Oracle9/AS TopLink

Mapping Workbench Reference Guide

Release 2 (9.0.3)

August 2002
Part No. B10063-01

ORACLE

Oracle9iAS TopLink Mapping Workbench Reference Guide, Release 2 (9.0.3)
Part No. B10063-01
Copyright © 2002, Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and OracleMetaLink, Oracle Store, Oracle%i, Oracle9iAS Discoverer,
SQL*Plus, and PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other names
may be trademarks of their respective owners.

Contents

Send Us YOUr COMMENES ...ttt Xi
PIROIACER. ...ttt es e xiii
gk) gL [Ye B AN U hT<) s Lol <IN xiii
Documentation AccessSibility ... Xiv
1] 5 410 Lol 4 § ¢ EURUT TR RTN Xiv
RS X <Y B B Je Yal b 4 <y o 1= TR XV
(@) 0 M7= 115 10 4 V- J0UT OO PR XVii

1 Understanding the Workbench

Starting the Mapping Workbench ... 1-2
Working with the Workbench ..., 1-2
USING the MENUS........ocoviiiiiiiiiicc s e e 1-3
Menu Bar MENUScoooviiiiiiiitiecet e s 1-4

POP-UP MENUS. ...ttt s 1-4

Using the TOOIDATS.........ccocoiuiiiiiiiiiiicc s 1-4
Standard TOOIDATcccviviiiiii 1-4
Mapping TOOIDATcciviviiiiiiiiici e 1-5

Using the Project Tree Panecccccooviiiniiiiiniiiiii e 1-5
Using the Properties Pane ..o 1-7
Working with Workbench Preferences..............ccccooovviinininiiniiiii e, 1-7
Changing the Look and Feelcccoooiiiiiiiiiic 1-7
Specifying a Web BrOWSeTcccccocviiiiiiiiiiiiiiiiii e 1-9
Specifying Class Import OPptionsccccoeiviiiniiiiinii s 1-9

Setting EJB Preferences ..o 1-10

Working with the Mapping Workbench in a Team Environment..............ccccocooviiiiinnnnn. 1-11
Using a Source Control Management SYStemccceovuiuiiiviiiiniiiiiiicccecces 1-11
Merging Files.......cccoviiiiiiiiiiiiiiiiic s 1-12

Merging a ROOt File ... 1-12
Merging an Aggregate File...........cccoooiiiiiiiiiii 1-14
Sharing Project ODJects ... 1-15
Managing the ejb-jar.Xml File..........cccccooviiiiiiiiiiiii e 1-15

2 Understanding Projects

Working With Projects............cccoiiiiiiiiiicc s 2-1
Creating New ProjJectS........ooiiiioiiii e 2-1
Opening EXisting Projects.........cocoiiiiiiiii s 2-2
SaVING PTOJECES ...ooveiiiee e 2-4
Refreshing the Project Tree.......cccooiiviiiiiiiiiiiiiiiic s 2-4

Working with Project Properties.............ccocooiviiiiiiiiininiiiicciccce s 2-4
Working with General Project Properties ... 2-5

Mapping EJB 2.0 ENtitiescccvoviiiiiiiiiiiiiccc s 2-6
Working with Default Properties ... 2-7
Renaming Packages...........cccceviiiiiiniiiiiiiiiicc s 2-8
Working with Sequencing Properties...........ccoooviiiiiniinininiiiiiccicss 2-8
Working with Table Generation Properties...........cccoviiiiiniiininiiiiicccc 2-9
Setting Default Advanced Propertiescccocovuviiniiininiininiiii e 2-10

Working With Classes...........ccccoviviiiiiiiiiiniiii s 2-11
Creating ClassSes ... s 2-11

EXPOIting Projects ... s 2-13
Exporting Project to Java SOUICEcoooviiiiiiiiiiiicicc e 2-13
Exporting Table Creator Files ... 2-14
Generating Deployment XIML.........ccooiiiiiii e 2-14

Working with the ejb-jarxml File.............ccccccooiiiiniiiiiii e 2-15
Writing to the ejbjar.xml File ... 2-16
Reading from the ejb-jar.xml Filecccccocoviininiiiiniiiii e 2-16

3 Understanding Databases
Working with Databases ..o s 3-1

Database PrOPerties. . ..ottt e s e 3-1

Logging into the Database............cccccooviiiiniiiiiiiiiii s 3-3
Working with Database Tables in the Project Tree Panecoooooiiiiiii 3-3
Creating New Tables..........ccccviiiiiiiiiiiiii e 3-4
Importing Tables from Database.............cccccovviiiiiiiiiiiiiii e 3-5
JDBC Driver ReqUIrements..........cccoiiiiiiiiiiiiiiiinini s e 3-5
RemoviINg TabIes ..o e 3-7
Renaming Tables ..o e 3-7
Working with Database Tables in the Properties Panec..ccooooiiiiiii 3-8
Working with Field Properties ... 3-8
Setting a Primary Key for Database Tablesccccccevniviiniiiiiiiicce, 3-9
Working with Reference Properties..........ccccovviviiiiiiiiiiiiiiiiicccc s 3-10
Creating table references ... 3-10
Creating Field References............cccocovviviiiiiiiiiiininiiiiiici e 3-11
Generating Data from Database Tables ..o 3-12
Generating SQL Creation SCIiptsccocovviiiiiieiiiiccec s 3-12
Generating Descriptors and Classes from Database Tables............cccccccoouvniniinininininnnnnn. 3-13
Generating Tables on the Database...........cccccooiiiniiiiiiininiii s 3-15
Generating EJB Entities from Database Tablescccccccoouvniniiiiniiic, 3-16

4 Understanding Descriptors

Working with Descriptors..........cccccoviiiiiiiiiiiii e 4-1
Understanding Persistent Classes...........cccoouiiininiiiiniiiiiin e 4-2
Specifying Descriptor TYPES ..ot 4-2
Mapping DeSCIIPLOLSciviiiiiiiiitiiietc et 4-3
Automapping DeSCriptors......ouiiiiiiiiciieie s 4-3
Generating Java Code for Descriptors........cccooviiiiiiniiiiiiii e 4-4

Working with Descriptor Properties ..., 4-4
Setting Descriptor INformation...........ccooviiiiiinniiii s 4-5
Setting Class INfOrmMation ..o 4-6

Class Tabccoviiiiiiiiiiii 4-7
ATIDULES Tabocvieiii 4-8
Methods Tab.......ccccoiiiiiiii e 4-10
QUETY KEYS ..o s 4-11
Specifying QUery KeYScccccvviiiiiiininiiiiiiiiiiicc e 4-11

SPecifying QUETIES.........coouiuiiiiiiiiitic e 4-12

SOL QUETIES ...vveeviieieeirieieertte et e etteste e e eetbesstestbeessaeaseesseasssessseessseansassssesssesnsseesseenssesnseenns 4-13

INAMEA QUETIESviuiieeiiieitieiee ettt stestae e et teete e bt ese e see s asseeseeseessessaessesssessesssassensnans 4-14
Displaying EJB descriptor Informationc.cccooviviniiiiiniiiic s 4-16
Working with Advanced Properties............cccooiiniiiiinniii s 4-18
Amending Descriptors After Loading..........cccocovviiiiinniniiii 4-18
Specifying EVENLEScccouiiiiiiiiiiiiiiiiiicci s e 4-19
Specifying Identity Mapping ..o e 4-20
Specifying INNeTitance ... e 4-21
Creating @ ROOt Class.........cccoiuiiiiiiiiiiiiiiii e 4-22
Creating Branch and Leaf Classes..........cccocoviiiiviiiiiiiiiiiii e 4-23
Specifying Optimistic LOCKINGcccocoviiiiiiiiiiiiiiiiic e 4-24
Specifying an Interface Alias ... 4-25
Working with Primary Keys ..o 4-26
Setting a Primary Key for Descriptors..........cccovvviviiiniiiniiiiiiiincci e 4-26
Working with Sequencing ... 4-27
Using Sequence Numbers with Entity Beans..........cccccccooviiiiiniinic, 4-28
Using Native SEqUENCINGccoeiuiiiieiiii et 4-28
Using Sequence Tables..........cccccovviiiiiiiiiiiii s e 4-29
Pre-allocating Sequence NUMDETScccoviiiiiiiiiiiii e 4-29
Creating the Sequence Table on the Database...........cccccocovviiiiiiiniiiii, 4-30
Working with Inheritance ... 4-30
Using Inheritance with EJBs.......cccccccocoviiiiniiiiiiiiic e 4-31
Mapping Inherited Attributes in One Descriptor ..o, 4-31
Supporting Inheritance Using One Table ... 4-31
Supporting Inheritance Using Multiple Tables.............cccccocouvniniiiiiiiiiic, 4-33
FINAINgG SUDCIASSES......cccuiiiiiiiiiiiiiicicec e 4-34
Providing a Class Indicator Field...........cccocoviinniiii, 4-34
Understanding Root, Branch, and Leaf Classes in an Inheritance Hierarchy 4-35
Specifying Primary Keys in an Inheritance Hierarchy...........ccccocoovinnninnninnnnnn, 4-36
Mapping Inherited Attributes in a Subclass..........cccccovviviiiiiii 4-36
Working with Interfaces ..o 4-36
Understanding Interface Descriptors ... 4-37
Single Implementor Interfaces. ... 4-39
Implementing an INterfaceccccovviiiniiiiiiiiiiii 4-39

vi

Working with Multiple Tables...........ccccoooiiiiiiiiiiiii e 4-40

Specifying Multi-table INfOc.ccccoviiiiiiiiiiii 4-41
Primary Keys Match ..o 4-42
Primary Keys are Named Differently...........cccccoooeiiiiiiiiiiiiiccccnas 4-42
Tables are Related by Foreign Key in Primary Table............cccocovivniniinniniinnnn, 4-43

Working with @ Copy PoLlicy ... e 4-43
Setting the Copy POLICYcovviiiiiiiiiiiciicc e 4-43
Working with Instantiation Policy ... 4-44
Setting Instantiation POLICYccccovvviiiiiiiiiiiiiiiiiic e 4-45
Working with @ Wrapper POLiCY ... 4-46
Setting the Wrapper Policy Using Java Code..........ccoviviniiiiiiiiiiiccccs 4-47
Working with Optimistic LOCKingccoiiiiiiiic s 4-47

Using Version Locking POIICIESccoiiiiiiiiiiiiiiiiiiciccc e 4-48

Using Field Locking POJICIESc.c.iviiiiiiiiiiiiiiiiiiitc e 4-48

Specifying Advanced Optimistic Locking Policies.........c.cccovvniiiviniiininniiiiicin, 4-49

Working with Identity Maps ... 4-50

Identity Map SIZe.......cccoooiiiiiiiiiiiiiiiiiic e 4-50

Design GUIAELNESc.cvuiuiiiiiiiiiiiiiicc e 4-51

Using Object IAENtItycccovviiiiiiiiiiiiiic s 4-51

Caching ODbJECEScucviviiiiiiiiciiiii s e 4-51

Working with Query Keys ..o s 4-52

Automatically-generating Query Keys ..., 4-52

Creating a User-defined Query Key ..o, 4-52

Using Query Keys in Interface Descriptors ..., 4-54

Relationship Query Keys.........cccovviiiiiiiiiiiiiiici e 4-55
Defining Relationship Query Keys by Amending a Descriptor..........c.cccoovvviniiiinnnnn. 4-55

Working with EVENnts...........cccccooeiiiiiiiiiiii e 4-56
Registering an Event with a DeScriptorcccocovviiiiiiniiiiiiiiicc e, 4-57
SUppOrted EVENLS ..o s 4-57

Working with FINAers ... 4-58

Working with Object-relational Descriptors.............cocooeeieioiiiiiiiii 4-59

Effect on TOPLANK ..o s 4-59

Databases SUPPOTIted ... e 4-60

Defining Object-relational Descriptors..........ccccoiiiiiiniiiiiiiiiii e 4-60

Working with Mappings ... 4-60

vii

Working with Common Mapping Propertiescccccovviiiniinniiiiiiiicc, 4-61

Specifying Direct Access and Method ACCESS ..., 4-62

Setting the AcCess TYPE ..o e 4-63
Specifying Read-only Settingscccccvviviiiiiiiiiniiiiiiiiii e 4-63
Defaulting NUll VAlUescccccccoviiiiiiiiiiiiiiii e 4-64
Maintaining Bidirectional Relationships..........cccccocoouviiiiiiiniiiiiiic, 4-64
Specifying Field Names and Multiple Tables..........cccccccoovinninniiniiic, 4-64
Specifying Collection PTOPerties ..o 4-64
Specifying Mapping information in ejb-jar.xml File ..o, 4-65

Understanding Direct Mappings

Working with Direct Mappingsccocoiiiiiiiiiiiiiiiii i s 5-1
Working with Direct-to-field Mappings ... 5-2
Creating Direct-to-field Mappings ... 5-3
Working with Type Conversion Mappingsccccccouiiiiiiiniiicniiiec e 5-4
Creating Type Conversion Mappingscc.ccceveveiiieimininietieciieerc e 5-4
Working with Object Type Mappings ..o 5-5
Creating Object Type Mappingsccocoviviiiiiiiniiiiiiiii s 5-6
Working with Serialized Object Mappings...........cccoovviviiiiiiiiniiiiii e, 5-8
Creating Serialized Object Mappings ..o 5-8
Working with Transformation Mappingsccccccoeiiiiiiiiiiiiiii s 5-9
Creating Transformation Mappingscccccoviivivininininiiiii s 5-10
Specifying Advanced Features Available by Amending the Descriptorcccccevvuiee. 5-12

Understanding Relationship Mappings

Working with Relationship Mappings..........cccooovvniiiiiiniiiinii e 6-2
Specifying Private or Independent Relationships ..o, 6-2
Working with Foreign Keys ... s 6-3
Understanding Foreign Keys.........cccccoovviiiiiiniiiiic e 6-3
Specifying FOreign Keys ...t 6-4
Working with a Container Policy ... 6-4
Overriding the Default Container POLiCYccccooviiiiiiiiiiiiiii e, 6-5
Working with INdirection ... 6-5
Understanding INdirection............ccocovviiiiiiiiiiiiiii e 6-6
Using Value Holder INdirectioncccooviviiiiiiiiiiiiiic e 6-6

viii

Specifying INAIireCtioncccoviviiiiiiiiiiiiiiic e 6-7

Changing Java Classes to Use INdirectionc.cccovuviiiiiiiiniiiiiiiniici e, 6-8
Working with Transparent Indirection............ccccccoooiiiiiiiiiiii e, 6-9
Specifying Transparent INdirectionc.cccoviiviiiiniiiiiii e, 6-10
Working with Proxy Indirection ..., 6-11
Implementing Proxy Indirection in Java........cccocoviviiniiiiiiiii 6-12
Optimizing for QUETIESs ..o 6-13
Working with Aggregate Object Mappings ..o 6-14
Creating a Target Descriptor........coiiiiiiiiiiciccc e 6-17
Creating an Aggregate Object Mappingcccccoovviviiiiiiiiiiiiiiicc s 6-17
Working with One-to-one Mappings..........ccccocouviiiiiiiiiiiiiii e 6-19
Creating One-to-one Mappings........ccceevvieieieininiieciisrc s 6-21
Specifying Advanced Features Available by Amending the Descriptorccccccevvauee. 6-22
Working with Variable One-to-one Mappingscccccoovviiniiiniiii e 6-23
Specifying Class INAIiCatOrccccocviviiiiiiiiiiiiiiic e 6-23
Specifying Unique Primary Key ... 6-24
Creating Variable One-to-one Mappings.........ccccocoviviiininiiiiniiciiiiccic e 6-25
Working with Direct Collection Mappings ..o 6-28
Creating Direct Collection Mappings.........cccccovviviiininiiiiiniiiiciiiccci e 6-29
Working with Aggregate Collection Mappings..........ccccciiiiiiiiiiiiiiiceenas 6-30
Working with One-to-many Mappings ... 6-31
Creating One-to-many Mappingscccecevireriininiiiec s 6-32
Working with Many-to-many Mappingscccccovvviiiiiniiiii s 6-33
Creating many-to-many Mappingscccevreririniniiiec i 6-35
Specifying Advanced Features by Amending the Descriptor ..., 6-37
Working with Custom Relationship Mappingsccccooviiniiiiiniiiciinccc s 6-38
Creating Custom Mapping Queries in Java Codecccocouviviniiiiiniiinniica, 6-38

7 Understanding Object Relational Mappings

Working with Object Relational Mappings ... 7-2
Working with Array Mappings..........cccooviiiiiiiiiii e 7-2
Implementing Array Mappings in Javacccocovvviiiiniiiiiiic e 7-3
RefOTENCE.......oiiiiiiiiii 7-3
Working with Object Array Mappings..........cccccooviiiniiiiiniiiiiii e 7-4
Implementing Object Array Mappings in Javacccccecvvviiniiiiiiiiccc e, 7-4

REEIEIICE. ...t ettt e sttt e e eaaeee st ae e st aeeesaaesennsaessaneesnneees 7-5

Working with Structure Mappings ..o 7-5
Implementing Structure Mappings in Javacccovuviiiiiiiniiiiiicc e 7-6
RefETENCE......ociiiiiiiiii 7-7
Working with Reference Mappings ..o 7-7
Implementing Reference Mappings in Java ... 7-8
RefETENCE.......ciiiiiiiiiic 7-8
Working with Nested Table Mappingscccccocovniiiniiniiiii s 7-9
Implementing Nested Table Mappings in Javacccccoviviiiinniinicncccc, 7-10
RefeTeNCe.......cviiiiiiiiiic s 7-10

A Object Model Requirements

Persistent Class Requirements............cccoccoiviiiiiiiiiiiniiii s A-1

Constructor Requirementsccocuiiiiiiiiiiiicc s A-2

Remote Session Requirements..............c.ccooioiiiiiiiiiiiii e A-2
Index

Send Us Your Comments

Oracle9i/AS TopLink Mapping Workbench Reference Guide, Release 2 (9.0.3)
Part No. B10063-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: iasdocs_us@oracle.com

FAX: 650-506-7407 Attn: Oracle9i Application Server Documentation Manager
Postal service:

Oracle Corporation

Oracle9i Application Server Documentation

500 Oracle Parkway, M/S 20p3

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

xi

Xii

Preface

This reference guide includes the concepts required for using the TopLink Mapping
Workbench, a stand-alone application that creates and manages your descriptors
and mappings for a project. This document includes information on each Mapping
Workbench function and option.

This preface contains the following topics:
= Intended Audience

= Documentation Accessibility

s Structure

= Related Documents

s Conventions

Intended Audience

This document is intended for TopLink users who are familiar with the
object-oriented programming and Java development environments.

This document assumes that you are familiar with the concepts of object-oriented
programming, the Enterprise JavaBeans (E]B) specification, and with your own
particular Java development environment.

The document also assumes that you are familiar with your particular operating
system (such as Windows, UNIX, or other). The general operation of any operating
system is described in the user documentation for that system, and is not repeated
in this manual.

xiii

Documentation Accessibility

Structure

Xiv

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

This document includes the following chapters:

Chapter 1, "Understanding the Workbench"

This chapter introduces the Mapping Workbench — a tool to graphically configure
descriptors and map your TopLink project.

Chapter 2, "Understanding Projects"

This chapter contains instructions for creating and maintaining TopLink project
files, including workbench preferences and team development.

Chapter 3, "Understanding Databases"

This chapter describes how to create database sessions and import/export database
tables to and from your TopLink project.

Chapter 4, "Understanding Descriptors"

This chapter summarizes TopLink descriptors, including standard and advanced
properties and mappings.

Chapter 5, "Understanding Direct Mappings"
This chapter summarizes the direct mapping types supported by TopLink.

Chapter 6, "Understanding Relationship Mappings"
This chapter summarizes the relational mapping types supported by TopLink.

Chapter 7, "Understanding Object Relational Mappings"

This chapter summarizes the object relational mapping types supported by
TopLink.

Appendix A, "Object Model Requirements"
This section summarizes TopLink’s object model requirements.

Related Documents

For more information, see these Oracle resources:

Oracle9i/AS TopLink Getting Started

Provides installation procedures to install and configure TopLink. It also introduces
the concepts with which you should be familiar to get the most out of TopLink.

Oracle9i/AS TopLink Tutorial

Provides tutorials illustrating the use of TopLink. It is written for developers who
are familiar with the object-oriented programming and Java development
environments.

Oracle9/AS TopLink Foundation Library Guide

Introduces TopLink and the concepts and techniques required to build an effective
TopLink application. It also gives a brief overview of relational databases and
describes who TopLink accesses relational databases from the object-oriented Java
domain.

XV

XVi

Oracle9i/AS TopLink Mapping Workbench Reference Guide

Includes the concepts required for using the TopLink Mapping Workbench, a
stand-alone application that creates and manages your descriptors and mappings
for a project. This document includes information on each Mapping Workbench
function and option and is written for developers who are familiar with the
object-oriented programming and Java development environments.

Oracle9iAS TopLink Container Managed Persistence for Application
Servers

Provides information on TopLink container-managed persistence (CMP) support
for application servers. Oracle provides an individual document for each
application server specifically supported by TopLink CMP.

Oracle9/AS TopLink Troubleshooting

Contains general information about TopLink’s error handling strategy, the types of
errors that can occur, and Frequently Asked Questions (FAQs). It also discusses
troubleshooting procedures and provides a list of the exceptions that can occur, the
most probable cause of the error condition, and the recommended action.

In North America, printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

Conventions

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Italics Italic typeface indicates book titles or Oracle9i Database Concepts
emphasis. Ensure that the recovery catalog and target
database do not reside on the same disk.
lowercase Lowercase monospace typeface indicates Enter sqlplus to open SQL*Plus.
monospace executables, filenames, directory names,

(fixed-width)
font

lowercase
italic
monospace

(fixed-width)
font

and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font
represents placeholders or variables.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/diskl/oracle/dbs directory.

The department_idand location_id
columns are in the hr .departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

You can specify the parallel_ clause.

Run Uold_release.SQL where old_
release refers to the release you installed
prior to upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = 'MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Xvii

Convention Meaning Example

[1] Brackets enclose one or more optional DECIMAL (digits [, precision 1)
items. Do not enter the brackets.

{1 Braces enclose two or more items, one of ~ {ENABLE | DISABLE}
which is required.

| A vertical bar represents a choice of two ~ {ENABLE | DISABLE}
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

[COMPRESS | NOCOMPRESS]

Horizontal ellipsis points indicate either:

= That we have omitted parts of the CREATE TABLE ... AS subguery;
code that are not directly related to
the example

= That you can repeat a portion of the SELECT coll, col2, ... , coln FROM
employees;
code
Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.
Other notation You must enter symbols other than acctbal NUMBER(11,2);
brackets, vertical bars, and ellipsis points acct CONSTANT NUMBER(4) := 3;
as shown.
Italics Italicized text indicates placeholders or CONNECT SYSTEM/system password

variables for which you must supply

par ticular values DB_NAME = database_ name

Conventions for Microsoft Windows Operating Systems

The following table describes conventions for Microsoft Windows operating
systems and provides examples of their use.

Convention Meaning Example

Choose Start > How to start a program. To start the Oracle Database Configuration
Assistant, choose Start > Programs >

xviii

Convention

Meaning Example

Case sensitivity
and file and
directory names

C:\>

INSTALL _DIR

File and directory names are not case c:\winnt"\"system32 is the same as
sensitive. The following special characters C: \WINNT\SYSTEM32
are not allowed: left angle bracket (<),

right angle bracket (>), colon (:), double

quotation marks ("), slash (/), pipe (|),

and dash (-). The special character

backslash (\) is treated as an element

separator, even when it appears in quotes.

If the file name begins with \\, then

Windows assumes it uses the Universal

Naming Convention.

IMPORTANT NOTE: File names and directory names are case sensitive under UNIX.
Where the name of a file or directory is mentioned and the operating system is a
non-Windows platform, you must enter the names exactly as they appear unless instructed
otherwise.

Represents the Windows command C:\oracle\oradata>
prompt of the current hard disk drive.

The escape character in a command

prompt is the caret (*). Your prompt

reflects the subdirectory in which you are

working. Referred to as the command

prompt in this manual.

The backslash (\) special character is C:\>exp scott/tiger TABLES=emp
sometimes required as an escape QUERY=\"WHERE job=’SALESMAN’ and
character for the double quotation mark sal<1600\"

(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (") do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

C:\>imp SYSTEM/password
FROMUSER=scott TABLES=(emp, dept)

Represents the Oracle home installation SET CLASSPATH=INSTALL_DIR\jre\bin
directory name. The home name can be

up to 16 alphanumeric characters. The

only special character allowed in the

home name is the underscore.

Xix

Convention

Meaning

Example

ORACLE_HOME
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HOME directory that by
default used one of the following names:

s C:\orant for Windows NT
s C:\orawin95 for Windows 95
s C:\orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOME directory. There is a
top level directory called ORACLE_BASE
that by default is C: \oracle. If you
install Oracle9i release 1 (9.0.1) on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\ora90. The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Starting
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant directories.

Go to the ORACLE_BASE\ORACLE_
HOME\rdbms\admin directory.

XX

1

Understanding the Workbench

The Mapping Workbench is separate from Oracle 9iAS TopLink — it allows you to
graphically configure descriptors and map your project. The Mapping Workbench
can verify the descriptor options, access the data source, and create the database
schema. With the Mapping Workbench you can define TopLink descriptors without
using code.

To Use the Mapping Workbench in a Java Application:

1. Define an object model (a set of Java classes) to describe and solve your
problem domain.

2. Use the Mapping Workbench to create a project, import your Java classes and
relational tables, and specify descriptors to describe how the classes map to
your relational model.

3. Inyour Java application, create a TopLink session and register your descriptors.
Add logic to your application to use the session to retrieve/store objects
from/to the database.

Figure 1-1 Using the Mapping Workbench

Java Application | |mport
tlasses

TopLink

Fersistent class 1 Mapping

Persistentclasszxk“* Workhench | Relational
Import Database

Session table schema |~2kle

Descriptor 1 & Frojectfile

Descriptar 2

Store persistent

using JOBC L/

Understanding the Workbench 1-1

Starting the Mapping Workbench

Starting the Mapping Workbench

Use this procedure to start the Mapping Workbench.

To Start the Mapping Workbench:

For Windows environments: From the Start menu, select Program Files >
Oracle9iAS TopLink > Mapping Workbench.

or

For non-Windows environments: Execute the <INSTALL
DIR>toplink\workbench\workbench. sh file.

The splash screen appears, followed by the workbench window.

Working with the Workbench

The Mapping Workbench interface includes these parts:

= Menu - Pull-down menus for each Mapping Workbench function. Some objects
also contain context-sensitive pop-up menus. See "Using the Menus" on
page 1-3 for more information.

= Toolbar — Shortcuts to specific functions. See "Using the Toolbars" on page 1-4
for more information.

= Project Tree pane — The project tree for all open projects (see "Using the Project
Tree Pane" on page 1-5). Click on the plus or minus (+/-) next to an object (or
double-click the object) to expand/collapse the tree. When you select an object
in the Project Tree pane, its properties appear in the Properties pane.

= Properties pane — Specific property tabs for the currently selected object. See
"Using the Properties Pane" on page 1-7 for more information.

= Status bar — Provides instant information regarding the status of descriptors
and mappings.

1-2 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with the Workbench

Figure 1-2 Mapping Workbench

* Mapping Workbench

o— ﬂ[ile Selected Tools Window Help

a[ﬂ}i?a e == ISR ERCRS 2

EBr] Employee G General ‘ D Defaults] 153 Sequencing | “H Table Generation
= @oracle.toplink.demos.employee Project Save Location:
+ 1 Address [caTopLinkiProjectsiEmployee

07 + Employes
iz Rioy FPersistence Type

+-f§ PhoneNumber

--@8 DernoDatabase O el
1.1 CMP
FH ADDRESS ~ 20 cMP
£ EMPLOYEE BuP
B LPROJECT Ejh-jarxml Location:
o 5 PHUNE | J
B PROJ_EMP
& PROJECT Class Path
j CATopLinkiMappingWorkbenchiD... Add Entry...

Add System Entries

Remoye

o_

User-interface components called out in Figure 1-2:

1. Menu bar

2. Toolbars

3. Project Tree pane
4. Properties pane
5

Status bar

Using the Menus
The TopLink Mapping Workbench contains two types of menus:

s Menu Bar Menus

= Pop-up Menus

Understanding the Workbench 1-3

Working with the Workbench

Menu Bar Menus

The menu bar provides pull-down menus for each TopLink Mapping Workbench
function. Some menus (such as Selected) are context-sensitive — the available
options may vary, depending on the currently selected object.

Pop-up Menus
When you right-click on objects in the Project Tree pane, a pop-up menu appears

with functions specific to the selected object.

Figure 1-3 Sample Pop-up Menu

% Mapping Workbench

ﬁﬁile Selected Tools Window Help

a2 R | 2 <

=1 5gh Advanced Tutorial ClassesiDescriptors in oracletoplink demos.emplove...

+-fg Addre__ = Refresh Class(es)
+-ff Dem: ¥ AddiRefresh Classes...
+- g Empl Update Descriptaris) from Ejb-jarxml
SRl s Create New Class..
#- 1 Empl Refmove
+ 1 Large Unmap All Classes in Package
+- g Phon)
] & Set Advanced Properties Default...
+- g Proje
<@ Smal #¢ Automap
-8 Advancer Generate Code...

Using the Toolbars
The Mapping Workbench contains two types of toolbars:

» Standard Toolbar
= Mapping Toolbar

Use these toolbars to select options and functions.

Standard Toolbar

The standard toolbar provides quick access to the standard (File, Edit, Selected,
etc.) menu options.

1-4 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with the Workbench

Figure 1-4 Standard Toolbar
Add table

Preference Remove cla
Exit Add/update clas Add table from database
Move handle Generate Java sm lirﬂemove table

k2 eEREAE0 b s BER &8 W

ey projectJ Login to I:IatabaseJ
Open project Logout of database
Save project Cnline help

Save all projects
Close project
Close all projects

Al

Mapping Toolbar

The mapping toolbar provides quick access to create mapping and descriptor types.
You can specify a mapping or descriptor type by selecting the object from the
Project Tree pane then clicking on the appropriate button in the mapping toolbar.

You can also right-click on the object and select the appropriate mapping from the
pop-up menu.

Figure 1-5 Mapping Toolbar

Aggregate
“ariable one-to-one Direct collection
One-to-one Transformation
Direct-to-ﬁeld—‘ ’7Type conversion

e RO Iawnc Beé

One-to-manyJ J Serialized J L EJE descriptor
Many-to-many Unmapped Class descriptar

Object type Aggregate descriptor

To move a toolbar, click on a blank area of the toolbar and drag it to your desktop.
To re-dock the toolbar to the Mapping Workbench, click on the toolbars’s move
handle D and drag the toolbar back to the Mapping Workbench.

Using the Project Tree Pane

TopLink displays each project’s descriptors, mappings, and database tables in the
Project Tree pane on the left side of the workbench.

Understanding the Workbench 1-5

Working with the Workbench

Figure 1-6 Sample Project Tree Pane

= [employee — o
= Q aracle toplink.demos employee
- g Address e
@ City
country 9
id
postalCode
province
@ street
+-fgg Demao
+- g Employee
B
5

& EmployveeF opulator
3 EmploymentPeriod
&-@ MewDatabas — 9

User-interface components called out in Figure 1-6:
1. Project

2. Descriptor

3. Attribute/mapping

4. Database

Click on the +/- next to the item, or double-click the item name, to expand/collapse
the item.

When you select an item in the Project Tree pane, its properties appear in the
Properties pane (see "Using the Properties Pane" on page 1-7).

You can perform specific functions for an item by selecting the item in the Project
Tree pane and:

= right-clicking on the object and selecting the function from the pop-up (see
"Pop-up Menus" on page 1-4).

= selecting a function from the Selected menu (see "Menu Bar Menus" on
page 1-4).

Inactive descriptors appear dimmed in the Project Tree pane. Inactive descriptors
do not get registered with the session when the project is loaded into Java. This
allows you to define and test subsets of descriptors. To activate or inactivate a
descriptor, right-click on the descriptor and select Activate/Deactivate Descriptor
from the pop-up menu.

1-6 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Workbench Preferences

Figure 1-7 Sample Active/inactive Descriptors

=3 Employee
] E aracletoplink.demos.empli
+ Address
+-Hg Employee

#3———— £ PhoneNumber

+-@ INTRO_TUTORIAL_DB

d | 2]

User-interface components called out in Figure 1-7:
1. Inactive descriptor
2. Active descriptor

If a descriptor contains an error (sometimes called a “neediness” message), a
warning icon appears beside the descriptor’s icon in the Project Tree pane and
a message displays in the status bar detailing the error. The Oracle 9iAS TopLink:
Troubleshooting Guide contains complete information on each Mapping Workbench
error message.

Using the Properties Pane

The Properties pane, on the right side of the Mapping Workbench, displays the
properties associated with the currently selected item in the Project Tree pane.

The properties of the selected item are displayed using tab pages, grouped
according to their subject.

Working with Workbench Preferences

You can customize several aspects of the TopLink Mapping Workbench.

Changing the Look and Feel

Use this procedure to customize the “look and feel” (the graphical user interface) of
the Mapping Workbench.

To Change the Look and Feel:

1. Click on the Preferences button in the toolbar. The Preferences window
appears.

Understanding the Workbench 1-7

Working with Workbench Preferences

You can also display the preferences window by selecting Tools > Preferences
from the menu.

2. C(Click on Look and Feel in the Category pane.

Figure 1-8 Look and feel Preferences

g}' Preferences

Categary: Look and Feel
e ou must restart the Mapping Workbench to apply the changes.

* Based on the platform
" Metal (Jawa)
" CDEMotif

" Wind ows

Ok | Cancel |

3. Select the look and feel and click on OK. You must restart the TopLink Mapping
Workbench to apply the changes.

Figure 1-9 Look and Feel Samples

o $’ Create New Project §° Create New Project

\i]) Associated Database Associated Database
Database Name: [MewDatahase Database Mame:
Platforrm: & Oracle J Platfarrm: l:l J

Ok Cancel | oK | Cancel |

T

$’ Create New Project

]
[

Associated Database
Database Name:
Platform: D

| OK || Cancel |

User-interface "look and feel" samples in Figure 1-9:

1-8 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Workbench Preferences

1. Windows
2. Metal (Java)
3. CDE/Motif

Specifying a Web Browser

Use this procedure to specify a web browser to use with the Mapping Workbench.
You must specify a web browser to use the online help and web-based support.

To Change the Web Browser:

1. Click on the Preferences button in the toolbar. The Preferences window
appears.

You can also display the preferences window by selecting Tools > Preferences
from the menu.

2. Click on Web Browser in the Category pane.

Figure 1-10 Web Browser Preferences

g}' Preferences I

Categony: Web browser
Setthe defaultweb browser used to view help

Look and feel

" Noweh browser

= Web hrowser

CAProgram Filesiinternet ExploreflEXPLORE EX J

0K | Cancel |

3. Select the web browser to use and click on OK.

Specifying Class Import Options

Use this option to specify if the Mapping Workbench verifies classes on import,
when using the Add/Refresh Class function (see "To Update Classes from Available
Packages and Classes:" on page 2-12).

Understanding the Workbench 1-9

Working with Workbench Preferences

To Specify Class Import Options:

1. Click on the Preferences button in the toolbar. The Preferences window
appears.

You can also display the preferences window by selecting Tools > Preferences
from the menu.

2. C(Click on Class import in the Category pane.

Figure 1-11 Class import Options

W Preferences

Category. Class Import
Laok and feel Class import options for "Add/Refresh Classes" and all Class Choosers

Web browser
| nport

[Neververify Classses in Chooser

(Advanced: This should be left unchecked unless
problems are encounterd building Class chooser lists)

0K | Cancel |

3. Select if the Mapping Workbench does not verify the classes in the chooser when
performing an Add or Refresh.

Caution: By default, the Mapping Workbench will always verify
the classes. Select this option only if you encounter errors when
displaying classes in the Select Classes window.

4. Click on OK.

Setting EJB Preferences

Use this procedure to specify how the Mapping Workbench updates the
ejb-jar.xml file when saving projects.

To Specify EJB Options:
1. Click on the Preferences button in the toolbar. The Preferences window
appears.

You can also display the preferences window by selecting Tools > Preferences
from the menu.

1-10 Oracle9/AS TopLink Mapping Workbench Reference Guide

Working with the Mapping Workbench in a Team Environment

2. C(Click on EJB in the Category pane.

Figure 1-12 EJB Options

W Preferences

Categony: EJB
Look and feel General EJB preferences
Web browser

™ Ahways write ejb-jarxml on project save

" Newerwrite ejb-jarxml on project save

¥ Always prompt to write ejb-jarxml on project save

QK | Cancel |

3. Specify if the Mapping Workbench prompts before updating the ejb-jar.xml
file when you save the project.

4. Click on OK.

Working with the Mapping Workbench in a Team Environment

When using a Mapping Workbench project in a team environment, you must keep
your changes “in-sync” with the other developers. See "Merging Files" on page 1-12
for more information.

You can use the Mapping Workbench with a source control system (see "Using a
Source Control Management System" on page 1-11) to facilitate enterprise-level
team development. If you have a small development team, you can manage the
changes from within XML files (see "Sharing Project Objects" on page 1-15).

Using a Source Control Management System

If you use an enterprise, file-based, source control management system to manage
your Java files, you can use the same system with TopLink Mapping Workbench.
The Mapping Workbench source files are edited by the Mapping Workbench and
are written out in XML file format.

The source control system'’s check-in/out mechanism defines how to manage the
source (i.e., the XML source and Mapping Workbench project file) in a multi-user
environment.

Understanding the Workbench 1-11

Working with the Mapping Workbench in a Team Environment

Merging Files

To Check Out/in Mapping Workbench Project Files:
1. Check out the files from the source management system to the users system.

Note: Normally, leave all locked and unlocked files in the project
in read-write status. This allows the Mapping Workbench to
updated the files, as necessary.

If you know specifically which files will be changed, you can leave
the remaining files in read-only status. The Mapping Workbench
will display an error if it attempts to update a read-only file.

2. Edit the project using the Mapping Workbench.

3. Save the edited project. Some project XML files may have been altered. The
source control tool will notify the user that several files have been modified
locally, on their system.

4. Check-in the modified files, and add any files that have been added to the
source control system for this Workbench project.

The most difficult aspect of team development is merging changes from two (or
more) members that have simultaneously edited the same file. If one developer
checks in their changes a merge condition exists. Usually, this condition exists in one
of the root objects in the Mapping Workbench project.

Use a file comparison tool to determine the merged aspects of the project. The files
to edit will vary, depending on the type of merge:

= Merging a Root File
= Merging an Aggregate File

Because a typical project may involve many changes (especially in a team
environment), merging your project before checking it in may require quite a bit of
development time.

Merging a Root File

These files contain references to the objects that they hold onto. The root files are:

= Project — <projectName>.mwp (one for each project - holds database, packages,
and repository)

1-12 Oracle9/AS TopLink Mapping Workbench Reference Guide

Working with the Mapping Workbench in a Team Environment

Database — <databaseName>.xml (one for each project — holds tables)
Package — <packageName>. xml (one for each package — holds descriptors)

Class Repository — repository.xml (one for each project — holds classes)

Changes in these files are normally caused by adding, deleting, or renaming a
Table, Class, or Descriptor.

To Merge a Root File:

Another developer has added a descriptor and checked-in the project while you
were adding or removing descriptors from the same project.

1.

Perform a file comparison on the <packageName>xml file in merge status. The
file comparison shows the addition of the descriptor XML tag and an element
inside the tag.

Insert the XML into your <packageName>. xml file (inside the Package
element). This brings your local code up to date to the current code in the code
repository.

Check out any new files indicated as “missing” by your source control system.
This will include the new Descriptor that has been added.

Check in all files that you have modified.

Example 1-1 Merging Projects

Another developer has added and checked in a new Employee class descriptor to
the com. demo package while you were working with the package. To merge your
work with the newly changed project:

Perform a file comparison on the com.demo . xml file located in
<projectRoot>/Package/ directory thatis in merge status

The file comparison shows the addition of the descriptor XML tag and an
element inside that tag:

<descriptor>
<descriptor>com.demo.Employee.ClassDescriptor</descriptor>
</descriptor>

Insert this XML into your com.demo . xml file (inside the Package element) to
bring it up to date to the current code in the code repository.

Check out any new files identified as “missing” by your source control system.
This will include the new Employee class descriptor that has been added.

Understanding the Workbench 1-13

Working with the Mapping Workbench in a Team Environment

s Check in files that you have modified.

Merging an Aggregate File
Developers simultaneously changing the Mapping Workbench that have altered the

contents of an aggregate file will also cause a merge condition. Aggregated files
include:

s Class — <className>.xml (one for each class)
» Descriptor — <descriptorName. type>.xml (one for each descriptor)
s Table - <tableName>.xml (one for each table)

The Mapping Workbench changes these files when saving a project if you have
changed any of the contents within them (such as a mapping added to a descriptor,
an attribute added to a class, or a field reference changed in a table).

To Merge an Aggregate File:

If another developer has added a mapping to a descriptor and checked-in the
project while you were changing a different mapping on that same descriptor:

1. Perform a file comparison on the <descriptorName>.xml file in merge status.
The file comparison shows the addition of the Mapping XML tag and elements
inside the tag.

2. Insert this XML into your <descriptorName>.xml file (inside the Mappings
element). This brings your local code up to date to the current code in the code
repository.

3. Check out any new files indicated as “missing” by your source control system.
This will include any tables or descriptors referenced by the new mapping.

4. Check in all files that you have modified.

Example 1-2 Merging Files

Another developer has added and checked in the firstName mapping to the
Employee class descriptor while you were changing a different mapping on that
same descriptor.

= Perform a file comparison on the
com.demo.Employee.ClassDescriptor.xml file located in
<projectRoot>/Descriptor/ thatis in merge status

The file comparison shows the addition of the <Mapping> XML tag and
elements inside that tag:

1-14 Oracle9/AS TopLink Mapping Workbench Reference Guide

Working with the Mapping Workbench in a Team Environment

<Mapping>
<comment></comment>
<descriptor>com.demo.Employee.ClassDescriptor</descriptor>
<usesMethodAccessing>false</usesMethodAccessing>
<inherited>false</inherited>
<readOnly>false</readOnly>
<instanceVariableName>firstName</instanceVariableName>
<defaultFieldNames>
<defaultFieldName>direct field=</defaultFieldName>
</defaultFieldNames>
<fieldHandle>
<FieldHandle>
<table>EMPLOYEE</table>
<fieldName>F_NAME</fieldName>
</FieldHandle>
</fieldHandle>
<classIndicator>BldrDirectToFieldMapping </classIndicator>
</Mapping>

= Insert this XML block into your
com.demo .Employee.ClassDescriptor.xml file (inside the <Mapping>
element) to bring it up to date to the current code in the code repository.

= Check out any new files that should be noted as missing by your source control
system. This will include any tables or descriptors that may be referenced by
the new mapping.

= Check in files that you have modified.

Sharing Project Objects

You can also share project objects by simply copying the table or descriptor file(s)
into the appropriate directories in the target project.

After copying the file(s), insert a reference to the table or descriptor in the
appropriate <databaseName>.xml or <packageName>.xml file. All references
contained within these files must refer to an existing object in the project.

Managing the ejb-jar.xml File

When working in a team environment, manage the ejb-jar .xml file similarly to
the . xml project files. The Mapping Workbench will edit and update the
ejb-jar.xml file, if necessary, when working with an EJB project.

Understanding the Workbench 1-15

Working with the Mapping Workbench in a Team Environment

If you use a version control system, perform the same check-in/out procedures. For
merge conditions, use a file comparison tool to determine which elements have
been added or removed. Modify the file as necessary and check-in the file to version
your work.

1-16 Oracle9/AS TopLink Mapping Workbench Reference Guide

2

Understanding Projects

The Mapping Workbench project (.mwp file) stores the information about how
classes map to database tables. These are language independent XML files, different
from the deployment XML files generated by the Mapping Workbench, read in by
the application using the XML.ProjectReader class.

You can edit each component of project, including:

Project settings, such as the project classpath and sequence information
Database information, such as driver, URL, and login information
Table schema information for the database

Packages and classes associated with the project

Descriptor information for each class

Working with Projects

The Mapping Workbench displays projects and their contents in the Project Tree
pane. When you select a project, its attributes display in the Properties pane.

The Mapping Workbench can log runtime XML calls (in the mw_xm1 . 1og file) to
help troubleshoot projects. Refer to the Oracle 9iAS TopLink Troubleshooting Guide for
additional information.

Creating new Projects

Use this procedure to create a new Mapping Workbench project.

Understanding Projects 2-1

Working with Projects

To Create a New Project:

1. Click on the Create New Project button [ig] in the toolbar. The Create New
Project window appears.

You can also create a new project by selecting File > New Project from the
menu.

Figure 2-1 Create New Project

g}treate New Project

\i]) Associated Database

Database Mame: [MNewDatahase
Platform: B oracle J

2. Enter the database name and platform for the new project and click on OK. The
Save As window appears.

See "Working with Databases" on page 3-1 for more information.

3. Select a directory location in which to save the project and click on Save.

Note: Always use a new folder to save a project. After creating
the .mwp project do not rename the file. See "Saving Projects” on
page 2-4 to save your project with a different name.

The mapping workbench appears showing the project name in the Project Tree
pane. Continue with "Working with Project Properties" on page 2-4 to create a
project.

Opening Existing Projects

Use this procedure to open an existing project.

Caution: To upgrade from a previous version of TopLink, you
must follow specific upgrade procedures and use the TopLink
Package Renamer. Refer to the TopLink Release notes and Oracle
9iAS TopLink Getting Started Guide for more information.

2-2 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Projects

To Open an Existing Project:

1. Click on the Open Project button [&Z] in the toolbar. The Choose a File window
appears.

You can also open a project by selecting File > Open Project from the menu.

Note: The File menu also contains a list of recently opened
projects. You may select one of these projects to open.

2. Select the TopLink Mapping Workbench project file (.mwp) to open and click on
Open. The Mapping Workbench displays the project information.

If you open a 3.x Mapping Workbench project that contains E]Bs, the Potential
EJB Descriptors window appears.

Figure 2-2 Potential EJB Descriptors

% Potential EJB Descriptors...

The following class descriptors may be EJB descriptors.
Flease selectwhich descriptors you would like to be
imported as EJB descriptors.

[AddressEJB
[~ 8 EmployesEJB
[& InsuranceEJB

Selectall | SelectNone

[~ Generate EJB 1.1 specification compliant methods and

attributes that are not found in the current class
descriptor{s).

Project Persistence Type
" Bean Managed Persistence (BMP)
@+ Container Managed Fersistence (CMP 1.1}

0K | Cancel |

3. Select which of the descriptors should be imported as EJB descriptors, the
project persistence type, and click on OK.

You can also specify if the Mapping Workbench generates methods and

attributes that comply with the EJB specification if they are not found within the
current class descriptor(s).

Understanding Projects 2-3

Working with Project Properties

Saving Projects

The Mapping Workbench does not automatically save your project. Be sure to save
your project often to avoid losing data.

To Save Your Project(s):
Click on the Save Selected Project button ||| or Save All Projects button || to
save your project(s).

You can also save a project by selecting File > Save Project or File > Save All from
the menu.

To Save Your Project with a Different Name or Location:
1. Select File > Save As. The Save As window appears.

2. Browse to the directory in which to save the project. In the File Name field, type
the name of the project and click on Save.

Caution: Do not simply rename the .mwp file outside of Mapping
Workbench. Always rename a project by using the Save As option.

Refreshing the Project Tree

If the Mapping Workbench interface becomes corrupt, use the Refresh Tree option
to redraw the Project Tree.

To Refresh the Project Tree:
Right-click on the project icon in the Project Tree pane and select Refresh from the
pop-up panel.

You can also refresh the project tree by choosing the project icon and selecting File >
Refresh from the menu or pressing Ctrl+T.

Working with Project Properties

Each project in the Project Tree pane contains various editable parameters. To edit
the project’s properties, select the project object in the Project Tree pane. The
following tabs appear in the Properties pane.

= General project properties (persistence type and classpath)

2-4 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Project Properties

= Default project properties (identity map, existence checking and field access
method)

= Sequencing

= Table generation (primary key and primary key search pattern)

Working with General Project Properties

Use the project’s General tab to specify the default persistence type and classpath
information.

Each TopLink project uses a classpath — a set of directories, . jar files, and . zip files
—when importing Java classes and defining object types.

To create a descriptor for a persistent class, the Mapping Workbench reads a

compiled Java .class file to read its attributes and relationships.

To Specify the General Properties:
1. Choose the project object in the Project Tree pane.

2. Click on the General tab in the Properties pane. The General tab appears.

Figure 2-3 General Tab

G General ‘

Project Save Location:
|C:\T0pLink\F‘mjects

Persistence Type

* Java Objects

™ Entity Beans using CMP 1.1
" Entity Beans using CMP 2.0
" Entity Beans using BMP

ejb-jarxml Location:

| [

Class Path
Add Entry...
Add System Entries
Remaove

Understanding Projects 2-5

Working with Project Properties

3. Specify the project’s persistence type. For EJB projects, you can specify the
location of the ejb-jar.xml file. See "Mapping EJB 2.0 Entities" on page 2-6
and "Working with the ejb-jar.xml File" on page 2-15 for more information.

Note: This field applies for E]JB projects only.

4. To add a new classpath entry, click on Add Entry and select the directory, . jar
file, or .zip file to add.

To add the system’s classpath entries to the project, click on Add System
Entries.

To remove a classpath entry, select the entry and click on Remove.

To create a relative classpath, select an entry and edit the path, as necessary. The
path will be relative to the Project Save Location.

See "Working with Classes" on page 2-11 for information.

Mapping EJB 2.0 Entities

You can create a Mapping Workbench project based on information in the
ejb-jar.xml file. Use this file to map the EJB 2.0 CMP entity beans’ virtual fields
(called Container Managed Fields, defined by <cmp-field> tag) or relationships
(called Container Managed Relationship, defined by <cmr-field> tag) to database
tables. You must specify an .xml file or a . jar file that contains an ejb-jar.xml
file.

The Mapping Workbench defines all descriptors for entity classes (as defined in the
ejb-jar.xml file) as EJB descriptors [&]. The Mapping Workbench does not create
(or remove) descriptors for the interfaces and primary key class for the entity when
refreshing from the ejb-jar.xml.

Note: The Mapping Workbench creates class descriptors for entity
classes not defined in the ejb-jar.xml file. You must manually
change the descriptor type (see "Specifying Descriptor Types" on
page 4-2).

To update your project from the .xm1 file, right-click on an E]JB descriptor and select
Update Descriptors from ebj-jar.xml. You can also update the project by selecting
Selected > Update Descriptors from ebj-jar.xml from the menu. See "Working with
the ejb-jar.xml File" on page 2-15 for more information.

2-6 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Project Properties

Working with Default Properties
Use the project’s Default tab to specify the default:

= identity map and existence checking policy for descriptors (if they do not have a
specific identity policy)

= field accessing applied to newly created descriptors

To Specify Default Project Properties:
1. Choose the project object in the Project Tree pane.

2. Click on the Defaults tab in the Properties pane. The Defaults tab displays.

Figure 2-4 Defaults Tab

D Defalts I

Identity Map

Type: |SoﬂCacheWeakldentit§;Map ﬂ
Size:| 1002

[~ Specify Project Package

Package Mame: |

Existence Checking Field Accessing
* Check Cache " Use Method Accessing
" Check Database @ Use Direct Field Accessing

" Assume Existence

" Assume Non-Existence

3. Use this table to enter data in each field:

Field Description

Identity Map Use the Type drop-down list to select the default identity map
and its size for descriptors in this project (see "Working with
Identity Maps" on page 4-50).

Specify Project Package Default package to use for this project. See "Renaming Packages"”
on page 2-8 for information on renaming packages.

Existence Checking Specify the type of existence checking to use.

Understanding Projects 2-7

Working with Project Properties

Field Description

Field Accessing Specify if the descriptors use Method or Direct field accessing
(see "Specifying Direct Access and Method Access" on
page 4-62).

Renaming Packages

To rename your packages, you must edit each of the project’s associated . xm1 files
in the following sub-directories:

= Class

= ClassRepository
s Descriptor

= Package

You must also edit the package and class names in the .mwp file. After changing the
package names in all files, open the project in the Mapping Workbench. TopLink
will now use the new package name.

Working with Sequencing Properties

Sequence numbers are artificial keys that uniquely identify the records in a table.
Use the project’s Sequencing tab to specify default sequencing properties for all
descriptors in the project.

To Specify Default Sequencing Properties:
1. Choose the project object in the Project Tree pane.

2. Click on the Sequencing tab in the Properties pane. The Sequencing tab
displays.

2-8 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Project Properties

Figure 2-5 Sequencing Tab

153 Sequencing l

Seguencing Preallocation Size:

@ Uze Default Seguence Takle
" Usge Mative Sequencing (Not Supported for DBZ)

i~ Use custom sequence table

[—|
50

Name:

!
Seq. Mame Field: |
I

Seq. Counter Field:

Led Ll L

3. Use this table to enter data in each field:

Field

Description

Sequencing
Preallocation Size

Sequencing Type

Custom Sequence
Table Information

Default pre-allocation size. Default is 50.

Specify if the project uses:

= Default sequencing

= Native sequencing

= Custom sequencing table

Use these fields to select the sequence table, and name and
counter fields. These fields apply only when Use Sequencing
Table is selected.

Working with Table Generation Properties

Use the project’s Table Generation tab to specify the default primary key name and
primary key search pattern (database schema) to use when generating tables. The
resulting tables and columns will conform to the naming restrictions of the project’s

target database.

To Specify Default Table Generation Properties:
1. Choose the project object in the Project Tree pane.

2. C(Click on the Table Generation tab in the Properties pane. The Table
Generation tab displays.

Understanding Projects 2-9

Working with Project Properties

Figure 2-6 Table Generation Tab

3 Tahle Generation l

Default Frimary Key Mame
D

* Usedwhen generating table scripts.

FPrimary Key Search Pattern

[0

* Usedwhen generating tables and descriptors,

3. Use this table to enter data in each field:

Field Description

Default Primary Key Default name to use when generating primary keys.

Name

Primary Key Search Default search pattern to use when generating primary keys.
Pattern

Setting Default Advanced Properties

In addition to a descriptor’s standard property tabs, you can specify advanced
properties for each descriptor. You can also specify which of these advanced
properties appear, by default, for new descriptors.

To Specify the Default Advanced Properties for Descriptors:

1. Right-click on the project object in the Project Tree pane and select Set
Advanced Property Defaults from the pop-up menu. The Advanced Property
Defaults window appears.

You can also set the default advanced properties by choosing the project object
and selecting Selected > Set Advanced Property Defaults from the menu.

2-10 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Classes

Figure 2-7 Advanced Property Default

g}'ndvanced Property Defaults

H Select the properies that you
want to he added by defaultto
new descriptars.

[&% Copying

[&8 After Load

[% Events

[#=2 |dentity

[% Inheritance

[~ = Instantiation

[ub Interface Alias

[= Locking

[¥ multi-Table Info

Ok | Cancel |

2. Select each advanced property to display, by default, when creating and editing
descriptors.

3. Click on OK.

Working with Classes

The Mapping Workbench creates descriptors from Java classes and packages.
Creating Classes

Use this procedure to create a new class and/or package from within the Mapping
Workbench.

To Create a New Class:

1. Right-click on the project in the Project Tree pane and select Create New Class
from the pop-up menu.

You can also create a new class by clicking on the Create Class button or
select the project and select Selected > Create New Class from the menu.

Understanding Projects 2-11

Working with Classes

Figure 2-8 Add New Class

@*ndd Mew Class

Fackage Mame: | ﬂ

Mew Class MName: |NewCIaSS

QK | Cancel |

2. Use the Package Name drop-down list to select a package or type a new
package name.

3. Inthe New Class Name field enter a class name and click on OK. The Mapping
Workbench adds the new class to your project in the Project Tree pane.

Note: The Class Name must be unique within the package.

To Update Classes from Available Packages and Classes:

1. Define the available class(es) and package(s) for the project on the General tab.
See "Working with General Project Properties" on page 2-5 for information on
classes and packages.

2. Clicking on the Add/Update Class button [#]. The Select Classes window
appears.

You can also update the classes by selecting Selected > Add/Refresh Classes
from the menu.

2-12 Oracle9iAS TopLink Mapping Workbench Reference Guide

Exporting Projects

Figure 2-9 Select Classes

g}'Select Classes
Available Packages/Classes:
+-@@ oracletoplinkdemos.employes

+-@@ oracletoplink.demos. employee)
+-@@ oracletoplink.dernos ernployee

2|
<
+-@@ oracletoplink.dernos employee:
+-@@ oracletoplink.demos. employee.
+-@@ oracletoplink.demos.employee,
+-6@ oracle toplink.demos.employee.

+-@@ oracle toplink.demos.employee. -
1 »

Selected Classes:

Cancel |

Select the package(s) and/or class(es) to add to the project and click on OK. The

Mapping Workbench adds the new classes to your project in the Project Tree

pane.

Note:

The Mapping Workbench creates class descriptors for each

package/class. You must manually change the descriptor type, if

needed (see "Specifying

Descriptor Types" on page 4-2).

To Remove a Class from a Project:
Select on the descriptor and click on the Remove Class button |#| or select Selected

> Remove Class from the menu.

Exporting Projects

To use your project with the TopLink Foundation Library, you must either generate
deployment XML or export the project to Java source code.

Exporting Project to Java Source

Use this procedure to convert the project to Java code. Generally, this generated
code executes faster and deploys easier than XML files.

Understanding Projects 2-13

Exporting Projects

To Export the Project to Java Source Code:

1.

2

Right-click on the project in the Project Tree pane and select Export Project to
Java Source from the pop-up menu. The Choose an Export File window
appears.

You can also export the project by clicking on the Export to Java Source button
or by selecting File > Export to Java Source or Selected > Export to Java
Source from the menu.

Select a directory location, file name (. java), and click on OK.

Exporting Table Creator Files

Use this procedure to create Java source code to generate database tables.

To Export Table Creator Files:

1.

Right-click on the project in the Project Tree pane and select Export Table
Creator Java Source from the pop-up menu. The Choose an Export File window
appears.

You can also export the table creator files by selecting File > Export Table
Creator Java Source or Selected > Export Table Creator Java Source from the
menu.

Select a directory location, file name (. java), and click on OK.

Generating Deployment XML

Use this procedure to generate XML files from your project that can be read by the
TopLink Foundation Library. Using this option reduces development time by
eliminating the need to regenerate and recompile Java code each time the project
changes.

To generate deployment XML:

1.

Right-click on the project in the Project Tree pane and select Generate
Deployment XML from the pop-up menu. The Choose an Export File window
appears.

You can also export the project by selecting File > Generate Deployment XML
or Selected > Generate Deployment XML from the menu.

Select a directory location, file name (.xm1), and click on OK.

2-14 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with the ejb-jar.xml File

Working with the ejb-jar.xml File

For Mapping Workbench projects that use EJB 2.0 CMP persistence, use the
ejb-jar.xml file to store persistence information for the application server. With
the Mapping Workbench, you can import information from an existing
ejb-jar.xml file into your project, or you can create/update the ejb-jar.xml
from your project.

Each Mapping Workbench project uses a single ejb-jar.xml file. For each entities
from the file you should have an EJB descriptors in the project. All entities must use
the same persistence type.

As you make changes in your project, you can update the ejb-jar.xml file to
reflect your project. Also, if you edit the ejb-jar.xml file outside of the Mapping
Workbench, you can update your project to reflect the current file.

The following table describes how fields in the ejb-jar.xml file correspond to
specific functions in the Mapping Workbench:

Table 2-1 ejb-jar.xml Fields and Mapping Workbench

ejb-jar.xml Mapping Workbench

primkey Bean attribute mapped to the primary key in the database
table (see "Setting Descriptor Information" on page 4-5)

ejb-name, EJB descriptor information on the EJB Info tab (see

prim-key-class, "Displaying EJB descriptor Information" on page 4-16)

local, local-home,
remote, home, and
ejb-class

abstract-schema-name Descriptor Alias field on the Name Queries tab (see
"Named Queries" on page 4-14)

cmp-field Non-relational attributes on the Descriptor Info tab (see
"Setting Descriptor Information" on page 4-5)

cmp-version Persistence Type field on the General tab (see "Working
with General Project Properties” on page 2-5)

The persistence-typeisset to container.

query Queries listed in Queries tab (see "Specifying Queries" on
page 12)

Note: The findByPrimaryKey query is not in the
ejb-jar.xml file, as per the EJB 2.0 specification.

Understanding Projects 2-15

Working with the ejb-jar.xml File

Table 2-1 ejb-jar.xml Fields and Mapping Workbench

ejb-jar.xml Mapping Workbench

relationships One-to-one, one-to-many, and many-to-many mappings
(see "Working with Relationship Mappings" on page 6-2)

Writing to the ejb-jar.xml File

Use this procedure to update the ejb-jar.xml file, based on the current Mapping
Workbench information. Use the EJB preferences to specify if the Mapping
Workbench automatically updates the ejb-jar.xml file when you save the project.

Note: You can also write the information to a . jar file.
The Mapping Workbench will automatically place the
ejb-jar.xml file in the proper location
(META-INF/ejb-jar.xml).

To Write the ejb-jar.xml File:

Select Selected > Write Project to ejb-jar.xml from the menu. You can also write the
ejb-jar.xmnl file by right-clicking on the project in the Project Tree pane and select
Write Project to ejb-jar.xml from the pop-up menu.

= If the project does not currently contain an ejb-jar.xml, the system prompts
you to create a new file.

s If the system detects that changes were made to the ejb-jar.xml file but not
yet read into the Mapping Workbench (i.e., you changed the file outside of the
Mapping Workbench), the system prompts you to read the file before writing
the changes.

Reading from the ejb-jar.xml File

2-16

Use this procedure to read the ejb-jar.xml information and update your Mapping
Workbench project.

Tip: To automatically create EJB descriptors in the Mapping
Workbench for all entities, read the ejb-jar.xml file before adding
any classes in the Mapping Workbench.

Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with the ejb-jar.xml File

To read the ejb-jar.xml file:

Select Selected > Update Project from ejb-jar.xml from the menu. You can also read
the ejb-jar.xml file by right-clicking on the project in the Project Tree pane and
select Update Project from ejb-jar.xml from the pop-up menu.

Understanding Projects 2-17

Working with the ejb-jar.xml File

2-18 Oracle9iAS TopLink Mapping Workbench Reference Guide

3

Understanding Databases

When you create a descriptor for a class, the Mapping Workbench retrieves the table
information from the database.

Working with Databases

Each Mapping Workbench project contains a database. You can create multiple
logins for each database.

Database Properties

Use the Database properties to specify information about the database and login(s).
To specify the database properties:

1. Click on the database object in the Project Tree pane. The database properties
appear in the Properties pane.

Understanding Databases 3-1

Working with Databases

Figure 3—-1 Database Properties

Database Platform:

Defined |ogins:

i

Change...

Add..

Remove

Driver Class: |

URL:

.

|
Username: |
Password: |

[~ Save password {unencrypted)

Development login: |

Deployment login: |

[
[

2. Use this table to enter data in each field:

Field

Description

Database Platform

Defined Logins

Login Fields:
Driver Class
URL

Username
Password

Save Password

Development Login

Deployment Login

Database platform for the project. Click on Change to select a
new database.

Login used to access the database. Click on Add to add a new
login or Remove to delete an existing login.

To edit these fields, first select a Defined Login.

The Mapping Workbench connects to databases through JDBC.
Contact your database administrator for information on
installing and configuring your driver.

Name required to log into the database.
Password required to log into the database.

Specify if the Mapping Workbench saves the Password for this
Defined Login.

The Mapping Workbench supports multiple logins. Select a
Defined Login to use for development and/or deployment.

3-2 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Database Tables in the Project Tree Pane

3. After entering the information, continue with "Logging into the Database" on
page 3-3.

Logging into the Database

You must log into the database before importing or exporting table information.

To log into the database:

Click on the database object in the Project Tree pane and click on the Login button
in the toolbar. The Mapping Workbench logs into the database. The database
object in the Project Tree pane changes to [g]-

You can also log into the database by right-clicking on the database object and
selecting Log In from the pop-up menu or Selected > Log in from the menu.

Note: f you have not defined a login, the system displays a
warning message. See "Database Properties" on page 3-1 for more
information on creating a database login.

Working with Database Tables in the Project Tree Pane

When you expand the database object in the Project Tree pane, the Mapping
Workbench displays the database tables associated with the project. You can
associate tables by importing them from the database or by creating them within the
Mapping Workbench.

Figure 3-2 Sample Database Tables

=15 Employ o
=@ INTRO_TUTORIAL_DB———~.|_
F ADDRESS 124
& EMPLOVEE——————§)
B PHOME

Database pane icons called out in Figure 3-2:
1. Project

2. Database

3. Database table

Each database table contains the following tabs in the Properties pane:

Understanding Databases 3-3

Working with Database Tables in the Project Tree P

ane

= Fields — Add or modify the table’s fields, and specify the field’s properties

= References — Specify references between tables

Creating New Tables

Use this procedure to create a new database table within the Mapping Workbench.

To create a new table:

1. Select the database object in the Project Tree pane and click on the Add New
Table button [E]. The New Table window appears.

You can also create a new table by right-clicking on the database object and
selecting Add New Table from the pop-up menu or Selected > Add New Table

from the menu.

Figure 3-3 New Table

g}New Table
\i,) Enter new table name:
Catalog:
Schema:
Tahle Mame:
Ok | Cancel |

2. Use this table to enter data in each field.

Field Description

Catalog Use these fields to identify specific database information for the
table. Consult your database administrator for more

Schema . .
information.

Table Name Name of this database table.

3. Enter the necessary information click on OK. The Mapping Workbench adds
the database table to the project.

3-4 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Database Tables in the Project Tree Pane

Note: Refer to "Generating Tables on the Database" on page 3-15
to add the table information to the database.

Continue with "Working with Database Tables in the Properties Pane" on page 3-8
to use these tables in your project.

Importing Tables from Database

The Mapping Workbench can automatically read the schema for a database and
import the table data into the project.

JDBC Driver Requirements

To retrieve table information from the database, the database driver must support
the following JDBC methods:

m getTables()

s getTableTypes()
s getImportedKeys()
» getCatalogs()

s getPrimaryKeys()

To import tables from the database:

1. Select the database object in the Project Tree pane and click on the Add/Update
Existing Tables from Database button [@l. The Import tables from database
window appears.

You can also import tables from the database by right-clicking on the database
object in the Project Tree and selecting Add/Update Existing Tables from
Database from the pop-up menu or Selected > Add/Update Existing Tables
from Database from the menu.

Understanding Databases 3-5

Working with Database Tables in the Project Tree Pane

Figure 3-4 Import tables from Database

g}'lmport Tables from Database

Tahle Mame Pattern: |%

Catalog: |<Ign0re> ﬂ
Schema Pattern: |=:Ign0re> ﬂ
Table Type: [TABLE =
Get Tahle Mames [Import fully gualified names
O—A\'a”ablﬂables Selected Tables

I ADDRESS »
B EMPLOYEE 4

EH PHOMENUMEBER

Ok | Cancel |

User-interface components called out in Figure 3—4:
1. Filters
2. Database tables that match the filters

2. Use this table to enter data in each filter field on the window:

Field Description

Table Name Pattern Name of database table(s) to import. Use % (percent character)
as a wildcard. Tables that match the Table Name Pattern can be
imported.

Catalog Catalog of database table(s) to import.

Schema Pattern Schema of database table(s) to import.

Table Type Type of database table(s) to import.

Import Fully Qualified Specify if the tables names are fully qualified against the schema
Names and catalog.

3. Enter the filter information and click on Get Table Names. TopLink examines
the database and displays the tables that match the filters in the Available
Tables field.

4. Select the table(s) in the Available Tables area to import and click on El
TopLink adds the table to the Selected Tables field.

3-6 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Database Tables in the Project Tree Pane

Removing Tables

Select all the tables to import, click on OK. TopLink imports the tables from the
database into the Mapping Workbench project.

Examine each table’s properties to verify that the imported tables contain the
correct information. See "Working with Database Tables in the Properties Pane"
on page 3-8.

Use this procedure to remove a database table from the project.

To remove a table:

1.

Renaming Tables

Click on a database table in the Project Tree pane and click on the Remove
Table button [&] in the toolbar. The Mapping Workbench prompts for
confirmation.

You can also remove a database table from the project by right-clicking on the
database object and selecting Remove from the pop-up menu or Selected >
Remove Table from the menu.

Click on OK. The Mapping Workbench removes the table from the project.

Note: The table remains in the database.

Use this procedure to rename a database table in the Mapping Workbench project.

To rename the table:

1.

2.

Right-click on the table in the Project Tree pane and select Rename from the
pop-up menu. The Rename window appears

You can also rename the table by choosing the table and selecting Selected >
Rename from the menu.

Enter a new name and click OK. The Mapping Workbench renames the table.

Note: The original table name remains in the database.

Understanding Databases 3-7

Working with Database Tables in the Properties Pane

Working with Database Tables in the Properties Pane

When you select a database table in the Project Tree pane, its properties appear in
the Properties pane. Each database table contains the following property tabs:

= Fields — Add or modify the table’s fields, and specify the field’s properties

= References — Specify references between tables

Working with Field Properties

Use the database table’s Field tab to specify properties for the database table’s
fields.

Note: Some properties may be unavailable, depending on your
database type.

To specify table field properties:

1. Select a database table in the Project Tree pane. The table’s properties display in
the Properties pane.

2. Click on the Fields tab.

Figure 3-5 Field Properties

7 Fields | ¥3 References|

Marme Type Size Subsize Allowes Mull | Primary ke
I EmploveslD ’W‘ . [¥ \
Primary key
I |Firsthame |[TEXT | 50 W I
B | Lastame |[TEXT ¥||50 v I
| Address TEXT ¥ ||255 v m
& HomePhaone ’m 30 [n
4 | v
Add Field | Remove |

3. Use this table to enter information in each field.

3-8 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Database Tables in the Properties Pane

Field Description
Name Name of the field.
Type Use the drop-down list to select the field’s type.
Note: The valid values will vary, depending on the database.
Size Size of the field.
Subsize Sub-size of the field.
Allows Null Specify if this field can be null.
Primary Key Specifies if this field is a primary key for the table.
Identity Indicates a Sybase, SQL Server or Informix identity field.
Unique Specifies if the value must be unique within the table.

Note: Use the scroll bar to display the additional fields.

4. Enter the necessary information for the existing fields or click on Add Field to
add a new field.

To remove a field, select the field and click on Remove.

Setting a Primary Key for Database Tables
Use this procedure to set primary key(s) for a database table.

Note: The Mapping Workbench can automatically import primary
key information, if supported by the JDBC driver.

To set a primary key:
1. Choose a database table in the Project Tree pane. Its properties appear in the
Properties pane.

2. Click on the Fields tab.

Understanding Databases 3-9

Working with Database Tables in the Properties Pane

Figure 3-6 Setting Primary Key for a Database Table

7 Fields | ¥3 References|

Marme Type Size Subsize Allowes Mull | Primary ke
I EmploveslD ’W‘ . [¥ \
Primary key
I |Firsthame |[TEXT | 50 W I
B | Lastame |[TEXT ¥||50 v -
| Address TEXT ¥ ||255 v m
& HomePhaone ’m 30 [n
4 | v
Add Field | Remove |

3. Select the Primary Key field(s) for the table.

Working with Reference Properties

References are table properties that contain the foreign key — they may or may not
correspond to an actual constraint that exists on the database. The Mapping
Workbench uses these references when you define relationship mappings and
multiple table associations.

When importing tables from the database (see "Importing Tables from Database" on
page 3-5), the Mapping Workbench can automatically create references (if the driver
supports this) or you can define references from the workbench.

Creating table references

To create a new table reference:

1. Select a database table in the Project Tree pane. The table’s properties displays
in the Properties pane.

2. Click on the Table Reference tab.

3. In the Table References area, click on the Add button. The New Reference
window appears.

3-10 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Database Tables in the Properties Pane

Figure 3-7 New Reference Window

% Mew Reference

\i,) Enter Mame of Mew Reference:

|

Selectthe Source Table:

| [
Selectthe Target Tabla:

| [

[onDatabase

QK | Cancel |

4. Use this table to enter information in each field.

Field Description

Name of New Reference Name of the reference table. If you leave this field blank, the
Mapping Workbench automatically creates a name based on the
format: SOURCETABLE_TARGETTABLE.

Select the Source Table Name of the database table. This field is for display only.

Select the Target Table Use the drop-down list to specify the target table for this
reference.

On Database Specify if you want to create the reference on the database when
you create the table. Not all database drivers support this option.

Continue with Creating Field References.

Creating Field References

To specify table reference properties:

1. Select a database table in the Project Tree pane. The table’s properties display in
the Properties pane.

2. Click on the Table Reference tab.

Understanding Databases 3-11

Generating Data from Database Tables

Figure 3-8 References properties

=¥ Fields T References ‘

Table References:
Reference Mame Target Table On Datahase Add

% |EMFLOYEE_ADDRESS |[E3 ADDRE... x| |[™
% |EMPLOYEE_EMPLOYEE |[EE EMPLO... =] |~

i

Remove

Key pairs:
Source Field Target Field Add...
#x|[® apDR_ID ~||[® ADDRESS_ID =]

J

Remuove

3. Inthe Table references area, select a Table Reference (see "Creating table
references" on page 3-10).

4. Inthe Key Pairs area, click on the Add button. The Source and Target fields
appear on the tab.

5. Use the Source Field and Target Field drop-down lists to select the key pair for
this reference.

Generating Data from Database Tables

The Mapping Workbench can automatically generate the following information
from the database tables.

s SQL scripts
= Descriptors and classes
= EJB entities

You can also generate database tables from descriptors in your project.

Generating SQL Creation Scripts

Use this procedure to automatically generate SQL scripts to create the tables in a
project.

To generate SQL scripts from database tables:
1. Select the database table(s) in the Project Tree pane.

3-12 Oracle9iAS TopLink Mapping Workbench Reference Guide

Generating Data from Database Tables

2. Right-click on the table(s) and select Generate Creation Script for > Selected
Table or All Tables from the pop-up menu. The SQL Creation Script window
appears.

You can also generate SQL scripts by selecting Selected > Generate Creation
Script for > Selected Table or All Tables from the menu.

Figure 3-9 SQL Creation Script

%’ SQL Creation Script

DEOF TAELE Employees;
CEEATE TAELE Employees (EmployeeID INTEGER, FirstName TEXT(S50), Lt

. | 2

3. Copy the script from the window and paste it into a file. You may need to edit
the file to include additional SQL information that the Mapping Workbench
could not generate.

Note: If TopLink cannot determine how a particular table feature
should be implemented in SQL, it generates a descriptive message
in the script.

Generating Descriptors and Classes from Database Tables

The Mapping Workbench can automatically generate Java class definitions,
descriptor definitions, and associated mappings from the information in database
tables. You can later edit the generated information, if necessary.

For each table, the Mapping Workbench will:
= Create a class definition and a descriptor definition.
= Add attributes to the class for each column in the table.

= Automatically generate access methods, if specified.

Understanding Databases 3-13

Generating Data from Database Tables

= Create direct-to-field mappings for all direct (non-foreign key) fields in the
table.

= Create relationship mappings (one-to-one and one-to-many) if there is sufficient
foreign key information. You may be required to determine the exact mapping

type.

Note: Class and attribute names are generated based on the table
and column names. You may edit the class properties to change
their names.

To generate descriptors and classes from database tables:
1. Select the database table(s) in the Project Tree pane.

2. Right-click on the table(s) and select Generate Descriptors and Classes from >
Selected Table or All Tables from the pop-up menu. The Save Project dialog
box appears.

You can also generate SQL scripts by selecting Selected > Generate Descriptors
and Classes from > Selected Table or All Tables from the menu.

3. Click on Yes. The Generate Classes and Descriptors dialog box appears.

Figure 3-10 Generate Classes and Descriptors

% Generate Classes and Descriptors

Package Marme:

[+ Generate Accessing Methods

Ok Cancel

4. Use this table to enter data in each field:

Field Description

Package Name Name of package to generate

Generate Accessing Specify if the Mapping Workbench generates accessing methods
Methods for each class and descriptor

3-14 Oracle9iAS TopLink Mapping Workbench Reference Guide

Generating Data from Database Tables

5. Enter the information and click on OK. If the table contains foreign key fields
that may represent relationship mappings, the Choose Relationships to
Generate window appears.

Figure 3—-11 Choose Relationships to Generate

% Choose Relationships to Generate

Based on the foreign keys ofthe tahles, some relationship mappings can be generated.
Selectthe appropriate relationships helow and indicate their types using the mapping buttons.

Fotential Relationships Selected Relationships

Fhonenumber{P_NUMBER) == Employeq ses
Employee{ EMP_ID) == Address{ D)

4 | b4
Create Ski
[+ Generate Bi-directional Relationships 4 Y

6. Select a Potential Relationship and click on 1:1 Mapping [] or 1:M Mapping
button. See Chapter 6, "Understanding Relationship Mappings" for more
information on mappings.

You can also specify if the relationships are bidirectional.

7. Click on Create to automatically create the relationships (or Skip to generate
the descriptors without creating these relationships.).

The newly created descriptors appear in the Project Tree pane of the Mapping
Workbench.

Generating Tables on the Database

Use this procedure to create a table on the database, based on the information in the
Mapping Workbench.

To create a table on the database:
1. Select the database table(s) in the Project Tree pane.

2. Right-click on the table(s) and select Create on Database > Selected Table or
All Tables from the pop-up menu. The Save Project dialog box appears.

Understanding Databases 3-15

Generating Data from Database Tables

You can also create tables by selecting Selected > Create on Database >
Selected Table or All Tables from the menu.

Note: You must log into the database before creating tables. See
"Logging into the Database" on page 3-3 for more information.

The Mapping Workbench creates the tables on the database.

Generating EJB Entities from Database Tables

Use this procedure to automatically generate EJB classes and descriptors for each
database table. Generating EJB entities allows you to create:

= One EJB descriptor that implements the <javax.ejb.EntityBean> interface
and four EJB 1.1 classes for each table

= Bean relation attributes (CMP or BMP)
= Java source fore each class

= EJB-compliant method stubs

Note: This option is available only for projects with CMP or BMP
persistence.

To generate EJB entities:
1. Select the database table(s) in the Project Tree pane.

2. Right-click on the table(s) and select Generate EJB Entities and Descriptors
from > Selected Table or All Tables from the pop-up menu. The Save Project
dialog box appears.

You can also create entities by selecting Selected > Generate EJB Entities and
Descriptors from > Selected Table or All Tables from the menu.

3. Click on Yes to save your project before generating EJB entities. The Generate
Enterprise Java Beans window appears.

3-16 Oracle9iAS TopLink Mapping Workbench Reference Guide

Generating Data from Database Tables

Figure 3-12 Generate Enterprise Java Beans

Generate Enterprise Java Beans

Package Mame: |
[T Generate Local Interfaces

[Generate Remote Interfaces

QK | Cancel |

4. Enter a package name, select any persistence type options, and click on OK.

Note: The Generate Local/Remote Interfaces options appear for
2.0 CMP and BMP projects only.

5. If the table contains foreign key fields that may represent relationship
mappings, the Choose Relationships To Generate window appears. Select a
potential relationship and click on the 1:1 Mapping [+] or 1:M Mapping
button.

You can also specify if the relationships are bi-directional.
6. Repeat step 5 for all appropriate sets of tables.

7. Click Create to generate the relationship mappings (or Skip to generate the EJB
descriptors without creating these relationships.).

The system creates the remote primary key, home, and bean classes for each bean
and adds this information to the project. The newly created descriptor(s) appear in
the Project Tree pane of the Mapping Workbench. Use the EJB Info tab to modify
the EJB information.

Understanding Databases 3-17

Generating Data from Database Tables

3-18 Oracle9iAS TopLink Mapping Workbench Reference Guide

4

Understanding Descriptors

TopLink uses descriptors to store the information that describes how an instance of a
particular class can be represented in a relational database. Most descriptor
information can be defined by the Mapping Workbench and read from a project file
to be registered with a TopLink Mapping Workbench session.

For complete information on the Oracle 9iAS TopLink API, refer to the online API
guide installed in the default TopLink directory.

Note: In this document, descriptors refers to TopLink descriptors;
deployment descriptors refers to EJB deployment descriptors.

Working with Descriptors

A descriptor stores all of the information describing how an instance of a particular
class can be represented in a relational database. The Mapping Workbench reads a
project .mwp file to load all of a project’s information (including descriptor
information).

You may need to amend a descriptor (for example, to specify a property not
supported by the Mapping Workbench) after reading a project file (see "Amending
Descriptors After Loading" on page 4-18). However, do not modify any descriptors
after registering them with the session.

TopLink descriptors contain the following information:

= The persistent Java class it describes and the corresponding database table(s) for
storing instances of that class

= A collection of mappings, which describe how the attributes and relationships
for that class are stored in the database

Understanding Descriptors 4-1

Working with Descriptors

s The primary key information of the table(s)
= Alist of query keys (or aliases) for field names
= Information for sequence numbers

= A set of optional properties for tailoring the behavior of the descriptor,
including support for identity maps, optimistic locking, the Event Manager, and
the Query Manager

= Caching refresh options

Understanding Persistent Classes

Any class that registers a descriptor with a TopLink Mapping Workbench database
session is called a persistent class. TopLink does not require that persistent classes
provide public accessor methods for any private or protected attributes stored in the
database.

See Appendix A, "Object Model Requirements” for more information on persistent
classes object model requirements.

Specifying Descriptor Types

TopLink descriptors can be a class descriptor, an aggregate descriptor, or an EJB
descriptor. After creating a descriptor, use this procedure to change the descriptor

type.

Note: An EJB descriptor cannot be an aggregate.

To specify a descriptor’s type:
1. Choose the descriptor in the Project Tree pane.

2. Click on the appropriate descriptor icon (Class [i£], Aggregate [22], or EJB [&])
in the mapping toolbar.

You can also specify descriptor type by choosing the descriptor and selecting
Selected > Descriptor Type > specific descriptor type from the menu or by
right-clicking on the descriptor in the Project Tree pane and selecting
Descriptor Type > specific descriptor type from the pop-up menu.

4-2 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Descriptors

Note: E]B 2.0 descriptors are created only by reading the
ejb-jar.xml file. See "Mapping EJB 2.0 Entities" on page 2-6 for more
information.

When changing a descriptor’s type, the Mapping Workbench will add or remove
property tabs, as needed.

= Converting a class or EJB descriptor to an aggregate descriptor removes the
Descriptor Info and Queries tabs. Some advanced properties are not available
for aggregate descriptors and will be removed from the Properties pane.

= Converting an aggregate descriptor to a class descriptor adds the Descriptor
Info and Queries tabs.

Mapping Descriptors

Descriptors define mappings between classes and tables. To display the attributes in
a specific class, expand the descriptor item in the Project Tree pane.

Use the mapping toolbar to choose a mapping type for each attribute.

To map a descriptor:

1. Choose a descriptor in the Project Tree pane. Its properties appear in the
Properties pane.

2. On the Descriptor Info tab, associate the descriptor with a database table (see
"Setting Descriptor Information" on page 4-5).

3. Inthe Project Tree pane, expand the descriptor to display its attributes.

4. Select an attribute and click on the appropriate mapping button in the Mapping
toolbar.

Continue with "Working with Mappings" on page 4-60 to modify the mapping.

Automapping Descriptors

The Mapping Workbench can automatically map class attributes to a similarly
named database field. This Automap function only creates mappings for unmapped
attributes — it does not change previously defined mappings.

You can automap classes for an entire project or for specific tables.

Understanding Descriptors 4-3

Working with Descriptor Properties

Note: You must associate a descriptor with a database table before
using the Automap function. See "Setting Descriptor Information"
on page 4-5.

To automap attributes:

To automap all descriptors in a project, right-click on the project icon in the Project
Tree pane and select Automap from the pop-up menu or select Selected >
Automap from the menu.

or

To automap a specific descriptor or attribute select the descriptor/attribute(s).
Right-click and select Automap from the pop-up menu or select Selected >
Automap from the menu.

Generating Java Code for Descriptors

Use this procedure to generate the Java class code for the selected descriptor or
package.

To generate Java code:

1. Right-click on the descriptor or package and select Generate Code from the
pop-up menu. The Choose a Directory dialog box appears.

You can also generate Java code by selecting Selected > Generate Code from
the menu.

2. Browse to the directory in which to save the Java code and click on Save.
TopLink creates the <DescriptorName>. java file in the specified directory.

Working with Descriptor Properties

Each descriptor in the Mapping Workbench contains tabs and specific properties. By
default, descriptors contain the following properties:

= Descriptor Info
s Class Info
s Query Keys

s Queries

4-4 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Descriptor Properties

= EJB Info (for EJB descriptors only)

Use the Set Advanced Properties function (see "Working with Advanced
Properties" on page 4-18) to specify additional properties for each descriptor.

Setting Descriptor Information

Use the Descriptor Info tab to map a descriptor to a specific table in the database,
define primary key(s), specify sequencing information, and set caching options.

To map a descriptor to a table:

1. Choose a descriptor in the Project Tree pane. Its properties appear in the

Properties pane.

2. Click on the Descriptor Info tab.

Figure 4-1 Descriptor Info Tab

£8 Descriptor Info

Associated Table:| ﬂ

Primary Keys:

[~ Use Seguencing

Name: |

Tahle: | ﬂ
Field: | =
[~ Read Only

[~ Conform Results in Unitof Wark

Refreshing Cache
" Default

" Always Refresh
[~ Disable Cache Hits

" Only Refresh If Newer Varsion

3. Use this table to enter data in each field:

Understanding Descriptors 4-5

Working with Descriptor Properties

Field Description

Associated Table Use the drop-down list to select a database table for the
descriptor.

Primary Keys Specify the primary key(s) for the table.

Use Sequencing Specify if this descriptor uses sequencing. If selected, specify the

Name, Table, and Field for sequencing. See "Working with
Sequencing" on page 4-27 for more information.

Read Only Specify if this descriptor is read-only.

Conform Results in Unit Specify to use the conformResultsInUnitOfWork() method
of Work for any read object or read all query.

Refer to the Oracle 9iAS TopLink: Foundation Library Guide for
more information.

Refreshing Cache
Default Use the project’s default caching options.
Always Refresh Refreshes the objects in the cache on all queries.

Note: Using this property may impact performance.
Disable Cache Hits Disables the cache hits on primary key read object queries.

Only Refresh Refreshes the cache only if the object in the database is newer

if Newer than the object in the cache (as determined by the Optimistic
Locking field). See "Working with Optimistic Locking" on
page 4-47 for more information.

Note: Use the caching options to specify how descriptors refresh
the objects in the cache during queries. This ensures that queries
against the session will refresh the objects from the row data.

Setting Class Information

After generating classes and descriptors, use the Class tab to:
= Rename classes, attributes, and methods
= Add, delete, or edit the generated attributes and methods

= Generate Java source to create new classes

4-6 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Descriptor Properties

To specify class info:

1. Choose a descriptor in the Project Tree pane. Its properties appear in the
Properties pane.

2. C(Click on the Class info tab in the Properties pane.
3. Select the appropriate tab:

= Class Tab

= Attributes Tab

= Methods Tab

Class Tab

To add a new interface to implement, click on Add.
To delete an interface, select the interface and click on Remove.

To generate source code for the descriptor, click on Generate Source Code.

Figure 4-2 Class Info Tab

I Class info l
Y Class | ¢ tributes| @ Methods|

Mame: |NewCIaSS

Superclass: hava.lang.Object I:l

Access modifiers Interfaces implemented

& Public

" (Defaulfy

Other madifiers
[~ Abstract
[Final

Generate Source Code Add Remaove

Use this table to enter data in each field:

Understanding Descriptors 4-7

Working with Descriptor Properties

Field Description

Name Name of the class. This field is for display only.

Superclass Click on the Browse button and select a class and package.

Access Modifiers Specify if the class is accessible publicly or only within its own
package. Non-public classes are not accessible to the Mapping
Workbench.

Other Modifiers Specify if the class is Final and /or Abstract. Final classes are not
included in the superclass selection lists for other classes to
extend.

Interfaces Implemented To add an interface, click on Add and select the interface and
package.

Attributes Tab
To add a new attribute, click on Add.

To delete an existing attribute, select the attribute and click on Remove.

To generate a get or set method for an attribute, click on Generate Get/Set
Methods.

4-8 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Descriptor Properties

Figure 4-3 Attributes Tab

¢ employeelD
§ firstMame
¢ homeFhone
@ lastMame

Add Remove

‘T Class info l
T Class ¢ Aftributes l ¢ Methods]

Propetties

Name: [address

Type: String {java.lang)
Iterm type:
Array dimensionality: 0

Access modifiers Other madifiers
&~ Public [Final

" Protected [Static

" Private [~ Transient
" (Default) [wolatile

Generate getiset Methods

Select an attribute then use this table to enter data in each field.

Field Description

Name Name of the attribute.

Type Use the browse button to select a class and package for the
attribute.

Item Type Specify the item’s type on the collection. This field applies only if

Array Dimensionality

Access Modifiers

Other Modifiers

Type is an instance of java.util.

Specify the length of an array. This field applies only if Type is
an array.

Specify how the attribute is accessible:

= Public

= Protected - Public only within its own package

= Private — Public only for subclasses

= Default - Public only within its own package

Specify if the attribute is Final, Static, Transient, or Volatile.

Note: Selecting some modifiers may disable others.

Understanding Descriptors 4-9

Working with Descriptor Properties

Methods Tab

To add a new method, click on Add.

To delete an existing me

thod, select the method and click on Remove.

Figure 4-4 Methods Tab

¢ oetaddress

¢ oetEmployesl D)
|| ¢ getFirsthamen

¢ oetHomePhone()
¢ oetlastMame(

¢ setaddressijavala

setEmploye
& sefFirstNamedava.

@ setlastNamedjava.

@ setHomePhonejava

N I I

T Class info l
o C|assl ¢ Attributes ¢ Methodsl

Propetties

Narme: [setEmployeeID

Return type: }mid

Array dimensionality:

nd Access modifiers Other modifiers
[~ Static

[Native

+ Public [Abstract

[Final

I3
" Protected

la " Private [Synchronized
" {Defaulty
Parameters
Type Dirnensionality | Mame
=@ Integer java.lang) |0 nrojld
=#|_Bindinglteratorimpe 0 arg1
4 |
Add... | Remove |

User-interface components called out in Figure 4-4:

1. Available methods

2.

Properties of selected method

Select a method then use this table to enter data in each field:

Field Description
Name Name of the method.
Return Type Use the browse button and select a class and package.

Array Dimensionality

Specify the length of the array (Return Type).

4-10 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Descriptor Properties

Field Description
Access Modifier Specify how the attribute is accessible:
n Public

= Protected - Public only within its own package
= Private — Public only for subclasses

= Default - Public only within its own package

Other Modifier Specify if the attribute is Abstract, Final, Static, Native, or
Synchronized.

Note: Selecting some modifiers may disable others.
Parameters Click on Add to include parameter(s) for the method.

Note: The parameters are loaded in the order listed.

Query Keys

The Mapping Workbench uses query keys as an alias for a field name. With an alias,
TopLink expressions can use the Java names instead of DBMS-specific field names.

Use the Query Keys tab to create user-defined queries or to work with
automatically generated query keys.

Specifying Query Keys
Use the Query keys tab to specify a query key for a descriptor.
To specify query keys:

1. Choose a descriptor in the Project Tree pane. Its properties appear in the
Properties pane.

2. Click on the Query Keys tab in the Properties pane.

Understanding Descriptors 4-11

Working with Descriptor Properties

Figure 4-5 Query Keys Tab

2 Query Keys]
Query Keys Selected Gluery Key
o__ Narme:
e [o]
Fet []

Add Query Key
9 Marne: |

Table:
Field:

New Query Key... | Add ta List |

Remove Cancel Add

User-interface components called out in Figure 4-5:
1. Defined query keys
2. New query key information

3. Click on New Query Key to create a new query.

4. Use this table to enter data in each field:

Field Description

Name Name of the query.

Table Database table used by the query.
Field Field in the table used by the query.

Specifying Queries

Use the Queries tab to specify EJBQL and SQL queries and finders to use for

database access. The Queries tab contains two additional tabs: Named Queries and
Custom SQL.

For 2.0 CMP projects, the ejb-jar.xml files stores query lists. You can define the
queries in the file and then read them into the Mapping Workbench, or define them
on the Queries tab and write them to the file. See "Writing to the ejb-jar.xml File" on
page 2-16 for more information.

4-12 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Descriptor Properties

To create queries:
1. In the Project Tree pane, select a descriptor.

2. Click on the Queries tab in the Properties pane.
3. Select the appropriate tab:
s SQL Queries

s Named Queries

SQL Queries

Use this procedure to create custom SQL queries in the Mapping Workbench. For
2.0 CMP projects, the SQL is not written to the ejb-jar.xml file.

To create custom SQL queries:
1. In the Project Tree pane, select a descriptor.

2. Click on the Queries tab in the Properties pane.
3. Click on the Custom SQL tab.

Figure 4-6 Queries Custom SQL Tab

=L Queries
Q) Marned Queries \#| Custam SQLI

! Inseﬁ‘ 1 Update] x? Deletel +.! Read Ohject| T4 Read Al

4. Click on the appropriate SQL function tab (Insert, Update, etc.) and type the
SQL code to execute.

Understanding Descriptors 4-13

Working with Descriptor Properties

Note: The Mapping Workbench does not validate the SQL code
that you enter.

Named Queries

Use named queries to specify SQL or EJBQL queries to access the database. EJBQL
is a declarative language used to present queries from an object-model perspective.
Refer to the EJB specification for detailed information.

To create a named query:
1. In the Project Tree pane, select a descriptor.

2. C(Click on the Queries tab in the Properties pane.

3. Click on the Named Queries tab in the Queries tab.

Figure 4-7 Named Queries Tab

=L Queries ‘
), Named Queries "' Custam SQL]
Descriptor Alias: |
Propetties
Type: | ﬂ
Query Format:
Parameters‘ Optignsl
Add... | Remaove |
Add... | Remaove |

4. Click on Add to create a new named query. The Add Queries window appears.

5. Select the query type, enter the query name, and press Enter. The Mapping
Workbench adds the query to the Named Query tab.

6. Use this table to enter data in each field on the tab.

4-14 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Descriptor Properties

Field

Description

Descriptor Alias

Name

Type
Query Format

Query String

Alias for the descriptor class. This field applies for EJB finders
only.

Name of the query. The prefix of the query name specifies the
query type:

= find-EJB2.0

s ejbSelect - EJB Select

TopLink Reserved Finder names cannot be changed.

Use the drop-down list to specify if this is a ReadObject or
ReadAll query.

Specify if this is an EJB QL or SQL query. For TopLink Reserved
Finders, the query will be generated at runtime.

Enter the query string.

Note: The mapping workbench does not validate the query
string.

7. To add additional parameters to the finder, click on the Parameters tab and click

Add.

Note:

You can only add parameters for non-EJB descriptors.

Figure 4-8 Named Queries Parameters Tab

Parameters‘ Optignsl

Type
@
@

4

Mame

| 2]

Add... | Remove|

8. Select a class and package to add to this finder.

9. Click on the Options tab to add additional options.

Understanding Descriptors 4-15

Working with Descriptor Properties

Figure 4-9 Named Queries Options Tab

Pararnetars OmiUnS\

[Cache Statement [~ Bind Parameters
[V Maintain Cache [Refresh Results
Cache Usage: |Check Cache By ExactPrimar...j
Pessimistic Locking: |Dgn"[Acquire Locks j

Note: If the options on this panel are disabled, the Mapping
Workbench uses the options specified in the parent.

10. Use this table to enter data in each field:

Field Description

Cache Statement Specify the cacheStatement () method for the query.

Bind Parameters Specify the bindAllParameters () method for the query.

Maintain Cache Specify maintainCache () for the query.

Refresh Results Specify the refreshIdentityMapResults () method to
refresh the attributes of the object resulting from the query.

Cache Usage Select how the query checks the cache before accessing the
database.

Pessimistic Locking Select how the pessimistic locking policy acquires locks.

Note: These options are not available for £indOneByQuery and
findManyByQuery.

Refer to the Oracle 9iAS TopLink Foundation Library Guide for additional information.

Displaying EJB descriptor Information

Use the EJB Info tab to display the EJB descriptor’s information (from the
ejb-jar.xmnl file). This tab is available only for EJB descriptors.

4-16 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Descriptor Properties

To display EJB descriptor information:
1. In the Project Tree pane, select an EJB descriptor.

2. Click on the EJB Info tab in the Properties pane.

Figure 4-10 EJB Info Tab

@ EjbInfo ‘

EJB Mame: |

Primary Key Class:

Local Interface:

Remote Interface:

Lol bl L

|
|
Local Home Interface: |
|
|

Remaote Home Interface:

3. Use this table to identify each field:

Field Description

EJB Name Base name. When using EJB 2.0, this is specified in the
<ejb-name> element of the ejb-jar .xml file.

Primary Key Class Primary key. When using EJB 2.0, this is specified in the
<prim-key-class> element of the ejb-jar.xml file.

Local Interface Local interface. When using EJB 2.0, this is specified in the
<local> element of the ejb-jar.xml file.

Local Home Interface Local home interface. When using EJB 2.0, this is specified in the
<local-home> element of the ejb-jar .xml file.

Remote Interface Remote interface. When using EJB 2.0, this is specified in the
<remote> element of the ejb-jar.xml file.

Remote Home Interface Remote interface. When using EJB 2.0, this is specified in the
<home> element of the ejb-jar.xml file.

Note: When using E]B 2.0 persistence, these fields are for display
only.

Understanding Descriptors 4-17

Working with Advanced Properties

Working with Advanced Properties
You can also specify the following advanced properties for each descriptor:
= Amending Descriptors After Loading
= Specifying Events
= Specifying Inheritance
= Specifying Optimistic Locking
= Specifying Multi-table Info
= Setting the Copy Policy
= Specifying Identity Mapping
= Setting Instantiation Policy

= Specifying an Interface Alias

To display advanced properties:

Right-click on a descriptor in the Project Tree pane and select Set Advanced
Properties > specific property from the pop-up menu or select Selected > Set
Advanced Properties > specific property from the menu.

Amending Descriptors After Loading

Some TopLink features cannot be configured from the workbench. To use these
features, you must write a Java method to amend the descriptor after it is loaded as
part of the project. This method takes the descriptor as a single parameter. You can
then send messages to the descriptor or any of its specific mappings to configure
advanced features.

To a specify a method to execute after loading the descriptor:

1. Choose a descriptor in the Project Tree pane. Its properties appear in the
Properties pane.

If the After load advanced property is not visible for the descriptor, right-click
on the descriptor and choose Set Advanced Properties > After Load from
pop-up menu or from the Selected menu.

2. Click on the After load tab in the Properties pane.

4-18 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Advanced Properties

Figure 4-11 After Load Tab

8 After Load

[After loading the descriptor, execute the following static method

Class: | I:l
2

Static method: |<n0ne selected=

3. Use this table to enter data in each field:

Field Description

After Loading... Specify if the Mapping Workbench should execute a method
after loading the descriptor.

Class Click on the browse button and select the class of the method to
execute.

Static Method Use the Static Method drop-down list to select the method to
execute.

Specifying Events
Use the Events tab to specify a descriptor’s method to execute when certain events
occur.

To specify an event method:

1.

Choose a descriptor in the Project Tree pane. Its properties appear in the
Properties pane.

If the Events advanced property is not visible for the descriptor, right-click on
the descriptor and choose Set Advanced Properties > Events from pop-up
menu or from the Selected menu.

Click on the Event tab in the Properties pane.

Understanding Descriptors 4-19

Working with Advanced Properties

Figure 4-12 Events Tab

v Events I

Events chaice: | Postx methods ﬂ

Build: =none selected= J
Clane: |=none selectad= J
Merge: |=none selected= J
Refresh: | =none selected= J

3. Use this table to enter data in each field:

Field Description
Events Choice Select an event for this descriptor.
Methods Select a method for each event.

Note: The methods available will vary, depending on the
selected event.

See "Supported Events" on page 4-57 for a complete list of events and methods.

Specifying Identity Mapping

4-20

TopLink Mapping Workbench specifies the default identity mapping for each
descriptor in the project options (see "Working with Default Properties" on
page 2-7). Use the Identity tab to specify identity map and existence checking
information for a descriptor.

Note: Changing the project’s default identity policy does not
affect descriptors that already exist in the project.

To specify an identity map for a descriptor:
1. In the Project Tree pane, select a descriptor.

Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Advanced Properties

If the Identity advanced property is not visible for the descriptor, right-click on
the descriptor and choose Set Advanced Properties > Identity from the pop-up
menu or from the Selected menu.

2. Click on the Identity tab.

Figure 4-13 Identity Tab

oza gty]

Identity Map

Type: |SoﬂCacheWeakldentinap ﬂ

Size: 100 3

Existence Checking
* Check cache

™ Check database
" Assume existence

" Assume non-existence

3. Use this table to enter data in each field:

Field Description

Type Use the Type drop-down list to select the identity map (see
Table 4-2 for details).

Size Size of the identity map.

Existence Checking Specify the method of existence checking.

Specifying Inheritance

Use the Inheritance tab to specify the descriptor’s inheritance properties as either a
root or subclass (branch class or leaf class).

Note: When using an aggregate descriptor in an inheritance, all
the descriptors in the inheritance tree must be aggregates.
Aggregate and Class descriptors cannot exist in the same
inheritance tree.

Understanding Descriptors 4-21

Working with Advanced Properties

Creating a Root Class
Use this procedure to create a root class.

To specify a root class:
1. In the Project Tree pane, choose the descriptor you wish to specify as the root.

2. Select the Inheritance tab in the Property pane.

If the Inheritance tab is not visible, right-click on the descriptor and choose Set
Advanced Properties > Inheritance.

Figure 4-14 Creating a Root Class

f Inheritance

[Read Subclasses on Query
Read Subclagses View (Optianal) | =

[|s Root Descriptor

" Usge Class Exraction Method

& Use Class Indicator Field

|<n0ne selected= j
™ Use Class Mame as Indicator

+ Use Class Indicator Dictionary

Indicatar Type: [java.lang String [
Include| Class Indicator Yalue
0l {8 SmallProject|s =
1|V & LargeProject|L j
Parent Descriptor [<none selected= |

3. To instantiate the descriptor’s subclasses when queried, enable the Read
Subclasses on Query checkbox. Select a database view to use for reading
subclasses if desired.

Note: The view can be used for root or branch classes that have
subclasses spanning multiple tables. The view must outer-join or
union all of the subclass tables.

4-22 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Advanced Properties

Enable the Is Root Descriptor checkbox.

You may use a class extraction method or a class indicator field to specify which
class to instantiate on querying. Choose the option and select the appropriate
method or field.

If you use a class indicator field, you may use the class name as the indicator, or
you may use a class indicator dictionary. Choose which option you wish to use
and specify the necessary information.

If you choose to use an indicator dictionary, choose the indicator type and set
the indicator values for each subclass.

Note: A list of subclasses and their indicator values appears when
the subclasses have set their parent descriptor. Abstract roots are
not in the list.

If you want instances of the subclasses to be instantiated when the root class is
queried, enable the Read Subclasses on Query checkbox. Do not enable this
checkbox for leaf classes.

Creating Branch and Leaf Classes

After setting up the root class for inheritance, you must also specify properties for
branch and leaf classes.

To create branch and leaf classes:

1.

In the Project Tree pane, choose the descriptor for which to specify inheritance
information.

If the Inheritance advanced property has not been added to the descriptor,
right-click on the descriptor and choose Set Advanced Properties >
Inheritance.

Select the Inheritance tab of the properties window.

Ensure that Is Root Descriptor is not selected. The Parent Descriptor
drop-down list is now enabled and the class indicator information is disabled.

Understanding Descriptors 4-23

Working with Advanced Properties

Figure 4-15 Creating Branch and Leaf Classes

% Inheritance

[v Read Subclasses on Query

Read Subclasses View (Optional [E PROJECT -

[Is Root Descriptor

&
| i
&
| I
&
| [
Parent Descriptar |4 Praject =]

5. Select the parent descriptor from the Parent Descriptor drop-down list. This
may be the root class or a branch class.

6. Enable the Read Subclasses on Query option if this is a branch class and you
want its subclasses to be instantiated when it is queried. Choose a database
view for reading subclasses, if desired. Do not enable this checkbox for leaf
classes.

Specifying Optimistic Locking

Use the Locking tab to specify if the descriptor uses optimistic locking.

To specify a descriptor’s locking policy:
1. In the Project Tree pane, select a descriptor.

If the Locking advanced property is not visible for the descriptor, right-click on
the descriptor and choose Set Advanced Properties > Locking from the pop-up
menu or from the Selected menu.

2. Click on the Locking tab.

4-24 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Advanced Properties

Figure 4-16 Locking Tab

gl Lockingl
Locking
&+ Qptimistic Locking
Field: =none selected= ﬂ
" ‘ersion Locking " Timestamp Lacking
[v StoreVersion in Cache

3. Use this table to enter data in each field:

Field Description

Optimistic Locking Specify if the descriptor uses optimistic locking.

Field Use the Field drop-down list to select the correct field.
Version Locking Specify the descriptor uses version locking.
Timestamp Locking Specify the descriptor uses timestamp locking.

Store Version in Cache Specify if you want to store the version information in the cache.

Specifying an Interface Alias

Use the Interface Alias tab to specify a descriptor’s alias. Each descriptor may have
one interface alias. Use the interface in queries and relationship mappings.

Note: If you use an interface alias, do not associate an interface
descriptor with the interface.

To specify an interface alias:

1.

In the Project Tree pane, select a descriptor.

If the Interface Alias advanced property is not visible for the descriptor,
right-click on the descriptor and choose Set Advanced Properties > Interface
Alias from pop-up menu or from the Selected menu.

Click on the Interface Alias tab.

Understanding Descriptors 4-25

Working with Primary Keys

Figure 4-17 Interface Alias Tab

up Interface Alias

Aclass descriptor may have one interface alias associated with it.
Thig intetface can then be used in gueries and relationship
mappings. Ifyou use this mechanism, the interface should not
have an interface descriptor associated with it

Interface alias: |k SmallProject

3. Click on the browse button and select an interface.

Working with Primary Keys

A primary key is a column (or a combination of columns) that contains a unique
identifier for every record in the table. In the Mapping Workbench, every table that
stores persistent objects must have a primary key. Tables that require multiple
columns to create an identifier use a composite primary key. Setting the primary key
for a table also sets the primary key for the descriptor that uses the table.

The Mapping Workbench implements primary keys using sequence numbers (see
"Working with Sequencing" on page 4-27).

Each descriptor must provide mappings for its primary key. These mappings may
be direct, transformation or one-to-one. The Mapping Workbench does not require
you to define a primary key constraint in the database — only that the fields
specified for the primary key are unique.

Note: Primary keys for classes in an inheritance hierarchy or for
descriptors that map to multiple tables have special requirements.
Refer to"Working with Inheritance" on page 4-30 and "Working
with Multiple Tables" on page 4-40 for more information.

Setting a Primary Key for Descriptors

Use this procedure to set a primary key for a descriptor.

4-26 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Sequencing

To set a primary key:

1. Choose a descriptor in the Project Tree pane. Its properties appear in the

Properties pane.

2. Click on the Descriptor Info tab.

Figure 4-18 Primary Keys

£8 Descriptor Info

Associated Table| B ADDRESS]
Primary Keys:

¥ &= 1D -
[| STREET

= iy

[T COUNTRY v
S

[Use Seguencing

MName: |

Table: | =
Field: | =]
[Read Only

[Conform Results in Unitof Wark
Refreshing Cache

[Always Refresh
[~ Disable Cache Hits

[Only Refresh If Mewer Version

3. Select the field(s) to set as the primary key.

Working with Sequencing

Sequence numbers are artificial keys that uniquely identify the records in a table.
When you define a sequence number field for a descriptor, the Mapping Workbench

automatically generates a new sequence number every time you insert a new record
into the table.

Use the project’s Sequencing tab or the Sequencing area of a descriptor’s
Descriptor Info tab to specify sequencing information

Understanding Descriptors 4-27

Working with Sequencing

Database tables often use a sequence number as the primary key. The Mapping
Workbench can use the database’s native support or a sequence table to maintain
sequence numbers.

Tip: Oracle recommends using sequence numbers for primary
keys since they are single, guaranteed, unique values.

Other data values may require composite primary keys to make up a unique value,
which is less optimal. Additionally, non-artificial values may need to change, and
this is not allowed for primary keys.

Using Sequence Numbers with Entity Beans

When implementing sequencing for Entity Beans, you must provide create ()
methods and the corresponding ejbCreate () and ejbPostCreate () methods for
your bean home and bean class.

TopLink creates the primary key value when you first insert the bean in the
database. The key value is not passed as a parameter to the create () methods
because they do not set the primary key value (the key is generated).

Note: Be careful when using transactions with these create
methods. If you create an Entity Bean within a transaction and you
use native sequencing in Sybase, SQL Server or Informix, the bean’s
key is not initialized until the transaction commits and bean is
persisted to the database for the first time.

Using Native Sequencing

Oracle, Sybase, SQL Server and Informix databases support native sequencing in
which the DBMS generates the sequence numbers. However, the Mapping
Workbench must still tell the DBMS to assign sequence number values.

= For Oracle databases create a SEQUENCE object in the database.
= For Sybase and SQL Server databases set the primary key field to IDENTITY.
= For Informix databases set the primary key field to use SERIAL.

4-28 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Sequencing

Tip: If you use native sequencing in these databases, the Mapping
Workbench cannot support pre-allocation. Oracle recommends
using the sequence table instead. Oracle databases support
pre-allocation, but only if the sequence increment matches the
pre-allocation size. See "Pre-allocating Sequence Numbers" on
page 4-29 for more information.

Using Sequence Tables

If your database does not use native sequencing, you must manually create the
sequence table (named SEQUENCE). Use this table to store each table, as illustrated

below:

Field name Field format Description

SEQ NAME CHAR Name of the sequence number
SEQ_COUNT NUMERIC Current value

After creating the table, you must initialize the table within the application. The
value of the SEQ_COUNT field for each sequence should be zero (0) as in the
following table.

SEQ_NAME SEQ_COUNT
EMP_SEQ 0
PROJ_SEQ 0

Pre-allocating Sequence Numbers

To increase the speed of database inserts, obtain a block of sequence numbers (by
setting an allocation size) instead of executing a corresponding SELECT statement to
obtain the newly assigned sequence number each time you create an object.

TopLink uses a default pre-allocation size of 50 when using a sequence table and 1
when using native sequencing.

= When using native sequencing in Sybase, SQL Server or Informix databases,
pre-allocation cannot be set — it is always 1.

= When using native sequencing, you must set the pre-allocation size explicitly in
the Mapping Workbench.

Understanding Descriptors 4-29

Working with Inheritance

= When using native sequencing in an Oracle database, you can use
pre-allocation only if an INCREMENT is set on the Oracle Sequence object (not the
CACHE option). This increment must match the pre-allocation size specified in
the Mapping Workbench. If the increment is set incorrectly, invalid and
negative sequence numbers could be generated. The CACHE option specifies
how many sequences are pre-allocated on the database server, while the
INCREMENT specifies the number that can be pre-allocated to the database client.

Tip: Oracle recommends using sequence pre-allocation because of
its performance and concurrency benefits.

Creating the Sequence Table on the Database

Normally, the database administrator defines the sequence table or sequencing
object. However, you can use TopLink’s schema manager to define the sequence
numbers using:

SchemaManager schemaManager = new SchemaManager (session) ;
schemaManager .createSequences () ;

You should only execute this command once. The SchemaManager creates a
sequence entry for each registered descriptor.

Refer to the TopLink: Foundation Library Guide for more information on using the
schema manager to create number information in the database.

Working with Inheritance

Inheritance describes how a child class inherits the characteristics of its parent class.
TopLink provides multiple methods to preserve the inheritance relationships. You
can override mappings that have been specified in a superclass or map attributes
that have not been mapped at all in the superclass.

Note: When using an aggregate descriptor in an inheritance, all
the descriptors in the inheritance tree must be aggregates.
Aggregate and Class descriptors cannot exist in the same
inheritance tree.

4-30 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Inheritance

Using Inheritance with EJBs

Although inheritance is a standard tool in object-oriented modeling, the current EJB
specification contains only general information regarding inheritance. You should
fully understand the current EJB specification before implementing inheritance.

Caution: Use caution when using inheritance. The next EJB
specification may dictate inheritance guidelines that are not
supported by the various servers.

Mapping Inherited Attributes in One Descriptor

If you are mapping only one class in an inheritance hierarchy, you may map
attributes that it inherits from any of its superclasses.

To map attributes in one descriptor:
1. In the Project Tree pane, choose a descriptor.

2. Right-click on the descriptor and select Map Inherited Attributes > specific
location from the pop-up menu. You can also map the attributes by choosing
Selected > Map Inherited Attributes from the menu.

You can map inherited attributes to:
= Superclass
= Root minus one
= Selected class
3. Map the now visible attributes as though they belonged to this descriptor.

You may also do this if you have a common superclass that stores little or no
persistent data. For example, if you were mapping subclasses of
java.rmi.RemoteObject, each subclass could be mapped independently.

Supporting Inheritance Using One Table

You can store classes with multiple levels of inheritance in a single table to optimize
database access speeds.

Example 4-1 Vehicle Object Model

The following diagram illustrates the vehicle object model.

Understanding Descriptors 4-31

Working with Inheritance

Figure 4-19 Supporting Inheritance Using One Table

Java Inheritance Hierarchy:

Root | vehicle |

Number id:
Iteger passengerCapacily,

Branch ['c o100 venicle |

Integer fuelCapaciy;
String fuelfype;

Mon-Fueled Yehicle

Leaf| car | | Bicycle |

String descrintion; String description;

The entire inheritance hierarchy can share the same table, as in Figure 4-20. The
FueledVehicle and NonFueledvVehicle subclasses can share the same table even
though Fueledvehicle has some attributes that NonFueledvehicle does not. The
NonFueledVehicle instances waste database resources because the database must
still allocate space for the unused portion of its row. However, this approach saves
on accessing time because there is no need to join to another table to get the

additional Fueledvehicle information.

4-32 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Inheritance

Figure 4-20 Inheritance Using a Superclass Table with Optional Fields

VEHICLE tahle o
% % oy &
~y 2 L7
ngsy ¢ \,9?‘ < Qéa D&/
™ @ e @7 L
Q@ ¥ ﬁgj & «Q\?' v <®
1 1 B Mountain Bike
213 N
3| 8 F | 20 Diesel
4 5 C 15 Unleaded Toyota Camry

“Class indicator field:
VW ="ehicle
F = Fueled Yehicle
N = Mon-Fueled “ehicle
C= Car
B = Bicycle

Supporting Inheritance Using Multiple Tables

For subclasses that require additional attributes, you can use multiple tables instead
of a single superclass table. This optimizes storage space because there are no
unused fields in the database. However, this may affect performance because
TopLink must read from more than one table before it can instantiate the object.
TopLink first looks at the class indicator field to determine the class of object to
create, then uses the descriptor for that class to read from the subclass tables.

Example 4-2 Inheritance Example

Figure 4-21 illustrates the TopLink implementation of the FUELEDVHCL, CAR, and
BICYCLE tables. All objects are stored in the VEHICLE table. Fueledvehicle, Car,
and Bicycle information is also stored in the secondary table.

Understanding Descriptors 4-33

Working with Inheritance

Figure 4-21 Inheritance Using Separate Tables for Each Subclass

£
5
R ¢ ¥
225 .
R BICYCLE (subclass table) (gc?"\
1[1]e % ¢ ¥
213 |V 2 KS
ITETF 4 |T0y0ta Camry |
415 |C CAR (subclass table)

{4 |15 [Unleaded

FUELEDVHCL (subclass table)

VEHICLE table

Note: Because NonFueledvehicle does not hold any attributes or
relationships, it does not need a secondary table. For performance
considerations, this design is inefficient because it requires multiple
table fetching.

Finding Subclasses
An inheritance mapping for a root class must be able to locate its subclasses by
using one of the following methods:
» Providing a class indicator field, which contains a key corresponding to its
subclass
s Including a class extraction method, which can be implemented in Java code; this
is simply a method that returns a java.lang.Class object

= Using class names directly in the class indicator field

Providing a Class Indicator Field

Use a class indicator field in the table of the root class table to indicate which subclass
should be instantiated. The indicator field should not have an associated direct
mapping unless it is set to read-only.

Note: If the indicator field is part of the primary key, define a
write-only transformation mapping for the indicator field. Refer to
"Working with Transformation Mappings" on page 5-9 for more
information.

4-34 Oracle9/AS TopLink Mapping Workbench Reference Guide

Working with Inheritance

You can use strings or numbers as values in the class indicator field. The root class
descriptor must specify how the value in the class indicator field translates into the
class to be instantiated. The following table illustrates the class indicator mapping
from the Vehicle class containing four entries.

Table 4-1 Class Indicator Mapping from the Vehicle Class

Key Value

F FueledVehicle

N NonFueledVehicle
C Car

B Bicycle

When working with hierarchies more than two levels deep, the class indicator field

and

the class indicator mapping can only be in the root class.

Note: All concrete classes in the hierarchy must have a defined
indicator value.

Understanding Root, Branch, and Leaf Classes in an Inheritance Hierarchy

TopLink allows three types of classes in an inheritance hierarchy:

The root class stores information about all instantiable classes in its subclass
hierarchy. By default, queries performed on the root class return instances of the
root class and its instantiable subclasses. However, the root class can be
configured so queries on it return only instances of itself without instances of its
subclasses. For example, the Vehicle class in Example 4-1, "Vehicle Object
Model" on page 4-31 is a root class.

Branch classes have a persistent superclass and also have subclasses. By default,
queries performed on the branch class return instances of the branch class and
any of its subclasses. However, like the root class, the branch class can be
configured so queries on it return only instances of itself without instances of its
subclasses. For example, the Fueledvehicle class in Example 4-1, "Vehicle
Object Model" is a branch class.

Leaf classes have a persistent superclass in the hierarchy but do not have
subclasses. Queries performed on the leaf class can only return instances of the

Understanding Descriptors 4-35

Working with Interfaces

leaf class. For example, the Car class in Example 4-1, "Vehicle Object Model" is a
leaf class.

Specifying Primary Keys in an Inheritance Hierarchy

TopLink assumes that all of the classes in an inheritance hierarchy have the same
primary key, as set in the root descriptor. Child descriptors associated with tables
that have different primary keys must define the mapping between the root
primary key and the local one.

For more information on primary keys in an inheritance hierarchy, see "Specifying
Multi-table Info" on page 4-41.

Mapping Inherited Attributes in a Subclass

If you are defining the descriptor for a class that inherits attributes from another
class, you can create mappings for those attributes. If you re-map an attribute that
was already mapped in the superclass, the new mapping applies to the subclass
only. Any other subclasses that inherit the attribute are unaffected.

To view and map attributes inherited from a superclass:

1. In the Project Tree pane, right-click a descriptor and choose Map Inherited
Attributes > selected class from the pop-up menu or choose Selected > Map
Inherited Attributes from the menu.

The mappings list now includes all the attributes from the superclass of this
class.

2. Map any desired attributes. See "Working with Mappings" on page 4-60.

If you leave inherited attributes unmapped, TopLink will use the mapping (if
any) from the superclass, if the superclass’s descriptor has been designated as
the parent descriptor.

Working with Interfaces

An interface is a collection of method declarations and constants used by one or
more classes of objects. Domain classes can implement interfaces or can reference
existing interfaces. TopLink supports interfaces in the following methods:

= Ina variable class relationship, a domain object references another domain object
or a collection of objects that implement a specific interface

= Aread query can be issued to query an interface

4-36 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Interfaces

Understanding Interface Descriptors

An interface descriptor is a descriptor whose reference class is an interface. Each
domain class specified in TopLink has a related descriptor. A descriptor is a set of
mappings that describe how an object’s data is represented in a relational database.
It contains mappings from the class instance variable to the table’s fields, as well as
the transformation routines necessary for storing and retrieving attributes. The
descriptor acts as the link between the Java object and its database representation.

An interface is simply a collection of abstract behavior that other classes can use.
There is no representation of interfaces on the relational database; an interface is
purely a Java object concept. Therefore, a descriptor defined for the interfaces does
not map any relational entities on the database.

Note: You cannot create or edit interface descriptors in the
Mapping Workbench.

The components defined in the interface descriptor are:
s TheJava interface it describes

= The parent interface(s) it implements

= Alist of abstract query keys

An interface descriptor does not define any mappings, because there is no concrete
data or table associated with it. A list of abstract query keys is defined so that one
can issue queries on the interfaces. A read query on the interface results in reading
one or more of its implementors.

Example 4-3 Interface Examples

The following illustration shows an interface implemented by two descriptors.

Understanding Descriptors 4-37

Working with Interfaces

Figure 4-22 Classes Implement an Interface

Email
id
address

Contact interface

number
_—

Following is the sample code implementation for the descriptors for Email and
Phone:

Descriptor descriptor = new Descriptor();
descriptor.setJavaInterface(Contact.class);
descriptor.addAbstractQueryKey ("id") ;
return descriptor;

Descriptor descriptor = new Descriptor();
descriptor.setJavaClass (Email.class);
descriptor.addDirectQueryKey("id", "E_ID");
descriptor.getInterfacePolicy () .addParentInterface(Contact.class);
descriptor.setTableName ("INT_EML");
descriptor.setPrimaryKeyFieldName ("E_ID");
descriptor.setSequenceNumberName ("SEQ") ;
descriptor.setSequenceNumberFieldName ("E_ID");
descriptor.addDirectMapping ("emailID", "E_ID");
descriptor.addDirectMapping ("address", "ADDR")
return descriptor;

Descriptor descriptor = new Descriptor();
descriptor.setJavaClass (Phone.class) ;
descriptor.getInterfacePolicy () .addParentInterface(Contact.class);
descriptor.addDirectQueryKey ("id", "P_ID");
descriptor.setTableName ("INT_PHN") ;
descriptor.setPrimaryKeyFieldName ("P_ID");
descriptor.setSequenceNumberName ("SEQ") ;
descriptor.setSequenceNumberFieldName ("P_ID");
descriptor.addDirectMapping ("phoneID", "P_ID");
descriptor.addDirectMapping ("number", "P_NUM")
return descriptor;

i

i

If the Contact interface extended another interface, you would call the following
method to set its parent:

descriptor.getInterfacePolicy () .addParentInterface(Interface.class);

4-38 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Interfaces

Single Implementor Interfaces

Use single implementor interfaces for applications where only the domain objects’
interface is visible. Each domain class has its own unique interface and no other
domain class implements it. The references to other domain objects are also through
interfaces.

In such applications, defining a descriptor for each interface would be expensive
and may be unnecessary. TopLink does not force you to define descriptors for such
interfaces. The descriptors are defined for the domain classes and the parent
interface is set as usual.

During the initializing of a descriptor, the interface is given the descriptor of its
implementor. This process allows queries on both the domain class and its interface.
The only restriction is that each interface should have a unique implementor. In
other words, a descriptor is not needed for an interface unless it has multiple
implementors.

Implementing an Interface

One-to-one mappings that reference interfaces that have multiple implementors are
known as variable one-to-one mappings. For more information, see Chapter 6,
"Understanding Relationship Mappings", and Chapter 4, "Understanding
Descriptors".

Use this procedure to implement an interface.

To configure an interface descriptor
1. In the Project Tree pane, choose an interface.

2. On the Implementors tab in the Properties pane, choose the descriptors that
implement this interface and share at least one common query key.

Understanding Descriptors 4-39

Working with Multiple Tables

Figure 4-23 Implementors Tab

& Implementors

Choose the descriptors that implement this interface and share at least
ONe COmmaon query key.

Implementors Common Guery kKeys

I #8 Email
[1 Phone

The Common Query Keys area displays all of the query keys for the interface’s
implementors.

To specify a class descriptor as a single implementor of an interface:

1. In the Project Tree pane, select the descriptor that will be the sole implementor
of an interface.

2. If the Interface Alias advanced descriptor property is not visible for this
descriptor, select Set Advanced Properties > Interface Alias from the Selected
menu or the pop-up menu to create the Interface Alias page.

3. Select the interface that will serve as an alias for this descriptor on the Interface
Alias page. This interface does not have to have a descriptor in the project, and
in fact, if an associated descriptor exists, it will be removed. Every instance of
the interface will now be treated as an instance of this class as well.

Working with Multiple Tables
Descriptors can use multiple tables in mappings. Use multiple tables when:

= A subclass is involved in inheritance, and its superclass is mapped to one table
while the subclass has additional attributes that are mapped to a second table

= A class is not involved in inheritance and its data is spread out across multiple
tables

When a descriptor has multiple tables, you must be able to join a row from the
primary table to all of the additional tables. By default, TopLink assumes that the
primary key of the first, or primary, table is included in the additional tables,
thereby joining the tables.

TopLink also supports custom methods for joining tables.

4-40 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Multiple Tables

Specifying Multi-table Info

Use the Multi-table Info tab to define multiple tables for a descriptor in the
Mapping Workbench.

To associate multiple tables with a descriptor:
1. In the Project Tree pane, select a descriptor.

If the Multi-table Info advanced property is not visible for the descriptor,
right-click on the descriptor and choose Set Advanced Properties > Multi-table
Info from pop-up menu or from the Selected menu.

2. Click on the Multi-table info tab.

Figure 4-24 Multi-table Info Tab

Multi-tabile info

Primary Table: B none selected
Additional Tables Azsociated Via

= Primary key
" Foreign key

Add Remaove

3. Use this table to enter data in each field:

Field Description

Primary Table The primary table for this descriptor. This field is for display
only.

Additional Tables Use the Add and Remove buttons to add or remove additional
tables.

Associated Via Specify if each Additional Table is associated by its Primary or
Foreign key.

Understanding Descriptors 4-41

Working with Multiple Tables

When associating a table via Primary Key, additional options appear on the
Multi-table Info tab. Continue with "Primary Keys Match" on page 4-42 or "Primary
Keys are Named Differently" on page 4-42 to assign the primary key.

Figure 4-25 Associating Multiple Tables via Primary Key

Primary Key Table Reference

@ Primary keys have the same narmes

" Primary keys have diffierent names

Tahle Reference: | J

When associating a table via Foreign Key, additional options (shown in

Figure 4-25) appear. You must choose a reference that relates the relates the correct
fields in the primary table to the primary keys in the selected table. Continue with
"Tables are Related by Foreign Key in Primary Table" on page 4-43 to assign the
foreign key.

Figure 4-26 Associating Multiple Tables via Foreign Key

Select a table reference that defines the field translations

Table Reference: =]

Primary Keys Match

When associating a descriptor with multiple tables in which the primary key field
names are identically, you do not have to specify any additional information.
Simply select the tables from the list of available tables on the Multi-table Info tab.
The Mapping Workbench automatically selects the Primary Keys Have the Same
Names option.

Primary Keys are Named Differently

If the primary keys of the additional table(s) are the same but named differently,
you must specify how they relate to the primary key(s) of the default/primary
table.

4-42 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with a Copy Policy

1. Select the associated table, and select Associated Via Primary Key.
2. Select Primary Keys Have Different Names.

3. Inthe Primary Key Reference area (Figure 4-25) Choose a table reference that
relates how the primary keys of the primary table relate to the primary keys of
the selected table. Use the drop-down list to select a primary key association.

Tables are Related by Foreign Key in Primary Table

If the primary keys of the additional table are not the same as the primary keys of
the primary table, but are instead related to a different set of fields, you must set up
a foreign key relation between the tables.

1. Select the associated table, and select Associated Via Foreign Key.

2. Use the drop-down list to select a foreign key reference that relates the correct
fields in the primary table to the primary keys in the selected table. Click on the
browse button to create a reference.

Working with a Copy Policy

The TopLink unit of work feature must be able to clone persistent objects. TopLink
supports two ways of copying objects:

= By default, an object’s default constructor is called to create a copy

= You may specify a method on the object to be used by TopLink to perform the
copy, such as clone

Setting the Copy Policy

Use the Copying tab to specify how TopLink copies objects. TopLink supports the
following methods:

= Using the object’s default constructor to create a copy

= Specifying a method, such as clone
To specify a copy method:

1. Choose a descriptor in the Project Tree pane. Its properties appear in the
Properties pane.

Understanding Descriptors 4-43

Working with Instantiation Policy

If the Copying advanced property is not visible for the descriptor, right-click on
the descriptor and choose Set Advanced Properties > Copying from pop-up
menu or from the Selected menu.

2. Click on the Copying tab in the Properties pane.

Figure 4-27 Copying Tab

4% Copying
" Use instantiation policy
" Use clone method
Method: |=none selected= -
The clone method must be Create new methad.. |

non-static with no
parameters and must return
a logical shallow clone of
the object.

3. Use this table to enter data in each field:

Field Description

Use instantiation policy Specifies to create a new instance of the object using the
descriptor’s instantiation policy.

Use clone method Specifies to calls the clone () method of the object.

Method Select the clone method from the drop-list. Click on Create New
Method to create a new method.

Working with Instantiation Policy
TopLink supports several ways to instantiate objects:
= By default, the default constructor of the class instantiates a new instance.

= If the application requires that objects be instantiated in other ways, the
instantiation method can be customized.

You can use custom Java code to override the instantiation policy. Refer to
Oracle9iAS TopLink Foundation Library Guide for details.

4-44 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Instantiation Policy

Setting Instantiation Policy

Use the Instantiation tab to specify if objects are instantiated by the default
constructor, a specific method, or a factory.

To set the instantiation policy:
1. In the Project Tree pane, select a descriptor.

If the Instantiation advanced property is not visible for the descriptor,
right-click on the descriptor and choose Set Advanced Properties >
Instantiation from pop-up menu or from the Selected menu.

2. C(lick on the Instantiation tab.

Figure 4-28 Instantiation Tab

=+ |nstantiation l

@ Usge default constructar

" Use method

Method: |

" Use factary

Factary class:

il e

|
* Factory method: |
|

Instantiation method:

* This is the name of a method that will return a factory o...

3. Use this table to enter data in each field:

Field Description

Use Default Constructor The default constructor of the class instantiates a new instance.
Use Method Specify a Method to execute to create objects from the database.

Method Name of a method to be executed to create objects from the
database. The method must be a public, static method on the
descriptor’s class and must return a new instance of the object.

Use Factory Refer to Oracle9iAS TopLink Foundation Library Guide for more
information.

Understanding Descriptors 4-45

Working with a Wrapper Policy

Field Description
Factory Class The class of the factory object that creates the new instances
Factory Method The message to be sent to obtain a factory object
Instantiation The method to be sent to the factory object to obtain a new
Method instance that will be populated with data from the database

Working with a Wrapper Policy

TopLink allows you to use “wrappers” (or proxies) in cases where the persistent
class is not the same class that is to be presented to users.

For example, in the Enterprise JavaBeans specification, the Entity bean class (the
class that implements javax.ejb.EntityBean) is persistent but is hidden from
users who interact with a class that implements javax.ejb.EJBObject (the
“remote interface” class). In this example, the EJBObject acts as a proxy or
wrapper for the EntityBean.

In cases where such a wrapper is used, TopLink continues to make the class
specified in the descriptor persistent, but returns the appropriate instance of the
wrapper whenever a persistent object is requested.

Use a “wrapper policy” to tell TopLink how to create wrappers for a particular
persistent class, and how to obtain the underlying persistent object from a given
wrapper instance.

7

If you specify a wrapper policy, TopLink uses the policy to “wrap” and “unwrap’
persistent objects as required:

= Wrapper policies implement the interface
oracle.toplink.descriptors.WrapperPolicy

= A wrapper policy is specified by setting the wrapper policy for the TopLink
descriptor

= By default, no wrapper policy is used (the wrapper policy for a descriptor is
null by default)

= Wrapper policies cannot be set using the Mapping Workbench, and can only be
set using Java code

4-46 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Optimistic Locking

Note: Wrapper policies are advanced TopLink options. Using a
wrapper policy may not be compatible with some Mapping
Workbench features.

Setting the Wrapper Policy Using Java Code
The Descriptor class provides methods that are used in conjunction with the
wrapper policy:
m setWrapperPolicy (oracle.toplink.descriptors.WrapperPolicy) can
be invoked to provide a wrapper policy for the descriptor

= getWrapperPolicy () returns the wrapper policy for a descriptor

Refer to the Oracle 9iAS TopLink Foundation Library Guide for detailed information.

Working with Optimistic Locking

When using caching to provide performance benefits, you should also use a locking
policy to manage database record modification in multi-user environments. Without
a locking policy, it may be possible for users to see data stored in the cache that is no
longer valid (sometimes called stale data).

Databases typically support the following locking policies:

= Optimistic — All users have read access to the data. When a user attempts to
write a change, the application checks to ensure the data has not changed since
the last read. TopLink supports multiple methods of optimistic locking.

= Pessimistic — The first user who access the data with the purpose of updating,
locks the data until completing the update. TopLink supports pessimistic
locking through UnitOfWork and updateAndLockObject ().

= No locking — The application does not verify that data is current.

Oracle recommends using optimistic locking to ensure that all users are working
with valid data before committing changes. TopLink supports multiple locking
policies for optimistic locking:

= Version locking policies enforce optimistic locking by using version fields (or
write lock fields) that are updated each time a record version field must be
added to the table for this

= Field locking policies do not require additional fields, but do require a
UnitOfwork in order to be implemented.

Understanding Descriptors 4-47

Working with Optimistic Locking

Note: If a three-tier application is being built and objects are
edited outside the context of a unit of work, then the write lock
value is stored in the object and passed to the client. If it is only the
server, then lock conflicts may be missed as clients update same
cache.

Using Version Locking Policies

For each of the following version locking policies, you must add a specific database
field.

s For VersionLockingPolicy, add a numeric field
s For TimestampLockingPolicy, add a timestamp field

TopLink records the version as it reads an object from a table. When the client
attempts to write the object, TopLink compares the version of the object with the
version in the table record.

= If the versions are the same, the updated object is written to the version of both
the table record and the object are

= If the versions are different, the write is disallowed because updated the object
since this client initially

The two version locking policies have different ways of writing to database:
s For VersionLockingPolicy, the number in the version field increments by one

» For TimestampLockingPolicy, a new timestamp is inserted into the row (this
policy can be configured to get the time from the or locally)

For both policies, the values of the write lock field can be the writable mapping
within the object.

If the value is stored in the identity map, then by default an the version field. If the
application does map the field, it must make mappings read-only to allow TopLink
to control writing the fields.

Using Field Locking Policies

The following locking policies, included in TopLink, do not require any additional
fields:

s AllFieldsLockingPolicy

4-48 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Optimistic Locking

m ChangedFieldsLockingPolicy
m SelectedFieldsLockingPolicy

All of these policies compare the current values of certain mapped previous values.
When using these policies, a UnitOfWork must be used for updating the database.
Each policy handles its specific way the policy.

= Whenever an object using Al11FieldsLockingPolicy is updated or deleted,
all the fields in that table are compared in the where clause. If any value in that
table has been changed since the object was read, the update or delete fails.

Note: This comparison is only on a per table basis. If an update is
performed on an object that is mapped to multiple tables multiple
table inheritance), only the changed table(s) appear in where clause.

= Whenever an object using ChangedFieldsLockingPolicy is updated, only
the modified fields are compared. This allows for multiple clients to modify
different parts of the same row without failure. Using this policy, a delete
compares only on the primary

= Whenever an object using SelectedFieldsLockingPolicy is updated or
deleted, a list of selected fields is compared in the statement. Updating these
fields must be done by the application manually or though an event.

Whenever any update fails because optimistic locking has been an
OptimisticLockExceptionis thrown. This should be handled by the application
when performing any database modification The must refresh the object and
reapply its changes.

Specifying Advanced Optimistic Locking Policies

The TopLink optimistic locking policies (described in "Working with Optimistic
Locking" on page 4-47) implement the OptimisticLockingPolicy interface,
referenced throughout the TopLink code. You can create more policies by
implementing this interface and implementing the methods defined.

Use the Locking tab (see Figure 4-16) to specify locking policies for the Mapping
Workbench, or refer to the Oracle 9iAS TopLink Foundation Library Guide for more
information.

Understanding Descriptors 4-49

Working with Identity Maps

Working with Identity Maps

TopLink uses identity maps to cache objects for performance and maintain object
identity. The Mapping Workbench provides the following identity map types on the
Identity tab (see Figure 4-13):

Table 4-2 Identity Maps

Identity Map Description

Full identity map Provides full caching and guaranteed identity. Caches all objects
and does not remove them. This may be memory intensive
when many objects are read.

Do not use on batch type operations.

Soft cache weak identity =~ Similar to the weak identity map except that it maintains a
map most-frequently-used sub-cache. The size of the sub-cache is
(default with JDK 1.2, propc‘)rtlon,al to the size cl)f the 1denlt1ty map as specified by
. . descriptor’s set IdentityMapSize () method. The sub-cache
available since JDK 1.2) .
uses soft references to ensure that these objects are
garbage-collected only if the system is low on memory.

Hard cache weak Identical to the soft cache weak identity map except that it uses
identity map hard references in the sub-cache. This should be used if soft
(available since JDK 1.2) references do not behave properly on your platform.

Weak identity map Similar to the full identity map except that the map holds the
(available since JDK 1.2) objects using weak references. This allows for full garbage
collection. It also provides full caching and guaranteed identity.

Cache identity map Provides caching and identity, but does not guarantee identity. A
cache identity map maintains a fixed number of objects specified
by the application. Objects are removed from the cache on a
least-recently-used basis. This method allows object identity for
the most commonly used objects.

No identity map Does not preserve object identity and does not cache objects.

Identity Map Size
The default identity map size is 100.

= For the cache identity map policy, the size indicates the maximum number of
objects stored in the identity map.

= For the full identify map policy, the size determines the starting size of the map.

s For the soft/hard cache weak identity map, the most-recently-used sub-cache is
proportional to the size.

4-50 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Identity Maps

Design Guidelines

Use the following guidelines when using an identity map:

» If using a Java 2-compatible Virtual Machine (VM), objects with a long lifespan,
and object identity is important, use a SoftCacheWeakIdentityMap or
HardCacheWeakIdentityMap policy.

= If using a Java 2-compatible VM, and object identity is important and caching is
not, use a WeakIdentityMap policy.

= If an object has a long lifespan or requires frequent access, or is important, use a
FullIdentityMap policy.

= If an object has a short lifespan or requires frequent access, and identity is not
important, use a CacheIdentityMap policy.

= If objects are discarded immediately after being read from the database, such as
in a batch operation, use a NoIdentityMap policy

Note: The NoIdentityMap does not preserve object identity.

Using Object Identity

In a Java application, object identity is preserved if each object in memory is
represented by one and only one object instance. Multiple retrievals of the same
object return references to the same object instance — not multiple copies of the same
object.

Maintaining object identity is extremely important when the application’s object
model contains circular references between objects. You must ensure that two are
referencing each other directly, rather copies of each other. Object identity is
important when multiple parts of the application may be modifying the same object
simultaneously.

Identity can be turned off when object identity is not important (for example, for
read-only objects).

Caching Objects

Identity maps maintain client-side object caches which boost by minimizing the
number of database reads.

When the cache fills up, TopLink cleans up the cache based on the identity map
policy.

Understanding Descriptors 4-51

Working with Query Keys

Working with Query Keys

Use a direct query key as an alias for a field name. Query keys allow TopLink
expressions to refer to a field using Java attribute names (such as firstName) rather
than DBMS-specific names (such as F_NAME).

Use query keys to:
= Enhance code readability when defining TopLink expressions.

= Increase portability by making code independent of the database schema. If you
rename a field, the query key could be redefined without changing any code
that references it.

= Interface descriptors only define common query keys shared by implementors;
the fields aliased could have different names in the implementor’s tables

Automatically-generating Query Keys

TopLink automatically defines direct query keys for all direct mappings a special
query key type for each mapping. Typically, use query keys to access fields that do
not have direct mappings, such as the version field used for optimistic locking or the
type field used for inheritance.

TopLink displays automatically generated query Query Keys tab of the Properties
pane (see Figure 4-5). You cannot change these keys.

Example 4-4 Automatically Generated Query Key

For example, consider the Employee class in the TopLink tutorial: When you define
a direct-to-field mapping from the Employee class, attribute firstName to the
EMPLOYEE table, field F_ NAME, you get a query key for free — it is automatically
generated.

The following code example illustrates using an automatically-generated query key
within the TopLink expression framework.

Vector employees = session.readAllObjects(Employee.class, new
ExpressionBuilder () .get ("firstName") .equal ("Bob"));

Creating a User-defined Query Key

In addition to the automatically generated query keys, you can define query keys
for descriptors.

4-52 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Query Keys

To use define a query key:
1. In the Project Tree pane, choose a descriptor.

2. In the Properties pane, click on the Query Keys tab.
3. Click on the New Query Key button.

Figure 4-29 The Add Query Key Window

2 Query Keys]
Query Keys Selected Gluery Key
o__ Narme:
e [o]
Fet []

Add Query Key

Marne: |
Tahle:
Field:

New Query Key... | Add ta List |

Remove Cancel Add

User-interface items called out in Figure 4-29:
1. Existing query keys
2. New query key fields

4. Use this table to enter data in each field:

Field Description

Name Unique name of the query key. The Name must be different from
any previously defined or automatically generated key.

Table Table referenced by this query key.

Field Field referenced by this query key.

5. Click the Add to List button. The new query key appears in the list in the
Query Keys area of the tab.

Understanding Descriptors 4-53

Working with Query Keys

Using Query Keys in Interface Descriptors

Interface descriptors are defined only with query keys that are shared among their
implementors. In the descriptor for the interface, only the name of the query key is
specified.

In each implementor descriptor, the key must be defined and with appropriate field

from one of the implementor descriptor’s tables.

This ensures that a single query key can be used to specify foreign key information
from a descriptor that contains a mapping to the interface, even if the field names
differ.

Consider an Employee that contains a contact, of type Contact. Contact is an
interface with two implementors: Phone and EmailAddress. Each class has two
attributes. The following figure illustrates the generated keys:

Figure 4-30 Auto-generated Query Keys for Phone and Email

Phone Email
id # id
number 2 address

Note: Both classes have an attribute, 1d, that is directly mapped to
fields that have different names. However, a query key is generated
for this attribute. For the Contact interface descriptor simply
indicate that the 1d query key must be defined for each of the
implementors, as shown in Figure 4-31.

Figure 4-31 Contact interface Descriptor with Common Query Key id

& Implementors

Choose the descriptors that implement this interface and share at least
ONe COmmaon query key.

Implementors Common Guery kKeys
¥ 1 Email el
[1 Phone

4-54 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Query Keys

Note: If either of the implementor classes did not have the id
query key defined, that descriptor would be flagged as deficient.

Now that a descriptor with a commonly-shared query key has been defined for
Contact, you can use it as the reference class for a variable one-to-one mapping.
For example, you can now create a one-to-one mapping for the contact attribute of
Employee. When you edit the foreign key field information for the mapping, you
must match the Employee descriptor’s tables to query keys from the Contact
interface descriptor.

For more information see "Working with Interfaces" on page 4-36 and "Working
with Relationship Mappings" on page 6-2.

Relationship Query Keys

TopLink supports query keys for relationship mappings and automatically defines
them for all relationship mappings. You can use these keys to join across a
relationship. One-to-one query keys define a joining relationship and are accessed
through the get () method in expressions.

One-to-many and many-to-many query keys define a distinct join across a collection
relationship and accessed through the anyOf () method in expressions. You can also
define relationship query keys manually if mapping does not exist for the
relationship. The relationship defined by the query key is data-level expressions.

Example 4-5 One-to-one Query Key
The following code example illustrates using a one-to-one query key within the
TopLink expression framework

ExpressionBuilder employee = new ExpressionBuilder();
Vector employees = session.readAllObjects(Employee.class,
employee.get ("address") .get ("city").equal ("Ottawa")) ;

Defining Relationship Query Keys by Amending a Descriptor

Relationship query keys are not supported directly in the Mapping Workbench. To
define a relationship query key, you must specify and write an amendment method.
Register query keys by sending the addQueryKey () message.

Understanding Descriptors 4-55

Working with Events

Example 4-6 Defining One-to-one Query Key Example

The following code example illustrates how to define a one-to-one query key.

// Static amendment method in Address class, addresses do not know their owners
in the object-model, however you can still query on their owner if a
user-defined query key is defined

public static void addToDescriptor (Descriptor descriptor)

{

OneToOneQueryKey ownerQueryKey = new OneToOneQueryKey () ;
ownerQueryKey.setName ("owner") ;

ownerQueryKey.setReferenceClass (Employee.class) ;

ExpressionBuilder builder = new ExpressionBuilder();
ownerQueryKey.setJoinCriteria (builder.getField ("EMPLOYEE.ADDRESS_
ID") .equal (builder.getParameter ("ADDRESS.ADDRESS_ID")));
descriptor.addQueryKey (ownerQueryKey) ;

}

Working with Events

Use the event manager to specify specific events to occur whenever TopLink
performs a read, update, delete, or insert on the database.

Note: TopLink uses the Java event model.

Applications can receive descriptor events in the following ways:
= Implement DescriptorEventListener interface

= Subclass DescriptorEventAdapter adapter class

= Register an event method with a descriptor

Objects that implement the DescriptorEventListener interface can be registered
with the descriptor event manager to be notified when any event occurs for that
descriptor.

Alternately, you may wish to use the DescriptorEventAdapter class if your
application does not require all of the methods defined in the interface. The
DescriptorEventAdapter implements the DescriptorEventListener interface
and defines an empty method for each method in the interface. To use the adapter,
you must subclass it and then register your new object with the descriptor event
manager.

4-56 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Events

Descriptor events can be used in many ways, including;:

= Synchronizing the persistent objects with other systems, services and
frameworks

= Maintaining non-persistent attributes of which TopLink is not aware

= Notifying other parts of the application when the persistent state of objects
is changed

= Performing complex mappings or optimizations that are not directly supported
by TopLink mappings

Use the descriptor’s Event tab (see Figure 4-12) to specify events for a descriptor.

Example 4-7 Event

For example, if you want to invoke a method called postBuild() for an Employee
object, the postBuild () method must be implemented in the Employee class. This
method must also accept one parameter that is an instance of DescriptorEvent
fully qualified with a package name.

Registering an Event with a Descriptor

A persistent class can register a public method as an event method. A descriptor
calls the event method when a particular database operation occurs.

Event methods:
= Must be public so that TopLink can call them
= Must return void

= Must take a DescriptorEvent as a parameter

Example 4-8 Registering an Event

The following code illustrates an event method definition.

public void myEventHandler (DescriptorEvent event) ;

Supported Events

Events supported by the DescriptorEventManager include:

Post-X Methods:
s Post-Build — occurs after an object is built from the database.

Understanding Descriptors 4-57

Working with Finders

= Post-Clone — occurs after an object has been cloned into a unit of work.
= Post-Merge — occurs after an object has been merged from a unit of work.

= Post-Refresh — occurs after an object is refreshed from the database.

Updating Methods:

= Pre-Update — occurs before an object is updated in the database. This may be
called in a unit of work even if the object has no changes and does not require
an update.

= About-to-Update — occurs when an object’s row is updated in the database.
This is called only if the object has changes in the unit of work.

s Post-Update — occurs after an object is updated in the database. This may be
called in a unit of work even if the object has no changes and does not require
an update.

Inserting Methods:
= Pre-Insert — occurs before an object is inserted in the database.

= About-to-Insert — occurs when an object’s row is inserted in the database.

= Post-Insert — occurs after an object is inserted in the database.

Writing Methods:

= Pre-Write — occurs before an object is inserted or updated in the database. This
occurs before prelnsert/Update.

= Post-Write — occurs after an object is inserted or updated in the database. This
occurs after prelnsert/Update.

Deleting Methods:
= Pre-Delete — occurs before an object is deleted from the database.

= Post-Delete — occurs after an object is deleted from the database.

Working with Finders

In TopLink, use named queries to represent SQL or EJBQL finders to use in
database accesses. You can create these finders within the mapping workbench.

4-58 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Object-relational Descriptors

When you create a finder for an E]JB, the Mapping Workbench creates a named
query and populates the descriptor alias with information from the ejb-jar.xml
file.

Reserved finders are valid for projects with CMP persistence.

Working with Object-relational Descriptors

The object-relational paradigm extends traditional relational databases with
object-oriented functionality. Oracle, IBM DB2, Informix and other DBMS databases
allow users to store, access, and use complex data in more sophisticated ways.

The object-relational standard is an evolving standard and is mainly concerned with
extending the database data structures and the SQL language (SQL 3).

The new features include:

= Structures or Object-types can be defined and stored on the database
= Collections/Arrays can be defined and stored on the database

= Structures/Object-types can have system-generated ObjectIDs

= Structures/Object-types can reference other structures through References or
aggregation

= SQL 3, an extension to the SQL language that supports querying and
manipulating the new object-types

Coinciding with object-relational changes, most database vendors are also
extending their server architectures to support features such as:

s Embedded server-side Java Virtual Machines
= Java stored procedures
= CORBA, HTML and EJB support in the database

This section describes how the object-relational features affect TopLink descriptors
and mappings. The server architecture changes are discussed in the Oracle 9iAS
TopLink: Foundation Library Guide.

Effect on TopLink

Object-relational databases introduce several new features that allow more complex
data to be stored and accessed. One advantage of object-relational databases is that
the differences between the object model and data model can be reduced to the

Understanding Descriptors 4-59

Working with Mappings

point that the two are almost identical. Although this makes the object-relational
mapping process easier, it does not reduce the need for a persistence framework
such as TopLink. Although the JDBC standard has been improved to take
advantage of object-relational features in JDBC 2.0, it still remains a very low-level
database interface. On top of JDBC, frameworks such as TopLink can provide
applications with much more sophisticated functionality, including units of work,
identity maps, expressions, querying, complex mappings, three-tier and enterprise
application support.

TopLink provides object-relational support through a new type of descriptor object
and several new types of mappings. See Chapter 7, "Understanding Object
Relational Mappings" for more information.

Databases Supported

TopLink supports any JDBC 2.0 driver that complies with JDBC'’s 2.0
object-relational extensions. Contact your database and JDBC vendor to determine
which object-relational features they support.

Defining Object-relational Descriptors

The TopLink Mapping Workbench does not currently support the object-relational
descriptor and mappings. Support will be added to the Mapping Workbench in
future releases.

You should be able to import most of the simple object-relational table structures
into TopLink. Also, you can define the standard non-object-relational descriptor
properties and mappings. You can use amendment methods to add any
object-relational mappings and features to the descriptors.

Working with Mappings
In TopLink, mappings define how an object’s attributes are represented in the

database.

= Direct mappings define how a persistent object refers to objects that do not have
descriptors (for example, the JDK classes and primitives). See Chapter 5,
"Understanding Direct Mappings" for details.

= Relationship mappings define how a persistent object refers to other persistent
objects. See Chapter 6, "Understanding Relationship Mappings" and Chapter 7,
"Understanding Object Relational Mappings" for details.

4-60 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Mappings

All of the mapping classes are derived from the DatabaseMapping class, as
illustrated in Figure 4-32.

Figure 4-32 Mapping Classes Hierarchy

Transformation OhjectType

DirectToField

DatabaseMapping

SerializedObject

DirectCallect
TypeConversion
g S— WanyTakany
Aggregate Aggregate Object ————
OneTohany
ForeignReferences Structure MestedTable
Collection OneToOne
Shaded classes —
represent abstract classes. WariableOneToOne
Reference

Working with Common Mapping Properties

TopLink associates each mapping with the attribute whose persistence it describes.
To create a mapping in the Mapping Workbench, select the attribute to map from
the Project Tree pane and then click on the appropriate button in the mapping
toolbar (see Figure 1-5).

Understanding Descriptors 4-61

Working with Mappings

Use the mapping’s Properties pane to enter specific information for the mapping.
Some mappings require more information that others and have multiple tabs in the
Properties pane.

Figure 4-33 Sample Properties for a Mapping

3% (One Ta Many Mapping)

General l Collection Options] Tahle Reference]

o—— [~ Read only
o

[~ Use method accessing

Get method: |

Set methad: |

1| L L

Reference Descriptar: |m Metwark
[Maintain Bidirectional Relationship
Relationship Partner: J
[Private owned

[Use batch reading

v Use indirection

" WalueHolder @ Transparent

Mapping properties called out in Figure 4-33:
1. Specify if read-only

2. Specify access method

Specifying Direct Access and Method Access

By default, TopLink uses direct access to access public attributes. Alternatively, you
can use accessor methods to access object attributes when writing the attributes of
the object to the database or reading the attributes of the object from the database.
This is called method access.

The attribute’s visibility (public, protected, private or package visibility) and the
supported version of JDK may restrict the type of access that you can use.

Starting in JDK 1.2, the Java Core Reflection API provides a means to suppress
default Java language access control checks when using reflection. TopLink uses
reflection to access the application’s persistent objects. This means that if you are
using a VM that supports the API, then TopLink can access an attribute directly,
regardless of its declared visibility.

4-62 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Mappings

Note: Private variable access under JDK 1.2 requires you to enable
the security setting. Consult the JDK documentation for more
information.

Oracle recommends using direct access whenever possible to improve performance
and avoid executing any application-specific behavior while building objects.

Setting the Access Type

Use the General tab of the mapping Properties pane (see Figure 4-33) to set the
access type as direct or method-based

To change the default access type used by all new mappings, use Defaults tab on
the project Properties pane. See "Working with Default Properties" on page 2-7 for
more information.

Note: If you change the access default, existing mappings retain
their current access settings but new mappings will be created with
the new default.

Specifying Read-only Settings

Use the Read Only check-box on the General tab of the mapping Properties pane
(see Figure 4-33) to set a mapping to be read only. TopLink will not consider
attributes associated with read-only mappings during update, and delete
operations.

Because these operations are not actually performed for the mapping, any processes
that are dependent on these operations (such as custom SQL or descriptor events)
are not called for read-only. The attributes are still used for read operations.

Note: The primary key mappings must not be read-only.

Mappings defined for the write-lock or class indicator field must be read-only,
unless the write-lock is configured not to be stored in the cache and the class
indicator is part of the primary key.

Understanding Descriptors 4-63

Working with Mappings

Defaulting Null Values

Direct mappings include a nullvalue attribute. Use this attribute to convert
database null values to application-specific values (if application does not allow
null values). This applies when typed as primitives. The null value must be set to
the desired value, not the database value.

Null values translate in two directions: from null values read from the database to
the specified value and from the specified value back to null when writing or
querying. You can also use TopLink to set global default null values on a per-class
basis. For more information, refer to the Oracle 9iAS TopLink: Foundation Library
Guide.

Select the Use Default Value when Database Field is Null option on the General
tab (see Figure 4-33) and the Type and Value drop-down lists to specify the null
value.

Note: You must specify the Type and Value in the mapping form.

Maintaining Bidirectional Relationships

Use the Maintain Bidirectional Relationship Only check-box on the General tab of
the mapping Properties pane (see Figure 4-33) to maintain a bidirectional
relationship for a one-to-one or one-to-many mapping. You can also specify the
relationship partner.

Specifying Field Names and Multiple Tables

When defining mappings in code, TopLink assumes all mappings are in first table
specified by the descriptor’s setTableName () or addTableName () method. If the
persistent class stores information in multiple tables, any messages sent that require
field names should implemented to pass fully qualified names (that include the
table name). Use the following syntax to fully qualify a field:

someMessage (“tablename. fieldname”) ;

Specifying Collection Properties

Some relationship mapping types (direct collection, one-to-many, and
many-to-many) contain a Collection Options tab to allow you to specify collection
options.

4-64 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Mappings

TopLink can populate a collection in ascending or descending order upon your
specification. Query keys are automatically created for and with the same name as
all attributes mapped as direct-to-field, type conversion, object type, and serialized
object mappings.

Figure 4-34 Collection Options

¢(§§ managedEmployees (One To Many Mapping
General Collection Options ‘ Table Refarence

Java 2 Collections

Collection or Map Class: f\lector(ja\ra.util)

L1

Key Method (for Maps Only: |

[Order Query Results
* Ascending

" Descending

Query Key: | [

Use this table to enter data in each field:

Field Description

Java 2 Collections:

Collection or Map Select the collection or map class to use for this collection

Class mapping.
Key Method
Order Query Results Specify how the collection results are sorted for queries.

Specifying Mapping information in ejb-jar.xml File

For 2.0 CMP projects, the ejb-jar .xml files stores information on bean-to-bean
relationships (i.e., mappings) in the <relationship> element. By updating this
information in the ejb-jar.xml, the Mapping Workbench will create new
mappings. You can then update the mapping information (such as reference tables).

If the information does not exist in the ejb-jar.xml file, you can build the
mappings in the Mapping Workbench, then write the information to the file. See
"Writing to the ejb-jar.xml File" on page 2-16 for more information.

Understanding Descriptors 4-65

Working with Mappings

4-66 Oracle9iAS TopLink Mapping Workbench Reference Guide

o)

Understanding Direct Mappings

In TopLink, direct mappings define how a persistent object refers to objects without
descriptors, such as the JDK classes and primitives.

You can create the following direct mappings in TopLink:

Direct-to-field mappings — Map a Java attribute directly to a database field (see
"Working with Direct-to-field Mappings").

Type conversion mappings — Map Java values with simple type conversions,
such as from character to string (see "Working with Type Conversion
Mappings").

Object type mappings — Use an association to map values to the database (see
"Working with Object Type Mappings").

Serialized object mappings — Map serializable objects, such as multimedia
objects, to database BLOB fields (see "Working with Serialized Object
Mappings").

Transformation mappings — Allow you to create custom mappings where one or
more fields can be used to create the object be stored in the attribute (see
"Working with Transformation Mappings").

Working with Direct Mappings

There are two basic ways of storing object attributes directly in a database table:

The information can be stored directly if the attribute type is comparable to a
database type.

If there is no database primitive type that is logically comparable to the
attribute’s type, it must be transformed on its way to and from the database.

Understanding Direct Mappings 5-1

Working with Direct-to-field Mappings

TopLink provides the following classes of direct mappings:
= Direct-to-field

s Type conversion

= Object type

= Transformation

= Serialized object

If the application’s objects contain attributes that cannot be represented as
direct-to-field, type conversion, or object-type mappings, the application must
provide transformation routines for saving the attributes.

If a direct-to-field mapping cannot be used to perform the desired conversion, try
type conversion and object type mappings before attempting to define a custom
transformation mapping.

Working with Direct-to-field Mappings

Direct-to-field mappings map a Java attribute directly to a value database column.
When the application writes a Java instance to database, it stores the value of the
attribute in a field of the table column. TopLink supports the following types:

s java.lang: Boolean, Float, Integer, String, Double, Long, Short, Byte,
Byte[],Character, Character[];all of the primitives associated with these
classes

s Jjava.math: BigInteger, BigDecimal
s Jjava.sql: Date, Time, Timestamp
s java.util: Date, Calendar

While reading, direct-to-field mappings perform some simple one data conversions,
as described in Table 5-1. You must use other direct mappings for two-way or more
complete conversions.

Table 5-1 Type Conversions Provided by Direct-to-field Mappings

Java type Database type

Integer, Float, Double, Byte, Short, NUMBER, NUMERIC, DECIMAL, FLOAT,
BigDecimal, BigInteger, int, float, double, DOUBLE, INT, SMALLINT, BIT, BOOLEAN
byte, short

5-2 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Direct-to-field Mappings

Table 5-1 Type Conversions Provided by Direct-to-field Mappings (Cont.)

Java type

Database type

Boolean, boolean

String

Character, char

byte[]

Time
sql.Date
Timestamp, util.Date, Calendar

sql.Date, Time, Timestamp, util. Date,
Calendar

BOOLEAN, BIT, SMALLINT, NUMBER,
NUMERIC, DECIMAL, FLOAT, DOUBLE,
INT

VARCHAR, CHAR, VARCHAR?2, CLOB,
TEXT, LONG, LONG VARCHAR, MEMO

CHAR

BLOB, LONG RAW, IMAGE, RAW,
VARBINARY, BINARY, LONG VARBINARY

TIME
DATE (only applies to DB2)
TIMESTAMP (only applies to DB2)

DATE, DATETIME (applies to Oracle,
Sybase, SQL Server)

Direct-to-field mappings also allow you to specify a null value. This may be
required if primitive types are used in the object and the database field allows null

values.

Creating Direct-to-field Mappings

Use this procedure to create a basic direct-to-field mapping to map a Java attribute

directly to a value in a database.

To create a direct-to-field mapping:

1. Select the attribute to be mapped from the Project Tree pane.

2. Click the Direct to Field Mapping button [%] from the mapping toolbar.

3. Use the Database Field drop-down list on the General tab on the Properties
pane to select the appropriate database field.

4. Select the Use Default Value When Database Field is Null option to specify a
default Type and Value to use if the database field is null.

Understanding Direct Mappings 5-3

Working with Type Conversion Mappings

Figure 5-1 Direct-to-field Mapping Properties

"ﬁ city (Direct To Field Mapping)

General

[~ Read Only
[~ Use Method Accessing

Get Method: |
SetWethod: | =l
Database Field: [® Ty =]

[Usge DefaultValue YWhen Database Field is Mull

Type: | J

value: |

You can also specify:
= Read-only attributes — See "Specifying Read-only Settings" on page 4-63

= Access methods — See "Specifying Direct Access and Method Access" on
page 4-62

= Null values — See "Defaulting Null Values" on page 4-64

Working with Type Conversion Mappings

Type conversion mappings explicitly map a database type to a Java type. For
example, a Number in the database can be mapped to a Stringin Java, or a
java.util.Date in Java can be mapped to a java.sqgl.Date in the database.

Creating Type Conversion Mappings

Use this procedure to create a type conversion mapping.

To create a type conversion mapping:
1. Select the attribute to be mapped from the Project Tree pane.

2. Click the Type Conversion Mapping button |i&| from the mapping toolbar.

5-4 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Object Type Mappings

3. Use the Database field and Database type drop-down lists on the General tab
in the Properties pane to select the appropriate database field and database

type.

Figure 5-2 Type Conversion Mapping Properties

;}n salary (Type Conversion Mapping) |

General ‘

[~ Readanly

[Use method accessing

Get method: |

Set method: |

Database field: |H SALARY SALARY

Ll Led Ll L

Database type: |’“$ String

You can also specify:
= Read-only attributes — See "Specifying Read-only Settings" on page 4-63

= Access methods — See "Specifying Direct Access and Method Access" on
page 4-62

Working with Object Type Mappings

Object type mappings match a fixed number of database values to Java objects. Use
these mappings when the values in the database differ from those in Java. Object
types mappings are similar to direct-to-field mappings in all other respects.

Example 5-1 Object Type Mapping Example

The following figure illustrates an object type mapping between the Employee
attribute gender and the relational database column GENDER. If the gender value in
the Java class = Male, the system stores it in the GENDER database field as M; Female
is stored as F.

Understanding Direct Mappings 5-5

Working with Object Type Mappings

Figure 5-3 Object Type Mappings

&

Y & QQ? <Y
Employee Q7 a: D ??"
Addresss address; Q;@ X C§” B
String gender; I CHES HH— ot B M | 0101415905
Integer id; "Female" = "F" —H—Jame St F | 04011993
String name; 105 | Tom Jores | M | 08/01/2001

Java Class Relational Database

Creating Object Type Mappings
Use this procedure to create an object type mapping between an attribute and a
database column.

To create a basic object type mapping:
1. In the Project Tree pane, choose the attribute to be mapped.

2. Click the Object-Type Mapping button |&i| from the mapping toolbar. The
Object type mapping tab appears in the Properties pane.

5-6 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Object Type Mappings

Figure 5-4 Object Type Mapping General Properties

o% gender (Object Type Mapping)

General

[~ Read Only
[Use Method Accessing

Get Method:

Set Methad:

Database Field: | ™ EMPLOYEE.GEMDER

[Use Default Yalue Yhen Database Field is Mull

Type: |

Yalue: |

Database Type: | "% String Java.lang)

Object Type: ¥ String (ava.lang)

Default Attribute Value
r

r

Datahase Yalue | Object¥alue

Add

Edit
ey

Remave

0

F Female

a

=F
Lt
=F
Lt

o

M Male

=

Type and Value to use if the database field is null.

from the Object type drop-down list.

Choose the appropriate database field in the Database Field drop-down list.
Select Use Default Value When Database Field is Null to specify a default

Set the database type from the Database Type drop-down list and the Java type

Click on Add to add Database Value and Object Value pairs to the table. Select

the Default Attribute Value option for the value to use as the default.

To remove a database value, select the value and click Remove.

You can also specify:

= Read-only attributes — See "Specifying Read-only Settings" on page 4-63

= Access methods — See "Specifying Direct Access and Method Access" on

page 4-62

Understanding Direct Mappings 5-7

Working with Serialized Object Mappings

Working with Serialized Object Mappings

Serialized object mappings are used to store large data objects, such as multimedia
files and BLOBs, in the database. Serialization transforms these large objects as a
stream of bits.

Example 5-2 Serialized Object Mapping Example
Like direct-to-field mappings, serialized object mappings require an attribute and

field to be specified, as illustrated in the following illustration.

Figure 5-5 Serialized Object Mappings

&
o, e L
] ¢y & N
ob Q7 3 W &7
JobDescription job; 2 & e &
String country; PER T Carmas LTI TE05] - -
Date startDate; 2562 | Canada |04/0141993). . .
Integer id; 2563 | USA 08012001 1. ..
Java Class Relational Database

Creating Serialized Object Mappings

Use this procedure to create serialized object mappings.

To create a serialized object mapping:
1. In the Project Tree pane, choose the attribute to be mapped.

2. Click the Serialized Mapping button 3| from the mapping toolbar.

Figure 5-6 Serialized Object Mapping Properties

ok ity (Serialized Mapping) |

General I

[~ Read anly

[Use method accessing

Get method: |

Set method: |

Ld L L

Datahase field: |ii: CITY

5-8 Oracle9/AS TopLink Mapping Workbench Reference Guide

Working with Transformation Mappings

3. Choose the appropriate database field in the Database Field drop-down list.
You can also specify:
= Read-only attributes — See "Specifying Read-only Settings" on page 4-63

= Access methods — See "Specifying Direct Access and Method Access" on
page 4-62

Working with Transformation Mappings

Use transformation mappings for specialized translations between how a value is
represented in Java and in the database.

Tip: Use transformation mappings only when mapping multiple
fields into a single attribute. Because of the complexity of
transformation mappings, it is often easier to perform the
transformation with get/set methods of a direct-to-field mapping.

Often, a transformation mapping is appropriate when values from multiple fields
are used to create an object. This type of mapping requires that you provide an
attribute transformation method that is invoked when reading the object from the
database. This method must have at least one parameter that is an instance of
DatabaseRow. In your attribute transformation method, you can send the get ()
message to the DatabaseRow to get the value in a specific column. Your attribute
transformation method may specify a second parameter, when is an instance of
Session. The Session performs queries on the database to get additional values
needed in the transformation. The method should return the value to be stored in
the attribute.

Transformation mappings also require a field transformation method for each field to
be written to the database when the object is saved. The transformation methods are
specified in a dictionary associating each field with a method. The method returns
the value to be stored in that field.

Example 5-3 Transformation Mapping Example

Figure 5-7 illustrates a transformation mapping. The values from the B_DATE and
B_TIME fields are used to create a java.util .Date to be stored in the birthDate
attribute.

Understanding Direct Mappings 5-9

Working with Transformation Mappings

Figure 5-7 Transformation Mappings

attribute
transformation T
&
BirthInfo " method & Qv{(’ &\@g’
java.util. Date birthDate; 3 %; Z &
String country; 2561 [Canada—01/01/1955T09:45
Integer id; P 2862 | Canada [04/01/1993 | 23:10
field transformtion 2563 pS/01 2001 1yl 4:25

Java Class method [Refational Database

Creating Transformation Mappings

Use this procedure to create transformation mappings in the Mapping Workbench.

To create a transformation mapping:
1. In the Project Tree pane choose the attribute to be mapped.

2. Click the Transformation Mapping button [’X] from the Mapping toolbar.

Figure 5-8 Transformation Mapping Tab

'} normalHours (Transformation Mapping)

Generaq

| " Read anly

| I Use method accessing

| I Use indirection

| rOhject-» Fisld methods
| Database Field [Method
{5} EMPLOYEE.S

3. Use the Database Row --> Object Method drop-down list to select a method to
convert the database row into an object.

5-10 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Transformation Mappings

Note: The method must have parameter (DatabaseRow) or
parameters (DatabaseRow, Session).

4. Click on Add to add field transformation methods to the descriptor.
To remove a transformation method, select the method and click on Remove.

5. Use the Use indirection check box to specify if the creation of the target object
requires extensive computational resources. If selected, TopLink uses
indirection objects. See "Working with Indirection" on page 6-5 for more
information.

6. After specifying the details of the mapping, create the attribute field
transformation methods in the associated Java class (see Example 54,
"Transformation Mapping Code Example").

You can also specify:
= Read-only attributes — See "Specifying Read-only Settings" on page 4-63

= Access methods — See "Specifying Direct Access and Method Access" on
page 4-62

Example 5-4 Transformation Mapping Code Example

The following code example illustrates the methods required for a transformation
mapping.
// Get method for the normalHours attribute since method access indicated
access public Time[] getNormalHours()
{

return normalHours;
}
// Set method for the normalHours attribute since method access indicated
access public void setNormalHours (Time[] theNormalHours)
{

normalHours = theNormalHours;
}
// Create attribute transformation method to read from the database row
//** Builds the normalHours Vector. IMPORTANT: This method builds the value but
does not set it. The mapping will set it using method or direct access as
defined in the descriptor. */
public Time[] getNormalHoursFromRow (DatabaseRow row)
{

Time[] hours = new Time[2];

Understanding Direct Mappings 5-11

Working with Transformation Mappings

hours[0] = (Time)row.get ("START TIME");
hours([1l] = (Time)row.get ("END_TIME") ;
return hours;
}
// Define a field transformation method to write out the start time. Return the
first element of the normalHours attribute.
public java.sql.Time getStartTime ()
{
return getNormalHours() [0];
}
// Define a field transformation method to write out the end time. Return the
last element of the normalHours attribute.
public java.sqgl.Time getEndTime ()
{

return getNormalHours() [1];

Specifying Advanced Features Available by Amending the Descriptor

In TopLink, transformation mappings do not require you to specify an attribute.

A field may be mapped from a computed value that does not map to a logical
attribute. This, in effect, constitutes a write-only mapping. In the Mapping
Workbench, all mappings are associated with an attribute before any other
information can be specified. Therefore, to use a write-only mapping, you must
build it by amending the descriptor. The mapping itself has no attribute name, get
and set methods, or attribute method. In your amendment method, simply create
an instance of TransformationMapping and send addFieldTransformation ()
message for each field to be written.

Example 5-5 Descriptor Amendment Examples

The following code example illustrates creating a write-only transformation
mapping and adding it to the descriptor.

public static void addToDescriptor (Descriptor descriptor) {

// Create a Transformation mapping and add it to the descriptor.
TransformationMapping transMapping = new
transMapping.addFieldTransformation (*WRITE_DATE”,
“descriptor.addMapping (transMapping) ;

}

The following example illustrates how to create a one-way transformation mapping
by using the inheritance indicator field of the primary key. Map the class as a

5-12 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Transformation Mappings

normal, including the other part of the primary key, and the inheritance through the
type field.

Note: The Mapping Workbench will display a neediness error
because the class indicator field part of the primary key is not
mapped. Use the following code to create an amendment method
to map the indicator field.

Create an amendment method for the class:

public void addToDescriptor (Descriptor descriptor) ({
TransformationMapping keyMapping = new TransformationMapping() ;
keyMapping.addFieldTranslation (“*PROJECT.PROJ_TYPE”, “getType”);
descriptor.addMapping (keyMapping) ; }

Define the getType method on the class to return its type value:

Project>>public abstract String getType();
LargeProject>>public String getType() { return “L”; }
SmallProject>>public String getType() { return “S”; }

Refer to "Amending Descriptors After Loading" on page 4-18 for more information.

Understanding Direct Mappings 5-13

Working with Transformation Mappings

5-14 Oracle9iAS TopLink Mapping Workbench Reference Guide

6

Understanding Relationship Mappings

Relational mappings define how persistent objects reference other persistent objects.
TopLink provides the following relationship mappings:

Direct collection mappings — Map Java collections of objects that do not have
descriptors (see "Working with Direct Collection Mappings").

Aggregate object mappings — Strict one-to-one mappings that require both
objects to exist in the same database row (see "Working with Aggregate Object
Mappings").

One-to-one mappings — Map a reference to another persistent Java object to the
database (see "Working with One-to-one Mappings").

Variable one-to-one mappings — Map a reference to an interface to the database
(see "Working with Variable One-to-one Mappings").

One-to-many mappings — Map Java collections of persistent objects to the
database (see "Working with One-to-many Mappings").

Aggregate collection mappings also map Java collections of persistent objects to
the database (see "Working with Aggregate Collection Mappings").

Many-to-many mappings use an association table to map Java collections of
persistent objects to the database (see "Working with Many-to-many
Mappings").

TopLink also provides object-relational relationship mappings (see Chapter 5,
"Understanding Direct Mappings" and Chapter 7, "Understanding Object Relational
Mappings").

All TopLink relationship mappings are uni-directional, from the class being
described (the source class) to the class with which it is associated (the target class).
The target class does not have a reference to the source class in a uni-directional
relationship.

Understanding Relationship Mappings 6-1

Working with Relationship Mappings

To implement a bi-directional relationship (classes that reference each other) use
two unidirectional mappings with the sources and targets reversed.

Working with Relationship Mappings

Persistent objects use relationship mappings to store references to instances of other
persistent classes. The appropriate mapping class is chosen primarily by the
cardinality of the relationship.

Specifying Private or Independent Relationships

In TopLink, object relationships can be either private or independent.

= Ina private relationship the target object is a private component of the source
object. The target object cannot exist without the source and is accessible only
via the source object. Destroying the source object will also destroy the target
object.

= Inanindependent relationship the source and target are public objects that exist
independently. Destroying one object does not necessarily imply the destruction
of the other.

Aggregate object mappings are private by default, since the target object shares the
same row as the source object. One-to-one, one-to-many, and many-to-many
mappings can be independent or private, depending upon the application.
Normally, many-to-many mappings are independent by definition; however,
because a many-to-many mapping can be used to implement a logical one-to-many
without requiring a back reference in the target to the source, TopLink allows
many-to-many mappings to be private as well as independent.

Tip: TopLink automatically supports private relationships.
Whenever an object is written to the database, any private objects it
owns are also written to the database. When an object is removed
from the database, any private objects it owns are also removed.
You should be aware of this when creating new systems, since it
may affect both the behavior and the performance of your
application.

6-2 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Foreign Keys

Working with Foreign Keys

TopLink uses references to maintain foreign key information. TopLink defines the
reference as a property of the table containing the foreign key. This may or may not
correspond to an actual constraint that exists on the database.

If you import tables from the database, TopLink creates references that correspond
to existing database constraints (if the driver supports this). You can also define any
number of references in the Mapping Workbench without creating similar
constraints on the database.

TopLink uses these references when defining relationship mappings and
descriptors” multiple table associations.

Understanding Foreign Keys

A foreign key is a combination of columns that reference a unique key, usually the
primary key, in another table. Foreign keys can be any number of fields (similar to
primary key), all of which are treated as a unit. A foreign key and the parent key it
references must have the same number and type of fields.

Relationship mappings use foreign keys to find information in the database so that
the target object(s) can be instantiated. For example, if every Employee has an
attribute address that contains an instance of Address (which has its own
descriptor and table), the one-to-one mapping for the address attribute would
specify foreign key information to find an address for a particular Employee.

TopLink classifies foreign keys into two categories in mappings — foreign keys and
target foreign keys:

Caution: Make sure you fully understand the distinction between
foreign key and target foreign key before defining a mapping.

s Ina foreign key the key is found in the table associated with the mapping’s own
descriptor. In the previous example, a foreign key to ADDRESS would be in the
EMPLOYEE table.

= Ina target foreign key the reference is from the target object’s table back to the
key from the mapping’s descriptor’s table. In the previous example the
ADDRESS table would have a foreign key to EMPLOYEE.

Understanding Relationship Mappings 6-3

Working with a Container Policy

Specifying Foreign Keys

If you import tables from the database, TopLink creates references that correspond
to existing database constraints (if supported by the driver). You can also define
references in TopLink without creating similar constraints on the database.

To display existing references for a table, use the References tab. References that
contain the On Database option will create a constraint that corresponds to the
references.

Note: Your database driver must support this.

To create a foreign key:

1. Choose a database table in the Project Tree pane that will contain the foreign
key.

2. Click on the References tab in the Properties pane.

3. Select a reference table. See "Creating table references" on page 3-10 for more
information.

4. Add a key pair for the reference. See "Creating Field References" on page 3-11
for more information.

Use the Source Field and Target Field drop-down lists to select the appropriate
fields on the source and target tables.

Repeat step 4 for each foreign key field.

Working with a Container Policy

A container policy specifies the concrete class TopLink should use when reading
target objects from the database. You can specify a container policy for collection
mappings (DirectCollectionMapping, OneToManyMapping, and
ManyToManyMapping) and for read-all queries (ReadallQuery).

Starting with JDK 1.2 the collection mappings can use any concrete class that
implements either the java.util.Collection interface or the java.util.Map
interface.

When using TopLink with JDK 1.2 (or later), you can map object attributes declared
as Collection or Map, or any sub-interface of these two interfaces, or as a class that
implements one of these two interfaces. You must specify in the mapping the
concrete container class to be used. When TopLink reads objects from the database

6-4 Oracle9/AS TopLink Mapping Workbench Reference Guide

Working with Indirection

that contain an attribute mapped with a collection mapping, the attribute is set with
an instance of the concrete class specified. By default, a collection mapping’s
container class is java.util.Vector.

Read-all queries also require a container policy to specify how the result objects are
to be returned. The default container is java.util .Vector.

Container policies cannot be used to specify a custom container class when using
indirect containers.

Overriding the Default Container Policy

For collection mappings, you can specify the container class in the Mapping
Workbench (see "Working with Direct Collection Mappings" on page 6-28).

To set the container policy without using the Mapping Workbench, the following
APl is available for both CollectionMapping and ReadAllQuery:

= useCollectionClass (Class) — Specifies the concrete Collection class to
use as a container for the objects in the collection. In JDK 1.2, the class must
implement the java.util.Collection interface.

= useMapClass(Class, String) - Specifies the concrete Map class to use as a
container for the objects in the collection. In JDK 1.2 the class must implement
the java.util.Map interface.

Also specified is the name of the zero argument method whose result, when
called on the target object, is used as the key in the Hashtable or Map. This
method must return an object that is a valid key in the Hashtable or Map.

Working with Indirection

Using indirection objects may improve the performance of TopLink object
relationships. An indirection object takes the place of an application object so that
the application object is not read from the database until it is needed.

Without indirection, when TopLink retrieves a persistent object, it also retrieves all
the objects referenced by that object. This may result in lower performance for some
applications. Using indirection allows TopLink to create “stand-ins” for related
objects, resulting in significant performance improvements, especially when the
application is only interested in the contents of the retrieved object rather than the
objects to which it is related.

Understanding Relationship Mappings 6-5

Working with Indirection

Understanding Indirection

Indirection is available for transformation mappings and for direct collection,
one-to-one, one-to-many, and many-to-many relationship mappings.

You can enable or disable indirection for each mapping individually. By default,
indirection is enabled for relationship mappings and disabled for transformation
mappings. Indirection should only be enabled for transformation mappings if the
execution of the transformation method is a resource-intensive task, such as
accessing the database.

= Indirection disabled: An indirection object is not used. Whenever an object is
retrieved from the database, all of the objects associated with it through the
mapping are also read.

= Indirection enabled: A value holder is used to represent the entire relationship.
When an object is retrieved from the database, a value holder is created and
stored in the attribute corresponding to the mapping. The first time the value
holder is accessed, it retrieves the related object from the database.

In addition to this standard version of indirection, collection mappings (direct
collection, one-to-many, and many-to-many) can use indirect containers.

Using Value Holder Indirection

Persistent classes that use indirection must replace relationship attributes with
value holder attributes. A value holder is an instance of a class that implements the
ValueHolderInterface interface, such as ValueHolder. This object stores the
information necessary to retrieve the object it is replacing from the database. If the
application does not access the value holder, the replaced object is never read from
the database.

When using method access, the get and set methods specified for the mapping
must access an instance of ValueHolderInterface rather than the object
referenced by the value holder.

To obtain the object that the value holder replaces, use the getvalue () and
setValue () methods of the ValueHolderInterface class. A convenient way of
using these methods is to hide the getvValue and setValue methods of the
ValueHolderInterface inside get and set methods, as in the following example.

Example 6—-1 Value Holder Indirection Example

The following figure illustrates the Employee object being read from the database.
The Address object is not read and will not be created unless it is accessed.

6-6 Oracle9/AS TopLink Mapping Workbench Reference Guide

Working with Indirection

Figure 6—-1 Address Object Not Read

Java application "Get Employee" request

v

™

) — ” Relational
_ I X
emp?—_ YYalueHalder address; datahase
readObject(); Integer id;
String name;

“Yector phones:
ValueHolder

The first time the address is accessed, as in the following figure, the ValueHolder
reads and returns the Address object.

Figure 6-2 Initial Request

Java application

“alueHolder address; ValueHolder
gttﬁr?ernlgline- Relational
getAddress(), \f’ectgr phonias‘ database

String city;
Integer id;

Subsequent requests for the address do not access the database, as shown in the
following figure.

Figure 6-3 Subsequent Requests

Java application

ValueHolder

String city;

“alueHolder address;
Integer id;
String narme;
“ector phones;

getAddress(),

Integer id;

Specifying Indirection

Use this procedure to specify that a mapping uses indirection.

Understanding Relationship Mappings 6-7

Working with Indirection

To specify indirection:
1. In the Project Tree pane, select the mapping to be mapped and click the
appropriate button from the mapping toolbar.

The window appears in the Properties pane.

Figure 6-4 Sample Mapping Properties

=2 grdress (One To One Mapping)

General l Tahle Reference]
[Read anly

[Use method accessing

Get method:

[
Set method: J
B

Reference Descriptar: | =none selected=
[Maintain Bidirectional Relationship

Relationship Parther:

Indirection [Private owned

aption [~ Use batch reading

[Use joining

v Use indirection

2. On the General tab, select Use Indirection to specify that the mapping uses
indirection.

Changing Java Classes to Use Indirection

Attributes using indirection must conform to the ValueHolderInterface. You can
change your attribute types in the Class Editor without re-importing your Java
classes. Ensure that you change the attribute types in your Java code as well.
Attributes that are typed incorrectly will be marked as deficient.

In addition to changing the attribute’s type, you may also need to change its
accessor methods. If you use method access, TopLink requires accessors to the
indirection object itself, so your get method returns an instance that conforms to
ValueHolderInterface and your set method accepts one argument that conforms
to the same. If the instance variable returns a Vector instead of an object then the
value holder should be defined in the constructor as follows:

addresses = new ValueHolder (new Vector());

6-8 Oracle9/AS TopLink Mapping Workbench Reference Guide

Working with Transparent Indirection

In any case, the application uses the getAddress () and setAddress () methods to
access the Address object. With indirection, TopLink uses the

getAddressHolder () and setAddressHolder () methods when saving and
retrieving instances to and from the database.

Refer to the TopLink: Foundation Library Guide for details.

Example 6-2 Indirection Example

The following code illustrates the Employee class using indirection with method
access for a one-to-one mapping to Address.

The class definition is modified so that the address attribute of Employee is a
ValueHolderInterface instead of an Address and appropriate get and set
methods are supplied.

// Initialize ValueHolders in Employee Constructor
public Employee() {

address = new ValueHolder();

}

protected ValueHolderInterface address;

// 'Get’ and ‘Set’ accessor methods registered with the mapping and used by
Oracle 9iAS TopLink.

public ValueHolderInterface getAddressHolder () {

return address;

}

public void setAddressHolder (ValueHolderInterface holder) {

address = holder;

}

// ‘Get’ and ‘Set’ accessor methods used by the application to access the
attribute.

public Address getAddress() {

return (Address) address.getValue();

}

public void setAddress(Address theAddress) {

address.setValue (theAddress) ;

}

Working with Transparent Indirection

Transparent indirection allows you to declare any relationship attribute of a
persistent class that holds a collection of related objects as a

Understanding Relationship Mappings 6-9

Working with Transparent Indirection

java.util.Collection, java.util.Map, java.util.Vector, or
java.util.Hastable. TopLink will use an indirection object that implements the
appropriate interface and also performs “just in time” reading of the related objects.
When using transparent indirection, you do not have to declare the attributes as
ValueHolderInterface.

You can specify transparent indirection from the Mapping Workbench. Newly
created collection mappings use transparent indirection by default, if their attribute
is not a ValueHolderInterface.

Specifying Transparent Indirection

Use this procedure to use transparent indirection.

Using Transparent Indirection:
1. In the Project Tree pane, select the attribute. The mapping window appears in
the Properties pane.

Figure 6-5 Sample Mapping properties

*3% (One Ta Many Mapping)

General l Collection Options] Tahle Reference
[~ Read anly

[Use method accessing

Get method: |

Set method: |

l¢| LWL

Reference Descriptar: |m Metwark

[Maintain Bidirectional Relationship
Relationship Partner: J

[Private owned

Transparent [Use batch reading

indirection | ~Jv Use indirection

option
| T TwEeRDiTe— * Transparent

2. On the General tab, select the Use Indirection option for attributes that use
indirection.

3. Select the Transparent indirection option.

Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Proxy Indirection

Working with Proxy Indirection

Introduced in JDK 1.3, the Java class Proxy allows you to use dynamic proxy
objects as stand-ins for a defined interface. Certain TopLink mappings
(OneToOneMapping, VariableOneToOneMapping, ReferenceMapping, and
TransformationMapping) can be configured to use proxy indirection which gives
you the benefits of TopLink indirection without the need to include TopLink classes
in your domain model. Basically, proxy indirection is to one-to-one relationship
mappings as indirect containers are to collection mappings.

Although the Mapping Workbench does not support proxy indirection, you can use
the useProxyIndirection method in an amendment method.

To use proxy indirection, your domain model must satisfy the following criteria:

= The target class of the one-to-one relationship must implement a public
interface

= The one-to-one attribute on the source class must be typed as that interface

= If method accessing is used, then the get () and set () methods must use the
interface

Example 6-3 Proxy indirection Examples

The following code illustrates an Employee->Address one-to-one relationship.

public interface Employee {
public String getName() ;
public Address getAddress();
public void setName (String value) ;
public void setAddress (Address value);

}

public class EmployeeImpl implements Employee {
public String name;
public Address address;

public Address getAddress() {
return this.address;

}

public void setAddress (Address value) {
this.address = value;

}

public interface Address {

Understanding Relationship Mappings 6-11

Working with Proxy Indirection

public String getStreet();
public void setStreet(String value);

}
public class AddressImpl implements Address {
public String street;

In this example, both the EmployeeImpl and the AddressImpl classes implement
public interfaces (Employee and Address respectively). Therefore, because the
AddressImpl is the target of the one-to-one relationship, it is the only class that
must implement an interface. However, if the EmployeeImpl is ever to be the target
of another one-to-one relationship using transparent indirection, it must also
implement an interface.

The following code illustrates this relationship using proxy indirection.

Employee emp = (Employee) session.readObject (Employee.class);
System.out.println(emp.toString());
System.out.println(emp.getAddress().toString());

// Would print:

[Employee] John Smith

{ IndirectProxy: not instantiated }

String street = emp.getAddress().getStreet();

// Triggers database read to get Address information
System.out.println(emp.toString());
System.out.println(emp.getAddress () .toString());

// Would print:

[Employee] John Smith

{ [Address] 123 Main St. }

Using proxy indirection does not change how you instantiate your own domain
objects for insert. You still use the following code:

Employee emp = new EmployeeImpl ("John Smith");
Address add = new AddressImpl("123 Main St.");
emp .setAddress (add) ;

Implementing Proxy Indirection in Java

To enable proxy indirection in Java code, use the following API for
ObjectReferenceMapping:

6-12 Oracle9iAS TopLink Mapping Workbench Reference Guide

Optimizing for Queries

= useProxyIndirection() —indicates that TopLink should use proxy
indirection for this mapping. When the source object is read from the database,
a proxy for the target object is created and used in place of the “real” target
object. When any method other than g-string () is called on the proxy, the
“real” data will be read from the database.

Example 6-4 Proxy indirection Example
The following code example illustrates using proxy indirection.

// Define the 1:1 mapping, and specify that Proxy Indirection should be used
OneToOneMapping addressMapping = new OneToOneMapping();
addressMapping.setAttributeName ("address") ;

addressMapping.setReferenceClass (AddressImpl.class);
addressMapping.setForeignKeyFieldName ("ADDRESS_ID") ;
addressMapping.setSetMethodName ("setAddress") ;
addressMapping.setGetMethodName ("getAddress") ;
addressMapping.useProxyIndirection() ;

descriptor.addMapping (addressMapping) ;

Optimizing for Queries

You can configure query optimization on any relationship mappings. The
optimization requires fewer database calls to read a set of objects from the database.
Query optimization can be configured on a descriptor’s mappings to affect all
queries for that class. This can result in a significant system performance gain
without changing any application code. Queries can also be optimized on a
per-query basis. For more information, see the TopLink: Foundation Library Guide.

TopLink provides two query optimization features on mappings: joining and batch
reading.

= Joining can be used only on one-to-one mappings. Joining joins the two related
classes tables to read all of the data in a single query. This feature should be
used only if it is known that the target object is always required with the source
object, or indirection is not used.

= Batch reading can be used in most of the relational mappings, including direct
collection mappings, one-to-one mappings, aggregate collection mappings,
one-to-many mappings, and many-to-many mappings. This feature should be
used only if it is known that the related objects are always required with the
source object.

Understanding Relationship Mappings 6-13

Working with Aggregate Object Mappings

Example 6-5 Query Optimization Examples

The following code example illustrates using joining for query optimization.

// Queries for Employee are configured to always join Address
OneToOneMapping addressMapping = new OneToOneMapping () ;
addressMapping.setReferenceClass (Address.class);
addressMapping.setAttributeName ("address") ;
addressMapping.useJoining() ;
addressMapping.privateOwnedRelationship () ;

The following code example illustrates using batch for query optimization.

// Queries on Employee are configured to always batch read Address
OneToManyMapping phoneNumbersMapping = new OneToManyMapping () ;
phoneNumbersMapping.setReferenceClass ("

PhoneNumber.class")
phoneNumbersMapping.setAttributeName ("phones") ;
phoneNumbersMapping.useBatchReading () ;
phoneNumbersMapping.privateOwnedRelationship() ;

Working with Aggregate Object Mappings

Two objects are related by aggregation if there is a strict one-to-one relationship
between the objects and all the attributes of the second object can be retrieved from
the same table(s) as the owning object. This means that if the source (parent) object
exists, then the target (child or owned) object must also exist, as illustrated in
Figure 6-6.

Aggregate objects are privately owned and should not be shared or referenced by
other objects.

Note: When using an aggregate descriptor in an inheritance, all
the descriptors in the inheritance tree must be aggregates.
Aggregate and Class descriptors cannot exist in the same
inheritance tree.

6-14 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Aggregate Object Mappings

Figure 6-6 Aggregate Object Mapping

EMPLOYEE tahle

Employee (source) 103 | John Doe | 305 | 010141995 | 01/07/1935
Address address; 104 lyJane Srith | 226 | 0401415993 | 01/01/1994
Integer id; | 7705 | Tom Jones | 274 DB@MBQB 020172001
String name; Relational database

Period employPeriod, |
Period (target)
Date startDate;
Date endDate;

Java class

To implement an aggregate object mapping:

= The descriptor of the target class must declare itself to be an aggregate object.
Because all of its information comes from its parent’s table(s), the target
descriptor does not have a specific table associated with it. You must, however,
choose one or more candidate table(s) from which you can use fields in
mapping the target. In the example above, you could choose the EMPLOYEE table
so that the START DATE and END_DATE fields are available during mapping.

= The descriptor of the source class must add an aggregate object mapping that
specifies the target class. In the example above, the Employee class has an
attribute called employPeriod that would be mapped as an aggregate object
mapping with Period as the reference class. The source class must ensure that
its table has fields that correspond to the field names registered with the target
class.

= Ifasource object has a null target reference, TopLink writes NULLSs to the
aggregate database fields. When the source is read from the database, it can
handle this null target in one of two ways:

= Create an instance of the object with all of its attributes equal to null.

= Put a null reference in the source object without instantiating a target. (This
is the default method of handling null targets.)

Target objects can also have multiple sources, hence the need to choose a candidate
table during its mapping. This allows different source types to store the same target
information within their tables. Each source class must have table fields that
correspond to the field names registered with the target class. If one of the source
tables has different field names than the names registered with the target class, the
source class must translate the field names.

In Figure 6-7:

= The Period class has a direct-to-field mapping between startDate and
START_DATE.

Understanding Relationship Mappings 6-15

Working with Aggregate Object Mappings

= The Employee class can use the Period class as a normal aggregate to write to
its START_DATE column.

s The PROJECT table does not have a field called START_DATE, so the Project
descriptor must provide a field translation on its aggregate object mapping
from START DATE to S_DATE. (If the PROJECT table had a START DATE column,
this field translation would be unnecessary.)

Figure 6-7 Aggregation with Multiple Source Classes

Java class: Relational database: &
9 il &
¥ & 3 &Y Jr
@@f = 06%' &??‘ &7
Employee & ¥ ®) &
Address address, 103 [John Doe | 305 | 01/01/1995 | 01/07/1995
Integer id: 104 [Jane Srith | 226 | D4/01/15593 | 01/01/1994
String name; 105 | Torn Jones | 274 | 08/0171998 | 02/01/2001
Period employPeriod; EMPLOYEE table
Aggregate object Period
mapping Date startDate;
Date endDate; ?'.6,/ &
& <
> F &7 &
M & & o>
. ___ < & F &
String description; 979 | Consultant | Smaltalk 01/01/1995 | 01/07/1995
Integer id; 42| Java Developer| Java Product | D4/0141993 | D1/01/1994
String narne; 356 | Publisher Multimedia | 08/01/1998 | 02/01/2001

Period projectPeriod;

PROJECT table
Aggregate object

rmapping with

translation

Aggregate target classes that are not shared among multiple source classes can have
any type of mapping, including other aggregate object mappings.

Aggregate target classes that are shared with multiple source classes cannot have
one-to-many or many-to-many mappings.

Other classes cannot reference the aggregate target with one-to-one, one-to-many, or
many-to-many mappings. If the aggregate target has a one-to-many relationship
with another class, the other class must provide a one-to-one relationship back to
the aggregate’s parent class instead of the aggregate child. This is because the
source class contains the table and primary key information of the aggregate.

Aggregate descriptors can make use of inheritance. The subclasses must also be
declared as aggregate and be contained in the source’s table. For more information
on inheritance, see "Working with Inheritance" on page 4-30.

6-16 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Aggregate Object Mappings

Creating a Target Descriptor

Use this procedure to create a target descriptor to use with an aggregate mapping.
You must configure the target before specifying field translations in the parent
descriptor.

To create the target descriptor:

1. In the Project Tree pane, right-click on the target descriptor and select
Aggregate from the pop-up menu. The descriptor’s icon in the Project Tree
pane changes to an Aggregate Descriptor .

You can also create the target descriptor by selecting Selected > Aggregate from
the menu or by clicking the Aggregate Descriptor button [2s].

2. Map the attributes, specifying all but field information.

= For a one-to-one mapping, pick a reference between a table in the target
descriptor and a table in a descriptor that will have a mapping to this
aggregate target. If this aggregate target will be mapped to by multiple
source descriptors, pick a reference whose foreign key field(s) will be in the
tables of one of the source descriptors.

= For a one-to-many mapping or a many-to-many mapping, pick a reference
whose foreign key field(s) will be in the referenced descriptor’s tables and
whose primary key field will be in the source descriptor’s tables.

3. Continue with "Creating an Aggregate Object Mapping" on page 6-17 to create
the aggregate mapping.

Creating an Aggregate Object Mapping

Use this procedure to create an aggregate object mapping. You must also create a
target descriptor to use with the aggregate mapping.

To create an aggregate object mapping:

1. In the Project Tree pane, select the mapping to be mapped and click the
Aggregate Mapping button [&] from the mapping toolbar.

The Aggregate mapping window appears in the Properties pane.

Understanding Relationship Mappings 6-17

Working with Aggregate Object Mappings

Figure 6-8 Aggregate Mapping General Tab

Q period (Aggregate Mapping)
General ‘ Fieldsl

[~ Read Only
[Use Method Accessing

| i
| =

Reference Descriptor: rg EmploymentPeriod ﬂ

[Allows Bull

2. Use the Reference Descriptor drop-down list on the General tab to select a
reference descriptor.

Note: You may select only aggregate descriptors. See “Creating a
Target Descriptor” on page 17.

3. You can also specify:
= Read-only attributes — See "Specifying Read-only Settings" on page 4-63.

= Access methods — See "Specifying Direct Access and Method Access" on
page 4-62.

= Null values — See "Defaulting Null Values" on page 4-64.

4. Click on the Fields tab to specify field information for the target descriptor’s
mapping.

6-18 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with One-to-one Mappings

Figure 6-9 Aggregate Mapping Fields Tab

Q period (Aggregate Mapping)
General Fields

Field Description Field

EmploymentPeriod.endDate direct field o EMD_DATE =
EmploymentPeriod. startDate direct field B START_DATE ~

5. Use this table to enter data in each field:

Field Description

Field Description Available fields from the reference descriptor. These fields are
for display only and cannot be changed on this screen.

Field Use the drop-down list to select a field to use for the mapping
for each field description.

Working with One-to-one Mappings

One-to-one mappings represent simple pointer references between two Java objects.
In Java, a single pointer stored in an attribute represents the mapping between the
source and target objects. Relational database tables implement these mappings
using foreign keys.

Figure 6-10 illustrates a one-to-one relationship from the address attribute of an
Employee object to an Address object. To store this relationship in the database,
create a one-to-one mapping between the address attribute and the Address class.
This mapping stores the id of the Address instance in the EMPLOYEE table when the
Employee instance is written. It also links the Employee instance to the Address
instance when the Employee is read from the database. Since an Address does not
have any references to the Employee, it does not have to provide a mapping to
Employee.

For one-to-one mappings, the source table normally contains a foreign key reference
to a record in the target table. In Figure 6-10, the ADDR_ID field of the EMPLOYEE
table is a foreign key.

Understanding Relationship Mappings 6-19

Working with One-to-one Mappings

Figure 6-10 One-to-one Mappings

One-to-one relationship in Java:
Address address;
Integer id,
String name;
“ector phones;

String city;
String country;
Date established;
Integer id;
String provice;

One-to-one relationship in <9
relational database: P o &
e §S ¢ & &S
& & & & S Y o
N kN LS, ¢ < <

103 |John Doe | 305 274 | Ottawa Canada | 01/01/1995 | Ottawa
104 [Jane Smith | 226 /105 Toronto Canada | 0401/1993 | Toronto
105 |Tom Jones | 274 421 [Mew Yark | USA 08/01/2001 | MNew York
EMPLOYEE table ADDRESS table

You can also implement a one-to-one mapping where the target table contains a
foreign key reference to the source table. In the example, the database design would
change such that the ADDRESS row would contain the EMP_ID to identify the
Employee to which it belonged. In this case, the target must also have a relationship
mapping to the source.

The update, insert and delete operations for privately owned one-to-one
relationships, which are normally done for the target before the source, are
performed in the opposite order when the target owns the foreign key. Target
foreign keys normally occur in bidirectional one-to-one mappings, as one side has a
foreign key and the other shares the same foreign key in the other’s table.

Target foreign keys can also occur when large cascaded composite primary keys
exist (that is, one object’s primary key is composed of the primary key of many
other objects). In this case it is possible to have a one-to-one mapping that contains
both foreign keys and target foreign keys.

In a foreign key, TopLink automatically updates the foreign key value in the object’s
row. In a target foreign key, it does not. In TopLink, the Target Foreign Key
checkbox includes a checkmark when a target foreign key relationship is defined.

When mapping a relationship, it is important to understand these differences
between a foreign key and a target foreign key, to ensure that the relationship is
defined correctly.

In a bi-directional relationship where the two classes in the relationship reference
each other, only one of the mappings should have a foreign key. The other mapping
should have a target foreign key. If one of the mappings in a bi-directional

6-20 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with One-to-one Mappings

relationship is a one-to-many mapping, see "Working with Variable One-to-one
Mappings" on page 6-23 for details.

Creating One-to-one Mappings

Use this procedure to create a one-to-one mapping.

To create a one-to-one mapping
1. In the Project Tree pane, select the mapping to be mapped and click the
One-to-One Mapping button [from the mapping toolbar.

The One-to-one mapping window appears in the Properties pane.

Figure 6-11 One-to-one Mapping General Properties

#+2 grdress (One To One Mapping) |

General l Tahle Reference]
[~ Readanly

[Use method accessing

Get methad:

[
Set methad: J
[

Reference Descriptar: |=none selected=
[Maintain Bidirectional Relationship

Relationship Partner:
[Private owned
[Use batch reading

[~ Use joining

v Use indirection

2. Enter the required information on the General tab (see "Working with Common
Mapping Properties" on page 4-61).
3. You can also specify:
= Bidirectional relationships — See "Maintaining Bidirectional Relationships"
on page 4-64
= Read-only attributes — See "Specifying Read-only Settings" on page 4-63
= Access methods — See "Specifying Direct Access and Method Access" on
page 4-62

Understanding Relationship Mappings 6-21

Working with One-to-one Mappings

= Null values — See "Defaulting Null Values" on page 4-64

4. C(Click on the Table Reference tab to choose the reference.

Figure 6-12 One-to-one Mapping Table Reference Properties

s+ manager (One To One Mapping) |

General Tahle Reference ‘

Tahle Reference: |% EMPLOYEE_EMPLOYEE ﬂ e ..

Key pairs:
Source Field Target Field Target Add
fareign key

Iit EMP_ID il]ﬁ EMP_ID IREIE
4] 2|

5. Use this table to enter data in each field:

Field Description
Table Reference Use the drop-down list to select a table reference for the
mapping. Click on New to create a new table
Key Pairs
Source Field Use the drop-down list to select a field from the source table.
Target Field Use the drop-down list to select a field from the target table.

Target Foreign Key Specify if the relationship is a target foreign key.

Specifying Advanced Features Available by Amending the Descriptor

One-to-one target objects mapped as Privately Owned are, by default, verified
before deletion or update outside of a unit of work.

Verification is a check for the previous value of the target and is accomplished
through joining the source and target tables. Inside a unit of work, verification is
accomplished by obtaining the previous value from the back-up clone, so this
setting is not used because a database read is not required. You may wish to disable

6-22 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Variable One-to-one Mappings

verification outside of a unit of work for performance reasons and can do so by
sending the setShouldverifyDelete () message to the mapping in an
amendment method written for the descriptor as follows:

public static void addToDescriptor (Descriptor descriptor) {
//Find the one-to-one mapping for the address attribute
OneToOneMapping addressMapping=(OneToOneMapping)
descriptor.getMappingForAttributeName (“address”) ;
addressMapping.setShouldverifyDelete (false);

}

Working with Variable One-to-one Mappings

Variable class relationships are similar to polymorphic relationships except that in
this case the target classes are not related via inheritance (and thus not good
candidates for an abstract table) but via an interface.

To define variable class relationships in TopLink Mapping Workbench, use the
variable one-to-one mapping selection but choose the interface as the reference
class. This makes the mapping a variable one-to-one. When defining mappings in
Java code, use the VariableOneToOneMapping class.

TopLink only supports variable relationship in one to one mappings. It handles this
relationship in two ways:

= Through the class indicator field

= Through unique primary key values among target classes implementing the
interface

Specifying Class Indicator

Through the class indicator field, a source table has an indicator column that
specifies the target table, as illustrated in the following illustration. The EMPLOYEE
table has a TYPE column that indicates the target for the row (either PHONE or
EMAIL).

Understanding Relationship Mappings 6-23

Working with Variable One-to-one Mappings

Figure 6-13 Class indicator Field

Class indicator field (C_ID):

= "Email" = Email Java class @@,‘Qg‘
= "Phone" = Phone Java class) ‘\\)
..
& 9 2]... |

Q & ol
[T ["Email" [1]
ERI hone” |
EMPLOYEE tahle

PHOME tahle

The principles of defining such a variable class relationship are similar to defining a
normal one-to-one relationship, except:

» The reference class is a Java interface, not a Java class. However, the method to
set the interface is identical.

= A type indicator field must be specified.

= The class indicator values are specified on the mapping so that mapping can
determine the class of object to create.

= The foreign key names and the respective abstract query keys from the target
interface descriptor must be specified.

Specifying Unique Primary Key

As shown in Figure 6-14, the value of the foreign key in the source table mapped to
the primary key of the target table is unique. No primary key values among the
target tables are the same, so primary key values are not unique just in the table, but
also among the tables.

6-24 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Variable One-to-one Mappings

Figure 6-14 Unique primary key

<
1]
2 |

MAIL table

L“J'\J_\/C)
% ¥

3
E 0@@
EMPLOYEE tahle s

s

HONE tahle

Because there is no indicator stored in the source table, TopLink can not determine
to which target table the foreign key value is mapped. Therefore, TopLink reads
through all the target tables until it finds an entry in one of the target tables. This is
an inefficient way of setting up a relation model, because reading is very expensive.
The class indicator is much more efficient and it reduces the number of reads done
on the tables to get the data. In the class indicator method, TopLink knows exactly
which target table to look into for the data.

The principles of defining such a variable class relationship is similar to defining
class indicator variable one-to-one relationships, except:

= A type indicator field is not specified.
= The class indicator values are not specified.

The type indicator field and its values are not needed, as TopLink will go through
all the target tables until data is finally found.

Creating Variable One-to-one Mappings

Use this procedure to create a variable one-to-one mapping. You must configure the
target descriptor before defining the mapping.

To create a variable one-to-one mapping:
1. In the Project Tree pane, choose the interface descriptor that will be referenced.

2. On the Implementors tab, choose all descriptors that implement this interface
and share a common query key. You may need to create query keys for some or
all of these descriptors.

Understanding Relationship Mappings 6-25

Working with Variable One-to-one Mappings

Figure 6-15 Implementors Tab

& Implementors

Choose the descriptors that implement this interface and share at least
ONE COMMOon query key.

Implementors Common Guery Keys

v % Ermnail
¥ % Phone

3. In the Project Tree pane, choose the attribute to be mapped as a variable
one-to-one mapping and click the Variable One-to-One Mapping button |+ |
on the mapping toolbar.

4. Choose the General tab.

Figure 6-16 Variable one-to-one Mapping General Properties

»4 contact (Variable One To One Mapping)

General | query KeyAssociationsi Class Indicatnrlnfoi

[~ Read anly

[Use method accessing

=
]
hd

Reference Descriptar: E"PJ Contact

[Private owned
[Use batch reading

[~ Use indirection

5. Use the Reference Descriptor drop-down list to choose a reference descriptor.
The Mapping Workbench will only display interface descriptors.

6. Enter any other required information on the General tab (see "Working with
Common Mapping Properties" on page 4-61).

7. Choose the Query Key Associations tab.

6-26 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Variable One-to-one Mappings

Figure 6-17 Variable one-to-one Mapping Query Key Associations Properties

=+ contact fvariable One Ta One Mapping) |

General QUery Key Associations i Class Indicator Infoi

Fareign Key Gluery Key Add

b v| @i x
u| D | i [Remaove I

8. Specify fields in the source descriptor’s tables to use for common query keys.

9. Choose the Class Indicator Info tab.

Figure 6-18 Variable One-to-one Mapping Class Indicator Info Tab

o4 contact (Wariable One To One Mapping) |

Generall Guery Key Associations Class Indicatar Info

Class indicator field: |H CONTACT_TYFE vI
Indicator type: |"L:java.lang.8tring vI

Include | Class Indicatar Walue
0@ | g8 Email |E |
1|V &9 Phane |P =l

10. Use this table to enter data in each field.

Field Description

Class Indicator Field Use the drop-down list to select a field to use as a class indicator.
To use unique primary keys (no class indicator values), select
<none selected>.

Indicator Type Use the drop-down list to select the Java type for the Class
Indicator Field.

Class information:
Include Specify to use this class for the mapping.

Class Name of the class. This field is for display only.

Understanding Relationship Mappings 6-27

Working with Direct Collection Mappings

Field Description

Indicator Value Value used by this class.

Note: If the class does not appear in the Class Information table,
you must add the class in the interface descriptor. See
"Implementing an Interface" on page 4-39 for more information.

Working with Direct Collection Mappings

Direct collection mappings store collections of Java objects that are not
TopLink-enabled. The object type stored in the direct collection is typically a Java
type such as String.

It is also possible to use direct collection mappings to map a collection of
non-String objects. For example, it is possible to have an attribute that contains a
collection of Integer or Date instances. The instances stored in the collection can
be any type supported by the database and has a corresponding wrapper class in
Java.

Support for primitive data types such as int is not provided since Java vectors only
hold objects.

Example 6-6 Direct Collection Example

Figure 6-19 illustrates how a direct collection is stored in a separate table with two
fields. The first field is the reference key field, which contains a reference to the
primary key of the instance owning the collection. The second field contains an
object in the collection and is called the direct field. There is one record in the table
for each object in the collection.

Figure 6-19 Direct Collection Mappings

Java class: Relational datahase:
Employes &

Address address, Qo Lo
Integer id; & K

String name; 103 | Developer
“ector responsibilities; 104 D eveloper
[TopEmail support

RESPONS table

6-28 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Direct Collection Mappings

Note: The “responsibilities” attribute is a Vector. When using
JDK 1.2, it is possible to use a Collection interface (or any class
that implements the Collection interface) for declaring the
collection attribute. See "Working with a Container Policy" on
page 6-4 for details.

Maps are not supported for direct collection as there is no key value.

Creating Direct Collection Mappings

Use this procedure to create a direct collection mapping.

To create a direct collection mapping:
1. Select the attribute to be mapped from the Project Tree pane.

2. Click the Direct Collection Mapping button [ws] on the mapping toolbar.

Figure 6-20 Direct Collection Mapping General Properties

B hroadeastor (Direct Collection Mapping) |

General l Cuollection Options] Tahle Reference]

[~ Readonly

[Use method accessing

[~ Use batch reading

Il

[~ Use indirection

o) o

Direct Collection Specifics

Targettable: |=none selectad= ﬂ

Direct field:

3. Use the Target Table and Direct Field drop-down lists to specify the
appropriate information.

Understanding Relationship Mappings 6-29

Working with Aggregate Collection Mappings

4. Enter any other required information on the General tab (see "Working with
Common Mapping Properties" on page 4-61).

5. Choose the Collection Options tab to specify collection information for this
mapping. See "Specifying Collection Properties" on page 4-64 for more
information.

6. Choose the Table References tab to specify foreign key information for this
mapping. See "Creating table references" on page 3-10 for more information.

7. Click on the Table Reference tab.

Figure 6-21 Direct Collection Mapping Table Reference Properties

k=3 responsibilitiesList (Direct Collection Mapping)

General Tahle Reference ‘

Tahle Reference: |% EMPLOYEE_EMPLOYEE ﬂ Mewr ..

Key pairs:
Source Field Target Field Target Add

foreign key
R
liit EMP_ID v] |ji‘ EMP_ID # ﬂ

8. Choose the appropriate reference that relates the target table to the tables
associated with the source descriptor.

Working with Aggregate Collection Mappings

Aggregate collection mappings are used to represent the aggregate relationship
between a single-source object and a collection of target objects. Unlike the TopLink
one-to-many mappings, in which there should be a one-to-one back reference
mapping from the target objects to the source object, there is no back reference
required for the aggregate collection mappings because the foreign key relationship
is resolved by the aggregation.

Caution: Aggregate collections are not directly supported in the
Mapping Workbench. You must use an amendment method (see
"Amending Descriptors After Loading" on page 4-18) or manually
edit the project source to add the mapping.

6-30 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with One-to-many Mappings

To implement an aggregate collection mapping:

= The descriptor of the target class must declare itself to be an aggregate
collection object. Unlike the aggregate object mapping, in which the target
descriptor does not have a specific table to associate with, there must be a target
table for the target object.

= The descriptor of the source class must add an aggregate collection mapping
that specifies the target class.

Aggregate collection descriptors can use inheritance. The subclasses must also be
declared as aggregate collection. The subclasses can have their own mapped tables,
or share the table with their parent class. For more information on inheritance, see
"Working with Inheritance" on page 4-30.

In a Java Vector, the owner references its parts. In a relational database, the parts
reference their owners. Relational databases use this implementation to make
querying more efficient.

Note: For information on using collection classes other than
Vector with aggregate collection mappings, see Oracle9iAS
TopLink: Foundation Library Guide.

Working with One-to-many Mappings

One-to-many mappings are used to represent the relationship between a single
source object and a collection of target objects. They are a good example of
something that is simple to implement in Java using a Vector (or other collection
types) of target objects, but difficult to implement using relational databases.

In a Java Vector, the owner references its parts. In a relational database, the parts
reference their owner. Relational databases use this implementation to make
querying more efficient.

Note: See "Working with a Container Policy" on page 6-4 for
information on using collection classes other than Vector with
one-to-many mappings.

The purpose of creating this one-to-one mapping in the target is so that the foreign
key information can be written when the target object is saved. Alternatives to the
one-to-one mapping back reference include:

Understanding Relationship Mappings 6-31

Working with One-to-many Mappings

= Use a direct-to-field mapping to map the foreign key and maintain its value in
the application. Here the object model does not require a back reference, but the
data model still requires a foreign key in the target table.

= Use a many-to-many mapping to implement a logical one-to-many. This has the
advantage of not requiring a back reference in the object model and not
requiring a foreign key in the data model. In this model the many-to-many
relation table stores the collection. It is possible to put a constraint on the join
table to enforce that the relation is a logical one-to-many relationship.

Example 6-7 One-to-many Mapping Example

One-to-many mappings must put the foreign key in the target table, rather than the
source table. The target class should also implement a one-to-one mapping back to
the source object, as illustrated in the following figure.

Figure 6-22 One-to-many Relationships

Java class:

Address address;

String areaCode;
Integer id;
Employee awner;

Integer id,
String name;
“ector phones;

One-to-one mapping

Source class

Target class
Relational database: < Q{"
] Y O

& 7 CSIN AN

o RS- SN
Y F ks Faoreign key T ¥ % S
103 | John Doe | 305 refarence 25 | 613 1905 | 555-7634
104 | Jane Srnith | 226 26 | BO03 | 96 | 555-8251
105 4Tom Janes | 274 2745105 | 555-5649
EMPLOYEE table (source) PHOME table (target)

Creating One-to-many Mappings

Use this procedure to create a one-to-many mapping in the Mapping Workbench.

To create a one-to-many mapping:
1. Select the attribute to be mapped from the Project Tree pane.

2. Click the One-to-Many Mapping button [4§] on the mapping toolbar.

6-32 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Many-to-many Mappings

Figure 6-23 One-to-many mapping General Properties

=2 grdress (One To One Mapping) |

General l Tahle Reference]
[Read anly

[Use method accessing

Get method:

[
Set method: J
B

Reference Descriptar: | =none selected=
[Maintain Bidirectional Relationship

Relationship Parther:
[Private owned

[Use batch reading
[Use joining

v Use indirection

3. Use the Reference Descriptor drop-down list to select the reference for this
descriptor.

4. You can also specify:
= Bidirectional relationships — See "Maintaining Bidirectional Relationships"
on page 4-64

= Read-only attributes — See "Specifying Read-only Settings" on page 4-63

= Access methods — See "Specifying Direct Access and Method Access" on
page 4-62

= Null values — See "Defaulting Null Values" on page 4-64

5. Choose the Collection Options tab to specify collection information for this
mapping. See “Specifying Collection Properties” on page 64 for more
information.

6. Choose the Table References tab to specify foreign key information for this
mapping. See “Creating table references” on page 10 for more information.

Working with Many-to-many Mappings
Many-to-many mappings represent the relationships between a collection of source
objects and a collection of target objects. They require the creation of an

Understanding Relationship Mappings 6-33

Working with Many-to-many Mappings

intermediate table for managing the associations between the source and target
records. Figure 624 and Figure 6-24 illustrate a many-to-many mapping in Java
and in relational database tables.

Many-to-many mappings are implemented using a relation table. This table
contains columns for the primary keys of the source and target tables. Composite
primary keys require a column for each field of the composite key. The intermediate
table must be created in the database before using the many-to-many mapping.

The target class does not have to implement any behavior for the many-to-many
mappings. If the target class also creates a many-to-many mapping back to its
source, it can use the same relation table, but one of the mappings must be set to
read-only. If both mappings write to the table they can cause collisions.

Note: See "Working with a Container Policy" on page 6-4 for
information on using collection classes other than Vector with
one-to-many mappings.

Indirection is enabled by default in a many-to-many mapping, which requires that
the attribute have the ValueHolderInterface type or transparent collections.

Example 6-8 Many-to-many Example

The following figures illustrate a many-to-many relationship in both Java and a
relational database.

6-34 Oracle9/AS TopLink Mapping Workbench Reference Guide

Working with Many-to-many Mappings

Figure 6-24 Many-to-many Relationships

Java class:
Project
Employee String description;
Address address; Integer id;
Integer id; String name;
String name; -
“ector projects; Project
String description;
P Integer id;
Employee String name;
Address address; I —
Integer id; Project
String name; String description,
“ector projects; Integer id;
String name;
Relational database: 9 Q
Y b & &
R ¥ R &7 S 2
<& & ka g & F
103 | John Doe 305 379 |Consultant Smalltalk
104 [Jane Smith | 226 42 |Java Developer|Java Product
105 |Tom Jones | 274 356 [Mayazine Wultimedia
EMPLOYEE table (source) -_ PROJECT table (target)
& ¥
Sy
Source ke < h Targst key
¥ 104 | 356 1
104 | 92
105 |356 4

PROJ_EMP table (relation table)
Creating many-to-many Mappings
Use this procedure to create a many-to-many mapping.

To create a many-to-many mapping:
1. In the Project Tree pane, select the attribute to be mapped.

2. Click the Many-to-Many Mapping button |gg in the mapping toolbar.

Understanding Relationship Mappings 6-35

Working with Many-to-many Mappings

Figure 6-25 Many-to-many Mapping General Properties

%3 projects (Many To Many Mapping)
General | Caollection Options | Source Reference TargetReferencel

[Read Only
[Use Method Accessing

Gethethod: | &

EE

Sethlethod: | &

Ll

Reference Descriptor: |ﬂ Project
[] Private Crwhned
[Use Batch Reading

[v| Use Indirection

* ‘WalueHolder " Transparent

Relation Tahle: B2 PROJ_EMP j

3. Use the Reference Descriptor drop-down list to choose the reference descriptor
for this mapping.

4. Use the Relation Table drop-down list to select the relation table.

5. Modify any other properties, as needed. See "Working with Common Mapping
Properties" on page 4-61 for more information.

6. Click on the Collection Options tab to specify the source descriptor relates to
the relation table. See "Specifying Collection Properties” on page 4-64 for more
information.

7. Click on the Source Reference tab to specify how the source descriptor relates
to the relation table.

6-36 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Many-to-many Mappings

Figure 6-26 Many-to-many Mapping Source Reference Properties

&3 (many To Many Mapping) |

General Source Reference i Target Reference!

Table Reference: |% PROJ_EMP_EMPLOYEE 4 New .
Key pairs:
Source Field Target Field Add
e 5 emeoo | 5 EwP_iD |
Remove |

8. Use the Table Reference drop-down list to choose a reference whose foreign
key is in the relation table and that points to a table associated to the source
descriptor. See "Creating table references" on page 3-10 for more information.

9. Click on the Target Reference tab to specify how the reference descriptor relates
to the relation table.

10. Choose a reference whose foreign key is in the relation table and that points to a
table associated to the reference descriptor. See "Creating table references” on
page 3-10 for more information.

Specifying Advanced Features by Amending the Descriptor

TopLink can populate a collection in ascending or descending order upon your
specification. To do this, specify and write an amendment method, sending the
addAscendingOrdering () or addDescendingOrdering () to the many-to-many
mapping. Both messages expect a string as a parameter, which indicates what
attribute from the target object is used for the ordering. This string can be an
attribute name or query key from the target’s descriptor. Query keys are
automatically created for and with the same name as all attributes mapped as
direct-to-field, type conversion, object type, and serialized object mappings.

Example 6-9 Descriptor Amendment Example

The following code example illustrates returning an Employee’s projects in
ascending order according to their descriptions

public static void addToDescriptor (Descriptor descriptor)
{

//Find the Many-to-Many mapping for the projects attribute
ManyToManyMapping projectsMapping=(ManyToManyMapping)
descriptor.getMappingForAttributeName (“projects”) ;
projectsMapping.addAscendingOrdering (“description”);

Understanding Relationship Mappings 6-37

Working with Custom Relationship Mappings

Working with Custom Relationship Mappings

Just as a descriptor’s query manager generates the default SQL code that is used for
database interaction, relationship mappings also generate query information.

Like the queries used by a descriptor’s query manager, queries associated with
relationship mappings can be customized using SQL strings or query objects. Refer
to "Specifying Queries" on page 4-12 for more information on customizing queries
and the syntax that TopLink supports.

To customize the way a relationship mapping generates SQL:

= selection — All relationship mappings can use the setSelectionCriteria(),
setSelectionSQLString (), and setCustomSelectionQuery () methods of
the mapping to customize the selection criteria.

= insert — Many-to-many and direct collection mappings can use the
setInsertSQLString () or setCustomInsertQuery () methods of the
mapping to customize the insertion criteria.

= delete all — Many-to-many, direct collection, and one-to-many mappings can
use the setDeleteAl1SQLString () and setCustomDeleteAllQuery ()
methods of the mapping to customize the deletion criteria.

= delete —Many-to-many mappings can use the setDeleteSQLString () and
setCustomDeleteQuery () methods of the mapping to customize the deletion
criteria.

A query object that specifies the search criteria must be passed to each of these
methods. Because search criteria for these operations usually depend on variables at
runtime, the query object must usually be created from a parameterized expression,
SQL string, or stored procedure call.

See TopLink: Foundation Library Guide for more information on defining
parameterized queries and stored procedure calls.

Creating Custom Mapping Queries in Java Code

The following example illustrates selection customization with a parameterized
expression using setSelectionCriteria () and deletion customization using
setDeleteAllSQLString (). Because the descriptor is passed as the parameter to
this amendment method, which has been specified to be called after the descriptor

6-38 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Custom Relationship Mappings

is loaded in the project, we must locate each mapping for which we wish to define a
custom query.

Example 6-10 Custom Mapping Example

The following code illustrates adding a custom query to two different mappings in
the Employee descriptor.

// RAmendment method in Employee class
public static void addToDescriptor (Descriptor descriptor)

{

//Find the one-to-one mapping for the address attribute
OneToOneMapping addressMapping=(OneToOneMapping)
descriptor.getMappingForAttributeName ("homeaddress") ;

//Create a parameterized Expression and register it as the default selection
criterion for the mapping.

ExpressionBuilder builder = new ExpressionBuilder();
addressMapping.setSelectionCriteria(builder.getField ("ADDRESS.ADDRESS_

ID") .equal (builder.getParameter ("EMP.ADDRESS_

ID")) .and(builder.getField ("ADDRESS.TYPE") .equal ("home")));

// Get the direct collection mapping for responsibilitiesList.
DirectCollectionMapping directCollection=(DirectCollectionMapping)
descriptor.getMappingForAttributeName ("responsibilitiesList");
directCollection.setDeleteAllSQLString ("DELETE FROM RESPONS WHERE EMP_ID = #EMP_
iD");

}

Understanding Relationship Mappings 6-39

Working with Custom Relationship Mappings

6-40 Oracle9iAS TopLink Mapping Workbench Reference Guide

7

Understanding Object Relational Mappings

Relational mappings define how persistent objects reference other persistent objects.
Oracle 9iAS TopLink supports the following object relational mapping types:

Array mappings are similar to direct collection mappings but map to

object-relational array data-types (the Array type in JDBC 2.0 and the VARRAY
type in Oracle 8i). Use array mappings to map a collection of primitive data. See

"Working with Array Mappings" on page 7-2 for more information.

Object array mappings are similar to array mappings but map to object-relational
array data types. See "Working with Object Array Mappings" on page 7-4 for

more information.

Structure mappings are similar to aggregate object mappings but map to
object-relational aggregate structures (the Struct type in JDBC 2.0 and the
OBJECT TYPE in Oracle 8i). See "Working with Structure Mappings" on
page 7-5 for more information.

Reference mappings are similar to one-to-one mappings but map to
object-relational references (the Ref type in JDBC 2.0 and the REF type in
Oracle 8i). See "Working with Reference Mappings" on page 7-7 for more
information.

Nested table mappings are similar to many-to-many mappings but map to
object-relational nested tables (the NESTED TABLE type in Oracle 8i). See
"Working with Nested Table Mappings" on page 7-9 for more information.

These mappings allow for an object model to be persisted into an object-relational
data-model. Currently the Mapping Workbench does not support object-relational
mappings — they must be defined in code or through amendment methods. See
"Working with Object-relational Descriptors" on page 4-59 for more information.

Understanding Object Relational Mappings 7-1

Working with Object Relational Mappings

Working with Object Relational Mappings

Object relational mappings allow for an object model to be persisted into an
object-relational data-model. The Mapping Workbench does not directly support
these mappings — they must be defined in code through amendment methods.

TopLink supports the following object relational mappings:
= Array

= Object array

s Structure

= Reference

s Nested table

Working with Array Mappings

In an object-relational data-model, structures can contain arrays (collections of other
data types). These arrays can contain primitive data types or collections of other
structures. TopLink stores the arrays with their parent structure in the same table.

All elements in the array must be the same data type. The number of elements in an
array controls the size of the array. An Oracle database allows arrays of variable
sizes (called Varrays).

Oracle8i provides two collection types:
= Varray — Used to represent a collection of primitive data or aggregate structures.

= Nested table — Similar to varrays except they store information in a separate
table from the parent structure’s table

TopLink supports arrays of primitive data through the ArrayMapping. This is
similar to DirectCollectionMapping — it represents a collection of primitives in
Java. However, the ArrayMapping does not require an additional table to store the
values in the collection.

TopLink supports arrays of aggregate structures through the ObjectArrayMaping.

TopLink supports nested tables through the NestedTableMapping.

7-2 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Array Mappings

Implementing Array Mappings in Java

Array mappings are instances of the ArrayMapping class. You must associate this
mapping to an attribute in the parent class. TopLink requires the following elements
for an array mapping:

= Attribute being mapped — Set by sending the setAttributeName () message.
= Field being mapped — Set by sending the setFieldName() message.
= Name of the array — Set by sending the set StructureName () message.

Table 7-1 summarizes all array mapping properties:

Example 7-1 Array Mapping Example

The following code example illustrates creating an array mapping for the Employee
source class and registering it with the descriptor

// Create a new mapping and register it with the source descriptor.
ArrayMapping arrayMapping = new ArrayMapping() ;
arrayMapping.setAttributeName ("responsibilities");
arrayMapping.setStructureName ("Responsibilities_t");
arrayMapping.setFieldName ("RESPONSIBILITIES") ;
descriptor.addMapping (arrayMapping) ;

Reference

The following table summarizes all array mapping properties. In the Method
Names column, arguments are bold, methods are not.

Table 7-1 Properties for ArrayMapping methods

Property Default Method Names

Attribute to be not applicable setAttributeName (String name)

mapped *

Set parent class * not applicable setReferenceClass (Class
referenceClass)

User-defined data not applicable setStructureName (String

type * Structurename)

Field to be not applicable setFieldName (String fieldName)

mapped *

* Required property

Understanding Object Relational Mappings 7-3

Working with Object Array Mappings

Table 7-1 Properties for ArrayMapping methods(Cont.)

Property Default Method Names

Method access direct access setGetMethodName (String name)
setSetMethodName (String name)
Read only read / write readWrite()
readOnly ()

setIsReadOnly(boolean readOnly)

* Required property

Working with Object Array Mappings

In an object-relational data-model, object arrays allow for an array of object types or
structures to be embedded into a single column in a database table or an object
table.

TopLink supports object array mappings to define a collection-aggregated
relationship in which the target objects share the same row as the source object.

Implementing Object Array Mappings in Java

Object array mappings are instances of the ObjectArrayMapping class. You must
associate this mapping to an attribute in the parent class. TopLink requires the
following elements for an array mapping:

= Attribute being mapped — Set by sending the setAttributeName () message.
= Field being mapped — Set by sending the setFieldName() message.
= Name of the array — Set by sending the setStructureName () message.

Use the optional setGetMethodName () and setSetMethodName () messages to
access the attribute through user-defined methods rather than directly. See
"Specifying Direct Access and Method Access" on page 4-62 for more information.

Table 7-2 summarizes all object array mapping properties.

Example 7-2 Object Array Mapping Example

The following code example illustrates creating an object array mapping for the
Insurance source class and registering it with the descriptor.

// Create a new mapping and register it with the source descriptor.
ObjectArrayMapping phonesMapping = new ObjectArrayMapping() ;

7-4 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Structure Mappings

phonesMapping.
phonesMapping.
phonesMapping.
phonesMapping.
phonesMapping.
phonesMapping.

Reference

setAttributeName ("phones") ;

setGetMethodName

"getPhones") ;

setSetMethodName ("setPhones") ;
setStructureName ("PHONELIST_TYPE") ;
setReferenceClass (Phone.class) ;
setFieldName ("PHONES") ;
descriptor.addMapping (phonesMapping) ;

The following table summarizes all object array mapping properties. In the Method
Names column, arguments are bold, methods are not.

Table 7-2 Properties for ObjectArrayMapping Methods

Property Default Method Names
Attribute to be not applicable setAttributeName (String name)
mapped *

Set parent class * not applicable

User-defined data not applicable

setReferenceClass (Class
referenceClass)

setStructureName (String

type * structureName)
Field to be not applicable setFieldName (String fieldName)
mapped *
Method access direct access setGetMethodName (String name)
setSetMethodName (String name)
Read only read / write readwWrite()
readOnly ()
setIsReadOnly(boolean readOnly)
* Required property

Working with Structure Mappings

In an object-relational data-model, structures are user defined data-types or
object-types. This is similar to a Java class — it denies attributes or fields in which
each attribute is either:

= aprimitive data type

s another structure

Understanding Object Relational Mappings 7-5

Working with Structure Mappings

s reference to another structure

TopLink maps each structure to a Java class defined in your object model and
defines a descriptor for each class. A StructureMapping maps nested structures,
similar to an AggregateObjectMapping. However, the structure mapping supports
null values and shared aggregates without requiring additional settings (because of
the object-relational support of the database).

Implementing Structure Mappings in Java

Structure mappings are instances of the StructureMapping class. You must
associate this mapping to an attribute in each of the parent classes. TopLink requires
the following elements for an array mapping;:

= Attribute being mapped — Set by sending the setAttributeName () message.
= Field being mapped — Set by sending the setFieldName() message.
= Target (child) class — Set by sending the setReferenceClass() message.

Use the optional setGetMethodName () and setSetMethodName () messages to
access the attribute through user-defined methods rather than directly. See
"Specifying Direct Access and Method Access" on page 4-62 for more information.

You must make the following changes to the target (child) class descriptor:
= Send the descriptorIsAggregate () message to indicate it is not a root level.
= Remove table or primary key information.

Table 7-3 summarizes all structure mapping properties:

Example 7-3 Structure Mapping Examples

The following code example illustrates creating a structure mapping for the
Employee source class and registering it with the descriptor

// Create a new mapping and register it with the source descriptor.
StructureMapping structureMapping = new StructureMapping();
structureMapping.setAttributeName ("address") ;
structureMapping.setReferenceClass (Address.class) ;
structureMapping.setFieldName ("address") ;

descriptor.addMapping (structureMapping) ;

The following code example illustrates creating the descriptor of the Address
aggregate target class. The aggregate target descriptor does not need a mapping to
its parent, or any table or primary key information.

7-6 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Reference Mappings

// Create a descriptor for the aggregate class. The table name and primary key
are not specified in the aggregate descriptor.

ObjectRelationalDescriptor descriptor = new ObjectRelationalDescriptor ();
descriptor.setJavaClass (Address.class);

descriptor.setStructureName ("ADDRESS_T") ;

descriptor.descriptorIsAggregate();

// Define the field ordering

descriptor.addFieldOrdering (" STREET") ;

descriptor.addFieldOrdering ("CITY");

// Define the attribute mappings or relationship mappings.

Reference

The following table summarizes all structure mapping properties. In the Method
Names column, arguments are bold, methods are not.

Table 7-3 Properties for StructureMapping Methods

Property Default Method Names

Attribute to be not applicable setAttributeName (String name)
mapped *

Set parent class * not applicable setReferenceClass(Class aClass)
Field to be not applicable setFieldName (String fieldName)
mapped *

Method access direct access setGetMethodName (String name)

setSetMethodName (String name)

Read only read / write readwWrite()
readOnly ()
setIsReadOnly(boolean readOnly)

* Required property

Working with Reference Mappings

In an object-relational data-model, structures reference each other through refs —not
through foreign keys (as in a traditional data-model). Refs are based on the target
structure’s ObjectID.

Understanding Object Relational Mappings 7-7

Working with Reference Mappings

TopLink supports refs through the ReferenceMapping. They represent an object
reference in Java, similar to a OneToOneMapping. However, the reference mapping
does not require foreign key information.

Implementing Reference Mappings in Java

Reference mappings are instances of the ReferenceMapping class. You must
associate this mapping to an attribute in the source class. TopLink requires the
following elements for a reference mapping:

= Attribute being mapped — Set by sending the setAttributeName () message.
= Field being mapped — Set by sending the setFieldName() message.
= Target class — Set by sending the setReferenceClass () message.

Use the optional setGetMethodName () and setSetMethodName () messages to
access the attribute through user-defined methods rather than directly. See
"Specifying Direct Access and Method Access" on page 4-62 for more information.

Table 7—4 summarizes all reference mapping properties.

Example 7-4 Reference Mapping Example

The following code example illustrates creating a reference mapping for the
Employee source class and registering it with the descriptor.

// Create a new mapping and register it with the source descriptor.
ReferenceMapping refrenceMapping = new ReferenceMapping();
referenceMapping.setAttributeName (*manager”) ;
referenceMapping.setReferenceClass (Employee.class);
referenceMapping.setFieldName ("MANAGER") ;

descriptor.addMapping (refrenceMapping) ;

Reference

The following table summarizes all reference mapping properties. In the Method
Names column, arguments are bold, methods are not.

7-8 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Nested Table Mappings

Table 7-4 Properties for ReferenceMapping Methods

Property Default Method Names

Attribute to be not applicable setAttributeName (String name)
mapped *

Set parent class * not applicable setReferenceClass(Class aClass)
Field to be not applicable setFieldName (String fieldName)
mapped *

Method access direct access setGetMethodName (String name)

setSetMethodName (String name)

Indirection use indirection useBasicIndirection()

dontUseIndirection()

Privately owned independent independentRelationship ()
relatlonshlp privateOwnedRelationship ()

setIsPrivateOwned(boolean
isPrivateOwned)

Read only read / write readwrite()
readOnly ()
setIsReadOnly(boolean readOnly)

* Required property

Working with Nested Table Mappings

Nested table types model an unordered set of elements. These elements may be
built-in or user-defined types. You can view a nested table as a single-column table
or, if the nested table is an object type, as a muticolumn table (with a column for
each attribute of the object type).

Typically, nested tables represent a one-to-many or many-to-many relationship of
references to another independent structure. They support querying and joining
better than Varrays that are inlined to the parent table.

TopLink supports nested table through the NestedTableMapping. They represent a
collection of object references in Java, similar to a OneToManyMapping or
ManyToManyMapping. However, the nested table mapping does not require foreign
key information (like a one-to-many mapping) or the relational table (like a
many-to-many mapping).

Understanding Object Relational Mappings 7-9

Working with Nested Table Mappings

Implementing Nested Table Mappings in Java

Nested table mappings are instances of the NestedTableMapping class. This
mapping is associated to an attribute in the parent class. The following elements are
required for a nested table mapping to be viable:

= The attribute being mapped, which is set by sending the setAttributeName ()
message

= The field being mapped, which is set by sending the setFieldName ()
message

= The name of the array structure, which is set by sending the
setStructureName () message

Use the optional setGetMethodName () and setSetMethodName () messages to
allow TopLink to access the attribute through user-defined methods rather than
directly. See "Specifying Direct Access and Method Access" on page 4-62 for more
information.

Table 7-5 summarizes all nested table mapping properties.

Example 7-5 Nested Table Example

The following code example illustrates creating a nested table mapping for the
Insurance source class and registering it with the descriptor.

// Create a new mapping and register it with the source descriptor.
NestedTableMapping policiesMapping = new NestedTableMapping () ;
policiesMapping.setAttributeName ("policies");
policiesMapping.setGetMethodName ("getPolicies");
policiesMapping.setSetMethodName ("setPolicies");
policiesMapping.setReferenceClass (Policy.class);
policiesMapping.dontUseIndirection() ;

policiesMapping.setStructureName ("POLICIES_TYPE") ;
policiesMapping.setFieldName ("POLICIES") ;
policiesMapping.privateOwnedRelationship() ;
policiesMapping.setSelectionSQLString("select p.* from policyHolders ph,
table(ph.policies) t, policies p where ph.ssn=#SSN and ref(p) = value(t)");
descriptor.addMapping (policiesMapping) ;

Reference

The following table summarizes all nested table mapping properties. In the Method
Names column, arguments are bold, methods are not.

7-10 Oracle9iAS TopLink Mapping Workbench Reference Guide

Working with Nested Table Mappings

Table 7-5 Properties for NestedTableMapping Methods

Property Default Method Names

Attribute to be not applicable setAttributeName (String name)

mapped *

Set parent class * not applicable setReferenceClass(Class
referenceClass)

User-defined data not applicable setStructureName (String

type * structureName)

Field to be not applicable setFieldName (String fieldName)

mapped *

Method access direct access setGetMethodName (String name)
setSetMethodName (String name)

Indirection use indirection useIndirection()

Privately owned
relationship

Read only

independent

read / write

dontUseIndirection()

setUsesIndirection (boolean
usesIndirection)

independentRelationship ()
privateOwnedRelationship ()

setIsPrivateOwned(Boolean
isPrivateOwned)

readWrite ()
readOnly ()
setIsReadOnly(boolean readOnly)

* Required property

Understanding Object Relational Mappings 7-11

Working with Nested Table Mappings

7-12 Oracle9iAS TopLink Mapping Workbench Reference Guide

A

Object Model Requirements

Oracle 9iAS TopLink requires that classes must meet certain minimum requirements
before they can become persistent. TopLink also provides alternatives to most
requirements. TopLink uses a non-intrusive approach using a meta-data
architecture that allows for almost no object model intrusions.

This section summarizes TopLink’s object model requirements. Unlike other
products, TopLink does not require any of the following:

= Persistent superclass or implementation of persistent interfaces
= Stored, delete or load methods required in the object model
= Special persistence methods

= Generating source code into or wrapping the object model

Persistent Class Requirements

The attribute requirements vary, depending on your Java version. When using

Java 2, you can use direct access on private or protected attributes. Refer to

Chapter 4, "Understanding Descriptors" for more information on direct and method
access.

When using non-transparent indirection, the attributes must be of type
ValueHolderInterface rather than the original attribute type. The value holder
does not instantiate a referenced object until it is needed.

In Java 2, TopLink provides transparent indirection for Collectionand List
attribute types for any collection mappings. Using transparent indirection does not
require the usage of ValueHolderInterface, or any other object model
requirements.

Object Model Requirements A-1

Constructor Requirements

Refer to Chapter 6, "Understanding Relationship Mappings" for more information
on indirection and transparent indirection.

Constructor Requirements

By default, TopLink uses and requires default (zero argument) constructors to create
objects from the database. It is also possible to instruct TopLink to use a different
constructor, static method, or factory. Refer to "Working with Instantiation Policy"
on page 4-44 for more information.

Remote Session Requirements

If the TopLink Remote Session is used, all persistent classes to be used remotely
must implement the Serializable interface.

A-2 Oracle9iAS TopLink Mapping Workbench Reference Guide

A

access method

direct, 4-62

generating, 3-14

mappings, 4-63

method, 4-62

project default, 2-7
access, direct, 4-63
access, method, 3-14,4-63
activating descriptors, 1-6
Add New Table button, 3-4
addAscendingOrdering (), 6-37
addDescendingOrdering (), 6-37
addFieldTransformation(), 5-12
addTableName () method, 4-64
Add/Update Class button, 2-12
Add/Update Existing Tables from Database

button, 3-5

advanced properties

descriptor, 4-18

specifying default, 2-10
Advanced Properties Default window, 2-11
After load tab, 4-19
aggregate collection mappings, about, 6-30
Aggregate Descriptor button, 6-17
Aggregate Descriptor icon, 6-17
aggregate files, merging, 1-14
Aggregate Mapping button, 6-17
Aggregate Mapping tab

Fields, 6-19

General, 6-18
aggregate object mappings

about, 6-14

IndeXx

creating, 6-17
target descriptor, 6-17
alias, descriptor, 4-15
AllFieldsLockingPolicy, 4-48
amending descriptors, 4-18, 5-12, 6-22
see also after load
API, 4-1
array dimensionality, 4-9
array mappings
about, 7-1,7-2
example, 7-3
implementing in Java, 7-3
attributes
array dimensionality, 4-9
nullvalue, 4-64
transformation method, 5-9
Attributes tab, 4-9
automapping descriptors, 4-3
see also mappings

B

bidirectional relationships

about, 6-1

generating, 3-15

maintaining, 4-64

target keys, 6-20
bindAllParameters (), 4-16
BLOB fields in databases, 5-1,5-8
branch classes, 4-23,4-35
buttons. see toolbars

Index-1

C adding, 2-6
relative, 2-6
cache CMP fields, 2-6
caching objects, 4-51 CMR relationships, 2-6
1de““t}’ map, 4-50 code, generating, 4-4
refreshing, 4-6 collapsing items in Project Tree pane, 1-6
cacheQueryResults (), 4-16 collection mappings, persistent requirements, A-1
cacheStatement (), 4-16 Collection Options tab, 4-65
catalog, data.base, 34 . . composite primary key, 6-34
ChangedFieldsLockingPolicy, 4-49 conform results in unit of work, 4-6
Cha“Sing Package names, 2-8 constructor requirements, A-2
checking-in/out projects, 1-11 container policy
.classfile, 2-5 about, 6-4
class extraction method, 4-34
Class Import preferences, 1-10
class indicator field, 4-34, 6-23
Class Indicator Info tab, 6-27
Class Info tab, 4-7
class information, setting, 4-6
classes
ArrayMapping, 7-10
branch, 4-35
creating, 2-11
DatabaseMapping, 4-61
DirectCollectionMapping, 6-39

overriding, 6-5
copy policy

about, 4-43

setting, 4-43
copying project objects, 1-15
Copying tab, 4-44
Create Class button, 2-11
Create New Project button, 2-2
Create new project window, 2-2
creating projects, 2-2

ExpressionBuilder, 6-39 D

generating, 4-4 database
generating from database, 3-13 about, 3-1
leaf, 4-35 catalog, 3-4

NestedTableMapping, 7-10
OneToOneMapping, 6-39
OptimisticLockException, 4-49

creating reference tables on, 3-11
driver, 3-2
driver requirements, 3-5

persistent, 4-64 for project, 2-2
persistent requirements, A-1 logging in, 3-3
preferences, 1-9 platform, 2-2,3-2

refreshing, 2-12

roperties, 3-1,3-2
removing, 2-13 PP

requirements, 3-5

root, 4-35 schema, 3-4

setting information, 4-6 supported, 4-60
TransformationMapping, 5-12 tables, 3-3
ValueHolderInterface, 6-6,6-34, A-1 Database Login button, 3-3

VariableOneToOneMapping, 6-23
XMLProjectReader class, 2-1 database schema, 2-9

classpath database tables
about, 2-5 about, 3-3

Database login icon, 3-3

Index-2

creating, 3-4
generating, 3-15
generating descriptors and classes, 3-13
generating EJB entities, 3-16
generating Java source, 2-14
generating SQL, 3-12
importing, 3-5
properties, 3-8
removing, 3-7
renaming, 3-7
schema, 3-4
specifying fields, 3-8
specifying references, 3-10
DatabaseMapping class, 4-61
DatabaseRow, 5-9
deactivating descriptors, 1-6
default values, when database field is null
Direct-to-Field mapping, 5-3
object type mappings, 5-7
defaults
advanced properties, setting, 2-10
table generation, 2-9
Defaults tab, 2-7
deployment
descriptors, 4-1
XML, generating, 2-14
deployment database login, 3-2
deployment XML, generating, 2-14
descriptor alias, 4-15
Descriptor Info tab, 4-5
descriptors
about, 4-1
advanced properties, 4-18

advanced properties, setting default, 2-10

amending, 4-18
automapping, 4-3
cache refreshing, 4-6
class information, 4-6
deactivating, 1-6

EJB, 2-6

errors, 1-7

events, 4-19

generating from database, 3-13
generating Java code, 4-4
identity mapping, 4-20

inactive, 1-6
interface, 4-37
mapping, 4-3
mapping inherited attributes, 4-31
mapping to tables, 4-5
object-relational, 4-59
primary key, 4-26
registering events, 4-57
removing, 2-13
types, 4-2
development database login, 3-2
dimensionality, array, 4-9
direct >nullValue attribute, 4-64
direct access
about, 4-62
specifying, 4-63
Direct Collection Mapping button, 6-29
Direct Collection Mapping tab
General, 6-29
Table Reference, 6-30
direct collection mappings
about, 6-28
creating, 6-29
example, 6-28
direct mappings
about, 4-60, 5-1
nullvalue, 4-64
direct query key, 4-52
DirectCollectionMapping class,
Direct-to-Field Mapping button, 5-3
Direct-to-field Mapping tab, 5-4
direct-to-field mappings
about, 5-1,5-2
creating, 5-3
null values, 4-64,5-3
type conversions, 5-2
docking toolbars, 1-5
driver, database, 3-2

E

6-39

EJB descriptor icon, 2-6

EJB descriptors
deployment descriptors, 4-1
icon, 2-6

Index-3

opening projects with, 2-3
updating, 2-6
EJB entities
generating, 3-16
inheritance, 4-31
EJB finders, 4-15
EJB Info tab, 4-17
EJB Preferences, 1-11
ejb-jar.xml
about, 2-15
corresponding to Mapping Workbench
functions, 2-15
displaying information, 4-16
managing, 1-15
specifying, 4-3
updating from, 2-16
writing, 2-16
EJBQL queries, 4-12
ejbSelect queries, 4-15
Entity Beans, using sequence numbers with, 4-28
errors, descriptors, 1-7
Event Manager, 4-56
event method, 4-57
events
about, 4-19,4-56
registering with a descriptor, 4-57
setting, 4-19
supported, 4-57
Events tab, 4-20
examples
array mapping, 7-3
custom mapping query, 6-39
direct collection mappings, 6-28
event methods, 4-57
events, 4-57
inheritance, 4-31,4-33
interface, 4-37
Mapping Workbench, 1-3
nested table mapping, 7-10
object array mapping, 7-4
object type mapping, 5-5
one-to-many mapping, 6-32
pop-up menu, 1-4
query keys, 4-52,4-55,4-56
reference mapping, 7-8

Index-4

serialized mapping, 5-8

structure mapping, 7-6

transformation mapping, 5-9,5-11

transformation mapping (write-only), 5-12
existence checking, specifying, 2-7
expanding items in Project Tree pane, 1-6
Export to Java Source button, 2-14
exporting

Java source, 2-13

projects, 2-13
ExpressionBuilder class, 6-39

F

field locking policies, 4-47,4-48
fields
access, project, 2-7
database tables, 3-8
finders
about, 4-58
reserved, 4-59
see also queries
findManyByQuery, 4-16
findOnebyQuery, 4-16
floating toolbars, 1-5
foreign keys
about, 6-3
multiple tables, 4-43
one-to-many mappings, 6-32
one-to-one mappings, 6-20
specifying, 6-4
target, 6-20
full identity map, 4-50

G

General tab, 2-5

Generate Classes and Descriptors window, 3-14
Generate Enterprise Java Beans window, 3-17
generating. see exporting

getCatalogs (), 3-5

getImportedKeys (), 3-5
getPrimaryKeys (), 3-5

getTables (), 3-5

getTableTypes (), 3-5

getValue () method, 6-6 specifying, 4-21

getWrapperPolicy (), 4-47 supporting with multiple tables, 4-33
supporting with one table, 4-31

H using with EJBs, 4-31
Inheritance tab, 4-22

hard cache weak identity map, 4-50 instantiation policy

hashtable, collection mappings, 6-5 about, 4-44

holders, value, 6-6 setting, 4-45
Instantiation tab, 4-45

| Interface Alias tab, 4-26
interfaces

identity maps about, 4-36

about, 4-50 customizing, 1-7

project default, 2-7 descriptors, 4-37

recommendations, 4-51 implementing, 4-39,4-40

size,. 4%—50 query keys, 4-54

specifying, 4-20 variable class relationships, 4-36
Identity tab, 4-21

Implementors tab, 4-40, 6-26

Import tables from database window, 3-6 J

importing classes, 1-9 Java

inactive descriptors, 1-6 database tables, 2-14

independent relationships, 6-2 descriptors, 4-4

indirection exporting to, 2-13
about, 6-5,6-6 object model, A-1
Java class requirements, 6-8 Java Core Reflection API, 4-62
many-to-many mappings, 6-34 java.util.Collection interface, 6-4
non-transparent, A-1 java.util.Map interface, 6-4
specifying, 6-7 java.util.Vectorclass, 6-5
transformation mapping, 5-11 javax.ejbEntityBean interface, 3-16
transparent, A-1 JDBC drivers
ValueHolderInterface, A-1 database requirements, 3-5
see also proxy indirection, transparent indirection methods, 3-5

Informix, sequence numbers, 4-28 supported, 4-60

inheritance
about, 4-30 K
aggregate collection mappings, 6-31
branch and leaf classes, 4-23 key pairs, database table reference, 3-12
branch classes, 4-35 keys
finding subclasses, 4-34 foreign, 6-20
in one descriptor, 4-31 foreign, target, 6-20
leaf classes, 4-35 primary, 6-34
primary keys, 4-36 primary, in inheritance, 4-36
root class, 4-22 primary, in variable class relationships, 6-23,
root classes, 4-35 6-24

Index-5

primary, multiple tables, 4-42
primary, read-only settings, 4-63
query, 4-52,4-55

reference key field, 6-28

L

leaf classes, 4-23,4-35
locking policies
about, 4-47
advanced options, 4-49
optimistic, 4-47
Locking tab, 4-25
log file, XML, 2-1
logging XML, 2-1
logins, database, 3-2
Look and Feel preferences window, 1-8
look and feel, specifying, 1-7

maintainCache (), 4-16
management, source control, 1-11
Many-to-Many Mapping button, 6-35
Many-to-many Mapping tab

General, 6-36

Source Reference, 6-37
many-to-many mappings

about, 6-33

creating, 6-35

relation table, 6-34
mapping

class hierarchy, 4-61

descriptors, 4-3

to tables, 4-5
Mapping Workbench

about, 1-1

development process, 1-1

partsof, 1-2

sample, 1-3

starting, 1-2

upgrading projects, 2-2
mapping, relationship

aggregate object, 6-14

direct collection, 6-28

many-to-many, 6-33
one-to-many, 6-31
one-to-one, 6-19

mappings

about, 4-60

access types, 4-63

aggregate object, 6-14
amending the descriptor, 5-12
array, 7-2

bidirectional relationships, maintaining,
BLOB fields, 5-8

collection options, 4-65
direct, 4-60, 5-1

direct access, 4-62,4-63
direct collection, 6-28

direct mappings, 5-1
direct-to-field, 5-1,5-2
ejb-jar.xml file, 4-65
hierarchy, 4-61
many-to-many, 6-33

method access, 4-62, 4-63
null values, 4-64

object relational, 7-2

object type, 5-1,5-5
one-to-many, 6-31
one-to-one, 6-19

properties, 4-61

read-only setting, 4-63
relationship, 4-60, 6-2
serialized object, 5-1, 5-8

to database BLOB fields, 5-1
transformation, 5-1,5-9, 5-12
type conversion, 5-1, 5-4

mappings, relationship

about, 4-60, 6-2

menu bar, 1-4
menus

about, 1-2,1-3
menu bar, 1-4
pop-up menus, 1-4

merging files, 1-12
method access

about, 4-62
setting, 4-63

methods

4-64

Index-6

getValue(), 6-6

JDBC drivers, 3-5

setting container policy, 6-5

setValue (), 6-6

wrapper policy, 4-47
Methods tab, 4-10
move handle, toolbar, 1-5
multimedia objects, mapping, 5-1
multiple tables

about, 4-40

specifying for descriptors, 4-41
Multi-table Info tab, 4-41
mw_xml . log file, 2-1
.mwp file, 2-1,2-2,4-1

N

named queries, 4-14

see also finders
Named Queries Options tab, 4-16
Named Queries Parameters tab, 4-15
Named Queries tab, 4-14
native sequencing, 4-28
neediness warnings, 1-7
nested table mappings

about, 7-1,7-9

example, 7-10

Java, 7-10

properties, 7-11
NestedTableMapping class, 7-10
New Reference window, 3-11
New Table window, 3-4
non-transparent indirection, A-1
nullValue attribute, 4-64

(o)

object array mappings

about, 7-4

example, 7-4

implementing in Java, 7-4
object identity, 4-50, 4-51
object model, A-1
Object Type Mapping button, 5-6
Object Type Mapping tab, 5-7

object type mappings
about, 5-1,5-5
creating, 5-6
null values, 4-64
object, cache, 4-48
object-relational descriptors
about, 4-59, 4-60
mapping, 4-60
One-to-Many Mapping button, 6-32
One-to-many Mapping tab, 6-33
one-to-many mappings
about, 6-31
creating, 6-32
specifying advanced features, 4-65
One-to-One Mapping button, 6-21
One-to-one Mapping tab
General, 6-21
Table Reference, 6-22
one-to-one mappings
about, 6-19
creating, 6-21
specifying advanced features, 6-22
variable, 6-23
one-way transformation mapping, 5-12
online help, 1-9
Open Project button, 2-3
opening projects, 2-3
optimistic locking
about, 4-47
advanced policies, 4-49
OptimisticLockException class, 4-49
optimization
inheritance, 4-33
queries, 6-13
Oracle
native sequencing, 4-30
pre-allocation, 4-29
sequence objects, 4-28
outer-join, 4-22

P

package names
default, 2-7
generating, 3-14

Index-7

renaming, 2-8
packages, renaming, 2-8
password, database login, 3-2
persistent class requirements, A-1
persistent classes

about, 4-2

multiple tables, 4-64

project, 3-17

registering events, 4-57

requirements, A-1

types, 2-6
pessimistic locking
about, 4-47

queries, 4-16
platform, database, 2-2,3-2
polymorphic relationships, 6-23
pop-up menus, 1-4
Potential EJB Descriptors window, 2-3

pre-allocating sequence numbers, 2-9,4-29

Preferences button, 1-7,1-9, 1-10
preferences, workbench, 1-7
primary key

composite, 6-34

default, 2-9

inheritance, 4-36

multiple tables, 4-42

read-only settings, 4-63

search, 2-9

setting, 3-9,4-5, 4-26

variable class relationships, 6-23, 6-24
primary key search, 2-9
primkey, ejb-jar.xml file, 2-15
private relationships, 6-2
project objects, copying, 1-15
Project Save Location, 2-5
Project Tree pane

about, 1-2

example, 1-6

refreshing, 2-4
projects

about, 2-1

classpath, 2-5

creating, 2-2

defaults, 2-7

exporting, 2-13

logging XML, 2-1

merging files, 1-12

.mwp file, 4-1

new, 2-2

open, 2-3

packages, renaming, 2-8

persistence type, 2-6

properties, 2-4

refreshing, 2-4

renaming, 2-4

saving, 2-4

team development, 1-11

troubleshooting, 2-1

updating from ejb-jar.xml, 2-16

upgrading from 2.x or 3.x, 2-2

writing ejb-jar.xml, 2-16
Properties pane, about, 1-2,1-7
properties, setting default advanced, 2-10
proxies. see wrapper policy
proxy indirection

about, 6-11

implementing in Java, 6-12
public accessor methods, requirements, 4-2

Q

qualified names, database tables, 3-6
queries
ejb-jar.xml file, 4-12
optimizing, 6-13
pessimistic locking, 4-16
Query Key Association tab, 6-27
query keys
about, 4-11,4-52
automatically defining, 4-52,4-65
creating, 4-53
interface descriptors, 4-54
relationship mappings, 4-55
specifying, 4-11
variable one-to-one mapping, 6-27
Query keys tab, 4-12

R

reading ejb-jar.xml, 2-16

read-only mappings, 4-63
re-docking toolbars, 1-5
reference key field, 6-28
reference mappings

about, 7-1

example, 7-8

Java, 7-8

properties, 7-9
ReferenceMapping class, 7-8
references

about, 6-3

database tables, 3-10
refreshIdentityMapResults (), 4-16
refreshing

cache, 4-6

classes, 2-12

project tree, 2-4
relation table, 6-34
relational mappings, about, 7-1
relationship

bi-directional, 6-20

polymorphic, 6-23

query keys, 4-55

variable class, 6-23
relationship mappings

about, 4-60, 6-1,6-2

aggregate object, 6-14

many-to-many, 6-33

one-to-one, 6-19

optimizing queries, 6-13
relationship partner, bidirectional, 4-64
relationship query keys, 4-55
relationship element, 4-65
relationships

bi-directional, generating, 3-15

inejb-jar.xml file, 2-16
relative classpath, 2-6
remote session requirements, A-2
Remove Class button, 2-13
Remove Table button, 3-7
renamer, project, 2-2
renaming

packages, 2-8

projects, 2-4
requirements

constructors, A-2

remote session, A-2
reserved finders, 4-59
root class

about, 4-35

inheritance mapping, 4-34
root files, merging, 1-12

S

samples. see examples
Save All Projects button, 2-4
Save Selected Project button,
schema manager, 4-30
schema, database, 2-9, 3-4
scripts

see also SQL

SQL, generating, 3-12
Select, 5-3

2-4

Select Classes window, 2-12,2-13

SelectedFieldsLockingPolicy,

sequence information, setting,
sequence numbers
about, 4-27
Entity Beans, 4-28
native in database, 4-28
pre-allocation, 4-29
projects, 2-8
sequence table, 4-29
Sequencing tab, 2-9
Serialized Mapping button, 5
Serialized Object Mapping tab,
serialized object mappings
about, 5-1,5-8
creating, 5-8
Session, 5-9
sessions, remote, A-2
setTableName () method,
setValue () method, 6-6

4-5

-8
5-8

4-64

setWrapperPolicy (), 4-47

single implementor interfaces,

soft cache weak identity map,

source control management
with Mapping Workbench,

<italic>see also team development

4-39
4-50

1-11

4-49

Index-9

source table, reference, 3-11
SQL Creation Script window, 3-13
SQL scripts

generating, 3-12

generating from database tables, 3-12
SQL Server, sequence numbers, 4-28
SQL, using custom code, 4-63
stale data, avoiding, 4-47
starting the workbench, 1-2
Status bar, about, 1-2
structure mappings

about, 7-1

example, 7-6

Java, 7-6

properties, 7-7
StructureMapping class, 7-6
subclasses, finding in inheritance, 4-34
Sybase, sequence numbers, 4-28

T

table generation properties, 2-9
Table Generation tab, 2-10
Table generation tab, 2-10
tables
database, 3-3
import filter, 3-6
mapping to descriptors, 4-5
multiple, 4-40
name, 3-4
primary key, 3-9
see also database tables
target descriptor in aggregate object
mappings, 6-17
target foreign key, 6-20
target table, reference, 3-11
team development, 1-11,2-5
TimestampLockingPolicy, 4-48
toolbars
about, 1-2,1-4
floating, 1-5
TopLink
<italic>see also Mapping Workbench
about, 1-1
Transformation Mapping button, 5-10

Transformation Mapping tab, 5-10
transformation mappings

about, 5-1,5-9

creating, 5-10

example, 5-11,5-12

one-way, 5-12
TransformationMapping class, 5-12
transparent indirection

about, 6-9

persistent class requirements, A-1

specifying, 6-10
troubleshooting projects, 2-1

<italic>see also TopLink Troubleshooting Guide
Type Conversion Mapping button, 5-4
Type Conversion Mapping tab, 5-5
type conversion mappings

about, 5-1,5-4

creating, 5-4

provided by direct-to-field mappings, 5-2

U

uni-directional relationships, 6-1
unit of work, 6-22

conform query results, 4-6

updating methods in, 4-58
updating descriptors from ejb-jar.xml, 2-6
upgrading Mapping Workbench projects from prior

versions, 2-2

URL for database login, 3-2
Use Indirection checkbox, 5-11, 6-10
useCollectionClass(Class), 6-5
useMapClass (Class, String), 6-5
useProxyIndirection(), 6-13
using source control management, 1-11

\'}

value holders, 6-6
ValueHolderInterfaceclass, 6-6,6-34, A-1
variable class relationships, interfaces, 4-36
Variable One-to-One Mapping button, 6-26
Variable One-to-one Mapping tab

Class Indicator Info, 6-27

General, 6-26

Index-10

Query Key Associations, 6-27
variable one-to-one mappings

about, 6-23

creating, 6-25

interfaces, 4-39
VariableOneToOneMapping class, 6-23
Varray (Oracle). see array mappings
verification, one-to-one mappings, 6-22
version fields, 4-47,4-48
version locking policies, 4-48
VersionLockingPolicy, 4-48

w

warning icon, 1-7
weak identity map, 4-50
web browser, specifying, 1-9
workbench preferences, 1-7
wrapper policy

about, 4-46

implementing in Java, 4-47
write-locking, 4-47
writing ejb-jar.xml, 2-16

X

XML
generating deployment, 2-14
logging, 2-1
XMLProjectReader class, 2-1

Index-11

Index-12

Index-13

Index-14

	Oracle9iAS TopLink Mapping Workbench Reference Guide
	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions

	1 Understanding the Workbench
	Starting the Mapping Workbench
	Working with the Workbench
	Using the Menus
	Menu Bar Menus
	Pop-up Menus

	Using the Toolbars
	Standard Toolbar
	Mapping Toolbar

	Using the Project Tree Pane
	Using the Properties Pane

	Working with Workbench Preferences
	Changing the Look and Feel
	Specifying a Web Browser
	Specifying Class Import Options
	Setting EJB Preferences

	Working with the Mapping Workbench in a Team Environment
	Using a Source Control Management System
	Merging Files
	Merging a Root File
	Merging an Aggregate File

	Sharing Project Objects
	Managing the ejb-jar.xml File

	2 Understanding Projects
	Working with Projects
	Creating new Projects
	Opening Existing Projects
	Saving Projects
	Refreshing the Project Tree

	Working with Project Properties
	Working with General Project Properties
	Mapping EJB 2.0 Entities

	Working with Default Properties
	Renaming Packages

	Working with Sequencing Properties
	Working with Table Generation Properties
	Setting Default Advanced Properties

	Working with Classes
	Creating Classes

	Exporting Projects
	Exporting Project to Java Source
	Exporting Table Creator Files
	Generating Deployment XML

	Working with the ejb-jar.xml File
	Writing to the ejb-jar.xml File
	Reading from the ejb-jar.xml File

	3 Understanding Databases
	Working with Databases
	Database Properties
	Logging into the Database

	Working with Database Tables in the Project Tree Pane
	Creating New Tables
	Importing Tables from Database
	JDBC Driver Requirements

	Removing Tables
	Renaming Tables

	Working with Database Tables in the Properties Pane
	Working with Field Properties
	Setting a Primary Key for Database Tables
	Working with Reference Properties
	Creating table references
	Creating Field References

	Generating Data from Database Tables
	Generating SQL Creation Scripts
	Generating Descriptors and Classes from Database Tables
	Generating Tables on the Database
	Generating EJB Entities from Database Tables

	4 Understanding Descriptors
	Working with Descriptors
	Understanding Persistent Classes
	Specifying Descriptor Types
	Mapping Descriptors
	Automapping Descriptors
	Generating Java Code for Descriptors

	Working with Descriptor Properties
	Setting Descriptor Information
	Setting Class Information
	Class Tab
	Attributes Tab
	Methods Tab

	Query Keys
	Specifying Query Keys
	Specifying Queries
	SQL Queries
	Named Queries

	Displaying EJB descriptor Information

	Working with Advanced Properties
	Amending Descriptors After Loading
	Specifying Events
	Specifying Identity Mapping
	Specifying Inheritance
	Creating a Root Class
	Creating Branch and Leaf Classes

	Specifying Optimistic Locking
	Specifying an Interface Alias

	Working with Primary Keys
	Setting a Primary Key for Descriptors

	Working with Sequencing
	Using Sequence Numbers with Entity Beans
	Using Native Sequencing
	Using Sequence Tables
	Pre-allocating Sequence Numbers
	Creating the Sequence Table on the Database

	Working with Inheritance
	Using Inheritance with EJBs
	Mapping Inherited Attributes in One Descriptor
	Supporting Inheritance Using One Table
	Supporting Inheritance Using Multiple Tables
	Finding Subclasses
	Providing a Class Indicator Field
	Understanding Root, Branch, and Leaf Classes in an Inheritance Hierarchy
	Specifying Primary Keys in an Inheritance Hierarchy
	Mapping Inherited Attributes in a Subclass

	Working with Interfaces
	Understanding Interface Descriptors
	Single Implementor Interfaces

	Implementing an Interface

	Working with Multiple Tables
	Specifying Multi-table Info
	Primary Keys Match
	Primary Keys are Named Differently
	Tables are Related by Foreign Key in Primary Table

	Working with a Copy Policy
	Setting the Copy Policy

	Working with Instantiation Policy
	Setting Instantiation Policy

	Working with a Wrapper Policy
	Setting the Wrapper Policy Using Java Code

	Working with Optimistic Locking
	Using Version Locking Policies
	Using Field Locking Policies
	Specifying Advanced Optimistic Locking Policies

	Working with Identity Maps
	Identity Map Size
	Design Guidelines
	Using Object Identity
	Caching Objects

	Working with Query Keys
	Automatically-generating Query Keys
	Creating a User-defined Query Key
	Using Query Keys in Interface Descriptors
	Relationship Query Keys
	Defining Relationship Query Keys by Amending a Descriptor

	Working with Events
	Registering an Event with a Descriptor
	Supported Events

	Working with Finders
	Working with Object-relational Descriptors
	Effect on TopLink
	Databases Supported
	Defining Object-relational Descriptors

	Working with Mappings
	Working with Common Mapping Properties
	Specifying Direct Access and Method Access
	Setting the Access Type

	Specifying Read-only Settings
	Defaulting Null Values
	Maintaining Bidirectional Relationships
	Specifying Field Names and Multiple Tables
	Specifying Collection Properties
	Specifying Mapping information in ejb-jar.xml File

	5 Understanding Direct Mappings
	Working with Direct Mappings
	Working with Direct-to-field Mappings
	Creating Direct-to-field Mappings

	Working with Type Conversion Mappings
	Creating Type Conversion Mappings

	Working with Object Type Mappings
	Creating Object Type Mappings

	Working with Serialized Object Mappings
	Creating Serialized Object Mappings

	Working with Transformation Mappings
	Creating Transformation Mappings
	Specifying Advanced Features Available by Amending the Descriptor

	6 Understanding Relationship Mappings
	Working with Relationship Mappings
	Specifying Private or Independent Relationships

	Working with Foreign Keys
	Understanding Foreign Keys
	Specifying Foreign Keys

	Working with a Container Policy
	Overriding the Default Container Policy

	Working with Indirection
	Understanding Indirection
	Using Value Holder Indirection
	Specifying Indirection
	Changing Java Classes to Use Indirection

	Working with Transparent Indirection
	Specifying Transparent Indirection

	Working with Proxy Indirection
	Implementing Proxy Indirection in Java

	Optimizing for Queries
	Working with Aggregate Object Mappings
	Creating a Target Descriptor
	Creating an Aggregate Object Mapping

	Working with One-to-one Mappings
	Creating One-to-one Mappings
	Specifying Advanced Features Available by Amending the Descriptor

	Working with Variable One-to-one Mappings
	Specifying Class Indicator
	Specifying Unique Primary Key
	Creating Variable One-to-one Mappings

	Working with Direct Collection Mappings
	Creating Direct Collection Mappings

	Working with Aggregate Collection Mappings
	Working with One-to-many Mappings
	Creating One-to-many Mappings

	Working with Many-to-many Mappings
	Creating many-to-many Mappings
	Specifying Advanced Features by Amending the Descriptor

	Working with Custom Relationship Mappings
	Creating Custom Mapping Queries in Java Code

	7 Understanding Object Relational Mappings
	Working with Object Relational Mappings
	Working with Array Mappings
	Implementing Array Mappings in Java
	Reference

	Working with Object Array Mappings
	Implementing Object Array Mappings in Java
	Reference

	Working with Structure Mappings
	Implementing Structure Mappings in Java
	Reference

	Working with Reference Mappings
	Implementing Reference Mappings in Java
	Reference

	Working with Nested Table Mappings
	Implementing Nested Table Mappings in Java
	Reference

	A Object Model Requirements
	Persistent Class Requirements
	Constructor Requirements
	Remote Session Requirements

	Index

