on each
cell of a database.

Multidimensional. Multidimensionality is the primary requirement for an OLAP
system, which must present the data in a multidimensional framework. The mo-
tivation for this requirement will be discussed later on.

Information. OLAP systems must allow the user to easily condense large amount
of data into a form that is useful to business manager and decision makers.

1.4 Data Warehousing Architecture

The term data warehousing is used to refer to the process used to organize data in a
data warehouse and then allow end users to analyze them with business intelligence
applications. In practice three types of solutions are adopted, depending on the num-
ber of data layers employed.

One-Layer Architecture. This solution has only one layer of data handled by the
operational system, and the data warehouse is virtual, i.e. it is defined as a view of
operational data, possibly materialized), and it is used by the business intelligence ap-
plications (Figure 1.4). This solution does not require a specific system for managing
the data warehouse and it is usually used as the first low-cost solution for small or-
ganizations, but it does not meet the requirement for separation between operational
and analytical applications.

8 CHAPTER 1 Decision Support Systems c© 2015 by Albano et al.

Operational
Database

Data Sources

OLAP
System

Multidimensional
Analysis

Report
Generator

Data
Mining

BI Applications

Figure 1.4: One-layer architecture

Two-Layer Architecture. This solution is more general than the previous one,
because a data warehouse exists separated from the operational database and man-
aged by a specific system. The data warehouse is loaded with data extracted with
Extract, Transform and Load (ETL) applications from the operational database, and
any other structured data sources, to bring them to a consistent form (Figure 1.5).
While the data sources are updated continuously by operational applications, the data
warehouse is updated periodically with the ETL applications. This situation typically
arises when there are high quality operational databases with schemas sufficiently
similar to that of the data warehouse.

This solution separates

– the system for operational database management from the system for data ware-
house management and decision support,

– the operational applications from the business intelligence applications, so that
business analysis would not interfere with and degrade the performance of opera-
tional applications.

Metadata is information about the structure, content and interdependencies of data
warehouse components, to support developers, administrators responsible for the data
warehouse and the business intelligence applications.

Operational
Database

External
Data

Data Sources

Extract
Transform

Load

ETL Applications

Data
Warehouse

DBMS

Metadata

Data Warehouse

OLAP
System

Multidimensional
Analysis

Report
Generator

Data
Mining

BI Applications

Figure 1.5: Two-layer architecture

c© 2015 by Albano et al. 1.5 What to Model 9

Three-Layer Architecture. This solution is the most general with three data lay-
ers: the data sources, the data staging and the data warehouse. The data staging con-
tains data obtained from the integration of different data sources and prepared for
loading into the data warehouse (Figure 1.6). The data staging may just be a set of
files or, at other extreme, a fully developed relational database. The complexity of
data staging layer depends on the quality of the data sources.

This solution separates the process of extraction and integration of data sources
from the process of data reorganization and loading into the data warehouse.

Operational
Database

External
Data

Data Sources

Extract
Transform

Load

Data Staging

ETL Applications

Data
Warehouse

DBMS

Metadata

Data Warehouse

OLAP
System

Multidimensional
Analysis

Report
Generator

Data
Mining

BI Applications

Figure 1.6: Three-layer architecture

1.5 What to Model

According to [Artz, 2005], to support managers in decision-making, data must be
organized taking into consideration how they use such data to support their decisions
about the performance of key business processes.

� Definition 1.4
A database is designed to represent some aspects of a reality in terms of the
information available about collections of entities with properties and rela-
tionship sets between them, while a data warehouse is a specialized database
designed to represent some aspects of key business processes in terms of
collections of facts about the interesting process measurements, that repre-
sent how the processes are being performed, and a set of dimensions, which
provide the context of the facts, to be used for analyzing the process perfor-
mances.

Let us describe more precisely what to model to help managers in analyzing a busi-
ness process.

Managers are interested in analyzing collections of facts about the perfor-
mance of a key business process, measurable and worthy of improvement.

A fact, in this context, is represented by a set of numerical attributes (hereafter mea-
sure) by which the process performance is tracked and measured in order to maintain
or improve their efficiency. In data warehousing terminology, the interval at which
we take measurements is called the grain.

Examples of measures for a sale of a product are Quantity, Price, and Revenue. How-
ever, without some context, the measures are useless.

10 CHAPTER 1 Decision Support Systems c© 2015 by Albano et al.

Managers think in terms of business dimensions, which give facts their
context, and are used to analyze them to evaluate their effects.

For sales data, the dimensions could include Product, Date, and Store. Dimensions
contain the descriptions of the subject being measured. Examples of questions man-
agers use to ask for decision-making are: “Show me the total sale revenue by product,
year, and store”, “Show me the current and previous year-to-date sales revenue, and
percentage change, by product and by store”.

Managers analyze measurable business process performance using sum-
mary data (called metrics) obtained by grouping facts by different dimen-
sions and combinations of dimensions, and then aggregating measures into
useful forms.

Commons metrics are about economic and financial indicators, but when they are
about efficiency and quality of process, are called Key Performance Indicators,
KPI, because they help understanding how a business process is doing against an
objective.

Managers are interested in analyzing metrics in various levels of details, by
exploiting the fact that some dimensions have a set of associated attributes
that can be structured as a hierarchy.

A date dimension, for example, with attributes Day, Month, Quarter and Year, could
have a hierarchy Day < Month < Quarter < Year, with the meaning that Year is the high-
est level of generality within the hierarchy, the second level Quarter tells us that more
than one quarter is contained in an year, and so on. The combination of a multidi-
mensional and a hierarchical view allows managers to get a good deal of information
from data analysis. For example, managers first see the total sales revenue for the en-
tire year by product, then they move down to quarters to look at the sales by quarter
and product.

Example 1.1
Let us consider the sales data stored in the relational table Sales(Product, Store,
Date, Quantity), where Quantity is the measure and the other attributes are the di-
mensions that describe a sale fact. A data analysis usually does a dimensionality
reduction (grouping) to partition a set of rows whose membership is character-
ized by the fact that all of the rows in a single group agree on the values of the
dimensions that are left out. Each group is then aggregated by a function to com-
pute a metric from the measure values. By aggregation means to compute a single
value from a list of values using an aggregate function such as SUM, COUNT, MIN,
MAX, AVG.

Let us look at some examples of an interactive multidimensional data anal-
ysis concerning the total quantity of products sold (the metric) to be analyzed
by a subset of the dimensions Product, Store, Date. The point is that the user be-
gins with a business question to which wants to answer with the data, gets the
results, analyzes the results, uses this new information to formulate another busi-
ness question, and so on. Later on we will see how to express business questions
in SQL to produce the results.

1. The total sales quantity by product, to determine which product is sold best

c© 2015 by Albano et al. 1.5 What to Model 11

Product Total Sales
Qty

P1 27 407
P2 5 179
P3 3 446

2. The total sales quantity by product and by store, to determine where it is best
to sell certain products

Product Store Total Sales
Qty

P1 S1 13 945
S2 9 875
S3 3 587

P2 S1 1 950
S2 2 500
S3 729

P3 S1 1 000
S2 1 200
S3 1 246

3. A common type of analysis is a generalization of the former: we want to
aggregate the measures on some dimensions and also provide the subtotals
for each value of all dimensions. This analysis produces a report such as the
one in which shows the total sales quantity by product and by store, extended
with subtotals for products, for stores, and with the overall total.

Product Store Total Sales
Qty

P1 S1 13 945
S2 9 875
S3 3 587

P1 Total 27 407

P2 S1 1 950
S2 2 500
S3 729

P2 Total 5 179

P3 S1 1 000
S2 1 200
S3 1 246

P3 Total 3 446

Total 36 032

4. Starting with the results of a previous analysis, we can proceed to a more
detailed one. For example, after a look at the percentage change of annual
quantity sales of products we can also do an analysis by store to understand
the decrease in sales of the product ‘P2’.

Product Total Sales Total Sales Change
Qty 2009 Qty 2010 (%)

P1 12 845 14 562 13
P2 2 753 2 426 −12
P3 1 567 1 879 20
Total 17 165 18 867 10

12 CHAPTER 1 Decision Support Systems c© 2015 by Albano et al.

Product Store Total Sales Total Sales Change
Qty 2009 Qty 2010 (%)

P1 S1 6 445 7 500 16
S2 4 225 5 650 34
S3 2 175 1 412 −35

P1 Total 12 845 14 562 13

P2 S1 900 1 050 17
S2 1 200 1 300 8
S3 653 76 −88

P2 Total 2 753 2 426 −12

P3 S1 450 550 22
S2 580 620 7
S3 537 709 32

P3 Total 1 567 1 879 20

Total 17 165 18 867 10

The reports for decision support are usually represented in a very different form from
the ones shown above. They are much more visually pleasing and intuitive, like the
dashboard of a vehicle, using graphics and color-coded alarms to highlight trends,
exceptions or values lower than predefined ones (Figure 1.7). Microstrategy, a very
active company in the Business Intelligence arena, has some interesting examples on
http://www.microstrategy8.com.

Figure 1.7: Example of Scorecard & Dashboard

c© 2015 by Albano et al. 1.6 Concluding Remarks 13

1.6 Concluding Remarks

Decision support systems, designed to synthesize, with business intelligence tools,
large amounts of data in ways useful to make more rapid and objective decision mak-
ing, had a growing popularity in recent years for their value strategic and competitive.
There has been three very interesting analysis of this trend:

– T. H. Davenport, G. C. Harris, Competing on Analytics: The New Science of Win-
ning, Harvard Business School Press, Boston 2007, for the American context.

– Monitoring Business Intelligence, Report 2007-2008, SDA Bocconi, for the Italian
context.

– T. Burelli, A. Marzona, M. Pighin, From intuition to knowledge, Arachne, Roma,
2007, for the Italian context of small and medium businesses.

It is also interesting to read an article that appeared in print on April 23, 2011 of the
The New York Times edition with the heading When There’s No Such Thing as Too
Much Information, by Steve Lohr. Here is an excerpt of what he says:

Information overload is a headache for individuals and a huge challenge for
businesses. Companies are swimming, if not drowning, in wave after wave
of data — from increasingly sophisticated computer tracking of shipments,
sales, suppliers and customers, as well as e-mail, Web traffic and social-
network comments. These Internet-era technologies, by one estimate, are
doubling the quantity of business data every 1.2 years.

Yet the data explosion is also an enormous opportunity. In a modern econ-
omy, information should be the prime asset — the raw material of new prod-
ucts and services, smarter decisions, competitive advantage for companies,
and greater growth and productivity.

Is there any real evidence of a data payoff across the corporate world? It has
taken a while, but new research led by Erik Brynjolfsson, an economist at the
Sloan School of Management at the Massachusetts Institute of Technology,
suggests that the beginnings are now visible.

Mr. Brynjolfsson and his colleagues, Lorin Hitt, a professor at the Wharton
School of the University of Pennsylvania, and Heekyung Kim, a graduate
student at M.I.T., studied 179 large companies. Those that adopted data-
driven decision making achieved productivity that was 5 to 6 percent higher
than could be explained by other factors, including how much the companies
invested in technology, the researchers said.

In the study, based on a survey and follow-up interviews, data-driven deci-
sion making was defined not only by collecting data, but also by how it is
used — or not — in making crucial decisions, like whether to create a new
product or service. The central distinction, according to Mr. Brynjolfsson, is
between decisions based mainly on data and analysis and on the traditional
management arts of experience and intuition.

After having presented what is modeled in a data warehouse, in the following the
attention will be on:

– How to model: which data model is used to model a data warehouse.
– How data warehouses are designed: which methodology is used for the design of

a data warehouse.

14 CHAPTER 1 Decision Support Systems c© 2015 by Albano et al.

– How data are analyzed: which operators are available to analyze data.
– How to implement a data warehouses system: which relational DBMS technolog-

ical extensions are needed to support operations on data warehouses.

1.7 Summary

– An information system is a system whose purpose is to store, process, and com-
municate information.

– The focus of an operational information system is the execution of business pro-
cesses, the focus of a decision support information system is the evaluation of the
processes, while the focus of a web-based information system is the use of internet
web to allow new routes to market.

– A data warehouse is a decision support database with historical, nonvolatile data,
to facilitate analysis of the performance of key business processes, worthy of im-
provement.

– Data warehouses and operational databases provide different functions and require
different kinds of data, therefore they need to be maintained separately.

Chapter 2

DATA WAREHOUSE MODELING

The purpose of a data warehouse is not just to store data but rather to facilitate de-
cision making. As such, the first step is to model a data warehouse on the basis of
the relevant types of business analyses. Data warehouse modeling is a process that
produces a well-organized abstract dimensional data model to understand the struc-
ture and contents of the data to best support the needs of the business users. In the
following sections, three examples of data models are presented that are relevant in
dimensional modeling, using the basic concepts of facts, measures, dimensions and
hierarchies:

– A conceptual multidimensional model, useful to reason about the characteristics of
data at a conceptual level, independent of implementation concerns, as it happens
with the Entity-Relationship model for databases.

– A multidimensional relational model, the traditional logical model to represent
data in data warehouse systems.

– A multidimensional cube model, useful to show the basic operators for data analy-
sis.

2.1 Conceptual Multidimensional Model

While it is universally recognized that a data warehouse is based on a multidimen-
sional model, there is no agreement on the approach to the conceptual modeling. In
what follows, we will present a simplified version of the Dimensional Fact Model
(DFM), proposed in [Golfarelli et al., 1998], a graphical conceptual model for data
warehouses, aimed at

– effectively supporting conceptual design,
– enabling communication between the designer and the final user in order to refine

requirements specification,
– supplying a stable platform for logical design, and
– providing an expressive and non-ambiguous design documentation.

The formalism enables the representation of the following basic information.

Facts
The most important abstraction mechanism of the conceptual model is the collections

16 CHAPTER 2 Data Warehouse Modeling c© 2015 by Albano et al.

of facts, i.e., the collection of observations of the performance of a business process.
Facts are modeled by a rectangle divided in two parts, which contain the facts name
and the set of measures. A measure is a numerical property of a fact that describes
one of its quantitative aspects of interests for analysis.

Sometimes, facts are without measures, and are usually called factless facts, but in
accordance with our terminology we call them measureless facts. This happens when
facts represent events that only need to be counted.

Dimensions
Dimensions give facts their context, and are used to analyze them. Dimensions are
represented by lines emanating from the rectangle of facts and ending with a circle
(Figure 2.1). In general a dimension is described by a set of attributes used to qual-
ify, categorize, or summarize facts in reports. For example, the dimension Date has
the attributes Day, Week, Month, Quarter, and Year, while the dimension Store has the
attributes City, State and Country. Dimensional attributes are represented as shown in
Figure 2.2a, and the same names should not be used for attributes of different dimen-
sions.

Sales
Quantity
Price
Revenue

Date
Fact

Measures Dimensions

Store

Product

Figure 2.1: A conceptual design without dimensional attributes

Dimensional Hierarchies
In the presence of dimensional attributes, an interesting aspect to model, for the pur-
poses of the data analysis, is a particular hierarchical relationship between their val-
ues, i.e., a many-to-one association between pairs of dimensional attributes. For ex-
ample, the values of Month are in the hierarchy with those of Quarter and Year (Month
→ Quarter→ Year), in the sense that a year is made up of more quarters, and a quarter
is made up of more months, and, viceversa, a month corresponds to a single quarter,
and a quarter corresponds to a single year. For this reason it is said that Year is more
general than Quarter, and Quarter is more general than Month. In the terminology of
the relational data model, each arc of the hierarchy models a functional dependency
between two attributes.

Dimensional hierarchies are represented as shown in Figure 2.2b, with a directed
tree, rooted in a dimension, and leaves representing the most general attributes.

Since a week usually crosses the boundary of two consecutive months, it is usually
not treated as a lower abstraction of month. Instead, it is treated as a lower abstraction
of year, since a year contains approximately 52 weeks.

The presence of a hierarchy between the dimensional attributes increases the possi-
bilities of data analysis from different perspectives (Multidimensional Analysis). For
example, once the sales of products have been analyzed by year, we can have a deeper
analysis at a different level of detail to analyze product sales by quarter.

c© 2015 by Albano et al. 2.1 Conceptual Multidimensional Model 17

Sales
Quantity
Price
Revenue

Date
Month

Week

Day

Quarter

YearProduct

CategoryName

Store

State
City Country

(a) Without dimensional hierarchies

Sales
Quantity
Price
Revenue

Date

Week

DayDay

Month

Quarter

YearProduct

Name Category

Store

State
City Country

(b) With dimensional hierarchies

Figure 2.2: A conceptual design with dimensional attributes

The formalism enables the representation of other information. Let us see some ex-
amples (Figure 2.3).

Sales
Quantity
Price
Revenue
Commission

Date

Week

DayDay

Month

Quarter

Year

Agent
Supervisor

Product
Name

Category

BillNumber
LifetimeWarranty

Customer

Billing
Customer

Shipping
Customer

State
|

City
Country

Figure 2.3: A conceptual design with other Dimensional Fact Model features

1. Descriptive attributes. Dimensions and dimensional attributes are usually repre-
sented with arcs ending with a circle to model that their values may be used in data
analysis for selecting or grouping facts data. However there are cases in which di-
mensions and dimensional attributes are to be considered descriptive in the sense
that in the data analysis is used only for selecting data, or to show their values in
the report result, but not for grouping or aggregating data. A descriptive attribute
is represented with an arc without a circle.

2. Degenerate dimensions. Dimensions without any attributes are called degenerate
dimensions. Usually these are transaction-based numbers which describe the fact,
but are not measures because it is meaningless to aggregate them. A typical exam-
ple is a Bill number (Figure 2.3).

18 CHAPTER 2 Data Warehouse Modeling c© 2015 by Albano et al.

3. Optional attributes or dimensions. When the value of an attribute or a dimension
may be undefined, the corresponding arcs are “cut”.

4. Types of hierarchy. A hierarchy among dimensional attributes can be of the fol-
lowing types:

– Balanced, when the possible levels are a predefined number and the attribute
values are always defined. For example, the Date attributes Month, Quarter and
Year belong to a balanced hierarchy with three levels.

– Ragged, when the values of one or more attributes may be undefined. A ragged
hierarchy is graphically denoted by marking with a dash the attributes whose
values may be undefined. For example, a location dimension with attributes
Country, State and City, is balanced in the US, but it is ragged for most European
countries where State is non used.

– Recursive (unbalanced), when the possible levels are a variable number. For
example, in the dimension Agent there is the attribute Supervisor representing a
recursive hierarchy among agents.

In the conceptual schema, a ragged hierarchy is represented by cutting the circle
of the interested attribute, and a recursive hierarchy is represented with a loop.

5. Shared hierarchy. The dimensions can share some hierarchy attributes, such as City
and Customer. To avoid ambiguity the circle is doubled and the arcs are oriented.
Another typical example is the date hierarchy: a fact may have more than one Date
dimension, with different semantics, and it may be useful to share among them the
hierarchy month-quarter-year.

6. Multivalued dimension or attribute. A fact may be associated with more than one
value of a dimension. For example, the fact sale is associated with several sales-
people who have promoted it. In this case, the outgoing arc from the fact ends with
a double arrow. Besides dimensions, dimensional attributes also may be multival-
ued, and represented in the same way.

2.1.1 Considerations on the Conceptual Modeling of a Data Mart

While in a database project, the focus is on collections of entities, their properties,
associations and hierarchies between collections, in a data mart project, the focus
is on the collection of facts, their measures, their dimensions, attributes and hierar-
chies [Kimball and Ross, 2002a], [Adamson and Venerable, 1998].1

Let us present the key steps in conceptual design of a data mart, assuming that the
business process of interest has already been identified together with the key analysis
to be performed on the data to get the necessary information to make better busi-
ness decisions. The example is about the business process of registration of customer
orders. The objective is the analysis of the portfolio to adapt marketing strategies,
promotion and inventory management.

Step 1: Identify the Granularity of the Fact

When modeling a data mart, the first fundamental decision to be taken is the meaning
of the fact, because from this choice derive the measures that characterize the fact
and the dimensions for its analysis. This is a classic problem in the design of data
marts: you must carefully choose the right grain of the fact, i.e., the precision with
which the measurements are taken.

In the case of customer orders, it could be said that the interesting thing is the Order,
but, thinking about its meaning, we find that there is a problem, because an order is

1. We are grateful to Nicola Ciaramella for his contribution to the preparation of this section.

c© 2015 by Albano et al. 2.1 Conceptual Multidimensional Model 19

composed of a header and one or more lines, and we should decide if the fact is the
header, about all products ordered, or the line for each product ordered.

As a general rule, it is best to choose a fine grain, even if it increases the number of
facts to be treated, and so to choose a order line as a fact, because later in the analysis
with aggregation functions, you can always go from the measures about the lines to
the measures about the orders. If, instead, we focus on orders, there is no way to do
the analysis in reverse order to move from measures about the orders to measures of
individual lines.

Another consideration to keep in mind for the choice of the granularity of the fact
is its nature, which may be of the following types (Figure 2.4).

� Definition 2.1
A Transaction Fact represents the information on a specific event that oc-
curred at a specific point in time during the execution of a business process.

For example, a fact is a transaction (withdrawal or deposit) on a bank account.

� Definition 2.2
A Periodic Snapshot Fact represents the information on a series of events
that have occurred over a period of time.

For example, a fact is the monthly summary of all transactions on a bank account.

� Definition 2.3
An Accumulating Snapshot Fact represents the information on the lifetime
of an evolving event that has a duration and change over time.

For example, the fact is about a mortgage application which is processed with the
following phases: 1) presentation of the documents by the applicant as requested
by the bank, 2) the bank’s assessment of the documentation made available by the
applicant, 3) approval of the practice and the initiation of investigative procedures; 4)
mortgage completion. At the end of each phase, the fact about a mortgage application
changes with the specification of the relevant information about its state. A solution
for this case is presented in the appendix on case studies.

Cardinality of the facts
The grain of the fact determines the size of the set of facts that can be estimated using
the estimates of the number of possible values for each dimension.

For example, let us consider the monthly Sales facts of the last five years, with the
following total number of dimension values: Date (12× 5 = 60), Product (5 000), and
Store (200).

If all the products are sold by all stores during a given month, there is a fact for
each combination of dimension values, and so the number of sales facts is obtained by
multiplying the dimension sizes (60× 5000× 200 = 60 000 000). Thus, the number
of facts is many times larger than the dimension sizes.
In general, the number of combinations that actually appear in the set of facts is much
less than this maximum number, because only some products are likely to be sold by
each store during a given month. This property is referred to as facts sparsity.

20 CHAPTER 2 Data Warehouse Modeling c© 2015 by Albano et al.

Feature Transaction Periodic Accumulating

Time period Instant of time Regular interval Indeterminate period
represented of time, usually

of short duration

Grain One fact per One fact per One fact for the
transaction time period entire lifetime of an event

Update No No For each state change

Measures Related to Related to periodic Related to activities
transaction activities. which have a definite
activities. lifetime.

Dimension Event Date Date at the Multiple date dimensions
Date end-of-period to show the achievement

of different milestones

Figure 2.4: Comparison of fact types

The cardinality of the facts depends on both the number of dimensions and the
grain of the fact. Suppose that the marketing department requests that daily sales
must be considered as facts. With the grain of sales changed to daily, the number of
fact sales becomes 1 825 000 000. In this way, a fine granularity could result in a huge
cardinality of the facts. Conversely, a too coarse granularity could result in facts that
are not detailed enough for users to perform meaningful analysis.

Step 2: Identify the Fact Measures

Once the fact to represent has been chosen, the numerical measurements of interest
are defined. A measure describes one of the fact’s quantitative aspects of interest
for analysis.2 Facts may be also without measures, when used only to represent the
occurrence of an event, such as the attendance of a student in a course.

In choosing a measure we need to ask whether it makes sense to aggregate them
with the function SUM, for analysis of the type “total value of the measure M , group-
ing data by dimension D”, which is usually expressed in the abbreviated form “total
of M , by D”. In general, the aggregations with the function SUM are the most used
in the analysis, but do not fall into the trap of believing that everything that can add
up is an interesting measure, or that the sum is always meaningful. In general, the
following measure types are considered.

� Definition 2.4

An additive measure (also called a flow or rate measure) can be meaning-
fully aggregated with the function SUM by any dimension.

An additive measure is the most common type of measures. It refers to a time period
and it is evaluated at the end of the period to record the cumulative effect over the
period. For example, the number of products sold in a day or the monthly income.

2. The measurements are referred to as measures or facts, but we prefer the term measures because it
is more descriptive.

c© 2015 by Albano et al. 2.1 Conceptual Multidimensional Model 21

� Definition 2.5
A semi-additive measure (also called a stock or level measure) can be
meaningfully aggregated with the function SUM by certain dimensions, but
not all.

A semi-additive measure refers to a particular point in time and it is evaluated to
record the state of an event. For example, the monthly account balance or the monthly
inventory quantity-on-hand.

� Definition 2.6
A measure M is semi-additive with respect to a dimension D1 when it can
not be aggregated with the function SUM for groups of data with different
values of D1.

Therefore, it makes sense to perform an analysis of the type “total of M , by D1” —
but not by a different dimension D2 — or to perform analyses of the type “total of
M of data with a certain value of D1, by D2”. However, M may be aggregated with
other functions such as AVG, MIN, MAX, for groups of data with different values ofD1.

For example, the bank measure Account balance is semi-additive with respect to a
dimension Date, but adding the Account balance for a particular day by the dimension
Customer, or Branch, or Account can provide a meaningful information for the total
amount of money the bank is holding at a given point in time.

Example 2.1
Let us consider the monthly Quantity-on-hand measure for different products and
store at the end of every month. Quantity-on-hand is semi-additive with respect
to both the dimension Month, and the dimension Product. In fact, it is not mean-
ingful to total the Quantity-on-hand by Product because we would total values
of different months, but it also not meaningful to total the Quantity-on-hand by
Month because we would total values of different products. It is correct to total
the Quantity-on-hand by Month and by Product, or to total the Quantity-on-hand
of the product P1 by Month, or to total the Quantity-on-hand of the month M1 by
Product.

Inventory

Product Store Month Quantity-on-hand

P1 D1 M1 300
P1 D2 M1 100
P2 D1 M1 500
· · · · · · · · · · · ·
P1 D1 M12 100
P1 D2 M12 0
P2 D1 M12 900

� Definition 2.7
A non-additive measures (also called value-per-unit measures) cannot be
aggregated with the function SUM by any dimension.

22 CHAPTER 2 Data Warehouse Modeling c© 2015 by Albano et al.

Non-additive measures are usually the result of ratios. The only calculation that can
be made for such a measure is counting the number of facts with such measures.
Examples of non-additive measures include:

– Per-unit price cannot be added by any dimensions, while an extended price, such
as Per-unit price × Quantity purchased, it is correctly additive by all dimensions.

– Percentages and ratios. A ratio, such as Gross Margin = Margin / Revenue, is non-
additive. Whenever possible, such measures should be replaced with the under-
lying calculation measures (numerator and denominator) so that the calculation
is made in the analysis as a metric. It is also very important to understand that
when adding a ratio, it is necessary to take the sum of numerator and denominator
separately and these totals should be divided.

– Measure of intensity such as the room temperature.
– Averages such as average sales price.

� Definition 2.8

A calculated measure is a measure calculated on the basis of other mea-
sures.

It is strongly suggested that standard calculated measures are defined to avoid having
users perform these calculations, because often they do not agree on their semantics
and may perform wrong calculations. Moreover, having users doing standard calcu-
lations runs the risk of making the data warehouse seem unfriendly and complex,
and, much worse, if the answers are wrong or inconsistent, the data warehouse will
be viewed as wrong.

Example 2.2 Let us consider the following interesting measures for the fact
OrderLines

OrderLines
Quantity
ExtendedPrice
ExtendedCost
Discount
Revenue
Margin

– The Quantity is the total number of products ordered.
– The ExtendedPrice and the ExtendedCost are calculated as follows

ExtendedPrice = Unit Price × Quantity
ExtendedCost = Unit Cost × Quantity

– The Discount is the value to be subtracted from the extended price.
– The Revenue and the Margin are calculated as follows

Revenue = ExtendedPrice − Discount
Margin = Revenue − ExtendedCost

c© 2015 by Albano et al. 2.1 Conceptual Multidimensional Model 23

Step 3: Identify the Fact Dimensions

The dimensions are chosen to provide context for facts. Without context, facts are
impossible to analyze. To choose the dimensions, it is useful to consider the classic
suggested questions to analyze the facts of everyday life (the 5W-1H rule: who, what,
when, where, why, how).

Who is the fact about?
With reference to the orders, they are generated by customers and, for example, it is
interesting to analyze the order lines by customers to compute the total revenue. Thus,
we select a Customer dimension and then later on we will define its attributes of in-
terest. The question about who has another interesting answer: an order involves both
the customer and the sales person that promotes the order on behalf of the company,
and therefore SalesPerson is another relevant dimension.

The choice of a dimension is not always clear. However, it is useful to ask a ques-
tion like this to find the right answers in the specific case under consideration.

What is a fact about?
As regards the order lines, a fact is about a product. Therefore, there is a Product
dimension, and the choice is justified by the fact that it is meaningful and interesting
to analyze order lines by products involved. This dimension is used to analyze the
total revenue and cost of order lines by products of a certain category.

We wonder now if there are other interesting answers to the question of what is an
order line about. No other relevant answers immediately come to mind.

When did a fact take place?
For when the answer is that we identify an instant in time or a time period. The
two choices are not equivalent. In the case of customer orders, if we consider the
order as an instant in time, then we can always perform an analysis by a time period,
the converse is not true. For an analyst of business trends the time period is more
interesting: to know the hour and minute of an order has its operational importance,
but how orders are going is unlikely to be relevant; the preferred analysis will be by
day or even better by month.

For our example we decided to choose the Date dimension for order lines, as it
usually happens in any multi-dimensional model used in companies.

Where did a fact take place?
The question involves the definition of a Location dimension, another dimension that
appears very often in real multidimensional models. For our example, this dimension
is not considered because it is assumed that the location information is the customer
city.

Similarly we could proceed further by asking questions such as Why did a fact
happen?, How did a fact happen? to discover other dimensions, but the example
does not suggest interesting answers.

We have a multidimensional model with the fact OrderLines and the dimensions
Customer, SalesPerson, Product, Date, and now it is necessary to establish the attributes
of dimensions and any hierarchy among them.

Before proceeding to the definition of the dimension structure it is useful to ask
whether it is appropriate to associate to the facts descriptive attributes or degener-
ate dimensions. For the fact OrderLines, in addition to the measures discussed above,
we consider useful also the degenerate dimension OrderNumber and the descriptive

24 CHAPTER 2 Data Warehouse Modeling c© 2015 by Albano et al.

attribute OrderLineNo (Figure 2.5): analysis by OrderNumber is useful for finding the
average revenue by order, and (OrderLineNo, OrderNumber) is useful for identifying
each line on an order.

OrderLines
Quantity
ExtendedPrice
ExtendedCost
Discount
Revenue
Margin

Date

OrderNumber
OrderLineNo

Product

CustomerSalesPerson

Figure 2.5: The data mart OrderLines conceptual design: the dimensions

Step 4: Identify Dimensional Attributes

Dimensions are the qualifiers that make the measures of the facts meaningful, because
they answer the 5W-1H aspects of a question. To perform a more interesting analysis,
it is generally necessary to describe each dimension with attributes relevant to the
analysis that must be performed, and thus such that for each their value a subset of
the facts on which a measures aggregation is somewhat interesting can be identified.

Let us consider the Date dimension. It is easy to imagine that among the require-
ments there may be both analysis of order lines by the Day attribute to compute the
sum of revenues, and analysis by other date attributes, such as Month, Quarter and
Year.

Let us consider then the Customer dimension and ask if it makes sense and is rel-
evant to group customers by city of residence. The answer is yes because the infor-
mation that the customers of a city have issued orders for a total amount higher than
those of other cities helps to make a decision of whether to intervene on customers of
different cities in a different way with different promotions.

This reasoning draws similar concepts that underlie the segmentation of customers.
A customer segmentation is useful if

– segments behave differently with respect to their buying behavior;
– segments have a certain homogeneity behavior;
– it is possible to operate on segments with differentiated promotion actions.

Theories of customer segmentation also require other properties of a good segmenta-
tion, such that the segments are large enough to warrant different marketing actions,
but the three properties listed capture the essence of the idea of segmentation: iden-
tifying customer groups that have a common behavior, which is very different from
that of other groups, and so different marketing effort must be studied.

This statement is simply the principle underlying the clustering, one of the most
important and interesting strategies for data mining. If we apply these principles to
the structuring of dimensions, it turns out that the grouping of data may also be done

c© 2015 by Albano et al. 2.1 Conceptual Multidimensional Model 25

following other criteria. For example, it is usually not necessary that the Date di-
mension is structured into periods, but if the sales are about products with strong
seasonality, then it will be interesting to divide time into seasons defined according
to the logic inherent to the phenomenon to be analyzed. Suppose that some products
are sold almost exclusively in the pre-Christmas period, in this case the year can be
divided into two periods, one from the beginning of December until Christmas, the
other covering the rest of the year. Another example is that it may be useful to make
a distinction between sales on the weekend and those on other days.

If we think of a dimensional model of the data of an urban public transport com-
pany, we discover that we need to move from the day to time periods, such as entry
and exit from offices or schools. The definition of time periods is not standard: it is
a decision that must be taken according to the logic inherent to the movements of
travelers, but also according to the logic of company operations. For example, early
morning (6 a.m. to 8 a.m.), late morning hours (8 a.m. to 11 a.m.), rush hour (11 a.m.
to 1 p.m.), lunch hour (1 p.m. to 2 p.m.), and so on.

If the company cannot change its way of operating at night, then breaking the night
time in time periods serves only to satisfy curiosity, but ends up complicating the
report without any real added value for decision-making.

In general, the structure of a dimension should therefore reflect two logics:

– The logic of the event to be analyzed: the values of dimensional attributes at every
level of the hierarchy, are used to group fact data so that groups are internally
homogeneous and different between themselves with respect to the values of the
measures, to help the analyst to understand what the factors that influence the event
are.

– The logic of company operations: the values of dimensional attributes at every
level of the hierarchy are used to group fact data so that groups are internally
homogeneous and different between themselves with respect to their reaction to
the actions of the company, to help the decision maker to revise their actions in
order to influence the event.

Step 5: Identify the Dimensional Attribute Hierarchies

Dimensional attributes are useful for generating readable reports, but the most inter-
esting attributes for interactive multidimensional analysis are organized into hierar-
chies to allow groupings of facts data and aggregations of the measures at different
levels of generality, as usually required in practice. For example, in the case of the
Date dimension, the hierarchy Day→ Month→ Quarter→ Year is relevant. The hier-
archies of interest for the other dimensions are shown in Figure 2.6.

26 CHAPTER 2 Data Warehouse Modeling c© 2015 by Albano et al.

OrderLines
Quantity
ExtendedPrice
ExtendedCost
Discount
Revenue
Margin

Date
Day

MonthName

DayOfWeek

Month

Quarter

Year
OrderNumber

OrderLineNo

ProductName

Category

Customer

CustomerId

City State
Country

SalesPerson

SalesArea

SalesPersonName

Figure 2.6: The data mart OrderLines conceptual design with dimensional hierar-
chies

2.2 Multidimensional Relational Model

A conceptual multidimensional schema is transformed into a relational logical schema
by applying a set of mapping rules, as will be described in the following chapter. The
result depend on the complexity of the conceptual schema, and in this section, we
show only the basic idea of the structures of specialized schemas usually used, called
star schema, snowflake schema and constellation schema.

� Definition 2.9
A star schema consists of a fact table, which contains the data about the
facts to be analyzed, and a set of dimension tables, one for each dimension.
Each of the dimension tables has a single attribute primary key which has
a one-to-many relationship with a foreign key in the fact table. Usually a
dimensional primary key is a simple integer surrogate key that is numbered
sequentially from 1 to the number of records in the dimension table. Usually
a meaningful integer surrogate key of the form YYYYMMDD is used for a date
with the granularity of a day (e.g. 20140926 for September 26, 2014).

The fact table is at the center of the “star”, whose tips are the dimension tables (Fig-
ure 2.7). A star schema is an intentional simplification of the database design that
would be achieved by following the standard rules of normalization.

Note that using the surrogate key YYYYMMDD for the dimension Date, the Day at-
tribute is useless and a value of the Month attribute is an integer of the form YYYYMM
to represent correctly the dimensional hierarchy Month→ Year.

c© 2015 by Albano et al. 2.2 Multidimensional Relational Model 27

Sales

SalesAmt
Date Day

Month

Year
Product

Price
Name Category

Market

State
City Country

Name

(a) The conceptual design

Sales
MarketFK
DateFK
ProductFK
SalesAmt

Market
MarketPK
Name
City
State
Country

Date
DatePK
Month
Year

Product
ProductPK
Price
Name
Category

(b) The relational design

Figure 2.7: Example of a star schema

� Definition 2.10
A snowflake schema is a variant of the star schema, where some dimension
tables are normalized, thereby further splitting the data into additional tables.

The saving of space is usually negligible in comparison to the typical magnitude of
the fact table (Figure 2.8). Furthermore, the snowflake structure can increase the time
to execute queries that require hierarchies to be traversed, since more joins will be
performed to execute them. Hence, although the snowflake schema reduces redun-
dancy, it is not as popular as the star schema in data warehouse design.

Sales
MarketFK
DateFK
ProductFK
SalesAmt

Market
MarketPK
Name
CityFK

City

CityPK
City�UK�
StateFK

State
StatePK
State�UK�
Country

Date
DatePK
Month
Year

Product
ProductPK
Price
NameFK

Name
NamePK
Name�UK�
Category

Figure 2.8: Example of a snowflake schema

� Definition 2.11
A constellation schema has multiple fact tables that share dimension tables.

The example given in Figure 2.9 has two fact tables Sales and Returns sharing the
Date and Product dimensions.

28 CHAPTER 2 Data Warehouse Modeling c© 2015 by Albano et al.

Sales
MarketFK
DateFK
ProductFK
SalesAmt

Returns
CustomerFK
DateFK
ProductFK
Quantity

Market
MarketPK
Name
City
State
Country

Customer
CustomerK
Gender
Age
Income

Date
DatePK
Month
Year

Product
ProductPK
Name
Category
Price

Figure 2.9: Example of a constellation schema

The main relational DBMS vendors provide OLAP servers that map operations on
multidimensional data to standard relational operations on specialized relational DBMS
to store and manage data warehouses. Such servers are referred to as ROLAP (Rela-
tional OLAP).

c© 2015 by Albano et al. 2.3 Multidimensional Cube Model 29

2.3 Multidimensional Cube Model

� Definition 2.12 Cube Model

A multidimensional cube model (data cube) represents facts with n dimen-
sions by points in an n-dimensional space. A point (a fact) is identified by
the values of dimensions and has an associated set of measures.

Such a multidimensional view is an intuitive way to think about OLAP queries and
their results. For the sake of simplicity, we will consider a cube with at most three
dimensions and one measure.

Example 2.3
Let us consider the analysis of the daily sales of different products in different
stores over different days. Let us assume that data are stored into a fact table such
as that shown in the figure (a). Store identifies a store, Product identifies a product,
Date identifies a day, and Qty identifies the quantity sold of that product at that
store in that time period.

Store Product Date Qty

S1 P1 D1 300
S2 P1 D1 500
S3 P1 D1 50
S1 P2 D1 30
S2 P2 D1 50
S3 P2 D1 400
S2 P1 D2 200
S3 P1 D2 600
S1 P2 D2 900
S2 P2 D2 800
S3 P2 D2 70

(a) Fact Table

Store
S1 S2 S3

(b) Data Cube

Product

P1

P2

D2

D1

Date

300 500 50

30 50 400

200 600

900 800 70

We can view this sales data as 3-dimensional, because the value of the measure
Qty is a function of the Store, Product, and Date attributes, which form the so-
called dimensions. Consequently, we can also think of the data in a fact table as
being arranged in a 3-dimensional cube shown in the figure (b). For example, the
cell (’S1’, ’P1’, ’D1’) contains the sales for the product P1 on date D1 by the store
S1.

The 3-dimensional cube is a generalization of a 2-dimensional cross-tabulation
commonly used to give a basic picture of how two attributes inter-relate because
it helps to search for patterns of interaction.

Store

Product S1 S2 S3

P1 300 500 50
P2 30 50 400

When dimensions have attributes and hierarchies, the multi-dimensional cube is more
complex. We will assume that additional information about the dimensions are stored
in tables, which describe dimensions’ attributes.

30 CHAPTER 2 Data Warehouse Modeling c© 2015 by Albano et al.

Some vendors provide OLAP servers that implement the fact table as a data cube
using a specialized data structure. Such implementations are referred to as MOLAP
(Multidimensional OLAP).

2.3.1 OLAP Operations in the Multidimensional Data Model

Let us show some typical OLAP operations for multidimensional data. Each of the
operations described below is illustrated in Figure 2.10.

S1 S2
Store

S3

Dat
e

P1
Product

P2

D2

D1

S1 S2
Store

P1
Product

P2

dice for
Date = ’D1’ and
Store in (’S1’, ’S2’) roll up for Date

slice for Date = ’D1’

pivot

300 500

30 50

S1 S2
Store

S3

P1
Product

P2

300 700 650

930 850 470

S1 S2
Store

S3

P1
Product

P2

300 500 50

30 50 400

S1

S2Store

S3

P1
Product

P2

300 30

500 50

50 400

300 500 50

30 50 400

200 600

900 800 70

Figure 2.10: Examples of typical OLAP operations on multidimensional data

Slice and dice
The operators slice and dice generate sub-cubes by selections, but they do not change
the measures values, that is they do not make summarizations:

– The slice operator selects a cross section that cuts across a cube with a selection
on one dimension (Figure 2.10).

– The dice operator selects a sub-cube with a selection on two or more dimensions
(Figure 2.10).

Roll-up and Drill-down
The roll-up operator, also called drill-up, performs summarizations at different levels
of details either by dimension reduction or by climbing up dimension hierarchy.
Figure 2.10 shows the result of a roll-up operation by removing the date dimension,
summarizing the the quantity sold by product and by store.

The drill-down operator is the reverse of roll-up. It produces more detailed data
from less detailed data. Drill-down can be used by either stepping down a hierarchy
for a dimension or introducing additional dimensions.

c© 2015 by Albano et al. 2.3 Multidimensional Cube Model 31

Pivot
The pivot operator (also called rotate) performs a rotation of the data axes to provide
an alternative presentation of data (Figure 2.10).

2.3.2 The Extended Cube

Let us assume that each dimension is extended with an additional value “∗”. This
value has the intuitive meaning “all”, and it represents summarization along the di-
mension in which it appears. A cube can be extended with new “borders” made of
cells containing the value of aggregate functions (we consider here only the SUM) as
shown in Figure 2.11.

S1 S2
Store

S3 ∗

Da
te

P1

Product P2

∗

∗

D1

D2

300 500 50 850

30 50 400 480

330 550 450 1330

200 600 800

900 800 70 1770

900 1000 670 2570

300 700 650 1650

930 850 470 2250

1230 1550 1120 3900

Figure 2.11: Three-dimensional cube extended with cuboids

For example, using the notation Sales(Store, Product, Date, Qty) for a cube with dimen-
sions Store, Product, Date and a measure Qty, we can denote subcubes as follows:

– (’S1’, ’P1’, ’D1’) is the cell that contains 300, the sales for the product P1 on date D1
by the store S1;

– (’S1’, ∗, ’D1’) is the cell that contains 330, the sum of sales for all products on date
D1 by the store S1;

– (’S1’, ∗, ∗) is the cell that contains 1 230, the sum of sales for all products over all
time by the store S1;

– When a dimension is used as a coordinate instead of one of its values, the nota-
tion denotes a so called cuboid. For example (Store, Product, ∗) is the cuboid “roll
up for Date” in Figure 2.10, with two dimensions with the cells that contain the
sum of sales over all time by the dimensions Store and Product (in SQL terms, the
sales data are grouped by Store and Product, and the aggregate function SUM(Qty)
is computed).

In Figure 2.11, the border with the lightest shading represents aggregates in one di-
mension, darker shading for aggregates over two dimensions, and the darkest cuboid
in the corner for summarization over all three dimensions. In general the border rep-
resent only a small addition to the volume of the data cube (the white cuboid).

32 CHAPTER 2 Data Warehouse Modeling c© 2015 by Albano et al.

Table 2.1: Sales extended cross-tabulation

Store

Product S1 S2 S3 Total

P1 300 500 50 850
P2 30 50 400 480
Total 330 550 450 1330

The 3-dimensional extended cube is a generalization of a 2-dimensional extended
cross-tabulation (Table 2.1).

To speed up data analysis, commercial data cube systems precompute all or some
of the cuboids and store them as materialized views of the data cube. The problem of
selecting the cuboids to precompute will be studied in a later chapter.

The total number of cuboids for a data cube with three dimensions is 2 3 = 8. The
possible cuboids can also be denoted without using the “∗” as follows: (Store, Product,
Date), (Store, Product), (Store, Date), (Product, Date), (Product), (Date), (Store), (). (Store,
Product, Date) denotes the data cube, while () denotes the total sum of all sales.

These cuboids can be represented as a lattice, also called the data warehouse lat-
tice, as shown in Figure 2.12. We say that the cuboid C1 is below the cuboid C2,
written C1 � C2, if and only if C1 can be computed from C2. The cuboids are named
using the abbreviations P for Product, S for Store, D for Date.

S1 S2
S

S3

D

P1
P

P2

D2

D1

S1 S2
S

S3

P1
P

P2

300 700 650

930 850 470

S1 S2
S

S3

1230 1550 1120

D1 D2
D

P1
P

P2

850 800

480 1770

D1 D2
D

1330 2570

3900

300 500 50

30 50 400

200 600

900 800 70

()

(P) (D)(S)

(S, P)

(S, P, D)

(P, D)(S, D)

Figure 2.12: Lattice of cuboids

In general the computation of the cuboid C1 from C2 depends on the aggregate func-
tion used, which can be of one of the following types.

c© 2015 by Albano et al. 2.3 Multidimensional Cube Model 33

� Definition 2.13 Distributive Aggregate Functions

An aggregate function f on a multiset of values V is distributive if there is a
local aggregate function fl and a global aggregate function fg, such that for
any k-partition {V1, . . . , Vk} of V we have

f(V) = fg({fl(V1), . . . , fl(Vk)})

For example, the SQL functions SUM, MIN, MAX and COUNT are distributive aggregate
functions:

– SUM(V) = SUM({SUM(V1), . . . , SUM(Vk)})
– MIN(V) = MIN({MIN(V1), . . . , MIN(Vk)})
– MAX(V) = MAX({MAX(V1), . . . , MAX(Vk)})
– COUNT(V) = SUM({COUNT(V1), . . . , COUNT(Vk)})

� Definition 2.14 Algebraic Aggregate Functions

An aggregate function is algebraic if it can be computed from a finite alge-
braic expression defined over distributive functions.

For example, the functions average (AVG), variance (VAR), and standard deviation
(STDEV) are algebraic aggregate functions, which can be computed on V using the
following distributive aggregate functions on the multiset of a k-partition {V1, . . . , Vk}

– ni = COUNT(Vi)

– si = SUM(Vi)

– s2i = SUM(V 2
i), where V 2

i is the set of the squares of the various elements of Vi.

Let n = COUNT(V) = SUM({n1, . . . , nk}).
The functions AVG(V), VAR(V) and STDEV(V) are computed as follows:

– AVG(V) = SUM({s1, . . . , sk})/n

– VAR(V) =
SUM({s21, . . . , s2k})− (SUM({s1, . . . , sk}))2/n

n− 1

– STDEV(V) =
√

VAR(V)

� Definition 2.15 Holistic Aggregate Functions

An aggregate function is holistic if it can not be computed from other aggre-
gate functions.

For example MEDIAN, MODE, RANK.

34 CHAPTER 2 Data Warehouse Modeling c© 2015 by Albano et al.

2.4 Summary

– A data warehouse conceptual model is the best support for discussing, verifying,
and refining user specifications since it achieves the optimal trade-off between
expressivity and clarity.

– A multidimensional relational model is used to implement data warehouses. This
model can adopt a star schema, snowflake schema or a constellation schema. The
core of a multidimensional model is a fact table and a set of dimensional tables.

– The core of a multidimensional model is the data cube. An extended cube consists
of a lattice of cuboids, each corresponding to a different degree of summariza-
tion of data. Full or partial materialization refers to the pre-computation of all
or some of the cuboids in the lattice. Commercial systems use different strategies
both about which cuboids to materialize, and how to store them.

Chapter 3

DATA WAREHOUSE DESIGN

The purpose of a data warehouse (DW) is not just to store data but rather to facilitate
decision making. Therefore, a data warehouse must be designed taking into account
the different types of analyses that are needed by the business users to make better de-
cisions about key business processes worth of improvements. Since a data warehouse
design process is complex, a methodology organized in phases is presented, like the
one that is used to design operational databases, to highlight the importance of con-
ceptual design and shows how to transform the conceptual design into the logical one
using the relational model.

3.1 Introduction

A data warehouse must be designed to provide the information needed to solve a
business problem. If the problem is solved there should be some economic gain in
order to allow a cost benefit analysis for the data warehousing project.

As happens for databases, it has become fairly standard to divide the DW design
process into the following four phases:

1. Requirements Analysis. The goal is to produce a description of the business pro-
cesses, the typical information analysis activities with which users are involved,
and the measures and dimensions of interest. Typically, requirements at this stage
are documented rather informally.

2. Conceptual Design. The goal is to produce a formal description of the data to
be analyzed in high-level-term using a conceptual data model. We will use the Di-
mensional Fact Model, DFM, to describe facts, dimensions, dimensional attributes
and attribute hierarchies.

3. Logical Design. The goal is to transform the conceptual design into the logical
structures used for storing the DW in a relational DBMS.

4. Physical Design. The goal is to define the data structures needed for storing the
database tables created by the logical design. The main issues are what indexes and
materialized views to define to optimize the overall performance of the system.

Once the DW has been implemented, data must be extracted from the operational and
external systems, transformed into a usable format for the DW, and finally loaded into
the DW in order to be usable for query processing and analysis. These Extract, Load,
Transform (ETL) processes have historically been batch-oriented.

36 CHAPTER 3 Data Warehouse Design c© 2015 by Albano et al.

In general the data to load in the DW are processed with two important and complex
kinds of operations:

1. Transform. When the data come from different sources, their formats are revised
to align them by eliminating syntactic and semantic differences.

(a) Syntactic transformation. The same data can have both attributes with differ-
ent names, and the names are not those to be used in the DW, and different
types. For example, a code is defined in some cases of a type string, and in
others a type integer; a gender is defined as (M, F), (m, f), (0, 1) or (male, female);
a value is defined with different units of measurement, and so on.

(b) Semantic transformation. The data in source databases may have been used
with a different meaning. For example, sales can be daily or weekly.

2. Cleaning. The data are analyzed in order to eliminate errors of representation or
to complete missing information. For example, in the case of addresses the zip
code can be wrong or the name of the town can be written in different ways (Busto
Arsizio also written as BustoArsizio or BArsizio)

The information generated during the design and implementation of a DW is orga-
nized and stored as metadata using appropriate specialized tools or taking advantage
of the capabilities of DW systems that provide, as any DBMS, a catalog that con-
tains information about the logical and physical organization of the data managed.
In the case of DW metadata are about other aspects of the data and, in short, can be
classified into the following main categories:

– Business metadata. Concern the meaning of the terms used to define the logical
structure of data in corporate terminology. This type of metadata is usually used
by users to understand the nature of the data available.

– Structural metadata. Concern the logical structure of facts and dimensions, types
of attribute values, hierarchies, dimensions and meaningful aggregations. This type
of metadata is usually used by users to understand what types of analysis can be
performed on the data.

– Technical metadata. Are concerned with the physical data property, such as storage
structures, data sources, date of loading, transformations applied etc. This type of
metadata is usually used by technicians for the maintenance and development of a
DW.

– Operational metadata. Concerns the types of predefined analysis reports and what
parameters should be used.

– Design metadata. Concern the results of the DW design phases.

Loading metadata is only partially automated and has a cost: the time that the per-
sonnel involved in the design and implementation of the DW must dedicate to the
problem. Finally, note that metadata is useful not only to gather information on the
data, but also to be exchanged between different OLAP tools. For this reason, propos-
als have been made to define standards like Common Warehouse Metamodel (CWM).

In the following, the focus will be on how to proceed in the conceptual and logical
design phases of a DW.

3.2 Data Warehouse Design Approaches

According to [Artz, 2005] and [Ballard et al., 2006], the approaches to DW design
can be of the following types (Figure 3.1):

c© 2015 by Albano et al. 3.2 Data Warehouse Design Approaches 37

What users want

What can be
delivered and will

be useful

What is available

User Requirements

Analysis
Driven

Data
Driven

Operational Data

Figure 3.1: Data warehouse design approaches

1. Data-driven. This approach was originally proposed by Inmon, one of the first
authors on the subject of data warehousing, which he describes as top-down, and
whose supporters are referred to as “Inmonites”. The goal is to design first an
enterprise DW based on the data available in the operational information system,
and then the data marts are created from the DW. This is done by analyzing a
conceptual model of data, if one is available, or the actual logical record layouts
and selecting data elements deemed to be of interest. This approach is the only
possible when the demand for information from a DW does not exist until the DW
is actually available. An initial DW design on the basis of the data available can
help both users to discover new ways in which to use the available data, and the
designer to identify areas on which to focus data warehouse development efforts.
The disadvantage of this approach is that without user involvement there is the
risk of producing a non interesting result.

2. Analysis-driven. This approach was originally proposed by Kimball, a well-known
author on data warehousing, which he describes as bottom-up, and whose support-
ers are referred to as “Kimballites”. The goal is to design first the data marts based
on the data analysis that the users want to perform, and then the data marts are
integrated to build the DW. The major advantage to this approach is that the focus
is on providing what is really needed, rather than what is available. In general, this
approach has a smaller scope than the data-driven approach. Therefore, it gener-
ally produces useful data marts in a shorter time span. The disadvantage of this
approach is the risk that some of the data that the analysis needs are not available.
Moreover, if a user is too tightly focused, it is possible to miss useful data that is
available in the operational information system.

Both the approaches can be useful in certain cases. In the following we will use
a combination of the two using the following design phases for each data mart of
interest:

1. Requirements analysis
2. Initial analysis-driven data mart conceptual design
3. Candidate data-driven data mart conceptual design
4. Final data mart conceptual design
5. Data mart and DW logical design

38 CHAPTER 3 Data Warehouse Design c© 2015 by Albano et al.

3.2.1 Requirements Analysis

The requirements analysis phase is divided into two main sub-phases, characterized
by the different language used for the preparation of the documents they produce.
The first sub-phase, Requirements gathering, produces a natural language specifica-
tion of requirements. The second sub-phase, Requirements specification, produces a
description of the requirements for data analysis outlining the salient features to be
modeled then with the conceptual design.

1. Requirements gathering
(a) Analysis of the problem domain for which the modeling will be done.
(b) Analysis of the business processes to select, with end-user interviews, those

more interesting to consider for designing the data warehouse.
(c) Business questions that end-users issue and try to answer in the course of their

information analysis activities.
Examples of frequently encountered categories of business questions are:
– Existence checking analysis, such as “A given product has been sold to a

particular customer.”
– Item comparison analysis, such as “Compare the value of purchases of two

customers over the last six months,” or “Compare the number of items sold
for a given product category, by store, and by week.”

– Trend analysis, such as “The growth in item sales for a given set of prod-
ucts, over the last 12 months.”

– Queries to analyze ratios, rankings, and clusters, such as “Rank our best
customers in terms of dollar sales over the last year.”

– Statistical analysis, such as “The average item sales by product category,
by sales region.”

Note that the business questions must usually be “interpreted” in order to
express them in a form more useful for designing the data warehouse. For ex-
ample, a business question a manager of a company wish to ask of their data
might be: “Why are our sales not meeting our targets”. The business ques-
tion might be interpreted in a more useful form as ”For the current year, the
cumulative quantity sold and targets, by product”. That is, an interpreted busi-
ness question should be expressed with the types of reports to be produced, or
phrases that reveal the following information:
– The constraints on data to analyze.
– The requested dimensional attributes and the metrics (aggregation opera-

tion) to compute.
– The coordinates (dimensions) against which the fact must be analyzed.
– The result sorting criteria and if metrics’ partial value are needed.
When business questions are expressed by means of phrases, the use of the
following form is suggested: “For a data subset to use, the metrics to compute,
by dimension, . . . , by dimension. How the result should be presented”. For
example, “For the year 2010 in Italy, the total of sale revenue, by region, by
month, by customer name. The result must be sorted by region, month, and
customer name, and must include partial totals for all regions.”

It is important also to check that the information analysis requirements need
data that are currently available or can be obtained as external data that exist
outside the enterprise. If there are multiple data sources, the analysis is com-
plicated by the need to reconcile the likely differences in representation of
information. In the following we will not consider this aspect.

c© 2015 by Albano et al. 3.2 Data Warehouse Design Approaches 39

2. Requirements Specification. The business questions are specified using a set of
worksheets with the following structure:

Business Process Requirements

Process
N Business questions Dimensions Measures Metrics

Each business question is analyzed to identify the fact measures, the prelim-
inary dimensions, and the metrics to be computed.

Fact Description

Fact
Description Preliminary dimensions Preliminary measures

The meaning of the fact is described, together with its grain and type (trans-
action, periodic, or accumulating), and the preliminary measures and dimen-
sions.

Dimensions

Dimensions
Name Description Granularity

The meaning of each dimension is described, together with its name, a de-
scription, and the grain.

Dimensional Attributes

Dimension
Attribute Description

Of all dimensions the attributes and their description are listed. Dimensional
attributes must be chosen carefully to express the analysis in a natural way
and display results in a comprehensible way. If there are attributes with val-
ues that are codes, providing the description of the code is also suggested. It
is also advisable not to use the same names for attributes of different dimen-
sions that have different meaning.

Dimensional Hierarchies

Dimensional Hierarchies
Dimension Hierarchy decription Hierarchy Type

It describes the dimensional hierarchies for each dimension, and their type
(balanced, ragged, recursive).

Dimensional Attributes Changes

Changing Dimensions
Name Changing Attribute Treatment of changes

40 CHAPTER 3 Data Warehouse Design c© 2015 by Albano et al.

It is important to understand how the business wants to deal with the dimen-
sion attributes that can change over time. Consequently, for each of them,
besides the name, the type of strategy is specified to deal with them in the
logical design phase and data loading.
For example, suppose that the dimension Customer of facts Order contains
the attribute Residence, with a value that can change over time, and that there
are several sales involving a customer from Lucca, which to a certain date
changes residence to Pisa. How can we carry out sales analysis to account
for this change? What should the result be of analysis such as “ How many
sales are made in Pisa?”.
The strategy to be specified depends on the analysis’ objectives, and for this
reason it should be documented in the requirements specification. We con-
sider four options, of which the first three are considered for slowly changing
dimensions:
Type 1 (overwriting the history) If a dimensional attribute changes its value,

only the latest value is required to be held in the data mart. This means
that there is no need to preserve the previous value.
For example, if a customer changes address, the new one replaces the
present value of the dimension Customer. It is the easiest solution, but
the history of customer addresses is lost. For example, if a customer at
a certain date changes their address from Pisa to Lucca, all sales con-
cerning him before and after this date are considered made in Lucca,
and this changes the outcome of analyses such as “How many sales are
made in Pisa?”

Type 2 (preserving the history) If a dimensional attribute changes its value,
both the old and the new value are required to be held in the data mart,
but the structure of the dimension must not be changed. It is the solution
commonly used.

Type 3 (preserving one or more versions of history) If a dimensional at-
tribute changes its value, the structure of the dimension is extended with
additional attributes to keep the tracking history with both old and new
values. Moreover, we also add another attribute EffectiveDate for the date
of the change. This solution is rather quirky and it is rarely used. We will
not consider it further.

Type 4 (fast changing) The dimensional attributes change frequently, and
must not be treated with one of the previous solutions.

Measures

Fact measures
Measure Description Aggregability Calculated

It describes each measure of the fact identified from the requirements, how
it is calculated from other measures, and the aggregate functions that are
applicable to the measure when the data are grouped by dimensions.

Descriptive attributes of the facts

Descriptive attributes
Attribute Description

It contains each descriptive attribute of the facts, with a description of what
they represent.

c© 2015 by Albano et al. 3.2 Data Warehouse Design Approaches 41

Summary of Dimensions and Measures

Facts Dimensions
Dimension Fact1 . . . Factn

Facts Measures
Measure Fact1 . . . Factn

If the requirements concern different facts, the worksheets specify in which
facts the selected dimensions and measures are used. The worksheet about
dimensions, called the data warehouse bus architecture, is useful to identify
which dimensions are used by multiple data marts, and therefore they must
have a unique interpretation and representation (conformed dimensions) to
be then shared in the DW. If the dimensions must be kept different, they
must be renamed.

3.2.2 Initial Analysis-Driven Data Mart Conceptual Design

An initial data mart conceptual design is defined from the analysis that the users
perform (the design from what the users want), without any claim to completeness
but useful as a formal description of requirements. In the conceptual design the di-
mensional hierarchies are modelled together with their type (balanced, incomplete,
recursive), degenerate dimensions and descriptive attributes of the facts.

3.2.3 Candidate Data-Driven Data Mart Conceptual Design

A method is described for developing a candidate data mart conceptual design from
the operational database relational schema (the design from what is available). This
approach to data mart design ensures that its schema reflects the underlying struc-
ture of the data available. The following steps are based on the proposal presented
in [Moody and Kortink, 2000]:

1. Operational data analysis. In this step, the relational database schema is ana-
lyzed to perform two actions:

(a) Standardize terminology and units of numerical quantities that have an iden-
tical time reference.

(b) Delete tables, and attributes, considered not relevant to the analysis of the
data. For example, information such as the tax code and telephone number
are usually not relevant for the analysis of the data.

2. Tables classification. In this step, the relational database tables are classified in
three categories to identify the possible facts, measures, dimensions and hierar-
chies between dimensional attributes.

(a) Transaction Entities. These are tables with records that represent events of
interest for the business process to be analyzed (orders, insurance claims,
salary payments, sales, hotel booking, etc.). Transaction entities have two fun-
damental characteristics:
– Describe events that occur at a point in time.

42 CHAPTER 3 Data Warehouse Design c© 2015 by Albano et al.

– Contains measurements or quantities that may be summarized (e.g. mone-
tary value, quantity, weight, volume).

It is very important to correctly identify the pertinent transaction entities be-
cause they are the natural candidates to be considered later for the definition of
facts that decision makers want to understand and analyze. However, it must
be kept in mind that not all transaction entities will be of interest for decision
support, so they must be analyzed carefully with users to identify which of
them are important.

(b) Component Entities. These are tables directly related to a transaction entity
via a one-to-many relationship (Figure 3.2). These entities define the details
or components for each transaction event, and so are useful to answer the who,
what, when, where, why and how of a business event. Component entities are
the basis for defining dimensions in the data mart conceptual design.

An important component entity of any transaction entity should be the one
that represents the time: the historical analysis, in fact, play a key role in all
the DW, but usually in the operational database time is not represented with
a table but with an attribute of type Date and this must be taken into account
when defining the data mart design.

Note that the definition of component entity does not allow us to isolate multi-
valued dimensions, resulting instead from tables directly related to a transac-
tion entity via a many-to-one relationship. In general, this type of table should
be considered in the choice of a component entity, as will be shown in a fol-
lowing example.

(c) Classification Entities. These are tables related to a component entity by a
chain of one-to-many relationships (Figure 3.2). These entities usually repre-
sent hierarchies embedded in the data schema. Their interesting attributes are
collapsed into component entities to define then in the data mart design the
dimensional attributes and hierarchies.

Transaction
Entity

Component
Entity1

Classification
Entity1

Classification
Entity2

Component
Entity3

Component
Entity2

Figure 3.2: Tables classification

In some cases, entities may fit into multiple categories. We therefore define a
precedence hierarchy for resolving such ambiguities:

(a) Transaction entity (highest precedence).
(b) Classification entity.
(c) Component entity (lowest precedence).

For example, if an entity can be classified as either a classification entity or a com-
ponent entity, it should be classified as a classification entity. In practice, some
entities will not fit into any of these categories. Such entities do not fit the hierar-
chical structure of a dimensional model, and cannot be included in the conceptual
design.

c© 2015 by Albano et al. 3.2 Data Warehouse Design Approaches 43

Example 3.1
Figure 3.3 shows an operational database schema for an orders sales application,
assuming that a row of an order may have dealt with more than one shipment.

– Transaction entity: it is interesting to collapse Order into OrderLine, with the
OrderLine granularity to define the data mart facts. Other possibles transaction
entities might be Invoice, Product or Shipment, but they are not considered of
interest for decision support.

– Component entity: Customer, Invoice and Product.
– Classification entity: ProductCategory is collapsed into Product.

The table Shipment does not satisfy the condition to be considered as a compo-
nent entity of OrderLine because of the many-to-one relationship, but it might be
considered to define a multivalued dimension.

OrderLine
OrderLinePK �PK�
OrderFK �FK(Order)�
ProductFK �FK(Product)�
InvoiceFK �FK(Invoice)�
Quantity

Product
ProductPK �PK�
CategoryFK
�FK(ProductCategory)�

Name
UnitPrice
QtyAvailable
ReorderLevel

Shipment

ShipmentPK �PK�
OrderLineFK
�FK(OrderLine)�

IfComplete
Quantity

Invoice
InvoicePK �PK�
NInvoice �UK�
Date
InvoiceAmt

ProductCategory

CategoryPK �PK�
Name
Description

Order
OrderPK �PK�
NOrder �UK�
CustomerFK
�FK(Customer)�

Date

Customer
CustomerPK �PK�
Phone �UK�
Name
Address

Figure 3.3: A database for order management

3. Candidate data mart conceptual design.
The Candidate data mart conceptual designs are defined in the following way:

– For each transaction entity, a data mart fact is defined.
– A dimension is formed for each component entity, by collapsing hierarchically

related classification entities into it. The dimensional attributes are analyzed
to decide possible hierarchies. For example, an attribute Date of a transaction
entity is usually substituted with attributes Day, Month, Year, and a hierarchy is
defined among them; an attribute Address may be replaced by City, and Region,
and a hierarchy is defined among them.

– Where hierarchical relationships exist between transaction entities, the child
entity inherits all dimensions (and key attributes) from the parent entity. This
provides the ability to “drill down” between transaction levels.

44 CHAPTER 3 Data Warehouse Design c© 2015 by Albano et al.

3.2.4 Final Data Mart Conceptual Design

From a comparison of the initial and candidate conceptual designs the final data marts
are defined (the design of what can be delivered and will be useful), which in general
will be an extension of the common parts.

3.2.5 Data Mart and Data Warehouse Logical Design

Assuming that the multi-dimensional model is implemented with a ROLAP system,
firstly each final conceptual data mart design is translated in a relational schema,
deciding whether to make a star or snowflake schema, and then integrating the various
data marts schemas in a single DW schema, considering the following possibilities:

– Standardize and share the fact tables with the same dimensions.
– Standardize and share common dimension tables.

In the definition of the relational tables of the data mart logical schema, the following
problems will be considered, among others that may arise [Kimball and Ross, 2002b].

Primary keys of dimension tables
The primary key of each dimension table should be an attribute with numerical val-
ues automatically generated (artificial or surrogate key) in addition to any primary
key used in the original data, if it is considered relevant to also keep this informa-
tion in order to determine from which original data it comes from, but which is not
necessarily a key for the dimension table.

For the Date dimension table with the granularity of the day, usually present in every
data mart, it is useful not to use a surrogate key for the primary key, but an integer
representing a day in the form YYYYMMDD. With a similar format it is useful to repre-
sent attribute values in the dimensional hierarchy Month→ Quarter. Usually there are
also other attributes useful to show in reports, such as DayName, MonthName, Week
Number, etc.

Foreign keys in the fact table
When modeling the facts, foreign keys for dimension tables have the values of sur-
rogate primary keys, and it is useful to assume that foreign keys are always defined,
or that their values are not equal to Null. To deal with cases in which for a fact record
the dimension value may be unknown, a common solution is to add into the dimen-
sion table a special record with an attribute, different from the primary key, with a
default value such as “Not Found”, and then the foreign key of fact record without
the dimension data points to the row “Not Found”.

As in the case of dimension tables, the fact table too may have descriptive at-
tributes, such as the primary key used in the operational database to know the source
of the fact.

Changing dimensions
For a slowly changing dimension, we adopt the following solutions on the basis of
the strategy specified in the requirements:

Type 1 (overwriting the history) The new attribute value replaces the old value in
the record of the dimension table.

c© 2015 by Albano et al. 3.2 Data Warehouse Design Approaches 45

Type 2 (preserving the history) A new record is inserted in the dimension table,
with a different surrogate key. For example, if a customer changes residence, a
new record is inserted in the dimension Customer, as if there were two customers
with different surrogate keys. The orders of the past relate to the customer with
the old residence, the orders of the future will refer to the customer with the new
residence.

This solution is an example that motivates the use of surrogate primary keys, but
creates a problem for the analysis that requires counting the number of different
customers who have made a certain order: if the count in the analysis is done with
a COUNT(DISTINCT CustomerFK), customers who have changed address would be
counted several times and, therefore, the result would not be correct.

The problem is solved by adding an attribute to the dimension table with a value
appropriate to establish that records with different surrogate keys relate to the
same customer who changed residence. Possible solutions are (Figure 3.4): (a)
use a customer “natural” key different from the surrogate, like the Social Security
number (SSN), (b) use the first surrogate key that was assigned to the customer
and, (c) to avoid having to do some frequent analysis with junctions, this infor-
mation is stored in the fact table as a degenerate dimension.

Order
· · ·
CustomerFK
�FK(Customer)�
· · ·

Customer
CustomerPK �PK�
SSN �UK�
· · ·

(a) A natural key in the dimension table

Order
· · ·
CustomerFK
�FK(Customer)�
· · ·

Customer
CustomerPK �PK�
InitialCustomerPK
· · ·

(b) First surrogate key in the dimension table

Order
· · ·
CustomerFK
�FK(Customer)�

InitialCustomerPK �DD�

Customer
CustomerPK �PK�
· · ·
· · ·

(c) First surrogate key in the fact table

Figure 3.4: Slowly changing dimension

Type 3 (preserving one or more versions of history) In the dimension two attributes
are added, one for the new value and the other for the modification date. For ex-
ample, if a customer changes residence, the Customer dimension structure three
attributes are used for the residence: Residence, NewResidence, ChangeDate. If the
residence changes again, a new record may be inserted as the solution of the
Type 2. Other solutions are possible on the basis of expected analysis, but they
all make the solution and the queries for the analysis more complex, and their
use should be considered carefully.1

If a dimension changes frequently due to numerical attributes, an alternative to con-
sider to the previous ones is the following:

1. For examples see http://en.wikipedia.org/wiki/Slowly changing dimension

46 CHAPTER 3 Data Warehouse Design c© 2015 by Albano et al.

Type 4 (fast changing dimensions) A dimension is considered to be a fast changing
dimension if one or more of its attributes changes frequently and in many rows,
such as age or income. A fast changing dimension can grow very large if we use
the Type-2 approach to track numerous changes. Fast changing dimensions are
also called rapidly changing dimensions.
An appropriate approach for handling very fast changing dimensions is to break
off the fast changing attributes into one or more separate dimensions, called mini-
dimensions. For example, the dimension is stored in two tables, one with the
attributes that do not change (or change slowly) and the other with only those
attributes that change frequently, and defined by range of values (e.g. with strings
like “From-To”), agreed with users based on the type of analysis to be done. The
fact table would then have two foreign keys: one for the primary dimension table
and another for the fast changing attributes.

Shared Hierarchies
If there is a shared hierarchy, its attributes are stored in a separate table.

Recursive Hierarchies
If a dimension contains a recursive hierarchy, there is a problem because of limi-
tations in some versions of SQL that does not allow us to define recursive queries.
For example, let us assume that in the dimension Agent of Order there is an attribute
Supervisor to represent a recursive relationship among agents (Figure 3.5).

Order
Quantity
ExtendedPrice
Discount
Revenue

DateAgent
Name

City

–
Supervisor

Store

Product

Figure 3.5: A dimension with a recursive hierarchy

If interested in analyzing the total number of orders placed by each agent, including
subordinates for which it is responsible at every level, this can not be expressed with
SQL versions that do not allow recursion or with BI systems for data analysis and
generating reports that are not able to generate it using the relational representation
of Figure 3.6a.

To solve the problem a solution is used that involves the following tables (Fig-
ure 3.6b):

– The table Agent, also without the attribute SupervisorFK, has one row for each agent.
– The fact table Order with the foreign key AgentFK for Agent.
– The auxiliary table ForTheHierarchy, called bridge table, contains one row for each

pair of (Supervisor, Subordinate), as well as a row for each agent with itself, and
has the following structure:

– SupervisorFK, a foreign key for the table Agent that represents the supervisor
agent.

c© 2015 by Albano et al. 3.2 Data Warehouse Design Approaches 47

Order
· · ·
AgentFK
�FK(Agent)�
· · ·

Agent

AgentPK �PK�
Name
· · ·
SupervisorFK
�FK(Agent)�

|

(a) Without a bridge table

Order
· · ·
AgentFK
�FK(Agent)�
· · ·

Agent

AgentPK �PK�
Name
· · ·

ForTheHierarchy

SupervisorFK �PK�
�FK(Agent)�

SubordinateFK �PK�
�FK(Agent)�

NoOfLevels
BottomFlag
TopFlag

(b) With a bridge table

Figure 3.6: A bridge table to represent a recursive hierarchy

– SubordinateFK, a foreign key for the table Agent that represents the subordinate
agent or itself (SubordinateFK = SupervisorFK).
(SupervisorFK, SubordinateFK) is the primary key.

– NoOfLevels with a value of the number of nodes, minus one, of the path from
the supervisor to the subordinate.

– BottomFlag, with value T if the subordinate is not the supervisor of others, oth-
erwise F.

– TopFlag, with value T if the agent (SubordinateFK = SupervisorFK) is at the top
of the hierarchy, and so does not have a supervisor, otherwise F.

For example, the records of the table ForTheHierarchy, for the agents hierarchy of
Figure 3.7, are the following:

Ag1

Ag2 Ag3

Ag4 Ag5 Ag6

Ag7

Figure 3.7: A hierarchy for an organization chart

48 CHAPTER 3 Data Warehouse Design c© 2015 by Albano et al.

ForTheHierarchy
SupervisorFK SubordinateFK NoOfLevels BottomFlag TopFlag

1 1 0 F T
1 2 1 F F
1 3 1 F F
1 4 2 T F
1 5 2 F F
1 6 2 T F
1 7 3 T F
2 2 0 F F
2 4 1 T F
2 5 1 F F
2 7 2 T F
3 3 0 F F
3 6 0 T F
4 4 0 T F
5 5 0 F F
5 7 1 T F
6 6 0 T F
7 7 0 T F

The curious thing is how to use the tables in queries, in particular the bridge table
ForTheHierarchy, to move up or down in the hierarchy: the joins operations are be-
tween the ForTheHierarchy table and the table Agent, using primary and foreign keys,
and between the ForTheHierarchy table and the fact table Order, using the foreign key
AgentFK for agent and a foreign key of the ForTheHierarchy table. Note that between
the fact table Order and the bridge table ForTheHierarchy there is a many-to-many re-
lationship.

Order
AgentFK
�FK(Agent)�
· · ·

ForTheHierarchy

SupervisorFK �PK�
�FK(Agent)�

SubordinateFK �PK�
�FK(Agent)�

Agent

AgentPK �PK�
Name
· · ·

⇓

(a) Descending the hierarchy

Order
AgentFK
�FK(Agent)�
· · ·

ForTheHierarchy

SupervisorFK �PK�
�FK(Agent)�

SubordinateFK �PK�
�FK(Agent)�

Agent

AgentPK �PK�
Name
· · ·

⇑

(b) Ascending the hierarchy

Figure 3.8: Ways of joining a bridge table to fact and dimension tables

– For ascending the hierarchy, the joins are made as shown in Figure 3.8b. For ex-
ample, to generate the report to find out the total order revenue for agent 6 and all
its supervisors (3 and 1), the necessary SQL query is:

SELECT A.Name, SUM(Revenue)
FROM Order O, ForTheHierarchy H, Agent A
WHERE O.AgentFK = H.SupervisorFK AND H.SubordinateFK = A.AgentPK

AND A.Name = ’Ag6’
GROUP BY A.Name;

c© 2015 by Albano et al. 3.2 Data Warehouse Design Approaches 49

– For descending the hierarchy, the joins are made as shown in Figure 3.8a. For
example, to generate the report to find out the total order revenue for agent 2 and
all its subordinates (4, 5, and 7), the necessary SQL query is:

SELECT A.Name, SUM(Revenue)
FROM Order O, ForTheHierarchy H, Agent A
WHERE O.AgentFK = H.SubordinateFK AND H.SupervisorFK = A.AgentPK

AND A.Name = ’Ag2’
GROUP BY A.Name;

The data hierarchy may be restricted to those of a certain level (NoOfLevels < 2), to
the bottom of the hierarchy (BottomFlag = ’T’), to the top of the hierarchy (TopFlag =
’T’) etc.

The disadvantages of this approach are (a) the bridge table data is complex to
maintain, and (b) the bridge table design is too complex to be used directly by the
users.

Multivalued Dimensions
If there is a multivalued dimension, for example, an order item has been promoted by
several agents (Figure 3.9), one of the following relational representations might be
used (other solutions are presented in [Song et al., 2001]):

Order
Quantity
ExtendedPrice
Discount
Revenue

DateAgent
Name

City

Store

Product

Figure 3.9: A multivalued dimension

1. The many-to-many relationship between the fact table and the dimension table is
represented with a traditional auxiliary table (Figure 3.10a), called even in this
case bridge table. This solution, however, violates the properties of a scheme to
be a star and may not be accepted by some BI systems (e.g. SQL Server Analysis
Services).

2. The many-to-many relationship between the fact table and the dimension table is
represented with another type of an auxiliary table GroupMembers (Figure 3.10b),
with attributes

– Group, the code of a group of agents,
– AgentFK, the foreign key for the table Agent, and
– Allocation with a value between 0 and 1, which represents the contribution to

the order promotion credited to each group member, such that the sum of all
the allocation factors belonging to a single group is exactly 1.

The table GroupMembers has, for each group, as many elements as are the agents
of the group. An agent may be present in several groups. This solution may not be
accepted by some BI systems (e.g. SQL Server Analysis Services).

50 CHAPTER 3 Data Warehouse Design c© 2015 by Albano et al.

Order
· · ·
OrderPK �PK�
· · ·

AgentOrder

AgentFK �PK�
�FK(Agent)�

OrderFK �PK�
�FK(Order)�

Agent

AgentPK �PK�
Name
City

(a) A traditional representation of a many-to-many relationship

Order
· · ·
Group
· · ·

GroupMembers

Croup �PK�
AgentFK �PK�
�FK(Agent)�

Allocation

Agent

AgentPK �PK�
Name
City

(b) Another type of an auxiliary table

Order
· · ·
GroupK
�FK(GroupOfAgents)�
· · ·

GroupOfAgents
· · ·
Group �PK�
· · ·

Agent

AgentPK �PK�
Name
City

AgentGroup

GrouptFK �PK�
�FK(GroupOfAgents))�

AgentFK �PK�
�FK(Agent)�

Allocation

(c) A bridge table

Order
· · ·
AgentFK
�FK(Agent)�
· · ·

Agent

AgentPK �PK�
Name
City

(d) New fact granularity

Figure 3.10: An auxiliary table to associate any number of agents with an order

In the fact table Order there is the attribute Group which indicates the group of
agents of the table GroupMembers involved in a particular order. The relationship
between the fact table and the GroupMembers table in Figure 3.10b is many-to-
many. This is not a mistake: if the same group of agents collaborate again for
another order, the same group number will be used.

To generate the report to find out the total order revenue by agent name, to avoid
a wrong SQL query, we must distinguish whether we are looking for the total
order revenue contribution of a group member (weighted analysis), or if we are
looking for the total order revenue of the groups to which an agent belongs (impact
analysis). In the first case the value of the attribute Allocation must be used as
follows:

SELECT A.AgentPK, A.Name, SUM(Revenue * GM.Allocation)
FROM Order O, GroupMembers GM, Agent A
WHERE O.Group = GM.Group AND GM.AgentFK = A.AgentPK
GROUP BY A.AgentPK, A.Name;

while in the second case the attribute Allocation is not used, and in general a differ-

c© 2015 by Albano et al. 3.2 Data Warehouse Design Approaches 51

ent result is found.
3. Two auxiliary tables are used (Figure 3.10c): GroupOfAgents, which contains one

row for each group of agents, with the primary key Group, and AgentGroup to model
the many-to-many relationship between the tables Agent and GroupsOfAgents.

In the fact table Order there is the foreign key GroupFK for the table GroupOfAgents
which indicates the group of agents involved in a particular order. This solution is
usually accepted by BI systems (e.g. SQL Server Analysis Services).

4. Another solution is to change the fact granularity: instead of using a record for
each order item, a record is used for each agent who has promoted the order item,
with the weighted values of the measures, and the attribute Group as a degenerate
dimension to recognize groups of records that relate to the same order item (Fig-
ure 3.10d). This solution increases the memory occupied by the fact table by a
factor equal to the average number of agents that promote an order, while the one
with a bridge table in general uses less memory.

Multivalued Dimensional Attributes
If a dimension has multivalued attributes (Figure 3.11), the problem is solved as in
the case of the multivalued dimension, by treating the dimensional table as the fact
table in the previous case, and preserving the relationship between the fact table and
dimension table. Figure 3.12 shows only the first solution.

Order
Quantity
ExtendedPrice
Discount
Revenue

DateAgent
City

Name

CustomerType

Store

Product

Figure 3.11: A dimension with a multivalued attribute

Order
· · ·
AgentFK
�FK(Agent)�
· · ·

Agent

AgentPK �PK�
Name
City

CustomerType

TypePK �PK�
Description

AgentCustomerType

AgentFK �PK�
�FK(Agent)�

TypePK �PK�
�FK(CustomerType)�

Figure 3.12: An auxiliary table to deal with a multivalued dimensional attribute

52 CHAPTER 3 Data Warehouse Design c© 2015 by Albano et al.

3.3 A Case Study

A case study is presented to show how to apply the methodology to design a DW. Do
not be misled by the simplicity of the example. In practice the procedure is compli-
cated by the difficulties of the requirements analysis phase for the quantities of the
details and the many exceptions that usually occur. Aspects that are neglected in the
example.

3.3.1 Requirements Analysis

1. Requirements gathering

(a) Analysis of the nature and purpose of the company. CelPhone is a company
that deals with the production and sale of cellular phones with its own sales
outlets.
To meet growing market demand the company has expanded by opening new
plants and sales outlets. The company growth has started to level off, and
management is refocusing on the performance of the organization using a
DW to facilitate the analysis of the inventory and revenue from product sales.
It has created a team consisting of one data analyst, one process analyst, one
manufacturing plant manager, and a sales manager for the project.

(b) Business processes analysis. The products are available in different models
and are constructed from a set of common components. Each model may be
eligible for discounting, and in this case the salesperson may discount the
price if the customer buys a large quantity of the model or a combination of
models. The discount must be approved by the manager of the sales outlet.
The plant keeps an inventory of the product models. When the quantity on
hand for a model falls below a predetermined level, a work order is created to
cause more of the model to be manufactured.
A customer places orders from a sales outlet. Unless a discount is negotiated,
the suggested retail price is charged. Each sales outlet, on average, creates 500
orders per day, seven days per week. Each order consists of an average of 10
product models.

(c) Collection of business requirements for data analysis (business questions) and
verification that the data needed are available. Let us assume that the expert
in DW, after an analysis of the life cycle of a product, inventory and sales
processes, organization structure, the meaning of cost, discount and revenue,
has interviewed executives interested in the data analysis, and has collected
the following set of typical online data analysis of users interest:

Inventory process
1 Average quantity on hand and reorder level for each model by month,

by model identifier and description, by manufacturing plant, name and
region.

2 Models that have reached the reorder level at least once in all manufac-
turing plants of a certain region.

c© 2015 by Albano et al. 3.3 A Case Study 53

Sales process
3 The total cost and revenue by model sold, by month, by manufacturing

plant, name and region.

4 Percentage of models eligible for discounting, and of those, what percent-
age are actually discounted when sold, by sales outlet, for all sales this
week (or this month, or this quarter).

5 The top five models sold last month by total revenue, or by quantity sold,
or by total cost.

6 Total cost and revenue by model Id and description, by month of the last
year, by sales outlet and region.

7 Number of customers who last month bought the 5 models that have pro-
duced the highest margin, by the region of the sales outlet.

The operational database, which contains all the necessary information for the
analysis, is shown in Figure 3.13.

City

CityPK
RegionFK
Name

Manufactory

ManufactoryPK
CityFK
Name
Phone
Address
ManagerName

Region

RegionPK
Name

Model
ModelID
ProductFK
WholeSalePrice
RetailPrice
Cost
Discount

Product
ProductPK
Description
Picture

Inventory

ManufactoryFK
ModelID
QuantityOnHand
ReorderLevel
DateInventory

ComponentModel

ComponentFK
ModelID
NoComponents

Component

ComponentPK
Description
Cost

OrderLine
ManufactoryFK
ModelID
OrderID
OrderLineNo
UnitSellingPrice
QuantityOrdered
Discount

SalesOutlet
SalesOutletPK
CityFK
Address
Phone
MAnagerName
NoOfCashes

Customer
CustomerPK
CityFK
Name
Address

Order
OrderID
SalesOutletFK
CustomerFK
Date
ShipLocation

Figure 3.13: The operational database

2. Requirements specification
Each business question is analyzed to identify the preliminary dimensions (in
parentheses, the attributes) and measures of interest (for brevity, the metrics are
not described), and then the grain of the fact.

54 CHAPTER 3 Data Warehouse Design c© 2015 by Albano et al.

Inventory process
N Business questions Dimensions Measures

1 Average quantity on hand and re-
order level for each model by
month, by model identifier and de-
scription, by manufacturing plant,
name and region.

Model
(ModelID Description),
Manufactory
(Name, Region),
Date(Month)

QuantityOnHand,
ReorderLevel

2 Models that have reached the re-
order level at least once in all man-
ufacturing plants of a certain re-
gion.

Model,
Date(Week),
Manufacturing(Region)

ReorderLevel

With regard to the granularity of the facts, for the Inventory the data of interest are
those about each product at the end of the month.

Inventory fact
Description Preliminary Dimensions Preliminary measures

A fact is about each product Model, Manufactory, QuantityOnHand,
state at the end of the month. Date ReorderLevel

The description of dimensions, attributes, and fact Inventory measures follow.
Dimensions

Name Description Granularity

Date . . . A month
Model . . . A model
Manufactory . . . A manufacturing plant

Date
Attribute Description

Month . . .
Year . . .

Model
Attribute Description

ModelID . . .
Description . . .

Manufactory
Attribute Description

Name . . .
Region . . .

Measures
Measure Description Aggregability Calculated

QuantityOnHand . . . Semi additive No
across Date

ReorderLevel . . . Non additive No

c© 2015 by Albano et al. 3.3 A Case Study 55

Sales process
N Business questions Dimensions Measures

3 The total cost and revenue by
model sold, by month, by manufac-
turing plant, name and region

Model
(ModelID, Description),
Date(Month),
Manufactory
(Name, Region)

ExtendedCost,
Revenue

4 Percentage of models eligible
for discounting, and of those,
what percentage are actually
discounted when sold, by sales
outlet, for all sales this week (or
this month, or this quarter)

Model(Discount),
SalesOutlet,
Date
(Week, Month, Quar-
ter)

ExtendedPrice,
Discount

5 The top five models sold last
month by total revenue, or by
quantity sold, or by total cost.

Model, Date(Month) ExtendedCost,
QuantityOrderd,
Revenue

6 Total cost and revenue by model
Id and description, by month of the
last year, by sales outlet and region

Model
(ModelID, Description),
SalesOutlet(Region),
Date(Month, Year)

ExtendedCost,
Revenue

7 Number of customers who last
month bought the 5 models that
have produced the highest margin,
by the region of the sales outlet.

Customer, Model,
SalesOutlet(Region),
Date(Month)

Margin

With regard to the granularity of the facts, for the Sales the data of interest are
those about each single line item of an order.

Sales fact
Description Preliminary Dimensions Preliminary Measures

A fact is about a product Model, Manufactory, QuantityOrdered,
sold Customer, SalesOutlet, ExtendedPrice, Revenue

Date ExtendedCost, Discount

The description of dimensions, attributes, and fact Sales measures follow.
Dimensions

Name Description Grain

Model . . . A model
Date . . . A day
Manufactory . . . A plant
Customer . . . A customer
SalesOutlet . . . A sales outlet

Model
Attribute Description

ModelID . . .
Description . . .
Discount . . .

Date
Attribute Description

Day . . .
Month . . .
Quarter . . .
Year . . .
Week . . .

Manufactory
Attribute Description

Name . . .
Region . . .

Customer
Attribute Description

SalesOutlet
Attribute Description

Region . . .

Dimensional Hierarchies
Dimension Description Hierarchy type

Date Day→ Month→ Quarter→ Year Balanced

56 CHAPTER 3 Data Warehouse Design c© 2015 by Albano et al.

Measures
Measure Description Aggregability Calculated

QuantityOrdered (Q) . . . Additive No
ExtendedPrice (P) UnitPrice ×Q Additive Yes
ExtendedCost (C) UnitCost ×Q Additive Yes
Discount (D) ExtendedPrice reduction Additive No
Revenue (R) P −D Additive Yes
Margin R− C Additive Yes

Before moving on to other phases of design, dimensions and measures of the facts
are represented in the following tabular form highlighting what measures and di-
mensions are common to different facts and therefore need to be conformed or
renamed. The dimensions Date and Model have different attributes in the two facts,
and it is assumed that those of the fact Sales are used.

Fact dimensions
Dimension Inventory Sales

SalesOutlet X
Model X X
Manufactory X X
Customer X
Date X X

Fact measures
Measure Inventory Sales

QuantityOnHand X
ReorderLevel X
ExtendedPrice X
ExtendedCost X
Revenue X
Margin X
QuantityOrderd X
Discount X

c© 2015 by Albano et al. 3.3 A Case Study 57

3.3.2 Initial Analysis-driven Data Mart Conceptual Design

The data analysis requirements show that the facts are about Inventory and Sales. The
attributes used in the data analysis suggest that the two possible initial conceptual
data marts are those shown in Figure 3.14.

Inventory

QuantityOnHand
ReorderLevel

Date

Week

DayDay

Month

Quarter

Year

Model
Discount

ModelID

Description

Manufactory

Region Name

(a) Inventory

Sales
QuantityOrdered
ExtendedPrice
ExtendedCost
Discount
Revenue
Margin

SalesOutlet
OutletRegion

Date

Week

DayDay

Month

Quarter

Year

Customer

Model
Discount

ModelID

Description

OrderIDManufactory

Region Name

(b) Sales

Figure 3.14: Initial data mart conceptual designs

3.3.3 Candidate Source-driven Data Mart Conceptual Design

1. Operational data analysis. Based on the data analysis requirements, the rela-
tional schema is examined to decide which tables and attributes are interesting,
other than primary and foreign keys.

As for the tables, we observe that ComponentModel and Component contain infor-
mation that is not relevant for the purposes of data analysis.

As for the attributes of other tables, the following considerations apply:

– Region: the attribute Name is of interest.
– City: although not explicitly required, it is good to retain the information about

the city, because, as we shall see later, the table City is related to the table
Region via a many-to-one relationship, and because, in principle, it is always
better to consider some more information, potentially relevant, than what is
strictly necessary.

– Manufactory: the attributes Phone, Address and ManagerName are not relevant
for data analysis; the pertinent attribute is the geographic location (City and
Region).

– Inventory: all attributes are of interest for the data analysis of process Inventory.

58 CHAPTER 3 Data Warehouse Design c© 2015 by Albano et al.

– Model: the relevant attributes are ModelID, Discount and Description.
– Product: the attributes of this table are not of interest for data analysis.
– OrderLine: the attributes of this table are important for data analysis; Discount

is a percentage.
– Order: ShipLocation is not useful for our purposes, while Date is of interest.
– SalesOutlet: the relevant attribute is the geographic location (City and Region).
– Customer: we are interested in Name and the geographic location (City and Re-

gion).

In this first analysis the keys to the tables were deliberately neglected, because
they will be considered later. Once the relevant information has been chosen, we
proceed to the next phase of design, namely the classification of entities.

2. Entity classifications. We classify the tables in the relational schema based on
their content and the relationships between them:

– Transaction entity: Recalling the definition of transaction entity, it is quite
easy to fit into this category the tables Inventory and the merging of OrderLine
and Order, with the granularity of OrderLine. They, in fact, (a) describe events
that occur frequently at certain dates and (b) contain numerical attributes that
represent possible measures of interest for the analysis of data. Note that the
table Model contains other numerical attributes, but they are not relevant for
data analysis.

– Component entity: They are the tables related to a transaction entity via a
one-to-many relationship. Analyzing the relational schema it is discovered that
– for the transaction entity Inventory, the component entities are Manufactory

and Model,
– for the transaction entity OrderLine, merged into Order, the entities compo-

nent are Customer, SalesOutlet and Inventory.

Finally, as mentioned earlier, among the entities of each entity component, we
add the time entity (present in the relational schema with attributes of type
Date).

– Classification entities: These are the tables related to a component entity by
a chain of one-to-many relationships. Their interesting attributes are added to
those of minimal component entity.

For the entity Manufactory, component of Inventory, the classification entities of
interest are City and Region.

For the entity SalesOutlet and Customer, component of OrderLine, the relevant
classification entities are City and Region.

For the entity Inventory, component of OrderLine, the relevant classification enti-
ties are Models and Manufactory, with City and Region. Since in the requirements
analysis of Sales process there is no interest in Inventory attributes, the classifi-
cation entities Models and Manufactory are treated as components of the entity
event OrderLine.

3. Definition of the candidate data mart conceptual designs. Having identified
two interesting event entities, we proceed with the definition of two conceptual
designs for the data marts with the relative dimensions (Figure 3.15).
As far as the dimensional hierarchies are concerned, the case contains only one
which is explicit, that between City and Region.

c© 2015 by Albano et al. 3.3 A Case Study 59

Inventory

QuantityOnHand
ReorderLevel

DateModel
Discount

ModelID

Description

Manufactory

City
Region Name

(a) Inventory

OrderLine

UnitPrice
QuantityOrdered
Discount%

SalesOutlet
OutletCity

OutletRegion

Date

Customer
CustomerCity

CustomerName

CustomerRegion

Model
Discount

ModelID

Description

OrderIDManufactory

City
Region Name

(b) Sales

Figure 3.15: The candidate data mart conceptual designs

4. Analysis of data marts fact granularity and measures additivity. This step
produces no information other than that already known with regard to the fact
Inventory. For the fact OrderLines, however, we note that the measures UnitPrice and
Discount% are not additive, and so in the final step of the conceptual design, the
solution used to the fact Sales is preferred.

3.3.4 Final Data Mart Conceptual Design

From a comparison of candidate designs and the initial ones, the terminology is uni-
fied and the final designs are those of Figure 3.16.

60 CHAPTER 3 Data Warehouse Design c© 2015 by Albano et al.

Inventory

QuantityOnHand
ReorderLevel

Date

Week

DayDay

Month

Quarter

Year

Model
Discount

ModelID

Description

Manufactory

PlantCity
PlantRegion PlantName

(a) Inventory

Sales
QuantityOrdered
ExtendedPrice
ExtendedCost
Discount
Revenue
Margin

SalesOutlet
OutletCity

OutletRegion

Date

Week

DayDay

Month

Quarter

Year

Customer
CustomerCity

CustomerName

CustomerRegion

Model
Discount

ModelID

Description

OrderIDManufactory

PlantCity
PlantRegion PlantName

(b) Sales

Figure 3.16: The final data mart conceptual designs

3.3.5 Data Mart and Data Warehouse Logical Design

Two data mart star schemas are defined with a different fact table for each conceptual
design, while for each dimension a table is defined in association with the fact table,
by defining appropriate surrogate primary keys and foreign keys (Figure 3.17a,b).

The data marts relational schemas are then integrated to define the DW schema. Note
that the two star schemas share the dimensions Date, Model and Manufactory. The struc-
ture of the DW is shown in Figure 3.17c.

c© 2015 by Albano et al. 3.4 Project Quality Control 61

Inventory

ModelID
DateFK
ManufactoryFK
QuantityOrdered
ReorderLevel

Date
DatePK
Week
Month
Quarter
Year

Inventory

ModelID
Discount
Description

Manufactory

ManufactoryPK
PlantName
PlantCity
PlantRegion

(a) Inventory data mart star schema

Sales
ModelID
DateFK
ManufactoryFK
SalesOutletFK
CustomerFK
OrderID �DD�
QuantityOrdered
ExtendedPrice
ExtendedCost
Discount
Revenue
Margin

SalesOutlet
SalesOutletPK
OutletCity
OutletRegion

Date
DatePK
Week
Month
Quarter
Year

Customer
CustomerPK
CustomerName
CustomerCity
CustomerRegion

Model
ModelID
Discount
Description

Manufactory

ManufactoryPK
PlantName
PlantCity
PlantRegion

(b) Sales data mart star schema

Sales
ModelID
DateFK
ManufactoryFK
SalesOutletFK
CustomerFK
OrderID �DD�
QuantityOrdered
ExtendedPrice
ExtendedCost
Discount
Revenue
Margin

Inventory

ModelID
DateFK
ManufactoryFK
QuantityOrdered
ReorderLevel

SalesOutlet
SalesOutletPK
OutletCity
OutletRegion

Customer
CustomerPK
CustomerName
CustomerCity
CustomerRegion

Date
DatePK
Week
Month
Quarter
Year

Model
ModelID
Discount
Description

Manufactory

ManufactoryPK
PlantName
PlantCity
PlantRegion

(c) Data warehouse constellation schema

Figure 3.17: The data mart star schemas and the data warehouse constellation
schema

3.4 Project Quality Control

Let us consider some checks for the final review of a project to improve its quality.

62 CHAPTER 3 Data Warehouse Design c© 2015 by Albano et al.

Conceptual Design

1. Granularity of the facts
The determination of the grain of the facts is the first key step in the design of a
data mart. Choosing the grain means deciding the meaning of a fact, and so the
pertinent measures and dimensions.

For example, for orders with multiple lines, if the granularity is the order, it makes
sense to consider a measure that concerns the total order value, but not the amount
of product ordered on each order line, and so the Product dimension can not be
used, but if the granularity is the order line, then it is meaningful to consider
measures about the quantity of product ordered, the price and the revenue (but not
the total order value), and the Product dimension.

In the data mart conceptual design, the measures have numerical values that can
be added across dimensions. Descriptive attributes must be modeled as degenerate
dimensions.

The grain decision for the facts also determines the grain of each dimensions. For
example, if the grain for the PropertySales is an individual property sale, the grain
of the Client dimension is the detail of the client who bought a particular property.

2. Measures
Measures are numerical quantities useful for evaluating the performance of the
processes to be analyzed. It is also useful to define measures that can be calculated
from others, at the time of loading the data. This is particularly true for values
fundamental in the analysis, such as revenue and margin, to avoid their being
calculated by users incorrectly, or in different ways, within reports at the time of
the analysis. If the answers are wrong or inconsistent, the data warehouse will be
viewed as wrong.

It is also important to document, as part of the conceptual design, whether they
are additive, semi-additive or non-additive, to avoid very common mistakes when
they are summed up.

Another common error to avoid is modeling unit amounts (e.g. unit price) as mea-
sures rather than extended amounts (e.g. extended price). This does not mean that
unit amounts must be excluded from conceptual design, because they may be valu-
able information for analysis. If there is not a dimension where they can be stored,
they may be placed in the data mart conceptual design as degenerate dimensions.

The most useful measures are those additives that can be aggregated with any type
of function and by combining facts with various dimensions to answer common
business questions.

The most critical measures, often to be avoided, are the non-additive because they
can not be aggregated with the sum. Typical examples are measures defined as
rates or percentages. These measures must be broken down into underlying com-
ponents that are additive, to calculate the ratio of the sums, not the sum of the
ratio. For example, the margin rate is the ratio of the margin to revenue. These
components are fully additive, and they are usually defined as measures that can
be safely aggregated to any level of detail. The non additive margin rate is com-
puted in a query, or by additional processing logic in the reporting tool, as the ratio
of the sums of margin and of revenue.

3. Date and Time
They should always be modeled separately as dimensions. They are modeled as
facts descriptive attributes only when are not used for analysis.

c© 2015 by Albano et al. 3.4 Project Quality Control 63

4. Dimensions quality
The dimensions should be chosen considering the user’s need for examining facts,
and the future development of the DW. If the same dimension appears in multiple
data marts they must defined in the same way to be shared (conformed dimen-
sions). Examples of these dimensions are time, date, customer and product.

(a) The dimensional attributes must be useful (a) to analyze facts (restrictions,
groupings, and aggregations) and (b) to produce summary reports with the
headers using the users vocabulary to facilitate understanding.

(b) The names of the attributes of different dimensions should be different: a way
to disambiguate them is to prefix the attribute with the dimension name. At-
tribute names should not be those used in the operational databases, but those
that are used in the analysis and that appear in reports.

(c) Dimensional attributes already represented as numerical measures of the facts
should not be repeated in dimensions.

(d) The values of dimensional attributes, usually strings of characters, should fa-
cilitate the interpretation of the reports: avoiding codes (0/1, F/M, etc.) or
adding attributes that describe them.

(e) Represent as a string data type attributes such as Date and Address only if there
is no interest in exploiting in the analysis the implicit hierarchies among their
attribute values.

(f) If a fact is associated with more elements of a dimension, it must be modeled
as multi-valued.

(g) The dimensions can be degenerate, that is they are without attributes because
their values are numbers, such as the order number, invoice number etc., or
strings of characters.

(h) The dimensional hierarchies should always be present to make the analysis
more useful at several levels of detail.

Logical Design

1. Surrogate keys
Surrogate keys must be used for dimension tables, which may also include the
primary key of the source data.

2. No attributes with null values
Default attribute values must be set in the database schema to avoid nulls in the
database. The default value for all the fact measures must be zero in the schema. In
SQL, NULL plus a number equals a NULL, and the aggregate functions perform
a NULL-elimination step, so that NULL values are not included in the final result
of the calculation. The only aggregate function that does not implicitly eliminate
NULL is the COUNT(∗) function. However, an aggregate function AGG(A), with A
a set of NULL, returns NULL, while COUNT(A) returns zero.

To deal with cases in which for a fact record the dimension value may be un-
known, the dimension table must have a special record with an attribute value
“Not Found”, and when a fact record is missing a dimension data, the foreign key
value is the surrogate key of the record “Not Found”.

3. Degenerate dimensions
In the logical schema degenerate dimensions become attributes of the fact table as
the foreign keys to other dimensions, if the attributes take up little storage space,
otherwise they are stored in separate dimension tables.

Another type of degenerate dimension arises when there are a few attributes that

64 CHAPTER 3 Data Warehouse Design c© 2015 by Albano et al.

take different values (status indicators), e.g. order line with status (closed, open,
canceled), customer satisfaction, type of delivery, payment terms etc. These at-
tributes could be added (a) in the fact table, increasing its memory size, (b) in the
relevant dimension tables, duplicating the records (if a customer pays in cash, by
bank transfer, credit card, three records are needed), (c) in different dimension ta-
bles of small cardinality, by increasing the number of foreign keys in the fact table,
(d) collect them all into a separate dimension table with as many attributes as there
are fields with discrete values, and as many elements as are the possible combina-
tion of values (junk dimension). The latter solution is preferable in the presence of
several attributes of state indicators used in the fact table or in different dimension
tables.

4. Shared data
If the shared data are dimensional hierarchies, such as geographic hierarchies, in
the logical design a way to treat them is to deconstuct the dimension table into
a tree structure. So a snowflake dimension is defined, and its advantage must be
evaluated considering the savings in space, the greater complexity of the scheme,
the execution time analysis, and any ambiguity in analysis, such as “Analysis of
the total revenue for the city”: What city does it refers to? Customer, agent, or the
warehouse city?

To facilitate understanding of the data mart schema, and to avoid ambiguous anal-
ysis, if the tables are small, it is usually preferable to duplicate shared hierarchies
in the dimension tables using different attribute names.

If the shared data are dimensions, or there are more dimensions with different
attributes that have the same values (e.g. two dates with the same attributes day,
month, year, or with different attributes to highlight the role of different dates),
such as OrderDate and ReceivedDate, another solution may be used. Instead of using
two separate date tables, with the same granularity, two views are created, with
different attribute names, from a single Date table.

5. Dimensional hierarchies.
Check that the hierarchies type (balanced, incomplete or recursive) is correctly
represented. Moreover, verify that functional dependencies hold over a loaded di-
mension table with dimensional hierarchies. For example, let the dimension be
Date(PkDate, Month, Quarter, Year). If the dimensional hierarchy Month→ Quarter is
valid, then following query returns an empty result set.

SELECT Month
FROM Date
GROUP BY Month
HAVING COUNT(DISTINCT Quarter) > 1;

6. Snowflake dimensions
Do not normalize (snowflake) dimension tables, since it will be harder for the users
to analyze data. Moreover, in general, there is not a very significant memory saving
because of the relatively small cardinality of the dimension tables. Snowflakes are
meaningful only when it is necessary to define interesting dimension tables shared
among several data marts.

7. Changing dimensions
Recognize the dimensions with attributes that change over time and treat them
appropriately.

c© 2015 by Albano et al. 3.5 Summary 65

3.5 Summary

– The design of a data warehouse to support business decisions is a complex task that
requires a methodology organized into phases, like that used to design operational
databases, but the phases’ objectives must be revised properly to adapt them to
multidimensional modeling.

– A possible design methodology has been presented, with the documentation to be
produced at the end of each phase, to proceed by considering both the requirements
analysis and the operational database available.

– The logical design phase has been presented to highlight some critical aspects of
the transition from the conceptual design to the relational one, especially for treat-
ing dimensions that change over time, multivalued dimensions and multivalued
dimensional attributes.

– Finally, some controls have been listed for the final review of a project to improve
its quality.

66 CHAPTER 3 Data Warehouse Design c© 2015 by Albano et al.

Chapter 4

DATA ANALYSIS

Once the data warehouse has been implemented, the final step is data analysis, that
is to identify and to develop a suite of reports showing how the information provided
in these reports can be used by decision makers to improve the business process
modeled. Data analysis is usually done interactively with tools that provide graphical
interfaces to make the requests, which are then translated automatically into SQL
queries on the data warehouse. To facilitate the implementation of complex analysis,
the SQL language has been extended with new operators to group and aggregate data
using several analytic functions. Some of them will be presented with examples to
show how to express in SQL basic OLAP operations on multidimensional data.

4.1 OLAP Systems Solutions

When talking about systems for data analysis, terms are used such as OLAP, ROLAP,
MOLAP, HOLAP, DOLAP, OLAP Server, OLAP Services, etc., which can create problems
of interpretation for the way they are used by vendors of these types of products.

The term OLAP is used to refer to the activity of multidimensional analysis of large
amounts of data, with interactive and intuitive ways of changing the perspectives of
analysis and moving to different levels of synthesis of the detailed data.

An OLAP client provides graphical environments where the business users can click
on actions and perform drag-and-drop operations to provide input to summarize data.
More experienced users can also create complex queries with languages such SQL
or MDX. An OLAP client interacts with the data manager using one of the following
solutions (Figure 4.1):

(a) The data warehouse is stored in a relational database system RDBMS (Data server)
and the interactions with the OLAP client occur in SQL. The benefit of this solu-
tion is that it uses a standard technology usually already available. In the past the
approach was not considered satisfactory for the performance of RDBMS as sys-
tems for data warehouses and limitations of the SQL as an OLAP language. But
now the main producers of RDBMS systems have made them more and more spe-
cialized for OLAP applications (OLAP-Aware RDBMS), aware of managing data
warehouses with special relational schemas (star, snowflake or constellation), di-
mensional hierarchies, specific storage structures, and materialized views (also
called aggregates, MQT (materialized query tables), or summary data).

68 CHAPTER 4 Data Analysis c© 2015 by Albano et al.

OLAP Client RDBMS
SQL API

(a)

OLAP Client OLAP Server RDBMS
OLAP API SQL API

(b)

OLAP Client Desktop OLAP
OLAP API

(c)

Figure 4.1: OLAP Systems Solutions

(b) An OLAP client interacts with an OLAP server, a system that provides a multi-
dimensional cube vision of a data mart, which can be analyzed with the typical
operations slice, dice, drill down, roll up, pivot, etc. An OLAP server can be one of the
following types:

– MOLAP (Multidimensional-OLAP), which stores in the local memory both the data
cube, taken from a Data server, and the aggregates of the extended cube (ma-
terialized views), using a specialized multidimensional arrays structure. A MO-
LAP server does not support SQL, but proprietary languages not for business
users, the most popular being MDX from Microsoft. The solution provides
excellent performance, but is not suitable for large amounts of data. Exam-
ples of products are Hyperion Essbase, Microsoft Analysis Services, Cognos
PowerPlay and DB2 OLAP, using Hyperion Essbase technology.

– ROLAP (Relational-OLAP), which stores both the data and the materialized views
in the relational Data server. ROLAP servers may also need to implement func-
tionality not supported in the SQL of the Data server, for example, analytic
functions. Examples of products are Informatica, MicroStrategy, Microsoft
Analysis Services and SAP BW.

– HOLAP (Hybrid-OLAP), which combines ROLAP and MOLAP by splitting storage
data in a MOLAP and a relational Data server. Splitting the data can be done
in different ways. One method is to store the detailed data in the Data server,
and precomputing aggregated data in MOLAP. Another method is to store more
recent aggregate data in MOLAP to provide faster access, and older aggregates
in the Data server. Microsoft Analysis Services is an example of product that
can operate as MOLAP, ROLAP or HOLAP.

Data update is usually done by batch, at predetermined time intervals. There are
also systems capable of doing proactive caching, updating MOLAP data incremen-
tally at time intervals or after each transaction on an operational database. This
permits the use of OLAP in real-time, or near real-time, useful in certain contexts
such as, for example, the stock market.
The requests of the OLAP client to the OLAP server are formulated in SQL or

c© 2015 by Albano et al. 4.2 Data Analysis Using SQL 69

proprietary languages such as MDX of SQL Server Analysis Services and OLAP DML
of Oracle. The results are communicated to the client in proprietary formats or in
XML, for example using to the standard XMLA.

(c) The OLAP client interacts with a local DOLAP system (Desktop OLAP), which
manages small amounts of data extracted from the OLAP server, the Data server
or an operational DBMS. The fact that a subset of a data cube is transferred on a
user’s machine makes it a good choice for those who travel and move extensively,
such as sales people, by using portable computers, or who do not regularly perform
such complex queries that a faster server is preferred to the speed of the client. The
main product of this type is Business Objects.
Among the DOLAP systems there are those specialized for interactive multidimen-
sional analysis, with some limitations as regards the functionalities of the OLAP
server. For example, Business Objects and MicroStrategy allows the definition of
interactive reports with operations such as drill down and roll up. The system does
not maintain aggregates in the local memory, but only the results of recent opera-
tions. The aggregates are calculated by the OLAP server, by the Data server or by
the operational DBMS.

In all the solutions, the metadata, with information on the structure of the fact ta-
ble, dimensions and hierarchies, are created and maintained by the OLAP or Data
server and are imported from the OLAP client using the standard CWM (Common
Warehouse Metamodel) or proprietary formats.

Finally, in all the various solutions, the systems are supported by ETL (Extract,
Transform, Load) tools to load data from operational databases and other external
sources.

4.2 Data Analysis Using SQL

In the following, several examples are presented to show how to write SQL queries
to produce reports for commonly asked business questions. The examples are based
on the following table with attributes without null values.

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

Only in some cases will a graphical representation of the result also be shown, but
this is, in general, essential to make the results understandable and useful to those
who need information for decision support, the main motivation of the multidimen-
sional analysis. Sometimes patterns can be seen in visual data that cannot be seen
in numerical data. All reporting tools allow us to perform both an analysis of data
without writing the query in SQL, and to produce a graphical representation of the
result. Some DBMS, such as Oracle, can produce a graphical representation of the
result with analysis expressed in SQL too.

Some of the more commonly used business reports follow.

Simple Reports.
Many kinds of commonly requested business reports can be readily expressed as SQL
queries.

– What were the total revenue and margin (in value terms and as a percentage of the
revenue) of sales for the month of January 2009, by brand and by product?

– What were the total revenue and margin (in value terms and as a percentage of the
revenue) of sales for the month of January 2009, by brand and by product, and the
brand subtotals for all products?

70 CHAPTER 4 Data Analysis c© 2015 by Albano et al.

Moderately Difficult Reports.
However, many other commonly requested reports cannot be expressed so easily.
Reports that require comparisons often challenge both the query writers and SQL
itself.

– Revenues for 2009 by brand and product, with the percentage change from the
previous year?

– How did product revenues in 2009 compare by geographic area, in a readable
spreadsheet, or “cross-tab”, format?

– Which suppliers charge the most for bulk tea products?
– What was the most successful promotion last December in Rome?

Very Difficult Reports Without Analytic SQL.
Reports that require sequential processing are very difficult to express as SQL queries,
for example deriving a simple running total. Data analysts typically run several queries
with a program, then paste the results together. This approach is awkward because it
requires a sophisticated user.

The standard SQL analytic functions provide a better solution because they are
easy to use, and perform a broad range of calculations that execute quickly on the
server.

– What were the cumulative totals (running totals) for Best coffee sales during each
month of last year?

– What were the ratios of monthly sales to total sales (expressed as percentages) for
Best coffee during the same period?

– Which ten cities had the worst coffee sales in 2010 with regard to dollar sales and
quantities sold?

– Which supermarket falls into the top 25% in terms of sales revenue for the first
quarter of 2010?

– What products fell into the top 20%, middle 60%, and bottom 20% of sales margins
totals for the second week of 2011, at stores in the Center area?

4.3 Simple Reports with SQL

A simple kind of query involves grouping and aggregation of the data.
To write such kind of SELECT the GROUP BY clause must be used with the follow-

ing version of the command syntax.

SELECT DISTINCT SA, SAF

FROM T
WHERE WC

GROUP BY GA

HAVING HC

ORDER BY OA;

where (a) SA are the SELECT attributes and SAF are the SELECT aggregation func-
tions; (b) T are the FROM tables; (c) WC is the WHERE condition; (d) GA are the
grouping attributes, with SA ⊆ GA; (e) HC is the HAVING condition with aggrega-
tion functions HAF ; (f) OA are the ORDER BY attributes; (g) the DISTINCT , WHERE ,
HAVING and ORDER BY clauses are optional.

The command semantics with tablesR and S, and all the optional clauses specified,
in terms of the extended relational algebra is shown in Figure 4.2.

c© 2015 by Albano et al. 4.3 Simple Reports with SQL 71

ORDER BY OA

DISTINCT

SELECT SA, SAF

HAVING HC

GROUP BY GA

WHERE WC

FROM R, S

(a) SQL query

τOA

δ

πb
SA ∪ SAF

σHC

GA
γ SAF ∪HAF

σWC

×

R S
(b) Logical query plan

Figure 4.2: SQL query with GROUP BY semantics

Figure 4.3 shows an example of the analysis report for “total revenue and margin (in
value terms and as a percentage of the revenue) of sales for the year 2009, by brand
and by product.”

Margin by Brand and by Product
Year 2009

Brand Product Revenue Margin Margin%
(¤) (¤) (%)

B1 P1 2 100 273 13
P2 3 720 624 17
P3 15 300 1 803 12

B2 P4 12 600 756 6
P5 22 500 2 196 10
P6 48 300 4 496 9

Figure 4.3: A Simple Report

The following query with a GROUP BY produces the desired result:1

SELECT Brand, Product, SUM(Revenue) AS Revenue,
SUM(Margin) AS Margin,
ROUND(100∗SUM(Margin)/SUM(Revenue)) AS Margin%

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY Brand, Product
ORDER BY Brand, Product;

1. In all the examples in this chapter, the SQL queries produce the data needed for reports, but not their
graphic representation. The YEAR, QUARTER, MONTH functions retrieve subfields from DATE
values.

72 CHAPTER 4 Data Analysis c© 2015 by Albano et al.

Note that the operations Slice and Dice are expressed by a selection and projection,
while Roll-up and Drill-down require a GROUP BY. For example, a roll-up on Brand,
to find, for the year 2009, the total revenue, total margin and margin percentage by
Brand, is expressed with the following query:

SELECT Brand, SUM(Revenue) AS Revenue,
SUM(Margin) AS Margin,
ROUND(100∗SUM(Margin)/SUM(Revenue)) AS Margin%

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY Brand
ORDER BY Brand;

while a drill-down on Customer, on the previous result, to find, for the year 2009, the
total revenue, total margin and margin percentage by Brand and Customer, is expressed
with the following query:

SELECT Brand, Customer, SUM(Revenue) AS Revenue,
SUM(Margin) AS Margin,
ROUND(100∗SUM(Margin)/SUM(Revenue)) AS Margin%

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY Brand, Customer
ORDER BY Brand, Customer;

In general, adding an attribute to the GROUP BY and SELECT, a drill-down is made,
while dropping an attribute, a roll-up is made.

4.3.1 The Operator ROLLUP

Many OLAP queries use a GROUP BY to partition data into groups that are reduced to
a single row of aggregates and grouping columns. However, standard SQL limit the
types of OLAP queries that can be easily expressed. One extension is the ROLLUP
clause. Suppose that we want to obtain the report of Figure 4.4. Any report that con-
tains a metric is likely to contain a “total” at the end. If the report has more than one
dimensional attribute, the metric may also be subtotaled.

Margin by Brand and by Product
Year 2009

Brand Product Revenue Margin Margin%
(¤) (¤) (%)

B1 P1 2 100 273 13
P2 3 720 624 17
P3 15 300 1 803 12

B1 Total 21 120 2 700 13

B2 P4 12 600 756 6
P5 22 500 2 196 10
P6 48 300 4 496 9

B2 Total 83 400 7 448 9

Total 104 520 10 148 10

Figure 4.4: A report with some subtotals

A possible solution with standard SQL would be:

c© 2015 by Albano et al. 4.3 Simple Reports with SQL 73

SELECT Brand, Product, SUM(Revenue) AS Revenue,
SUM(Margin) AS Margin,
ROUND(100∗SUM(Margin)/SUM(Revenue)) AS Margin%

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY Brand, Product

UNION ALL

SELECT Brand, NULL AS Product, SUM(Revenue) AS Revenue,
SUM(Margin) AS Margin,
ROUND(100∗SUM(Margin)/SUM(Revenue)) AS Margin%

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY Brand

UNION ALL

SELECT NULL AS Brand, NULL AS Product, SUM(Revenue) AS Revenue,
SUM(Margin) AS Margin,
ROUND(100∗SUM(Margin)/SUM(Revenue)) AS Margin%

FROM Sales
WHERE YEAR(Date) = 2009
ORDER BY Brand, Product;

Three statements are required because the report requires three aggregations applied
to groups of values produced by a different GROUP BY clause. Computing all of
these queries independently is time consuming, and this is the main motivation for
the ROLLUP clause which is included in the SQL of several DBMSs:

SELECT Brand, Product, SUM(Revenue) AS Revenue,
SUM(Margin) AS Margin,
ROUND(100∗SUM(Margin)/SUM(Revenue)) AS Margin%

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY ROLLUP (Brand, Product)
ORDER BY Brand, Product;

� Definition 4.1 ROLLUP in SQL:1999
A ROLLUP group is an extension of the GROUP BY clause that produces
a result that contains subtotal records in addition to the regular grouped
records, whose aggregate values are derived by applying the same func-
tions. A ROLLUP(A1, A2, . . . , An−1, An) group is equivalent to the union
of the n + 1 grouping results on the attributes (A1, A2, . . . , An−1, An),
(A1, A2, . . . , An−1), . . . , (A1, A2), (A1), and (). Notice that each group-
ing result is created by eliminating an attribute from the list specified in the
ROLLUP clause, by moving from right to left. Therefore, the order in which
the attributes are specified is significant for the ROLLUP result. The operator
produces its results with just one table access.

For example, the rows of the table in Figure 4.4 are calculated first grouping on Brand,
Product, and then the subtotals are calculated progressively moving from right to left
through the list of grouping columns: first grouping on Brand, and then on () (super-
aggregate rows).

4.3.2 The Operator CUBE

Suppose now that we want to obtain a table such as that in Figure 4.5, similar to the
table in Figure 4.4 except that, in addition, it has totals for each row and each column.

74 CHAPTER 4 Data Analysis c© 2015 by Albano et al.

Margin by Brand and by Product
Year 2009

Brand Product Revenue Margin Margin%
(¤) (¤) (%)

B1 P1 2 100 273 13
P2 3 720 624 17
P3 15 300 1 803 12

Total B1 21 120 2 700 13

B2 P4 12 600 756 6
P5 22 500 2 196 10
P6 48 300 4 496 9

Total B2 83 400 7 448 9

Total P1 2 100 273 13
Total P2 3 720 624 17
Total P3 15 300 1 803 12
Total P4 12 600 756 6
Total P5 22 500 2 196 10
Total P6 48 300 4 496 9

Total 104 520 10 148 10

Figure 4.5: Report with subtotals

Again, computing all of these queries independently is time consuming, and this is
the main motivation for the CUBE clause which is included in the SQL of several
DBMSs:

SELECT Brand, Product, SUM(Revenue) AS Revenue,
SUM(Margin) AS Margin,
ROUND(100∗SUM(Margin)/SUM(Revenue)) AS Margin%

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY CUBE (Brand, Product)
ORDER BY Brand, Product;

� Definition 4.2 CUBE in SQL:1999
A CUBE group is an extension of the GROUP BY clause that produces a re-
sult that contains subtotal records in addition to the regular grouped records,
whose aggregate values are derived by applying the same functions. A CUBE
(A1, A2, . . . , An−1, An) group is equivalent to the union of the 2n grouping
results on the attributes of all possible subsets of the attributes specified in
the CUBE clause. Unlike ROLLUP, the order in which the attributes are speci-
fied doesn’t matter for CUBE. The operator produces its results with just one
table access.

Some systems also provide the operator GROUPING SETS to group only for certain
combinations of attributes. For example, replacing in the previous query GROUP BY
CUBE(Brand, Product) with GROUP BY GROUPING SETS((Brand, Product), (Brand)) data
are grouped only for the two combinations listed.

4.3.3 Observations

In general, in the GROUP BY clause both attributes and different ROLLUP and CUBE
can be used. For example, the following query

c© 2015 by Albano et al. 4.3 Simple Reports with SQL 75

SELECT Date, Brand, Product, SUM(Revenue) AS Revenue
FROM Sales
GROUP BY Date, ROLLUP(Brand, Product);

generates the following groupings: (Date, Brand, Product), (Date, Brand) and (Date), but
not (). The result is justified by recalling that Date generates the set of groupings
{(Date)}, ROLLUP generates the set of groupings {(Brand, Product), (Brand), ()} and
their combination generates the cartesian product of two sets. The following query

SELECT Date, Brand, Product, SUM(Revenue) AS Revenue
FROM Sales
GROUP BY CUBE(Date), ROLLUP(Brand, Product);

generates the following groupings instead: (Date, Brand, Product), (Date, Brand), (Date),
(Brand, Product), (Brand) and ().

Usually, in relational systems when using operators ROLLUP and CUBE, the result
shows the value NULL to indicate a running total, creating ambiguity because the
value might be present in the data and not a result of the operators ROLLUP and
CUBE. To correctly interpret the meaning of a record the function GROUPING is used
with an attribute parameter in the GROUP BY: the function returns 1 if the value NULL
has been created by ROLLUP or CUBE, and returns 0 otherwise. For example, the
result of the query

SELECT Brand, Product, SUM(Revenue) AS Revenue,
GROUPING(Brand), GROUPING(Product)

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY ROLLUP(Brand, Product);

produces the result of the query without GROUPING, extended with two more columns
that have the value 1 when the record has a field NULL, which corresponds to a total,
as shown in Figure 4.6.

Brand Product Revenue GROUPING GROUPING
(Brand) (Product)

B1 P1 2 100 0 0
B1 P2 3 720 0 0
B1 P3 15 300 0 0
B1 21 120 0 1
B2 P4 12 600 0 0
B2 P5 22 500 0 0
B2 P6 48 300 0 0
B2 83 400 0 1

104 520 1 1

Figure 4.6: Report with ROLLUP and GROUPING

To get the result without additional columns, but with the value Total when necessary,
we write:

SELECT CASE WHEN GROUPING(Brand) = 1 THEN ’Total’ ELSE Brand
END AS Brand,
CASE WHEN GROUPING(Product) = 1 THEN ’Total’ ELSE Product
END AS Product,
SUM(Revenue) AS Revenue

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY ROLLUP(Brand, Product);

76 CHAPTER 4 Data Analysis c© 2015 by Albano et al.

where, with the first CASE, if the value of Brand is a NULL, then the string Total will
appear (any string can be chosen). Otherwise, its actual value will appear, as shown
in Figure 4.7.

Brand Product Revenue

B1 P1 2 100
B1 P2 3 720
B1 P3 15 300
B1 Total 21 120
B2 P4 12 600
B2 P5 22 500
B2 P6 48 300
B2 Total 83 400
Total Total 104 520

Figure 4.7: Displaying the ALL values with Total

The function GROUPING, like any other aggregate function, can be used in HAVING
to select only some of the records produced by ROLLUP or CUBE. For example, the
following query finds only the record with totals:

SELECT CASE WHEN GROUPING(Brand) = 1 THEN ’Total’ ELSE Brand
END AS Brand,
CASE WHEN GROUPING(Product) = 1 THEN ’Total’ ELSE Product
END AS Product,
SUM(Revenue) AS Revenue

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY ROLLUP (Brand, Product)
HAVING GROUPING(Brand) = 1 OR GROUPING(Product) = 1;

c© 2015 by Albano et al. 4.4 Moderately Difficult Reports with SQL 77

4.4 Moderately Difficult Reports with SQL

Let us show examples of queries to present results in a spreadsheet-type cross-tab
format, rather than the form of lists of values, or to produce reports with metrics to
be calculated by comparison with others.

Example 4.1
Let us produce a report with the total revenue in 2009 by product and by geo-
graphical areas. The following simple SQL query

SELECT Product, Area, SUM(Revenue) AS TotalRevenue
FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY Product, Area
ORDER BY Product, Area;

produces a vertically ordered result set that makes it difficult to compare the
revenues by product and by geographical area.

Total Revenue
by Product and by Geographical area

Year 2009

Product Area Revenue

P1 Center 600
P1 Islands 300
P1 North 900
P1 South 300
P2 Center 1 200
P2 Islands 360
P2 North 1 800
P2 South 360
P3 Center 4 680
P3 Islands 1 980
P3 North 7 020
P3 South 1 620
P4 Center 3 600
P4 Islands 1 800
P4 North 5 400
P4 South 1 800
P5 Center 6 300
P5 Islands 3 150
P5 North 9 450
P5 South 3 600
P6 Center 15 000
P6 Islands 5 100
P6 North 22 500
P6 South 5 700

This kind of data is much easier to compare when it is formatted like a
spreadsheet-type cross-tab or pivot table:

78 CHAPTER 4 Data Analysis c© 2015 by Albano et al.

Comparison between Revenues
by Product and by Area

Year 2009

Product North Center South Islands

P1 900 600 300 300
P2 1 800 1 200 360 360
P3 7 020 4 680 1 620 1 980
P4 5 400 3 600 1 800 1 800
P5 9 450 6 300 3 600 3 150
P6 22 500 15 000 5 700 5 100

The result is obtained by grouping the data by Product and by using in the SELECT
the aggregate function SUM with argument a CASE expression:

SELECT Product,
SUM(CASE

WHEN Area = ’North’ THEN Revenue ELSE 0 END) AS North,
SUM(CASE

WHEN Area = ’Center’ THEN Revenue ELSE 0 END) AS Center,
SUM(CASE

WHEN Area = ’South’ THEN Revenue ELSE 0 END) AS South,
SUM(CASE

WHEN Area = ’Islands’ THEN Revenue ELSE 0 END) AS Islands
FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY Product
ORDER BY Product;

DBMSs such as Oracle 11g and SQL Server 2005 provide an extension to SQL
to create the cross-tab with a PIVOT clause.

Figure 4.8 shows a graphical representation of product revenues by geographic
area with multiple groups of stacked bars, while Figure 4.9 shows another graph-
ical representation often used to show the percentage revenue mix of product by
geographic area, but the SQL query to produce the revenue percentage is more
complex, and we will see later how to write it.

0

10000

20000

30000

40000

P1 P2 P3 P4 P5 P6

North Center South Islands

Figure 4.8: An example of a stacked bar report

c© 2015 by Albano et al. 4.4 Moderately Difficult Reports with SQL 79

North

Center

South

Islands

25% 50% 75% 100%

Figure 4.9: Another example of a stacked bar report

Example 4.2
Another very common type of analysis requires reports that compare data
columns that refer to different periods (variance report). For example, “Revenues
for 2009 by brand and by product, with the percentage change from the previous
year (Delta = 100× ((Revenue 2009 − Revenue 2008)/Revenue 2009)”.

Comparison between Revenue by Brand and by Product
2009 – 2008

Brand Product Revenue (¤) Revenue (¤) Delta
2009 2008 (%)

B1 P1 2 100 13 560 −546
P2 3 720 23 640 −535
P3 15 300 20 340 −33

B2 P4 12 600 1 440 89
P5 22 500 2 100 91
P6 48 300 100

The annual revenues for 2009 and for 2008, by brand and by product, are obtained
with the following SQL queries:

Revenue09 = SELECT Brand, Product, SUM(Revenue) AS Revenue2009
FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY Brand, Product ;

Revenue08 = SELECT Brand, Product, SUM(Revenue) AS Revenue2008
FROM Sales
WHERE YEAR(Date) = 2008
GROUP BY Brand, Product ;

If the same products were sold in both 2009 and 2008, the final result would be
obtained with a natural join of Revenue09 and Revenue08.

Instead, to take into account that not necessarily the same products were sold
in both 2009 and 2008, the analysis in SQL requires a full join of Revenue09 and
Revenue08.

80 CHAPTER 4 Data Analysis c© 2015 by Albano et al.

SELECT Revenue09.Brand AS Brand, Revenue09.Product AS Product
, Revenue2009
, Revenue2008
, CASE

WHEN Revenue2009 IS NULL THEN −100
WHEN Revenue2008 IS NULL THEN 100
ELSE ROUND(100∗(Revenue2009 − Revenue2008) / Revenue2009)

END AS Delta
FROM (SELECT Brand, Product, SUM(Revenue) AS Revenue2009

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY Brand, Product

) AS Revenue09

FULL JOIN

(SELECT Brand, Product, SUM(Revenue) AS Revenue2008
FROM Sales
WHERE YEAR(Date) = 2008
GROUP BY Brand, Product

) AS Revenue08

USING (Brand, Product)
ORDER BY Brand, Product;

In Figure 4.10 there is shown a graphical representation of the result with a his-
togram, useful for comparing metrics.
Another very useful graph is the comparison of revenues for the months of dif-
ferent years (Figure 4.11), calculated with an SQL query similar to the previous
one.

Figure 4.10: The histogram of the revenues variation by product

c© 2015 by Albano et al. 4.4 Moderately Difficult Reports with SQL 81

Figure 4.11: The trend in revenues per month of different years

4.4.1 The WITH Clause in SQL

The above example shows how SQL queries for complex analysis generally require
the use of subqueries in the FROM clause, usually handled by relational systems as
a temporary view definition. To make it easier to understand these types of queries,
it is useful to write them using the WITH clause to break down complex queries with
subqueries into simpler parts.

For example, the previous query is written as follows.

WITH Revenue09 AS
(SELECT Brand, Product, SUM(Revenue) AS Revenue2009

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY Brand, Product

)
, Revenue08 AS
(SELECT Brand, Product, SUM(Revenue) AS Revenue2008

FROM Sales
WHERE YEAR(Date) = 2008
GROUP BY Brand, Product

)

SELECT Revenue09.Brand AS Brand, Revenue09.Product AS Product
, Revenue2009
, Revenue2008
, CASE

WHEN Revenue2009 IS NULL THEN −100
WHEN Revenue2008 IS NULL THEN 100
ELSE ROUND(100∗(Revenue2009 − Revenue2008) / Revenue2009)

END AS Delta
FROM Revenue09 FULL JOIN Revenue08 USING (Brand, Product)
ORDER BY Brand, Product;

A temporary view defined with WITH can use one of the previous defined views or
be recursive, if defined with WITH RECURSIVE. Recursive queries are typically used
to deal with hierarchical or tree-structured fact tables. For example, suppose we have
the relation

82 CHAPTER 4 Data Analysis c© 2015 by Albano et al.

Flights
Code From To

10 MI PI
11 MI TO
12 MI RM
13 PI FI
14 TO RM
15 RM VE
16 NA BA
17 TO PA

The result of the query

WITH RECURSIVE
CitiesReachableFrom AS
(SELECT From, To

FROM Flights
UNION

SELECT Flights.From AS From, CitiesReachableFrom.To AS To
FROM Flights, CitiesReachableFrom
WHERE Flights.To = CitiesReachableFrom.From

)

SELECT ∗
FROM CitiesReachableFrom
WHERE From = ’MI’;

is a relation with pairs of cities reachable from Milano by taking one or more flights.

From To

MI PI
MI TO
MI RM
MI FI
MI VE
MI PA

The definition of the SQL temporary recursive view CitiesReachableFrom has the
structure BasisSelect UNION RecursiveSelect, with a linear recursion, that is the FROM
of the RecursiveSelect contains one occurrence only of the temporary recursive view.
The FinalSelect of the WITH clause is executed with the CitiesReachableFrom relation
value that might be computed as follows:

1) CitiesReachableFrom := BasisSelect;
2) WHILE (changes to CitiesReachableFrom) DO
3) CitiesReachableFrom := CitiesReachableFrom UNION RecursiveSelect;

CitiesReachableFrom is initially empty and with rule (1) its records become those of
the BasisSelect, the cities reachable with direct flights, because the RecursiveSelect
produces an empty relation.

On the next iteration, with rule (3) possible, other cities reachable with more flights
are added to the relation RecursiveSelect. If the new value is equal to the previous one,
the final result has been obtained and the loop ends. Otherwise, the value obtained is
used to find other cities reachable.

The FinalSelect is executed with the final value of CitiesReachableFrom and the
result is the subset of records with From = ’MI’.

c© 2015 by Albano et al. 4.5 Very Difficult Reports Without Analytic SQL 83

4.5 Very Difficult Reports Without Analytic SQL

The SQL has been extended to allow the use of several analytic functions, also known
as Windows Functions, to use them in new ways in order to facilitate the development
of complex data analysis.

A SELECT, for simplicity with a single analytic function, without DISTINCT, with a
fact table and one dimensional table only, has the following structure:

SELECT Select Attributes (SA), Select Aggregation Functions (SAF),
Analytic Function (AF) OVER(

[PARTITION BY <attribute list>]
[ORDER BY <sort attribute list>
[<window clause>]])

FROM Fact table (F) and a dimension table (D1)
WHERE Where condition (WC)
GROUP BY Grouping Attributes (GA)
HAVING Having condition (HC) with aggregation functions (HAF)
ORDER BY Sorting attributes (OA);

The command semantics in terms of the extended relational algebra is shown in Fig-
ure 4.12.

ORDER BY OA

SELECT SA, SAF ,

AF OVER (. . .)

HAVING HC

GROUP BY GA

WHERE WC

FROM F, D1

(a) SQL query

τOA

πb
SA ∪ SAF ∪AF

GA
ΩSAF ∪AF

σHC

GA
γ SAF ∪HAF

σWC

×

F D1
(b) Logical query plan

Figure 4.12: Analytic SQL query semantics

The query is processed in the following steps:

1. Perform the operations specified in FROM, WHERE, GROUP BY and HAVING clauses
to compute the set of records resulting from the subtree rooted at σHC

.
2. Apply the specified analytic functions to the result of the subtree rooted at σHC

,
to produce a new set of record that differs from the previous ones only for new
attributes calculated using the analytic functions.

3. Apply any projection, and then the ORDER BY to produce the query result.

The analytic functions can be used only in SELECT, with the OVER clause, and usually
they are applied to the entire set of records produced in the first phase, but may also

84 CHAPTER 4 Data Analysis c© 2015 by Albano et al.

be applied separately to disjoint subsets obtained by partitioning the records by the
value of an expression defined on the attributes of the record (option PARTITION BY).
The aggregate functions can also be applied to non-disjoint subsets of records in a
partition defined by the notion of moving window: for each record r of a partition,
aggregate functions apply to the data identified by a “window” placed on r. They are
useful for analysis of data, such as: “What is the moving average of weekly sales?”.

The result of the traditional aggregate functions SUM, COUNT, AVG, MIN, MAX does
not depend on the order of records in the collection on which they operate. Instead,
the result of the new analytic functions, which we will see that later on, may depend
on the order of the data specified with the ORDER BY clause in the OVER of the
SELECT.

The partitioning operation is like that for the calculation of a GROUP BY, but PAR-
TITION BY does not produce a record for each group as with the GROUP BY, but
rather produces as many records as there are elements of the group, which will then
be extended with new attributes calculated using the analytic functions. When the
PARTITION BY clause is not present, the set of records behaves as a single group.

Figure 4.13 shows the main analytic functions available in some DBMS.

Function Oracle DB2 SQL Server PostgreSQL MySQL

COVAR POP x x x x
CUBE x x x
CUME DIST x x x
DENSE RANK x x x x
LAG, LEAD x x x x
NTILE x x x x x
PERCENT RANK x x
RANK x x x x
RATIO TO REPORT x x
REGR Functions x x x
ROLLUP x x x x
ROW NUMBER x x x x
STDDEV POP x x x x x
VAR POP x x x x x
Window Clause x x x

Figure 4.13: Analytic SQL in some DBMS

4.5.1 Premise

Note the difference between the result of a query with an aggregate function, and the
traditional GROUP BY, and an analytic function.

Let us consider the relation

R
P . . .

P1 . . .
P1 . . .
P2 . . .
P2 . . .
P2 . . .
P2 . . .
P2 . . .

The query

c© 2015 by Albano et al. 4.5 Very Difficult Reports Without Analytic SQL 85

SELECT P, COUNT(∗) AS No
FROM R
GROUP BY P;

returns the relation

P No

P1 2
P2 5

while the query

SELECT P,
COUNT(∗) OVER (PARTITION BY P) AS No

FROM R
ORDER BY P;

returns the relation

P No

P1 2
P1 2
P2 5
P2 5
P2 5
P2 5
P2 5

While the GROUP BY groups a set of records and a record for each group with two
attributes is obtained – with the value of the grouping attribute and the value of the
aggregate function COUNT – with the analytic function, for each record of the set the
value of the aggregate function COUNT is computed when applied to subsets obtained
with the PARTITION.

If the query was without PARTITION, the analytic function would be applied to the
whole record set:

SELECT P, COUNT(∗) OVER() AS No
FROM R
ORDER BY P;

to get the table

P No

P1 7
P1 7
P2 7
P2 7
P2 7
P2 7
P2 7

Compare this result with that of

SELECT COUNT(∗) AS No
FROM R

No

7

86 CHAPTER 4 Data Analysis c© 2015 by Albano et al.

The next example shows the usefulness of the OVER clause to solve a nontrivial prob-
lem left unresolved in a previous example.

Example 4.3
Let us reconsider the example of the report with the total sales revenue in 2009,
by product and by geographical area:

Total revenue
by Product and by Geographical area

Year 2009

Product North Center South Islands

P1 900 600 300 300
P2 1 800 1 200 360 360
P3 7 020 4 680 1 620 1 980
P4 5 400 3 600 1 800 1 800
P5 9 450 6 300 3 600 3 150
P6 22 500 15 000 5 700 5 100

to change it by replacing the total revenue by product and by geographical area,
with the revenue percentage of total revenue for the area.

Percentage of total revenue by area
by Product and by Geographical area

Year 2009

Product PctNorth PctCenter PctSouth PctIslands

P1 2 2 2 2
P2 4 4 3 3
P3 15 15 12 16
P4 11 11 13 14
P5 20 20 27 25
P6 48 48 43 40

The result is obtained with the query

c© 2015 by Albano et al. 4.5 Very Difficult Reports Without Analytic SQL 87

SELECT Product
, ROUND(100∗SUM(CASE

WHEN Area = ’North’
THEN Revenue ELSE 0 END)

/ SUM(SUM(CASE
WHEN Area = ’North’
THEN Revenue ELSE 0 END))

OVER ()
) AS PctNorth

, ROUND(100∗SUM(CASE
WHEN Area = ’Center’
THEN Revenue ELSE 0 END)

/ SUM(SUM(CASE
WHEN Area = ’Center’
THEN Revenue ELSE 0 END))

OVER ()
) AS PctCenter,

, ROUND(100∗SUM(CASE
WHEN Area = ’South’
THEN Revenue ELSE 0 END)

/ SUM(SUM(CASE
WHEN Area = ’South’
THEN Revenue ELSE 0 END))

OVER ()
) AS PctSouth

, ROUND(100∗SUM(CASE
WHEN Area = ’Islands’
THEN Revenue ELSE 0 END)

/ SUM(SUM(CASE
WHEN Area = ’Islands’
THEN Revenue ELSE 0 END))

OVER ()
) AS PctIslands

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY Product
ORDER BY Product;

GROUP BY with CASE
We have seen how the construct CASE is useful in the SELECT for certain analyses,
and other examples will be seen later. Let us see how it can also be useful in the
GROUP BY, for grouping the data of a report not on the values of certain attributes,
but on values calculated from those of other attributes.

Let us consider the relation

S
P Prc . . .

P1 10 . . .
P2 20 . . .
P3 30 . . .
P4 40 . . .
P5 50 . . .
P6 60 . . .
P7 70 . . .

Suppose we want a report to display the products classified in 3 categories: Cheap
(Prc ≤ 20), Medium (20 < Prc ≤ 50) e Expensive (50 < Prc ≤ 100).

88 CHAPTER 4 Data Analysis c© 2015 by Albano et al.

P Prc Category

P1 10 Cheap
P2 20 Cheap
P3 30 Medium
P4 40 Medium
P5 50 Medium
P6 60 Expensive
P7 70 Expensive

The result is obtained with the query

SELECT P, Prc
, CASE

WHEN Prc <= 20 THEN ’Cheap’
WHEN Prc > 20 AND Pz <= 50 THEN ’Medium’
ELSE ’Expensive’

END AS Category
FROM S;

Now suppose we want a report showing the average price of products by category.

Category AvgPrice

Cheap 15
Medium 40
Expensive 65

WITH CategoryAndPrice AS
(SELECT CASE

WHEN Prc <= 20 THEN ’Cheap’
WHEN Prc > 20 AND Prc <= 50 THEN ’Medium’
ELSE ’Expensive’

END AS Category
, Price

FROM S
)

SELECT Category, AVG(Price) AS AvgPrice
FROM CategoryAndPrice
GROUP BY Category
ORDER BY AvgPrice;

Without the WITH the query becomes

SELECT CASE
WHEN Prc <= 20 THEN ’Cheap’
WHEN Prc > 20 AND Prc <= 50 THEN ’Medium’
ELSE ’Expensive’

END AS Category
, AVG(Prc) AS AvgPrice

FROM S
GROUP BY CASE

WHEN Prc <= 20 THEN ’Cheap’
WHEN Prc > 20 AND Prc <= 50 THEN ’Medium’
ELSE ’Expensive’

END
ORDER BY AvgPrice;

The query must be written with two syntactically equal CASE expressions, one in the
GROUP BY and another in the SELECT.

Some relational systems, such as PostgreSql, allow the use in the GROUP BY of the
CASE expression label in the SELECT to avoid rewriting the expression in the GROUP
BY and, therefore, the query can be written as

c© 2015 by Albano et al. 4.5 Very Difficult Reports Without Analytic SQL 89

SELECT CASE
WHEN Prc <= 20 THEN ’Cheap’
WHEN Prc > 20 AND Prc <= 50 THEN ’Medium’
ELSE ’Expensive’

END AS Category
, AVG(Prc) AS AvgPrice

FROM S
GROUP BY Category
ORDER BY AvgPrice;

We shall see later the use of GROUP BY with CASE in a case of more complex analy-
sis.

4.5.2 Analytic Functions with the Use of Partitions

RANK and DENSE RANK
These functions are used to sort the records out in a set based on the value of an
attribute or of an expression (aggregate function), and to assign to each record its
position (rank) in the set. The standard record order is ascending, and so the records
with rank 1 have the minimum value of the attribute, but the descending order can be
specified. The result is sorted by the rank value, unless otherwise specified. A ranking
function is specified in the SELECT clause with the following syntax:

<RankFunction>()
OVER(

[PARTITION BY <attribute list>]
ORDER BY <sort attribute list>

) [AS Ide]

RANK and DENSE RANK require an ORDER BY clause, because to determine the val-
ues rank the data must be ordered. If no partitioning is specified, the entire set of
records composes a single partition.

The functions RANK and DENSE RANK produce different results when the values to
be ranked are not different. The rank of a value ai is defined as 1 plus the number of
values that strictly precede ai. If k > 1 values are equal, they are assigned the same
value rank p, and the next value has the rank p + k. Therefore there will be a gap in
the sequential rank numbering. Instead, with DENSE RANK there will be no gaps in
the sequential rank numbering, with ties being assigned the same rank. The rank of
a value ai is defined as 1 plus the number of distinct values that strictly precede ai.
For example, the values in the ascending order (10, 20, 20, 30, 30, 40) have the ranks
(1, 2, 2, 4, 4, 6) and the dense ranks (1, 2, 2, 3, 3, 4).

Example 4.4
“Show for the year 2009, and the regions of Tuscany and Lazio, the total revenue
by region and product, the rank of the products for total revenue in each region
and for total revenue.”

90 CHAPTER 4 Data Analysis c© 2015 by Albano et al.

Revenues and Ranks in the 2009
by Region and by Product

Region Product Total Product Rank Product Rank
Revenue by Region Global

Lazio P3 2880 3 4
P2 960 5 8
P4 2 700 4 5
P1 480 6 10
P5 4 800 2 2
P6 11 400 1 1

Toscana P1 120 6 12
P6 3 600 1 3
P3 1 800 2 6
P5 1 500 3 7
P4 900 4 9
P2 240 5 11

SELECT Region, Product
, SUM(Revenue) AS TotalRevenue
, RANK() OVER (PARTITION BY Region ORDER BY SUM(Revenue) DESC)

AS ProductRankByRegion
, RANK() OVER (ORDER BY SUM(Revenue) DESC)

AS ProductRankGlobal
FROM Sales
WHERE YEAR(Date) = 2009

AND Region IN (’Toscana’, ’Lazio’)
GROUP BY Region, Product
ORDER BY Region;

Example 4.5
“Show for the year 2009 total revenue, the rank and dense rank of total revenue
for clients.”

Revenues, Rank and Dense Rank in the 2009
by Customer

Customer Total Customer Customer
Revenue Rank Dense Rank

C15 21 120 1 1
C03 13 650 2 2
C08 11 400 3 3
C09 9 240 4 4
C04 8 640 5 5
C11 7 560 6 6
C02 7 560 6 6
C12 7 200 8 7
C16 4 680 9 8
C14 4 200 10 9
C06 3 150 11 10
C10 2 520 12 11
C01 1 920 13 12
C13 1 680 14 13

c© 2015 by Albano et al. 4.5 Very Difficult Reports Without Analytic SQL 91

SELECT Customer
, SUM(Revenue) AS TotalRevenue
, RANK() OVER (ORDER BY SUM(Revenue) DESC)

AS CustomerRank
, DENSE RANK() OVER (ORDER BY SUM(Revenue) DESC)

AS CustomerDenseRank
FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY Customer
ORDER BY TotalRevenue DESC;

Example 4.6
The ranking functions can be used to find only the first N records with the value
of higher or lower ranks (TOP N, BOTTOM N): (a) there is the SELECT with the
function of rank in the FROM clause and then (b) an appropriate selection of the
result of the external SELECT on the rank values. Let us see an example.

“Show for the year 2009, and the Islands geographic area, the region and the
customers with the two highest revenues (TOP 2 customers).

Top 2 customers in the islands
Year 2009

Region Customer Total Top 2
Revenue

Sardegna C15 2 640 1
Sicilia C11 1 080 1
Sicilia C04 1 080 1
Sardegna C03 1 560 2

WITH SalesWithRank AS
(SELECT Region, Customer

, SUM(Revenue) AS TotalRevenue
, RANK() OVER (PARTITION BY Region

ORDER BY SUM(Revenue) DESC)̇
AS Rank

FROM Sales
WHERE YEAR(Date) = 2009 AND Area = ’Islands’
GROUP BY Region, Customer

)

SELECT Region, Customer, TotalRevenue, Rank AS Top2
FROM SalesWithRank
WHERE Rank <= 2
ORDER BY Top2;

NTILE(n)
A set of sorted records is partitioned into n groups with the same number of records
(plus or minus 1) and the group number to which it belongs is assigned to each record.

92 CHAPTER 4 Data Analysis c© 2015 by Albano et al.

Example 4.7
Customers are divided into 4 groups on the basis of total revenue, and their rank
is calculated in each quartile.

Revenue and rank in quartiles
by 4 customer groups

Customer Total Quartile Rank by
Revenue Quartile

C03 22 890 1 1
C15 21 120 1 2
C08 16 440 1 3
C04 14 400 1 4
C02 12 600 2 1
C12 11 760 2 2
C09 9 240 2 3
C05 9 240 2 3
C16 9 240 3 1
C14 8 820 3 2
C11 7 560 3 3
C07 7 200 3 4
C01 4 800 4 1
C06 4 410 4 2
C13 3 360 4 3
C10 2 520 4 4

WITH CustomersQuartiles AS
(SELECT Customer, SUM(Revenue) AS TotalRevenue

, NTILE(4) OVER (ORDER BY SUM(Revenue) DESC)
AS Quartile

FROM Sales
GROUP BY Customer

)
SELECT Customer,TotalRevenue, Quartile

, RANK() OVER (PARTITION BY Quartile ORDER BY TotalRevenue DESC)
AS RankByQuartile

FROM CustomersQuartiles;

ROW NUMBER() and CUME DIST()
On a set of sorted records

– ROW NUMBER() assigns a sequence number to each record and
– CUME DIST() assigns a value between 0 and 1 to each record of a sorted set ac-

cording to the number of records that precede it. For a record r in a set with n
elements sorted in increasing order, if k is the number of records that precede it,
the CUME DIST() of r is 0 < (k + 1)/n ≤ 1. To equal values CUME DIST() assigns
equal values.

Example 4.8
Consider the customers ordered by the sum of all their purchases (sales revenue)
in descending order.

1. We want to see if the Pareto rule holds: 80 percent of revenue comes from
20 percent of customers. These customers are important because the business

c© 2015 by Albano et al. 4.5 Very Difficult Reports Without Analytic SQL 93

depends on their loyalty. In particular, of the Top20% of customers, that is the
20% of customers with the highest sales, we want to know their name and the
sales revenue, total revenue of all sales, their position n in the Top20% and the
percentage of the sum of their revenue compared to total revenue of all sales.

Customers Top20% by Revenue

Customer Revenue by Total n Percent of Percent of
Customer Revenue Total Revenue Running Totals

C03 22 890 165 600 1 14 6
C15 21 120 165 600 2 13 12
C08 16 440 165 600 3 10 19

WITH RowNumberCustomer AS
(SELECT Customer, SUM(Revenue) AS RevenueByCustomer

, SUM(SUM(Revenue)) OVER() AS TotalRevenue
, ROW NUMBER()

OVER(ORDER BY SUM(Revenue) DESC) AS n
FROM Sales
GROUP BY Customer ORDER BY RevenueByCustomer

)
, RowNumberCustomerExtended AS
(SELECT Customer, RevenueByCustomer, TotalRevenue, n

, ROUND(100∗RevenueByCustomer / TotalRevenue)
AS PercentOfTotalRevenue

, ROUND(100∗CUME DIST() OVER(ORDER BY n))
AS PercentOfRunningTotals

FROM RowNumberCustomer
)

SELECT ∗
FROM RowNumberCustomerExtended
WHERE PercentOfRunningTotals <= 20;

In this case the Pareto rule does not hold: only 37% of sales are related to 19%
of the customers.

2. We want to partition the customers into four groups:

– Top5%, with 5% of customers with the highest amount of revenues.
– Next15%, with 15% of other customers with the highest amount of rev-

enues.
– Middle30%, with 30% of other customers with the highest amount of rev-

enues.
– Bottom50%, with 50 % of the other customers with the lowest amount of

revenues.

For each customer group we want to know their number, and the percentage
of the sum of their revenues compared to total revenue of all sales.

Customers by Revenue
Top5%, Next15%, Middle30% and Bottom50%

Group Number of Percent of
Customers TotalRevenue

Next15% 2 27
Middle30% 2 19
Bottom50% 12 55

94 CHAPTER 4 Data Analysis c© 2015 by Albano et al.

WITH RowNumberCustomers AS
(SELECT Customer, SUM(Revenue) AS RevenueByCustomer

, SUM(SUM(Revenue)) OVER() AS TotalRevenue
, ROW NUMBER()

OVER (ORDER BY SUM(Revenue) DESC) AS n
FROM Sales
GROUP BY Customer

)
, RowNumberCustomersExtended AS
(SELECT Customer, RevenueByCustomer, TotalRevenue

, ROUND(100∗CUME DIST() OVER (ORDER BY n))
AS PercentOfCustomers

FROM RowNumberCustomers
)
, RowNumberCustomersExtendedWithGroup AS
(SELECT Customer, RevenueByCustomer, TotalRevenue

, (CASE
WHEN PercentOfCustomers <= 6

THEN ’Top6%’
WHEN PercentOfCustomers > 6 AND

PercentOfCustomers <= 14
THEN ’Next14%’

WHEN PercentOfCustomers > 14 AND
PercentOfCustomers <= 30
THEN ’Middle30%’

ELSE ’Bottom50%’ END
) AS Group

FROM RowNumberCustomersExtended
)

SELECT Group
, COUNT(Customer) AS NumberOfCustomers
, ROUND(100∗SUM(RevenueByCustomer) / TotalRevenue)

AS PercentOfTotalRevenue
FROM RowNumberCustomersExtendedWithGroup
GROUP BY Group, TotalRevenue
ORDER BY Group DESC;

4.5.3 Analytic Functions with the Use of Windows

For each record in a set, called the current record, a window can be defined on the
data to determine the record set ‘nearby’ to be taken into account for the calculation
of the new fields to be added to the record. The window size can be determined in
a physical way (option ROWS), based on the number of records, or in a logical way
(option RANGE), using a condition usually based on an attribute of type DATE.

The current record of a set (or a partition) is both the one of reference for the
calculation of an aggregate function, and that for which the window size is defined
by specifying the start and the end record, which can then change when the next
current record is selected.

A window can include all records of the set on which it is defined, or include
only the current record. For example, to calculate a cumulative sum function, the first
record is fixed and the end of the set moves from first to last record, while to calculate
a moving average both the first and last record move.

For each current record, the records of the specified window are considered, and
with them the value of an aggregate function is computed. The general format of the
window clause is:

c© 2015 by Albano et al. 4.5 Very Difficult Reports Without Analytic SQL 95

<AggregateFunction>(<expr>)
OVER(

[PARTITION BY <attribute list>]
[ORDER BY <sort attribute list>
[<ROWS or RANGE> <window size specification>]]

) [AS Ide]

Example 4.9
Consider the following table with the transactions data of bank accounts:

BankAccount(AccountNumber, TransactionDate, TransactionType)

We want to find the balance of the accounts sorted by date of transactions.

SELECT AccountNumber, TransactionDate, TransactionType
, SUM(TransactionType) OVER

(PARTITION BY AccountNumber ORDER BY TransactionDate
ROWS UNBOUNDED PRECEDING) AS Balance

FROM BankAccount
ORDER BY AccountNumber, TransactionDate;

where ROWS UNBOUNDED PRECEDING specifies that the window begins with the
first record of the partition and ends with the current record.

Account Transaction Transaction Balance
Number Date Type

1234 2009-11-01 113.00 113.00
1234 2009-11-05 −52.00 61.00
1234 2009-11-13 36.00 97.00
4321 2009-11-01 10.00 10.00
4321 2009-11-21 32.00 42.00
4321 2009-11-29 −5.00 37.00

Example 4.10
The cumulative total (running totals) is another piece of useful information to
highlight the features of the report data and to facilitate analysis. In the figure
an example is shown to know about the “cumulative monthly revenue by quarter
(Quarter-to-Date) and year (Year-to-Date) for the product P1 in 2009”.2

96 CHAPTER 4 Data Analysis c© 2015 by Albano et al.

Product P1 Revenue by Quarter and Month
Year 2009

Quarter Month Revenue Revenue QtoD Revenue YtoD
(¤) (¤) (¤)

Q1 January 16 500 16 500 16 500
Q1 February 14 220 30 720 30 720
Q1 March 27 480 58 200 58 200

Q2 April 7 920 7 920 66 120
Q2 May 1 200 9 120 67 320
Q2 June 1 260 10 380 68 580

Q3 July 5 400 5 400 73 980
Q3 August 11 730 17 130 85 710
Q3 September 10 860 27 990 96 570

Q4 October 5 850 5 850 102 420
Q4 November 2 100 7 950 104 520
Q4 December

SELECT Quarter Name(QUARTER(Date)) AS Quarter
, Month Name(MONTH(Date)) AS Month
, SUM(Revenue) AS Revenue
, SUM(SUM(Revenue)) OVER

(PARTITION BY QUARTER(Date)
ORDER BY MONTH(Date)

ROWS UNBOUNDED PRECEDING) AS RevenueQToD
, SUM(SUM(Revenue)) OVER

(ORDER BY MONTH(Date)
ROWS UNBOUNDED PRECEDING) AS RevenueYToD

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY QUARTER(Date), MONTH(Date)
ORDER BY Quarter, Month;

Finally, an example is given of a moving window with a size defined in a physical
way. Assuming that the total revenues from product sales vary greatly during the year,
their values do not make a clear global trend, but it might be useful to know how to
predict future revenues. For this reason, an interesting report is the one that shows a
moving average of total revenues over three months – the current one, the one that
precedes it and the other that follows it.

SELECT MONTH(Date) AS Month
, ROUND(AVG(SUM(Revenue))

OVER (ORDER BY MONTH(Date)
ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING), 2)

AS MovingAverageRevenue
FROM Sales
GROUP BY MONTH(Date)
ORDER BY Month;

In Oracle, when you define a query in analytic SQL you can choose to display a
graphical representation of the result. For example, Figure 4.14 shows the trends of
the moving average of total revenue, with a moving window of 3 or 5 months.

c© 2015 by Albano et al. 4.6 Summary 97

Moving average of total revenue with a moving window of 5 months

Moving average of total revenue with a moving window of 3 months

Figure 4.14: Two graphical representations of the moving average of total revenue
by product and month

4.6 Summary

– The main commercial solutions for OLAP systems have been presented. OLAP
servers are implemented using either a multidimensional storage engine (MO-
LAP), a relational DBMS engine (ROLAP) as the backend, or a hybrid combi-
nation called HOLAP. Changes in the hardware technology will change how the
backend of large data warehouses are organized, and as cloud data services take
root, more changes are expected.

– The standard SQL language supports relatively simple data analysis, and so it has
been extended with new operators and analytic functions to allow complex data
analysis.

– Data analysis in SQL is useful for understanding both the functionality of tools
that provide graphical interfaces to formulate the queries, and their limitations in
expressive power.

98 CHAPTER 4 Data Analysis c© 2015 by Albano et al.

Appendix A

CASE STUDIES

A.1 Hospital

A hospital uses the database shown in Figure A.1 to store the following information
about inpatients’ treatments.

Hospitalizations

Date
Duration
WaitingTime
Amount

Physician

SSN �K�
Name
Specialization
Phone

Patient
SSN �K�
Name
Gender
BirthDate
Address

Ward
Code �K�
Name
NumberOfBeds
Phone

Treatments
Code �K�
Description

Diagnosis

ICD �K�
Description

HasHad

Has
|

In
—

Needs
|

HasAdmitted
—

HasMade
|

Figure A.1: Conceptual design of a database for inpatients’ treatments

For each patient the information of interest is the SSN (Social Security Number),
which is unique, the name and the address.

A patient may be hospitalized several times, and each time the information of in-
terest is the date, the physician who admitted the patient, the ward assigned, the diag-
nosis, the duration in days of hospitalization, the number of days of waiting time for
the hospitalization, the received treatment, and the billed amount. For simplicity, let
us assume that each patient may receive only one treatment from a given physician
on a given hospitalization.

100 CHAPTER A Case Studies c© 2015 by Albano et al.

For each hospital ward the information of interest is the code, which is unique, the
name, the number of beds and the phone.

For each treatment the information of interest is the code, which is unique, the
description, and the physician who carried it out.

For each diagnosis the information of interest is the ICD code, International Clas-
sification of Diseases, which is unique, and its description.

Give a conceptual and logical designs of a data mart assuming that the following
examples of business questions heve been collected during the user interviews:

1. Total billed amount for hospitalizations by diagnosis code and description, by
month (year).

2. Total number of hospitalizations and billed amount by ward, by patient gender
(age at date of admission, city, region).

3. Total billed amount, average length of stay and average waiting time by diagnosis
code and description, by name (specialization) of the physician who admitted the
patient.

4. Total billed amount, and average waiting time of admission by patient age (re-
gion), by treatment code (description).

c© 2015 by Albano et al. A.2 Airline Companies 101

A.2 Airline Companies

We want to analyze airline companies’ flights to compare them from the point of
view of their ability to fly with occupied seats and therefore to make profits.

For each flight the information of interest is the company name, the departure and
the destination cities, the departure time (hour, day, month, year), the number of un-
occupied seats in each class (economic, business, first), the revenue of each class.

A flight code (a combination of the ICAO airline designator with the flight number)
identifies a flight of an airline company from a departure airport to a destination
airport (e.g. AP2701 is an Alitalia flight from Malpensa to Fiumicino, available on
certain days a week).

A flight is identified by the flight code and the departure time.
For each city the information of interest is the city’s name, the country and the

continent.
For each company the information of interest is the name and the type (private or

national).

Give a conceptual and logical data mart designs assuming that the following examples
of business questions have been collected during the user interviews:

1. Number of unoccupied seats in a given year, by flight code, by company name (or
type), by class, by departure time (hour, day, month, year)

2. Number of unoccupied seats in a given class and year, by flight code, by company
name, by class, by departure (destination) city (country, continent)

3. Number of unoccupied seats and income of the Alitalia company, by year, by
month, by destination country.

102 CHAPTER A Case Studies c© 2015 by Albano et al.

A.3 Airline Flights

An airline uses the database shown in Figure A.2 to store the following traffic infor-
mation on passengers from its flights.

Flights

FlightNumber �K�
DepartureDate �K�
DepartureTime
ArrivalDate
ArrivalTime

Tickets
Number �K�
Price
Class
DatePurchased

Aircraft
Type �K�
Capacity
ManagementCost
HourlyCost

Passenger

SSN �K�
BirthYear
Name
State

Airport

Name �K�
Size
City
State
Continent

UsedFor
|

To

From

On
—

Of

Figure A.2: The conceptual design of a database for airline flights

For each flight the information of interest is the flight code, the date and time of
departure, the date and time of arrival, the departure and destination airport, and the
aircraft used. The flight code identifies a possible flight of an airline from a departure
airport to a destination airport (e.g. AP2701 is an Alitalia flight from Malpensa to
Fiumicino, available on certain days a week). A specific flight is identified by a flight
code and the departure date.

A flight is used by a set of passengers who bought a ticket. For each ticket the
information of interest is the number, which is unique, the price, the class and the
date of purchase. For each passenger the information of interest is the SSN, which is
unique, the name and country.

A flight is made with an aircraft for which the information of interest is the type,
which is unique, the capacity, the monthly management cost (management cost for
brevity) and the hourly operating cost (fuel and crew).

For each airport the information of interest is the name, which is unique, the coun-
try, the continent, and the size, with values “small”, “medium”, “large”.

Give a conceptual and logical data mart designs and the SQL queries for the fol-
lowing business questions collected during the user interviews:

1. Number of first-class passengers in a given month and year, by country and by age
range of passengers.

2. Number of passengers from Europe to the U.S. in a given month and year, and the
total revenue, by country and by age range of passengers.

3. Number of flights, by departure city, by destination city.
4. Average number of airline passengers, by month, by aircraft type, by country of

destination.
5. Average number of airline passengers, by class, by holiday date.
6. Number of passengers, by year, by size of the destination airport.
7. Number of flights to airports in Germany from the October to December quarter

of a given year, and total management cost of the aircraft, by aircraft type.
8. Average profit of all flights, by country of departure, by destination country. The

profit of a flight is the total passenger price minus the total flight cost.

c© 2015 by Albano et al. A.3 Airline Flights 103

9. Total revenue in a given year of flights by month, by destination country. The total
revenue by month, total revenue by destination country, and the total revenue are
also of interest.

104 CHAPTER A Case Studies c© 2015 by Albano et al.

A.4 Inventory

A company has a set of warehouses in different cities containing some of the products
for sale. Proper inventory management is very important for a company and requires
reconciling two conflicting demands: keeping up their level to meet customer de-
mands, and minimizing their level to reduce the capital investment and space required
for storage.

The quantity of a product that is added to the warehouse is called QtyAcquired
(QtyA), that which is removed from the warehouse and shipped to customers is called
QtyShipped (QtyS) and that present on a given day is called QtyOnHand (QtyOH). For
example:

Date Description QtyA QtyS QtyOH Days QtyOH Average
× monthly

Days QtyOH

01/01/2008 Initial QtyOnHand 100 14 1 400
15/01/2008 QtyReceived 120 220 6 1 320
21/01/2008 QtyShipped 80 140 4 560
25/01/2008 QtyShipped 60 80 7 560

Totals January 120 140 31 3 840 123.87

01/02/2008 80 6 480
07/02/2008 QtyShipped 20 60 8 480
15/02/2008 QtyReceived 150 210 10 2 100
25/02/2008 QtyShipped 50 160 4 640
29/02/2008 QtyShipped 100 60 1 60

Totals February 150 170 29 3 760 129.66

Among the possible models for the analysis of inventory products, and their handling,
the model for periodic snapshots is considered, simplified as follows: at the end of
each month, for each deposit, the following quantities are considered: (a) the monthly
average QtyOnHand of each product, (b) the total quantity of each product acquired in
the month, and (c) the total quantity of each product shipped during the month. The
monthly average QtyOnHand is calculated as the monthly arithmetic average of the
various values of existing stocks for one month, weighted by their durations:∑n

i=1 qi × di
T

where qi is the value of the quantity on hand for di days and T is the number of days
of the month.

For the sake of simplicity, we will use the terms QtyOnHand, QtyAcquired and Qty-
Shipped instead of Monthly average QtyOnHand, Monthly QtyAcquired and Monthly Qty-
Shipped.

The company is interested in analyzing the QtyOnHand on a volume basis, and not
on a financial basis, by considering the following metrics in a given time period Tm
measured in months:

– Inventory Turns (Inventory Turnover Ratio or Turns) is the top inventory metric
used by any business. This metric measures how fast a product moves in and out
of the warehouse, and is calculated with the following ratio:

c© 2015 by Albano et al. A.4 Inventory 105

Total QtyShipped

Average QtyOnHand

A high value of the Inventory Turns means that products are more frequently sold,
and so their sale allow the purchase of new quantities on hand.

– Days in Inventory of a product (Days Sales in Inventory, Average Turnover Period
or Days Inventory Outstanding) measures the average time (in days) of the product
in stock, and is calculated with the following ratio:

Number of days

Inventory Turns

A low value of the Days in Inventory means that the recovery of capital invested
in stocks is more rapid.1

The following are some examples of business questions collected during the user
interviews. For each report there are others similar with QtyAcquired and QtyShipped,
by city or region of warehouses, by product category, by quarter or year.

Report 1. Total of Quantity on Hand (QtyOnHand) in January 2010, by product (SKU
and Product Name), by region. The subtotal, by all regions, is also of interest.

Quantity on Hand
January 2010

SKU Product Region Total of
Product Name QtyOnHand

1 P1 North 200
South 150
East 50
West 100
All . . .

2 P2 North 400
.

Report 2. Total of Quantity on Hand in the first quarter of 2010, by product category,
by month name.

Product Category Quantity on Hand
First Quarter 2010

Product Month Total of
Category QtyOnHand

C1 January 900
February 300
March 500

C2 January 400
.

Report 3. Values of the Inventory Turns and Days in Inventory in the year 2010, by
product category, by quarter name.

1. For simplicity, we assume that a month is 30 days, a quarter is 90 days and one year is 365 days.

106 CHAPTER A Case Studies c© 2015 by Albano et al.

Inventory Turns and Days in Inventory
Year 2010

Product Quarter Inventory Days in
Category Turns Inventory

C1 Q1
Q2
Q3
Q4

C2 Q1
.

Give a conceptual and logical data mart designs. For each measure, specify if it is
additive, semi-additive or non-additive. Give the SQL queries to produce the data of
the reports.

c© 2015 by Albano et al. A.5 Hotels 107

A.5 Hotels

The managers of an international hotel chain are interested in analyzing the degree
of use of different types of hotel rooms to determine how to price them.

Every day the rooms may be occupied, vacant or unavailable for maintenance rea-
sons. There are different types of rooms on the basis of the following properties: the
type (standard, suite, deluxe), the number of beds, the maximum number of occu-
pants, and optional features, such as Minibar, satellite TV, Internet, whirlpool bath,
kitchenette, suite.

For each hotel the information of interest is the name, the location and the category
(5 star, 4 star, . . . , 1 star).

The managers are interested in analyzing the daily capacity utilization (occupancy
rate) of each room type using the following metrics:

– The room occupancy rate, defined as the ratio of the number of rooms occupied to
the total number of rooms (occupied, free and unavailable).

– The average room revenue, defined as the ratio of the total revenue for rooms
occupied to the number of rooms occupied.

– The revenue per available room, defined as the ratio of the total revenue for rooms
occupied to the number of rooms avaliable, equivalent to the average room rev-
enue × room occupancy rate.

The following are some examples of business questions collected during the user
interviews, of interest also by category, region and country of the hotel, and by month,
year and day of a holiday date.

1. The room occupancy rate of hotels of a given city and day, by hotel.

Occupancy Rate
Hotel Best, Florence

July 17, 2010

Hotel Occupancy Rate

Best 1 47%
Best 2 53%
Best 3 19%

2. The room occupancy rate of hotels of a given region and day, by room type.

Occupancy Rate
Hotel Best, Tuscany

July 17, 2010

Room Type Occupancy Rate

Standard 47%
Suite 53%
Deluxe 61%

3. The room occupancy rate at a given month and year, by hotel of a given city.

Occupancy Rate
Hotel Best, Florence

July 2010

Hotel Occupancy Rate

Best 1 74%
Best 2 79%
Best 3 60%

108 CHAPTER A Case Studies c© 2015 by Albano et al.

4. The room occupancy rate and average room revenue of hotels in a given city, at a
given month and year, by hotel.

Occupancy Rate and Average Room Revenue
Hotel Best, Milan

July 2010

Hotel Occupancy Rate Average Room Revenue

Best 1 74% 145
Best 2 79% 60
Best 3 60% 75

5. The monthly revenue and the cumulative revenue of 4-star hotels in a given year,
by country and by month.

6. In a given year, the total revenue, and the cumulative revenue, of the rooms with
the maximum number of occupants and whirlpool bath, by hotel.

Give a conceptual and logical data mart designs to analyze the room type utilization.
For each measure, specify if it is additive, semi-additive or non-additive. Give the
SQL queries to produce the data of the reports.

Appendix B

CASE STUDIES: SOLUTIONS

It is likely that the solutions shown here will turn out to be not perfect. If you disagree
with an answer, please feel free to mail us.

B.1 Hospital

Requirements specification

Each business question is analyzed to identify the dimensions and the measures used,
and the aggregations to compute (metrics):

Hospitalization
Requirements analysis Dimensions Measures Metrics

Total billed amount for hospital-
izations, by diagnosis code and
description, by month (year).

Diagnosis
(ICD, Description),
Date
(Month, Year)

Amount Total Amount

Total number of hospitaliza-
tions and billed amount, by
ward, by patient gender (age at
date of admission, city, region).

Ward,
Patient
(Gender, Age, City, Region)

Amount Total number
Total Amount

Total billed amount, average
length of stay and average
waiting time by diagnosis code
and description, by name (spe-
cialization) of the physician
who admitted the patient.

Diagnosis
(ICD code, Description),
Physician
(Name, Specialization)

Amount,
Duration,
WaitingTime

Total Amount
Average Dura-
tion
Average Wait-
ingTime

Total billed amount, and av-
erage waiting time for admis-
sion by patient age (region), by
treatment code (description).

Patient
(Age, Region),
Treatment
(Code, Description)

Amount,
Duration,
WaitingTime

Total Amount
Average Wait-
ingTime

From the requirements specification the following fact granularity arises:

110 CHAPTER B Case Studies: Solutions c© 2015 by Albano et al.

Fact granularity
Description A fact is a hospitalization of a patient, assuming that

they may require one treatment only

Preliminary dimensions Patient, Date, Ward, Diagnosis, Treatment, Physi-
cian

Preliminary measures Duration, WaitingTime, Amount

The measure Amount is additive. The measures Duration and WaitingTime are non-
additive.

Conceptual Design

The data mart conceptual design is shown in Figure B.1.

Hospitalizations

Duration
WaitingTime
Amount

Date
Month

Day

Year

Physician

Name
Specialization

Ward

Patient
Gender

Age

City

Region

Treatment—

Code
TreatmentDescription

Diagnosis

ICD
DiagnosisDescription

Figure B.1: The conceptual design of a data mart for the hospitalizations

Logical design

In the logical design, the facts are stored in the relation Hospitalizations, with the mea-
sures, the degenerate dimension Ward and a foreign key for each dimension table,
with its own surrogate primary key (Figure B.2). The surrogate primary key for the
Date dimension is a day, an integer of the form YYYYMMDD.

This solution is correct, assuming that if a patient is hospitalized several times with
different values of age, its value in the dimension Patient is that of the last hospitaliza-
tion. If we are interested in storing the value of a patient age at each hospitalization,
as desired by the requirements, with the admission of a patient with an age different
from the one already present in Patient, a new record is created in the table Patient
with a different surrogate primary key (changes dealt with mode Type 2). To find out
which data refer to the same patient hospitalizations (for example, to count the dif-
ferent patients hospitalized), InitialPatientKey is added as the attribute in the fact table,
with the first surrogate key value assigned to a patient (Figure B.3). This solution
also allows us to deal with cases in which, at each new hospitalization, the patient
also changes the city and region of residence.

c© 2015 by Albano et al. B.1 Hospital 111

Hospitalizations

PatientFK
DateFK
PhysicianFK
TreatmentFK
DiagnosisFK
Ward �DD�
Duration
WaitingTime
Amount

Diagnosis

DiagnosisPk
ICD
DiagnosisDescription

Patient
PatientPK
Age
Gender
City
Region

Treatment
TreatmentPK
TreatmentCode
TreatmentDescription

Date
DatePK
Month
Year

Physician

PhysicianPK
Name
Specialization

Figure B.2: The initial logical design of a data mart for the hospitalizations

Hospitalizations

PatientFK
DateFK
PhysicianFK
TreatmentFK
DiagnosisFK
Ward �DD�
Duration
WaitingTime
Amount
InitialPatientKey�DD�

Diagnosis

DiagnosisPk
ICD
DiagnosisDescription

Patient
PatientPK
Age
Gender
City
Region

Treatment
TreatmentPK
TreatmentCode
TreatmentDescription

Date
DatePK
Month
Year

Physician

PhysicianPK
Name
Specialization

Figure B.3: The final logical design of a data mart for the hospitalizations

112 CHAPTER B Case Studies: Solutions c© 2015 by Albano et al.

B.2 Airline Companies

Requirements specification

Each business requirement analysis is analyzed to identify the dimensions and the
measures used, and the aggregations to compute (metrics):

Airline companies
Requirements analysis Dimensions Measure Metrics

Number of unoccupied seats
in a given year, by flight code,
by company name (or type),
by class, by departure time
(time, day, month, year)

FlightCode, Class,
Company(Name, Type),
DepartureTime
(Time, Day, Month, Year)

UnoccupiedSeats Total
UnoccupiedSeats

Number of unoccupied seats
in a given class and year,
by flight code, by company
name, by class, by depar-
ture (destination) city (coun-
try, continent).

FlightCode, Class,
Company(Name),
DepartureCity
(Country, Continent),
DestinationCity
(Country, Continent)

UnoccupiedSeats Total
UnoccupiedSeats

Number of unoccupied seats
and revenue of the Alitalia
company, by year, by month,
by destination country.

Company(Name),
DepartureTime
(Month, Year),
DepartureCity(Country)

UnoccupiedSeats
Revenue

Total
UnoccupiedSeats,
Revenue

From the requirements specification the following fact granularity arises:

Fact granularity
Description A fact is the information on the number of unoccu-

pied seats on a flight of a class of a company

Preliminary dimensions Class, FlightCode, Company, Departure time, De-
parture city, Destination city

Preliminary measures UnoccupiedSeats, Revenue

The measures are additive.

Conceptual Design

The data mart conceptual design is shown in Figure B.4.

FlightClassSeats

UnoccupiedSeats
Revenue

Company CompanyName

Type

Departure
Time

Time

Day

Month Year

Class FlightCode

City

Departure
City

Destination
City

Country
CityName Continent

Figure B.4: The conceptual design of a data mart for the airline companies

c© 2015 by Albano et al. B.2 Airline Companies 113

Logical design

In the logical design, the facts are stored in the relation FlightClassSeats, with the
measures, the degenerate dimensions Class, FlightCode and a foreign key for each
dimension table, with its own surrogate primary key (Figure B.5).

FlightClassSeats

DepartureTimeFK
CompanyFK
DepartureCityFK
DestinationCityFK
UnoccupiedSeats
Revenue
Class �DD�
FlightCode �DD�

City

CityPK
CityName
Country
Continent

DepartureTime

DepartureTimePK
Time
Day
Month
Year

Company

CompanyPK
CompanyName
Type

Figure B.5: The logical design of a data mart for the airline companies

114 CHAPTER B Case Studies: Solutions c© 2015 by Albano et al.

B.3 Airline Flights

Requirements specification

Each business requirement analysis is analyzed to identify the dimensions and the
measures used, and the aggregations to compute (metrics):

Flight Process
Requirements analysis Dimensions Measures Metrics

Number of first-class passen-
gers in a given month and year,
by country, by age range of
passengers.

Passenger
(Nationality, AgeRange),
Class,
DepartureDate(Month, Year)

Number of
passengers

Number of passengers from
Europe to the U.S. in a given
month and year, and the to-
tal revenue, by country, by age
range of passengers.

Passenger
(Nationality, AgeBand),
DepartureDate(Month, Year),
DepartureAirport(Continent),
DestinationAirport(Country)

Price Number of
passengers,
Total price

Number of flights by departure
city, by destination city.

DepartureAirport(City),
DestinationAirport(City)

Number of
flights

Average number of airline pas-
sengers by month, by aircraft
type, by destination country.

DepartureDate(Month),
Aircraft(Type),
DestinationAirport(Country)

Average
number of
passengers

Average number of airline pas-
sengers by class, by holiday
date.

Class,
DepartureDate(HolidayFlag)

Average
number of
passengers

Number of passengers per
year, by size of the destination
airport.

DestinationAirport(Size),
DepartureDate(Year)

Number of
passengers

Number of flights to airports in
Germany from the October to
December quarter of a given
year, and total management
cost of the aircraft, by aircraft
type.

DepartureDate(Month, Year),
DestinationAirport(Country),
Aircraft(Type, ManagementCost)

Number of
flights,
Total man-
agement
cost

Average profit of all flights, by
country of departure, by des-
tination country. The profit of
a flight is the total passenger
price minus the total flight cost.

DepartureAirport(Country),
DestinationAirport(Country),
Flight(Duration),
Aircraft(ManagementCost, Hourly-
OperatingCost)

Price Average
profit

Total revenue in a given year
of flights, by month, by destina-
tion country. The total revenue
by month, total revenue by des-
tination country, and the total
revenue are also of interest.

DestinationAirport(Country),
DepartureDate(Month, Year)

Price Total Price

From the requirements specification the following fact granularity arises:

Fact granularity
Description A fact is the information on the ticket of a passenger

flight

Preliminary dimensions Passenger, Flight, Class, Aircraft, Departure Airport,
Destination Airport

Preliminary measures Price

c© 2015 by Albano et al. B.3 Airline Flights 115

The measure Price is additive.

Conceptual Design

The data mart conceptual design is shown in Figure B.6:

Tickets

Price
Aircraft

HourlyCost

Type

ManagementCost

Departure
Date

HolydayFlag

WeekDayName

MonthName

Day

Month Year
Flight

Flight
Number

Duration
Class

Passenger

Age
Band

Country

Airport

From To

CitySize Continent
Country

Figure B.6: The conceptual design of a data mart for the airline flights

Logical design

In the logical design, the facts are stored in the relation Tickets, with the measures, the
degenerate dimension Class and a foreign key for each dimension table, with its own
surrogate primary key (Figure B.7). The surrogate primary key for the DepartureDate
dimension is a day, an integer of the form YYYYMMDD.

To simplify the SQL analysis, the degenerate dimension FlightID has been added to
the fact table to identify the flight of a ticket, with a value the chaining together of
the FlightFK and DepartureDateFK values. If FlightID is not used, in the SQL analysis it
will be substituted by the expression:

(CAST (FlightFK AS varchar) + CAST (DepartureDateFK AS varchar))

The table Passenger has as many elements as are the different combinations of Nation-
ality and AgeBand values.

116 CHAPTER B Case Studies: Solutions c© 2015 by Albano et al.

Tickets
AircraftFK
PassengerFK
DepartureDateFK
DepartureAirportFK
DestinationAirportFK
FlightFK
Price
Class �DD�
FlightID �DD�

Airport

AirportPK
City
Country
Continent
State
Size

DepartureDate

DepartureDatePK
WeekDayName
MonthName
HolydayFlag
Month
Year

Passenger

PassengerPK
Country
AgeBand

Flight

FlightPK
FlightNumber
Duration

Aircraft
AircraftPK
Type
ManagementCost
HourlyCost

Figure B.7: The logical design of a data mart for the airline flights

Data Analysis

Let us assume that and a month is represented as the integer YYYYMM, and a holiday
date has the HolidayFlag = true.

1. Number of first-class passengers in a given month and year, by country, by age
range of passengers.

SELECT Country, AgeBand, COUNT(∗) AS NoOfPassengers
FROM Tickets, DepartureDate, Passenger
WHERE PassengerFK = PassengerPK AND DepartureDateFK = DepartureDatePK

AND Month = 200812 AND Class = 1
GROUP BY Country, AgeBand;

2. Number of passengers from Europe to the U.S. in a given month and year, and the
total revenue, by country, by age range of passengers.

SELECT Country, AgeBand
, COUNT(∗) AS NoOfPassengers, SUM(Price) AS Revenue

FROM Tickets, Airport FRM, Airport TO, DepartureDate, Passenger
WHERE DepartureAirportFK = FRM.AirportPK

AND DestinationAirportFK = TO.AirportPK
AND PassengerFK = PassengerPK AND DepartureDateFK = DepartureDatePK
AND Month = 200812 AND FRM.Continent = ’Europa’ AND TO.Country = ’USA’

GROUP BY Country, AgeBand;

c© 2015 by Albano et al. B.3 Airline Flights 117

3. Number of flights, by departure city, by destination city.

SELECT FRM.City AS DepartureCity, TO.City AS DestinationCity
, COUNT(DISTINCT FlightID) AS NoOfFlights

FROM Tickets, Airport FRM, Airport TO
WHERE DepartureAirportFK = FRM.AirportPK

AND DestinationAirportFK = TO.AirportPK
GROUP BY FRM.City, TO.City;

4. Average number of airline passengers by month, by aircraft type, by destination
country.

SELECT MonthName , Type AS AircraftType, Country AS DestinationCountry
, COUNT(∗) / COUNT(DISTINCT FlightID) AS AvgNoOfPassengers

FROM Tickets, Airport, DepartureDate, Aircraft
WHERE DestinationAirportFK = AirportPK

AND DepartureDateFK = DepartureDatePK AND AircraftFK = AircraftPK
GROUP BY MonthName, Type, Country;

5. Average number of airline passengers, by class, by holiday date.

SELECT Class, DepartureDateFK AS HolydayDate
, COUNT(∗) / COUNT(DISTINCT FlightID) AS AvgNoOfPassengers

FROM Tickets, DepartureDate
WHERE DepartureDateFK = DepartureDatePK AND HolydayFlag
GROUP BY Class, DepartureDateFK;

6. Number of passengers, by year, by size of the destination airport.

SELECT Year, Size AS SizeDestinationAirport
, COUNT(∗) AS NoOfPassengers

FROM Tickets, Airport, DepartureDate
WHERE DestinationAirportFK = AirportPK

AND DepartureDateFK = DepartureDatePK
GROUP BY Year, Size;

7. Number of flights to airports in Germany from the October to December quarter
of a given year, and total management cost of the aircraft, by aircraft type.

SELECT Type
, COUNT(DISTINCT FlightID) AS NoOfFlights
, COUNT(DISTINCT Month)∗ManagementCost AS TotalManagementCost

FROM Tickets, Airport, DepartureDate, Aircraft
WHERE DestinationAirportFK = AirportPK

AND DepartureDateFK = DepartureDatePK AND AircraftFK = AircraftPK
AND Country = ’Germania’ AND Month IN (200710 , 200711 , 200712)

GROUP BY Type, ManagementCost;

118 CHAPTER B Case Studies: Solutions c© 2015 by Albano et al.

8. Average profit of all flights by country of departure and by destination country.
The profit of a flight is the total passenger price minus the total flight cost.

WITH Price-FlightHourlyCost-FlighManagementCost AS
(SELECT Type

, FRM.Country AS DepartureCountry
, TO.Country AS DestinationCountry
, SUM(Price) AS TotalPrice
, HourlyCost∗Duration∗COUNT(DISTINCT FlightID)

AS FlightHourlyCost
, ManagementCost∗COUNT(DISTINCT Month)

AS FlighManagementCost
FROM Tickets, Airport FRM, Airport TO, Flight, Aircraft, DepartureDate
WHERE DepartureAirportFK = FRM.AirportPK

AND DestinationAirportFK = TO.AirportPK
AND FlightFK = FlightPK
AND AircraftFK = AircraftPK
AND DepartureDateFK = DepartureDatePK

GROUP BY FlightFK, Type, FRM.Country, TO.Country, HourlyCost,
ManagementCost, Duration

)

SELECT DepartureCountry
, DestinationCountry
, (SUM(TotalPrice) −

SUM(FlightHourlyCost) − SUM(FlighManagementCost))/COUNT(∗)
AS FlightsAvgProfit

FROM Price-FlightHourlyCost-FlighManagementCost
GROUP BY DepartureCountry, DestinationCountry;

9. Total revenue in a given year of flights by month and by destination country. The
total revenue by month, total revenue by destination country, and the total revenue
are also of interest.

SELECT MonthName, Country AS DestinationCountry
, SUM(Price) AS TotalRevenue,

FROM Tickets, Airport, DepartureDate
WHERE DestinationAirportFK = AirportPK AND DepartureDateFK = DepartureDatePK

AND Year = 2008
GROUP BY CUBE (MonthName, Country);

c© 2015 by Albano et al. B.4 Inventory 119

B.4 Inventory

Requirements specification

From the examples of business questions the following fact granularity arises:

Fact granularity
Description A fact is the information on the monthly values of

the quantities of products on hand, acquired and
shipped

Preliminary dimensions Product (SKUProduct, Name, Category), Date
(Month, Quarter, Year) Warehouse (Name, City, Re-
gion, Area)

Preliminary measures Quantity on hand, Quantity acquired, Quantity
shipped

The measures Quantity acquired and Quantity shipped are semi-additive with respect
to the dimension Product.

The measure Quantity on hand is semi-additive with respect to both the dimension
Date, and the dimension Product.

The metrics Inventory Turns and Days in Inventory, defined with a ratio, are non-
additive and cannot be considered as measures.

Conceptual Design

The data mart conceptual design is shown in Figure B.8.

Inventory

QtyOnHand
QtyAcquired
QtyShipped

Date

Month

Quarter

Year

MonthName

QuarterName

Warehouse

City

Region

Area

Name

Product

SKUProductProductName

ProductCategory

Figure B.8: The conceptual design of a data mart for the Inventory

120 CHAPTER B Case Studies: Solutions c© 2015 by Albano et al.

Logical design

In the logical design, the facts are stored in the relation Inventory, with the measures,
and a foreign key for each dimension table, with its own surrogate primary key (Fig-
ure B.9). The surrogate primary key for the Date dimension is a month, an integer of
the form YYYYMM.

Inventory

ProductFK
DateFK
WarehouseFK
QtyOnHand
QtyAcquired
QtyShipped

Product
ProductPK
SKUProduct
ProductName
ProductCategory

Date
DatePK
MonthName
QuarterName
Quarter
Year

Warehouse
WarehousePK
Name
City
Region
Area

Figure B.9: The logical design of a data mart for the Inventory

Data Analysis

1. Report 1. Total of Quantity on Hand in January 2010, by product (SKU and Prod-
uct Name), by region. The subtotal by all regions is also of interest.

SELECT SKUProduct, ProductName, Region
, SUM(QtyOnHand) AS TotalQtyOnHand

FROM Inventory, Product, Warehouse
WHERE ProductFK = ProductPK AND WarehouseFK = WarehousePK

AND DateFK = 201001
GROUP BY SKUProduct, ProductName, ROLLUP(Region);

2. Report 2. Total of Quantity on Hand in the first quarter 2010, by product category,
by month name.

A value of the attribute Quarter is an integer of the form YYYYQ.

This report has no subtotals, as the previous one, because a subtotal for each
category would require totalling the quantities over time, which is meaningless.
Adding together the month-end quantities for January, February, and March pro-
duces a number that has no meaning. It does not represent the quantity on hand at
the end of the period; the March value alone tells us that.

When summing a semi-additive measure such as Quantity on Hand, the dimension
across which it is not additive (time) must be used to constrain the query, as in
Report 1, or the semi-additive measure must be grouped by the dimension in
question, as in this report, without a further total or subtotal.

As “subtotals” we can compute the average of the values, but attention is required
in correctly computing the average of a set of values as the sum of the values di-
vided by the number of values. In this example the standard SQL average function
will not perform this calculation correctly because it assumes as cardinality of a
set of values the number of elements of a group of records. For example, if we
have two products of the same category available in two warehouses every month
of a quarter,

c© 2015 by Albano et al. B.4 Inventory 121

QtyOnHand of product category C1
First Quarter 2010

Product DateFK WarehouseFK ProductFK Month QtyOnHand
Category Name

C1 201001 1 1 January 500
C1 201001 2 2 January 400
C1 201002 1 1 February 100
C1 201002 2 2 February 100
C1 201003 1 1 March 200
C1 201003 2 2 March 300

grouping the data on ProductCategory, C1 will appear in 6 records and so

AVG(QtyOnHand) =
SUM(QtyOnHand)

6

while the correct value is

AVG(QtyOnHand) =
SUM(QtyOnHand)

3 (months of the quarter)

The problem is avoided by computing the average without using the SQL average
function, as follows.

SELECT ProductCategory, MonthName AS Month
, SUM(QtyOnHand) /COUNT(DISTINCT DateFK) AS TotalQtyOnHand

FROM Inventory, Product, Date
WHERE ProductFK = ProductPK AND DateFK = DatePK AND Quarter = 20101
GROUP BY ProductCategory, ROLLUP(MonthName);

3. Report 3. Values of the Inventory Turns and Days in Inventory in the year 2010,
by product category, by quarter name.

The non-additive metrics Inventory Turns and Days in Inventory, must be com-
puted by a “ratio of sum and not by a sum of ratio”.

SELECT ProductCategory, QuarterName AS Quarter
, SUM(QtyShipped) / (SUM(QtyOnHand) / COUNT(DISTINCT DateFK))

AS InventoryTurns
, 90 ∗ (SUM(QtyOnHand) / COUNT(DISTINCT DateFK))

/ SUM(QtyShipped)
AS DaysInInventory

FROM Inventory, Product, Date
WHERE ProductFK = ProductPK AND DateFK = DatePK AND Year = 2010
GROUP BY ProductCategory, QuarterName;

122 CHAPTER B Case Studies: Solutions c© 2015 by Albano et al.

B.5 Hotels

Requirements specification

From the requirements the following fact granularity arises :

Fact granularity
Description A fact is the information on the daily room type uti-

lization and revenue of each hotel

Preliminary dimensions Room type, Date, Hotel

Preliminary measures NOccupiedRooms, NVacantRooms, NUnavailable-
Rooms, NOccupants, Revenue

The dimension Room type has as many attributes as the properties of a room, with
the attributes for the optional features available with values ’Y’ or ’N’.

The measures NOccupants and Reveue are additive.

The measures NoOccupiedRooms, NVacantRooms and NUnavailableRooms are semi-
additive with respect to Date.

The metrics Occupancy Rate, Average Available Room Revenue and Average Room
Revenue are non-additive and must not be defined as measures.

Conceptual Design

The conceptual design of a data mart is shown in Figure B.10.

RoomTypeUtilization

NoOccupiedRooms
NoVacantRooms
NoUnavailableRooms
NoOccupants
Revenue

Date
Year

Month

Day

HolydayFlag

DayWeekName

Hotel

City

Region

Country

Name

Category

RoomType

MiniBar
. . .
WhirlpoolBath

Type

NumberOfBeds

MaximumOccupants

Figure B.10: The conceptual design of a data mart for the hotel room type utiliza-
tion

Logical design

In the logical design, the facts are stored in the relation RoomTypeUtilization, with the
measures, and a foreign key for each dimension table, with its own surrogate primary
key (Figure B.11). The surrogate primary key for the Date dimension is a day, an
integer of the form YYYYMMDD.

c© 2015 by Albano et al. B.5 Hotels 123

RoomTypeUtilization

RoomTypeFK
DateFK
HotelFK
NoOccupiedRooms
NoVacantRooms
NoUnavailableRooms
NoOccupants
Revenue

RoomType

RoomTypePK
Type
NumberOfBeds
MaximumOccupants
MiniBar
. . .
WhirlpoolBath

Hotel
HotelPK
Name
Category
City
Region
Country

Date
DatePK
DayWeekName
HolydayFlag
Month
Year

Figure B.11: The logical design of a data mart for the hotel room type utilization

Data Analysis

1. The room occupancy rate of hotels of a given city and day, by hotel.

SELECT H.Name
, SUM(F.NOccupiedRooms) / (SUM(F.NOccupiedRooms) +

SUM(F.NVacantRooms) +
SUM(F.NUnavailableRooms))

AS OccupancyRate
FROM RoomTypeUtilization F, Hotel H
WHERE F.HotelFK = H.HotelPK AND F.DateFK = 20100717

AND H.City = ’Florence’
GROUP BY F.HotelFK, H.Name;

2. The room occupancy rate of hotels of a given region and day, by room type.

SELECT R.Type
, SUM(F.NOccupiedRooms) / (SUM(F.NOccupiedRooms) +

SUM(F.NVacantRooms) +
SUM(F.NUnavailableRooms))

AS OccupancyRate
FROM RoomTypeUtilization F, RoomType R, Hotel H
WHERE F.HotelFK = H.HotelPK AND F.RoomTypeFK = R.RoomTypePK

AND H.Region = ’Tuscany’ AND F.DateFK = 20100717
GROUP BY R.Type;

124 CHAPTER B Case Studies: Solutions c© 2015 by Albano et al.

3. The room occupancy rate at a given month and year, by hotel in a given city.

SELECT H.Name
, SUM(F.NOccupiedRooms) / (SUM(F.NOccupiedRooms) +

SUM(F.NVacantRooms) +
SUM(F.NUnavailableRooms))

AS OccupancyRate,
FROM RoomTypeUtilization F, Date D, Hotel H
WHERE F.HotelFK = H.HotelPK AND F.DateFK = D.DatePK

AND D.Month = 201007 AND H.City = ’Florence’
GROUP BY F.HotelFK, H.Name;

4. The room occupancy rate and average room revenue of hotels in a given city, at a
given month and year, by hotel.

SELECT H.Name
, SUM(F.NOccupiedRooms) / (SUM(F.NOccupiedRooms) +

SUM(F.NVacantRooms) +
SUM(F.NUnavailableRooms))

AS OccupancyRate
, SUM(F.Revenue)/SUM(F.NOccupiedRooms) AS AvgRevenueByRoom

FROM RoomTypeUtilization F, Date D, Hotel H
WHERE F.HotelFK = H.HotelPK AND F.DateFK = D.DatePK

AND D.Month = 201007 AND H.City= ’Milan’
GROUP BY F.HotelFK, H.Name;

5. The monthly revenue and the cumulative revenue of 4-star hotels in a given year,
by country and by month.

SELECT H.Country, D.Month
, SUM(F.Revenue) AS MonthlyRevenue
, SUM(SUM(F.Revenue)) OVER

(PARTITION BY H.Country ORDER BY D.Month
ROWS UNBOUND PRECEDING)

AS CumulativeRevenue
FROM RoomTypeUtilization F, Date D, Hotel H
WHERE F.HotelFK = H.HotelPK AND F.DateFK = D.DatePK AND D.Year = 2010
GROUP BY H.Country, D.Month;

6. In a given year, the total revenue, and the cumulative revenue, of the rooms with
the maximum number of occupants and whirlpool bath, by hotel.

SELECT F.HotelFK, H.Name, SUM(F.Revenue) AS TotalRevenue
, SUM(SUM(F.Revenue)) OVER

(ROWS UNBOUND PRECEDING)
AS CumulativeRevenue

FROM RoomTypeUtilization F, RoomType R, Date D, Hotel H
WHERE F.HotelFK = H.HotelPK AND F.DateFK = D.DatePK

AND F.RoomTypeFK = R.RoomTypePK
AND D.Year = 2010 AND R.WhirpoolBath = ’Y’
AND F.NOccupants = R.MaximumOccupants

GROUP BY F.HotelFK, H.Name;

Appendix C

GLOSSARY

Aggregation
The result of an aggregate function (sum, count, average, minimum, maximum,
etc.) applied to a bag of values.

Business Intelligence
A set of methods and tools for interactive data analysis used primarily by busi-
ness administrative staff to understand and analyze business performance in order
to obtain useful information to support unstructured decision making.
The term intelligence is used with the meaning of investigating to find out some-
thing interesting, like in Intelligence Service.
The business intelligence methods and tools are of the following types:

– Reports. Reporting is considered the basic level of decision support.
– Multidimensional data analysis. Data analysis is usually accomplished inter-

actively with some kind of data analysis tool.
– Exploratory data analysis. This data analysis technique is very different from

reports and multidimensional analysis: it uses what is called a discovery tech-
nique of useful data models with data mining algorithms.

Computerized Information System
A subset of an information system that use a variety of technologies to process
information.

Conformed Dimension
A dimension shared by several fact tables.

Constellation schema
The relational schema of a data warehouse with several fact tables that share
dimensional tables.

Cube
A multidimensional cube model (data cube) represent facts with n dimensions
by points (a cell) in an n-dimensional space. The cells of the cube contain data
measures and the edges of the cube represent the data dimensions.
Although a cube implies only 3 dimensions in geometry, a data cube may repre-
sent any number of dimensions.
Some vendors provide OLAP servers that implement the fact table as a data
cube using a specialized data structure. Such implementations are referred to as
MOLAP (Multidimensional OLAP).

126 CHAPTER C Glossary c© 2015 by Albano et al.

Cuboid
Let us assume that each dimension domain is extended with an additional value
“∗”. This value has the intuitive meaning “all”, and it represents summarization
along the dimension in which it appears, called cuboid. A cube can be extended
with new “borders” made of cells containing the value of aggregate functions.
The extended cube is a generalization of a cross-tabulation, which is 2-dimensional,
to n dimensions.
To speed up data analysis, commercial data cube systems precompute all or some
of the cuboids and store them as materialized views of the data cube.

Data, Information, Knowledge
Data is the representation of certain facts that a computer records, stores and
processes. Data, or a condensed form of them, become information when are in-
terpreted in a certain context. Information becomes knowledge when it provides
insight upon which the recipient, on the base of his experience, competence, and
attitude, can make informed and effective decisions and take proper actions.

Data Mart
A database that has the same characteristics of a data warehouse, but it is focused
on a single measurable business process to analyze, and so it has only one fact.

Data Mining
An exploratory data analysis technique to discovery useful data models with spe-
cialized algorithms.

Data Warehouse
A decision support database with historical, nonvolatile data, pulled together pri-
marily from operational business systems, structured and tuned to facilitate anal-
ysis of the performance of key business processes, worthy of improvement.
The first and still now the most widely cited definition of data warehouse was
provided by William Inmon in 1990: “A data warehouse is a subject-oriented,
integrated, nonvolatile, and time-varying collection of data in support of man-
agement’s decisions.”
A fundamental axiom of the data warehouse is that data is both read-only and
non-volatile. As the amount of data within the data warehouse grows, the value
of the data increases, allowing a user to perform longer-term analyses of the data.
Whereas the operational data is generally real-time or near real-time, data within
the data warehouse is historical, since the data warehouse is used primarily for
reporting and analyzing relatively large volumes of historical data in an effort to
decide what to do in the future.

Data Warehousing
The process used to organize data in a data warehouse and then allow users to
analyze them with business intelligence tools.

Data Warehouse Management System (DWMS)
A specialized software for creating and managing large amount of nonvolatile
data efficiently and allowing it to be analyzed with OLAP queries. There are three
broad directions that have been taken to develop this specialized systems: Rela-
tional OLAP (ROLAP), Multidimensional OLAP (MOLAP), Column-Oriented
OLAP.

DSS, Decision Support System
A software system used to support decision-making processes within an organi-
zation. While an operational system is for performing the business, a decision
support systems is for analyzing the business.

Dice
An operator to selects a subcube of a given cube with a selection on two or more

c© 2015 by Albano et al. 127

dimensions. The operator does not make aggregations on the data cube.
Dimensional Data Model

A data model that represents measurements of a process and the independent
variables that may affect that process. In a dimensional model, data are orga-
nized into multiple dimensions and each dimension contains multiple levels of
abstraction defined by concept hierarchies. This organization provides the users
with the flexibility to view data from different perspectives.

Dimensional Fact Model (DFM)
A conceptual dimensional data model.

Dimension
One of the perspectives that can be used to analyze the data in a data warehouse.

Dimensional Table
The table of a relational database which contains the data for one of the dimen-
sions. The dimensional attributes describe individual characteristics of a dimen-
sion.
The dimension table has a primary key (usually a surrogate one) which is used
to connect it to the fact table.
The dimension tables in a star schema are intentionally de-normalized.

DOLAP (Desktop OLAP)
A system which manage on a personal computer small amount of data extracted
from a multidimensional OLAP server, a DW or an operational DBMS.

Drill-down or Roll-down
An operator to have an aggregated view of the data to a higher level of detail in
two ways: by moving down along a dimensional hierarchy level or by adding a
dimension of analysis.

ERP (Enterprise Resource Planning)
The meaning of the acronym ERP does not explain the purpose of these systems,
which is not the enterprise resource planning, but the integration of business pro-
cesses in a single software system that can meet all the information requirements
of the company using a centralized database .

ETL (Extract, Transform, Load)
A set of back-end data staging steps that are used to (1) obtain data from oper-
ational sources (i.e. the extraction step), (2) cleanse and prepare data for import
into the data warehouse (i.e. the transformation step), and (3) actually importing
the transformed data into the data warehouse (i.e. the loading step).

Fact
A collection of related data items, consisting of measures and context data. Each
fact typically represent a business item, a business transaction, or an event that
can be used in analyzing the business or key business processes. The most useful
data items are indeed numeric and often additive.

Fact Table
The table of a relational database which contains the individual facts being stored
in the data warehouse.
There are two types of fields in a fact table: a) The fields storing the foreign keys
which connect each particular fact to the appropriate value in each dimension; b)
The fields storing the individual fact measures, such as number, amount, or price.
The granularity of the fact table is one of the most significant design decisions
in creating a data warehouse. The facts should be as detailed as possible to allow
for the data to be viewed from the greatest number of perspectives.

Granularity
The level of detail of the facts stored in a data warehouse, and so the meaning of

128 CHAPTER C Glossary c© 2015 by Albano et al.

a single record in a fact table.
Hierarchy

Dimensional attributes can be arranged into one or more logical structures to
analyze data at various levels of detail.
For example, the hierarchy among the attributes City and Region of the dimen-
sion Location, states that each city belongs to one region and a region generally
contains several cities. The multidimensional analysis usually exploits the hier-
archy among the dimensional attributes to perform aggregations of the measures
at various levels of detail along the dimensions of the data warehouse. For exam-
ple, a typical hierarchy is the dimension of time to analyze the facts by year, by
quarter, by month or by day.

HOLAP (Hybrid On Line Analytical Processing)
A combined use of Relational OLAP (ROLAP) and Multidimensional OLAP
(MOLAP).

Information System
A system whose purpose is to store, process, and communicate information.

Key Business Process
A business process that can be clearly defined, is measurable, and is worthy of
improvement.

Measure
A numerical property of a fact useful for evaluating the performance of the pro-
cesses to be analyzed.

Materialized View
The results of a query stored and automatically used to facilitate the execution of
other more complex queries.

Metadata
It is referred to as being the data about data, which defines all aspects of the data
contained in a data warehouse including where it originally comes from, its type,
what transformations it has been subjected to, where it has been used and what
it means from a business perspective.

MOLAP (Multidimensional On Line Analytical Processing)
OLAP systems that store cuboids in a specialized data structures.

OLAP (On Line Analytical Processing)
A category of database software systems that primarily involves aggregating
large amounts of data from a data warehouse. The term was introduced to distin-
guish the activities of data analysis from daily activities on business data orga-
nized in databases.

OLAP Client
A system that provides interactive tools for multi-dimensional analysis.

OLAP Server
A system that provides a vision of data to be analyzed as a cube.

OLTP (On Line Transaction Processing)
A category of database software systems that typically involves processing trans-
actions in real time.

Operational Systems
A transaction processing systems to process operational data.

ROLAP (Relational On Line Analytical Processing)
An OLAP system that store data and materialized views in a relational DBMS.

Roll-up
The operator performs aggregation on a data cube, either climbing up a concept

c© 2015 by Albano et al. 129

hierarchy for a dimension or by dimension reduction.
Schema

The definition of the logical structure of a database or a data warehouse.
Slice

An operator to selects a cross section that cut across a cube with a selection
on one dimension. The result is a subcube, and so the operator does not make
aggregations on a data cube.

Snowflake Schema
A variant of the star schema, where some dimension tables are normalized,
thereby further splitting the data into additional tables.

Star Schema
The relational schema of a data warehouse with (1) a large central table (fact
table) containing the bulk of the data without redundancy, and (2) a set of smaller
attendant tables (dimension tables), one for each dimension.

130 CHAPTER C Glossary c© 2015 by Albano et al.

BIBLIOGRAPHY

Adamson, C. and Venerable, M. (1998). Data Warehouse Design Solutions. J. Wiley
& Sons, New York. 18

Artz, J. M. (2005). Data driven versus metric driven data warehouse design. In Wang,
J., editor, Encyclopedia of Data Warehousing and Mining, pages 223–227. IDEA
Group Reference, Hershey, PA, USA. 9, 36

Ballard, C., Farrell, D. M., Gupta, A., Mazuela, C., and Vohnik, S. (2006).
Dimensional Modeling: In a Business Intelligence Environment. IBM,
http://www.redbooks.ibm.com/redbooks/pdfs/sg247138.pdf. 36

Golfarelli, M., Maio, D., and Rizzi, S. (1998). Conceptual design of data warehouses
from E/R schemes. In Proc. Hawaii Int. Conf. on System Sciences, vol. VII, pages
334–343, Kona, Hawaii. 15

Kimball, R. and Ross, M. (2002a). Data warehouse. La guida completa. Hoepli
Informatica, Milano. 18

Kimball, R. and Ross, M. (2002b). The Data Warehouse Toolkit: How to Design
Dimensional Data Warehouses. Second Edition. J. Wiley & Sons, New York. 44

Moody, D. L. and Kortink, M. A. R. (2000). From enterprise models to dimensional
models: A methodology for Data Warehouse and Data Mart design. In Proceedings
of the International Workshop on Design and Management of Data Warehouses
(DMDW’2000), pages 1–12, Stockholm, Sweden. 41

Song, I., Rowe, W., Mesker, C., and Ewen, E. (2001). An analysis of many-to-many
relationships between fact and dimension table in dimensional modeling. In Pro-
ceedings of the International Workshop on Design and Management of Data Ware-
houses (DMDW 2001), pages 6.1–6.13, Interlaken, Switzerland. 49

132 BIBLIOGRAPHY c© 2015 by Albano et al.

	Preface
	Decision Support Systems
	Information Systems
	Types of Information Systems
	Data Warehouse: a Decision Support Database
	Data Warehousing Architecture
	What to Model
	Concluding Remarks
	Summary

	Data Warehouse Modeling
	Conceptual Multidimensional Model
	Multidimensional Relational Model
	Multidimensional Cube Model
	Summary

	Data Warehouse Design
	Introduction
	Data Warehouse Design Approaches
	A Case Study
	Project Quality Control
	Summary

	Data Analysis
	OLAP Systems Solutions
	Data Analysis Using SQL
	Simple Reports with SQL
	Moderately Difficult Reports with SQL
	Very Difficult Reports Without Analytic SQL
	Summary

	Case Studies
	Hospital
	Airline Companies
	Airline Flights
	Inventory
	Hotels

	Case Studies: Solutions
	Hospital
	Airline Companies
	Airline Flights
	Inventory
	Hotels

	Glossary
	Bibliography

