Extensible Objects for Database Evolution:
Language Features and Implementation Issues

A. Albano, M. Diotallevi, and G. Ghelli

Universita di Pisa, Dipartimento di Informatica, Corso Italia 40, 56125 Pisa —
Ttaly, e-mail: albano@di.unipi.it, ghelli@di.unipi.it

Summary. One of the imitations of commercially available object-oriented DBMSs
is their inability to deal with objects that may change their type during their life
and which exhibit a plurality of behaviors. Several proposals have been made to
overcome this limitation. An analysis of these proposals is made to show the impact
of more general modeling functionalities on the object implementation technique.

1. Introduction

In the last decade many database programming languages and database sys-
tems have been defined which are based on the object paradigm. Some of
these systems are based on designing from scratch an object data model, and
a database programming language; for example, Gemstone, ObjectStore, On-
tos, 02, and Orion. Other systems are based on the extension of the relational
data model with object-oriented features, as in the Illustra and UniSQL sys-
tems, and in the forthcoming new SQL standard, called SQL3. The success of
the object data model is due to the high expressive power which is obtained
by combining the notions of object identity, unlimited complexity of object
state, class inclusion, inheritance of definitions, and attachment of methods
to objects. However, this data model is not yet completely satisfactory when
entities need to be modeled which change the class they belong to and their
behavior during their life, or entities which can play several roles and behave
according to the role being played.

For example, consider a situation with persons classified either as generic
persons, students or employees. This situation i1s modeled by three object
types Person, Student, and Employee, in any object system. In this situation
it 1s important to allow an object of type Person to become a Student or an
Employee. However, this may lead to problems. Suppose that a Code field has
been defined for both students and employees, with a different meaning and
even a different type, integer and string respectively. Let a person John first
become a student with code 100 and then an employee with code “ab200”.
At least four choices are possible:

1. The new Code overrides the old one, which makes no sense.

2. The situation is avoided, either statically, by preventing the declaration of
a Code field in two subtypes of Person, or dynamically by forbidding any
object which already has a Code field to acquire a new Code field. This
is unacceptable, since it creates some form of dependency between two

2 A. Albano et al.

different object types, Student and Employee, which are “unrelated”,
i.e. such that they don’t inherit from each other. In any object oriented
methodology it i1s essential that a programmer defining a subtype only
has to know about its supertypes, and must not fall into errors, either
static or dynamic, which depend on the existence of another descendent
of a common ancestor.

3. The situation can be prevented by stipulating that an object must always
have a most specific type, i.e. that it can acquire a new object type only if
this new type is a subtype of 1ts previous most specific type. This solution
is better than the previous one, since it does not link the possibility of
extending an object to the rather irrelevant event of a common field name
between two unrelated types, but it imposes too strong a constraint on
the object extension mechanism.

4. A Code message to John gets a different answer depending on whether
John is seen as a Student or as an Employee. This is the best solution.

The above problem is not just a consequence of using the same name
Code for two different things, but is only one example of the fact that, when
objects are allowed more than one most specific type, it is necessary to avoid
interactions between these unrelated types, which can best be obtained by
allowing objects to have a “context dependent” behavior. Context dependent
behavior can be supported in two different ways:

1. By static binding: the meaning of a message sent to an object is deter-
mined according to the type that the compiler assigns to the object, or
in some other static way. This solution produces efficient codes, since no
method lookup is needed, but heavily affects the features of code exten-
sibility and reusability which characterize object-oriented programming
and which are due to the combined effect of inheritance with dynamic
binding of methods to messages.

2. By dynamic binding (also called “late binding” or “dynamic lookup”):
in this case an object may have several “entry points”, which we call
“roles”; for example, when a Student is extended to become an Employee,
it acquires a new role (or entry point) which will be used when it is seen
as an Employee, without losing its old Student role. Messages are always
addressed to a specific role of an object, and method lookup starts from
the addressed role. An object which is always accessed through its most
specific role behaves exactly like an object in a traditional object oriented
language.

The languages proposed to deal with extensible objects may be classified
as follows [ABGO93]:

— languages with dynamic binding and wuniform behavior (e. g., Galileo
[ACO85], [AGO91]);
— languages with static binding and context dependent behavior (e. g., Clovers

[SZ89], Views [SS89], IRIS [FBC*87] and Aspects [RS91]);

Extensible Objects 3

— languages with both dynamic binding and context dependent behavior (e.

g., Fibonacci [ABGO93]).

In this paper we discuss some possible linguistic and implementative issues
which arise when both dynamic binding and context dependent behavior are
supported. We draw on the experience gained in the design and implemen-
tation of the Galileo and Fibonacci object-oriented database programming
languages.

The linguistic model we present is not essentially new, as it is based on the
role mechanism of Fibonacci. The focus of the paper is not on the mechanism
itself, but on its effect on object representation, a point which i1s not usually
discussed in the literature. In particular, we show how the various parts of
an object representation are related to the language features by showing how
object representation changes when new features are introduced after each
other.

The paper is organized as follows. Section 2. gives a basic linguistic and
implementative model for an object-oriented language without extensible ob-
jects. Section 3. extends the linguistic model with extensible objects with
uniform behavior, and shows how extensibility affects the implementation
model. Section 5. further extends the language with a role mechanism, i.e.
with context dependent behavior with dynamic binding, showing the effects
on the implementation model. Section 6. shows how the model must be fur-
ther modified to deal with the possibility of giving different implementations
for values of the same object type, as happens in Fibonacci. Section 7. draws
some conclusions.

2. Non-extensible Objects

In this section we define a basic object-oriented language, without extensi-
bility, with the associated object representation model. To fix a notation,
throughout the paper we adapt the syntax and semantics of the Galileo 95
language [AAG95]. When the chosen language involves making choices which
may have an implementative impact (e.g. single inheritance or single repre-
sentation for a single object type), we also discuss the alternatives.

2.1 The language

2.1.1 Object Types. In Galileo 95 objects are modeled using the so-
called “object as record” analogy, adopted initially in Simula, formalized
by Cardelli [Car88], and used in most object database systems: objects are
essentially records that may have functional components to model methods;
message passing is implemented as field selection. In this context, an object
type specifies three pieces of information:

4 A. Albano et al.

— the object type interface, i.e. (a) the set of messages which can be sent to
the object, with the parameter and result types for every message, and (b)
the object instance variables, i.e. the object fields in the object-as-record
analogy, which can be accessed from outside the object;

— the structure of the object state, 1.e. the name, type, and mutability of the
instance variables;

— the method implementation, 1.e. the code that an object of that type exe-
cutes when it receives a message.

In other languages, such as Fibonacci, an object type only specifies the
interface of objects of that type, while every object can have, in principle,
its own implementation, i.e. its own state structure and method set. The
consequences of this different approach are discussed in Section 6..

An object type is specified by a set of pairs of two kinds:

1. A label-type pair (4; :T;) represents one component of the object state
(the identifiers A; are called attributes); the value associated with an
attribute A; of an object 0 is extracted with the dot expression 0. 4;.

2. A label-function pair (4; := fun(...) ...) represents a method, i.e. a
function shared by all instances of the object type; a method can access
the attributes and methods of the object using the predefined identifier
self. A message A; with parameters p is sent to an object 0 employing
the 0.4;(p) notation.

The following example shows the definition of the object type Person,
with a method Introduce:

let rec type
Person =
object
[Name :string;
BirthYear :int;
Phones :[House :string];
Introduce:= fun () :string is
implode ({"My name is ";
self.Name })
1

Where [House :string] is an example of a tuple type, {"a";"b"} is
a sequence of string, implode concatenates a sequence of strings, and the
declaration let type T = object [SoP], where SoP is a set of pairs as pre-
viously described, introduces into the current environment a new type T and
the function mkT to construct values of type T. The input parameter of the
mkT constructor is a record of type [SoP’] with one field for each component
in the object state, i.e. SoP’ 1s the set of SoP label-type pairs. Each appli-
cation of the mkT constructor returns an object of type T with a different
identity.

An example of the construction of an object of type Person, and examples
of state access and message passing are:

Extensible Objects 5

let John := mkPerson ([Name := "John Smith";
BirthYear := 1967;
Phones := [House := "06 222444"]]);

john.BirthYear;
john.Introduce();

In general, object methods and attributes — called the properties of an
object — may be either public or private. A private property is only acces-
sible from within the type definition, while a public property may always be
accessed. Hereafter, properties are assumed to be public, since this aspect is
not relevant for the considerations we are interested in.

2.1.2 Subtyping and Inheritance. Subtyping and inheritance are two dif-
ferent mechanisms which are often related in object oriented languages. Sub-
typing is an order, or preorder, relation among types such that whenever 7’
is a subtype of T', written 7" C T, any operation which can be applied to
any object of type 7" can also be applied to any object of type 7. Inheri-
tance is a generic name which describes any situation where an object type,
object interface, or object implementation, is not defined from scratch but
is defined on the basis of a previously defined entity of the same kind. For
example, in our situation defining an object type 7" by inheritance from T'
means defining 7" by only saying how its state and method set differ from T'
state and methods. For methodological and technical reasons, most object-
oriented languages only allow strict inheritance, which means that 7" can be
defined from 7" only by:

— adding instance variables or methods to T

— refining 77s state and methods, where refining an instance variable means
substituting its type with a subtype, and refining a method m means sub-
stituting 1t with a new method whose type is a subtype of the type of

m.!

Whenever T’ is defined by strict inheritance from 7', T" is also a subtype of
T, since 17" supports the whole T' interface.

Strict inheritance is also adopted in Galileo 95, where this 1s the only
way to define a subtype of an object type. To define an object type T by
inheritance from another object type T’, we write:

type T := object is T’ and H

H specifies the properties (attributes and methods) to add or redefine in
T; below is an example.

let rec type Student := object is Person and
[Code :string;

! In any strongly and statically typed language the type S’ — U’ of m’ is a
subtype of the type S — U of m when S C S’ and U’ C U; the inversion of the
direction of the comparison between S and S’ is explained in [Car88].

6 A. Albano et al.

Faculty :string;
Introduce := fun () :string is
implode ({super. Introduce();
"I am a student of ";
gelf.Faculty}) 1;

It is generally possible to define an object type by inheritance from several
object types: T := object is Ty, ..., T, and T, (multiple inheritance).
If the supertypes have a property with the same name and different types, the
property is inherited from the last (w.r.t. the Ty, ..., T, order) supertype
which defines 1t. In this case, strict inheritance means that every property
which is either redefined or inherited from more than one type must have a
type which is a subtype of the type of the same property in all the ances-
tor types Ty, ..., Tp,. Not every object oriented language allows multiple
inheritance; inheritance from a single supertype is the most common solution.

2.1.3 Method Lookup and Semantics of Self. When a message m is sent
to an object 0, two problems must be solved: (a) which method is used to
answer the message, and (b) which is the semantics of the pseudo-variable
self which may appear in the selected method.

In traditional object-oriented languages, with objects that cannot change
their type dynamically, the run-time type T of an object 0 is fixed when
the object is created. This run-time type is generally only a subtype of the
compile-time type of any expression whose evaluation returns 0. When a
message 1s sent to 0, the method is first searched for in its run-time type
T. If none 1s found, the method is searched for up the supertype chain of
T. The search will stop, since static typechecking ensures that the method
has been defined in one of the super-types. The fact that the method lookup
starts from the run-time type 0, rather than from the compile-time type of
the expression which returns 0, is called dynamic binding, while the specific
algorithm used to look for the method (depth-first upward search, in this
case) is called the lookup algorithm.

Consider now a self.msg(...) invocation found inside a method defined
for the message msg2 inside type T', and suppose that the method is executed
by an object with a type 7" inheriting from 7. Two choices are possible, in
principle, for the semantics of self.msg(...):

— method lookup for msg may start from the statically determined type T’
(static binding of self)

— method lookup for msg may start from the dynamic type 7" of the object
which has received the message msg2 (dynamic binding of self).

The second choice is the one adopted in all object-oriented languages, and
is essential in many typical object-oriented applications. Hence, when the
method where self.msg(...) is found is type-checked, the type checker can
only assume that self will be bound to an object whose type inherits from 7.
This is not a problem in languages which only allow strict inheritance, such

Extensible Objects 7

as the one we are describing, and this is the main justification for the strict
inheritance constraint.

The pseudo-variable super can also be used in a method expression. super
is statically bound, i.e. the method search for a message sent to super begins
with the supertype of the type where the method is defined.

2.2 An Implementation Model

We now describe an implementation model for the basic language described
so far. We only focus on the information that must be present in the run-
time representation of an object to support the described functionalities. We
give a simple, not unrealistic, way of representing this information, without
discussing alternative representations and optimizations.

In our model, every object is represented by a reference to a representa-
tion of its run-time type (the object type descriptor) plus a representation
of the object’s own state. The object type descriptor and the object state
representation are described in the following subsections.

2.2.1 The Object Type Descriptor. We need to make a distinction be-
tween the compile-time object type descriptor, which is used by the compiler
to determine the correctness of message passing operations and of new object
type definitions, and the run-time object type descriptor, which is used for
method lookup. Both structures are persistent in an object oriented database
system, but the first belongs to the schema while the second is managed by
the run-time system.

A run-time object type descriptor thus only contains the method and
state lookup table for that type. This is a table which associates every mes-
sage accepted by an object of that type with the code of the corresponding
method (even if inherited), and every component of the state of the object
with 1ts position inside the object state representation. The second piece of
information is needed since the language supports multiple inheritance; when
single inheritance alone is supported, the offset of each state component can
be directly computed by the compiler. It would also be possible, but more
costly, to keep field names inside the object itself. We will also call this struc-
ture extended run-time object type descriptor, to emphasize that it contains
both owned and inherited methods, while in most of the other implemen-
tative models we will present the run-time object type descriptor will only
contain information about owned (not inherited) properties.

2.2.2 The Representation of the Object State. The state of each object
is simply represented as a tuple containing its non-method fields. The run-
time representation of an object is depicted in Figure 2.1.

8 A. Albano et al.

object
~
Full Object Typeimsgy | method j——ObjTypDesc] fieldy [... [fieldy |
Descriptor ¢hared):
method and attributg msg, methog,
tables for owned and fid1 | offset
inherited properties
(FMT + FAT) § fidmy, | offsety
Notation (used in all figures): object entry point: — >

Fig. 2.1. The structure of an object which does not change type.

3. Extensible Objects with Uniform Behavior

In this section we add, to the basic model, the possibility of extending objects,
but without introducing the notion of a context dependent behavior. We then
show the linguistic and implementative effect of this first extension. This
section is based on the linguistic and implementative model which underlies
the first version of Galileo [ACO85].

We first extend the basic language by stipulating that, when an object
type T’ 1s defined by inheritance from type T, two functions are automati-
cally generated: mkT’ to construct directly new instances of type T?, and the
function inT’ to extend an instance of type T with the new type T’, without
affecting the object identity.

The function inT’ has two parameters: the value of the object 0 to be
extended and a record which gives the values of the T’ attributes which are
not inherited from T.

To solve the problem created by the presence of two properties, in two
independent subtypes, with the same name but a different type, the following
property type specialization rule is adopted: when an object 0 with a set of
properties A is extended with a new type T, for every property P which is
both in A and in T, the type of P in T (the new type of P) must be a subtype
of the type of P in A (the old type of P).

For example, the object john may be extended with the type Student as
follows:

let rec type Student = object is Person and
[Code :string;
Faculty :string;
Phones :[House :string; GuestHouse :string];
Introduce := fun () :string is
implode ({super.Introduce();
" I am a student of ";
gelf.Faculty})
1
let johnAsStudent := inStudent (john,
[Code := '"0123";
Faculty := "Science';

Extensible Objects 9

Phones := [House := "06 222444";
GuestHouse := "552244"]1]);

The extension operator does not change the object identity.
Suppose now that the following types are also defined:

let rec type Athlete = object is Person and
[Code:int;
Sport: string;
Introduce:= fun () :string is
implode ({super.Introduce();
" I practice ";
self.Sport}) 1;

let rec type Employee = object is Person and
[Code:string;
Company: string;
Introduce:= fun () :string is
implode ({super.Introduce();
" I work at ";
self.Company}) 1;

An object of type Person which has never been extended to a Student
can be extended to become an Athlete, but the property type specialization
rule prevents the extension of a Student to an Athlete. However, a Student
can be extended to an Employee.

Other operators defined on extensible objects in this language are:

— Expr isalso T, to test whether an object denoted by the expression Expr
also has the type T; for example both john isalso Student and johnAs-—
Student isalso Student are true.

— Expr As T, to coerce an object denoted by the expression Expr to one of
its possible types T; for example john As Student returns the object with
type Student. This operation raises a run-time failure if the object never
acquired type T, but has no other run-time effect in this language.

3.1 Method Determination

In Galileo, method lookup cannot only depend on the minimal type of an
object, since, thanks to object extension, an object may have more than one
minimal type. In Galileo, method lookup depends on the whole object type
history, which is defined as the ordered set of types {T1, ..., T,} such that
Ty 1s the type where the object has been built, and every extension operation
adds a new type at the end of the history.

When an object with a type history {T1, ..., T,} receives a message m,
the method to execute 1s searched for in two steps:

1. first, the method is looked for in methods that belong to (i.e. are not
inherited) the last type T, acquired; if it is not found there, the search

10 A. Albano et al.

goes on in the type history, in the inverse temporal order T,,_1, Tn_2,
o T
2. then, if the method is not even found in the construction type Ty, the
search goes up the supertype chain of T; as in the basic language. Static
typechecking ensures that the search will eventually find the appropriate
method.

For example, an object john created with type Person, and then extended
with the subtypes Student and Athlete, and finally with Student subtype
GraduateStudent, will answer the message Introduce using the method
defined in the type GraduateStudent.

3.2 Self-reference Semantics

When a method contains a self.msg invocation, the interpretation of the
self-reference depends on how the method has been determined:

— if the method has been found in the type T; by the search into the type
history, the type of self is T;, the type containing the selected method;

— if the method has been found by a search in the supertype chain, the type
of self is Ty, the creation time type of the object that received the message
m.

Hence, we can say that self is statically bound for methods found during
the history search phase, while 1t is dynamically bound for methods found
during the upward search phase. Performing a dynamic binding of self to
Ty for a method found in type T; during the history search phase would
not be sound since, when a message is compiled, self type it is assumed
to be a subtype of the T; type being defined, which is not true for T;. On
the other hand, this choice does not affect the language’s expressive power
because the method lookup mechanism is equivalent to the one adopted in the
basic language for non extended objects. This means that this approach can
represent every classical object-oriented construction based on the dynamic
binding of self for non-extensible objects.

As an example of the self interpretation rule, let us consider the following
definitions:

let rec type Wl := object [s := fun():int is 3;
r := fun() :int is self.s() J;
object is W1 and [s := fun():int is 4]1;
object is W1 and [s := fun():int is 5;
r := fun():int is 2%self.s()];

let type Wil :
let rec type W12 :

Let us construct a value v1 of type Wi1, and send it the message v1.r():

let vl := mkW11([1);
vi.r(); returns 4

Extensible Objects 11

vi.r() returns 4 because the method for r is inherited from W1, here self
is assigned type W11 (dynamic binding), hence self.s returns 4.
Let us extend v1 with the type W12, and send it again the message v1.r():

let v2 := inW12(v1,[1);
vi.r(); returns 10

This time the method for r 1s found in W12 by history search, hence self
is statically bound to type W12, hence self.s returns 2*5.
Note that there is no modification in the semantics of super.

3.3 The Implementation Model

The simplest run-time representation of objects in this language contains the
object type history, represented as a modifiable sequence of references to type
descriptors, and a modifiable sequence of label-value pairs to represent the
state. In this case a type descriptor only contains the code for its own meth-
ods. Method search is executed through the two-phase algorithm described
above, while field search is executed exploiting field labels. When an object
is extended with a new subtype, the new type is added to its history and the
new fields are added to its state; if an attribute of the supertype is redefined,
its value is directly replaced by the new value.

More specifically, every method is represented as a function which re-
ceives, apart from the message parameter, a self parameter which is bound
to the receiving object, as happens with objects that do not change type, plus
a boolean parameter which says whether the method has been found during
the history search phase or during the upward search phase. This boolean pa-
rameter is used to determine whether the history search must be used when
a message 1s sent to self. This simple representation is shown in Figure 3.1.
Note that the object is accessed indirectly to allow the object to be extended
without modifying its identity, i.e. preserving any external reference to the
object; any other technique to allow identity preserving extensibility (e.g.,
concatenating new field to the object tail) would work.

object _ _ _ QEK

Object Type DescH.

(shared): Local {Namq 10y [TD' [Tal...[Tj[AttrTable] field | ... | fieldn |
th i |
Method Table and ™% Method o?]ﬁsctgg’pe " [fidName; [posy
pointers to the OTD’ Attribute
msg1| methogh Tabld fIdNamehI pos

of the sl type
qu‘%’é. 3.1 Thestructure of an extensible object.

12 A. Albano et al.

3.4 An Improved Implementation Model

To obtain a more efficient execution of message passing, an object represen-
tation can be used which closely resembles the one in Figure 2.1. In this case,
each object only contains a reference to an Object Type History Descriptor
(OTHD). An OTHD contains an object type history (i.e. a sequence of refer-
ences to object type descriptors), a method lookup table and a field lookup
table, which allow one to find the code of every method and the position of
every field for any object with the story described by the OTHD. The system
maintains a pool of OTHD’s and creates a new one only when an object is
created whose story is different from any story Whidi Igearrently described

in the|OTHD. This pptimized Teprasen Lwﬁmﬁ?m_‘ﬂ—&'ﬂuﬁ 3.2.
T) FTHD] fieldy | ... |fieldy

msg | method

v \ / v \ f ms¢, | methogy

NamdTD'y| [TD'§ iNamdTD4| |TD'{ ifldNamey| pog

Object Type Descriptorssifared): fldNamey,| posm
type name and pointers to the
OTD'’s of the supertypes

Full Type History Descriptor
(shared): type history
(Tgseees Tj), Full Method Table,

Full Attribute Table

Fig. 3.2. A better structure for extensible objects.

4. Extensible and Shrinkable objects

As a further generalization step, we now add an operator dropT(Expr) to
the language, to cancel the type T, and all its subtypes, from the object
denoted by the expression Expr. dropT(Expr) is a function which is declared
automatically when a subtype is defined, as happens with mkT and inT.

In our linguistic model, object shrinkability adds a first kind of context-
dependent behavior. Let Ide; be an identifier bound to an object of type
Ty (e.g., Ide; := mkPerson(...)), and Ides an identifier bound to the same
object extended with the subtype Ty (e.g., Ides := inStudent(Ide;, ...)).
If type T» is removed from the object, by executing either dropT;(Ides) or
dropT,(Ide;), then:

— if the object is accessed through the identifier Ides, a run-time failure will
arise when a message is sent 1t, either to execute a method or to extract
the value of an attribute, irrespective of whether the property is defined in
T, or is inherited from Ty;

— if the object is accessed through the identifier Ide;, a message to execute
a method or to extract the value of an attribute defined in Ty is normally

Extensible Objects 13

executed. Note that, in a well typed program, it is not possible to extract
a property which is only defined in T» by going through Ide;.

— the isalso and As operators can still be applied to Ide,, to verify whether
the object still belongs to some type and to send messages to the part of
the object that is still valid.

Shrinkable objects thus have a behavior which depends on the context
they are accessed through, their role in our terminology. For this reason, the
implementative model must be extended to take into account the fact that
an object can be accessed through many different roles. Every role contains
the following information: the type (e.g., Ide; is associated with the Person
type while Ide; is associated with the Student type), the validity (e.g., Ide;
is valid while, after the dropTs operation, Ides is not valid any more), and
a reference to the object. The object itself must contain a reference to all of
its roles, both to implement As and isalso and to find every role associated
with a subtype of T when dropT is executed.

This representation is shown in Figure 4.1, where an object with two valid
roles and one removed role is represented. Note that the indirection level given
by roles can also be exploited to allow identity preserving modifications of
the object.

Object Type Descr.:

LMT and pointersto R3 - - object roles
the supertypes =" »
NaquD‘]j |TD‘H) - - Attribute fIdNamell pos
msg [method Rp{TDz] Valid| Obj Tabl fidNamey[posy
\ 4
msg, | methog, Ry TDq] Valid] Obj}_&R” Rp [AttrTable] field; | ...] fieldp |

. Object History .
Fig. 4.1. The structure of a shrmf{able object.

Every reference to an object is actually a reference to one of its roles.
When an object is extended a new role is added, and when an object loses
the type T;, the following actions are executed:

— the status of the T; role becomes removed;

— the type T; is removed from the object type history;

— the first steps are repeated for every role of the object whose type is a
subtype of T;.

We do not discuss, in this case, any optimized implementation.

5. Extensible Objects with Context Dependent Behavior

The most general solution to support objects which can dynamically ac-
quire new types and exhibit a plurality of behaviors was first given in Fi-

14 A. Albano et al.

bonacci [ABGO93], and then adapted to Galileo 95 [AAG95]. The proposal

has the following main features:

Objects with roles An object has an immutable identity and is organized as
acyclic graphs of roles. Methods and fields are associated with the roles.
Every message is addressed to a specific role of an object, and the answer
may depend on the role addressed (context dependent behaviors);

Independence of extensions An object can be extended with unrelated sub-
roles without interference;

Plurality of dynamic bindings A message can be sent to a role with two dif-
ferent notations to request a different lookup method:

— upward lookup: the message is sent with the exclamation mark no-
tation, and the method 1s looked for in the receiving role and in its
ancestors;

— double lookup: the message is sent with the dot notation, and the
method 1s first looked for in all the descendants of the receiving role,
visited in reverse temporal order, then in the receiving role, and finally
in its ancestors.

Note that a traditional object oriented language can be seen as a role
language where no object is ever extended and every message is always
sent to the most specific role of the object. In this situation, upward
lookup and double lookup coincide, and both coincide with the standard
method lookup technique.

Role casting and role inspection Operators are provided to inspect the roles
of an object and to dynamically change the role through which an object
is accessed.

Multiple implementations An object type only describes the interface of the
corresponding objects, while the implementation (i.e., method implemen-
tation and state structure) is defined, for every object, when the object
is built.

We will first describe the Galileo 95 model, which adopts the single im-
plementation approach for objects.

Let us consider again the definitions given above of the Person subtypes
Student and Athlete:

let rec
type Student := object is Person and
[Code :string;
Faculty :string;
Introduce := fun () :string is
implode({(self As Person) !Introduce();
" I am a student of ";
gelf.Faculty}) 1;

let rec type Athlete = object is Person and
[Code:int;
Sport: string;

Extensible Objects 15

Introduce:= fun () :string is
implode ({(self As Person) !Introduce();
" I practice ";
gelf.Sport}) 1;

The semantics of the expression (self As Person)!Introduce() used in
the definition of the method Introduce will be explained in the next section.

In this model, an object with a role john of type Person may now be
extended with the types Student and Athlete as follows:

let johnAsStudent := inStudent(john, [...]1);
let johnAsAthlete := inAthlete(john, [...]1);

The answer to the message Code sent to johnAsStudent is a string while
the answer to the same message sent to johnAsAthlete is an integer. The
answers to the message Introduce sent to johnAsStudent or to johnAs-
Athlete are also different. We say that john, johnAsStudent and johnAs-
Athlete are three roles of the same object, of type Person, Student, and
Athlete, respectively.

Besides the functions mkT and inT’, the following operators, similar to
those seen in the previous section, are also provided on objects and roles:

— dropT(Expr), to drop the role with type T and all its sub-roles from the
object reachable through the role Expr (hereafter “the object Expr”). A
run-time failure will arise if a message is sent to a removed role.

— Expr isalso T, to test whether an object Expr also has the role type T;
for example johnAsStudent isalso Athlete is true.

— Expr As T, to retrieve the role T of the object Expr. For example, john-
AsStudent As Athlete returns the role with type Athlete of the object
which is reached through the role johnAsStudent.

— Expr isexactly T, to test the run-time role type of the role denoted by
the expression Expr; for example, john isexactly Athlete is false while
johnAsAthlete isexactly Athlete is true.

5.1 Method Determination

When a role r with run-time type T; receives a double lookup message r.m,
the corresponding method is looked for in two steps:

1. first, the method is looked for in the object roles whose type is a subtype
of T;, in the inverse acquisition time order;?

2. if the method is not found, the search proceeds in the role type T;, and
finally goes up the supertype chain of T; until the root type is reached.
Static typechecking ensures that the search will eventually find the ap-
propriate method.

2 Note the difference with the corresponding rule given in the previous section:
there the method was looked for in the whole object type history, here it is
looked for in the subroles of the receiving role only.

16 A. Albano et al.

When a role r receives an upward lookup message r'!m, only step 2 is
performed.

For example, the answer to the double lookup message john.Introduce
changes once the object has been extended with the role type Student, and
once again after its extension with the role type Athlete. To receive always
the same answer from john, irrespective of any extensions, the message must
be sent with the john!Introduce notation.

The combination of double lookup with role casting allows static binding,
and the super mechanism, to be simulated. For example, let us consider the
following function:

let foo := fun(x:Person) :{string} is
{x.Introduce;
x!'Introduce;
(x As Person) !Introduce}

Let johnAsStudent be bound to a value of type Student, which has
been later extended with a role of type ForeignStudent, subtype of Student
which redefines the method Introduce. The value returned by foo(johnAs—
Student) is a sequence of three answers produced by the methods defined
in type ForeignStudent (double lookup), in type Student (upward lookup),
and in type Person (static binding).

5.2 Self-reference Semantics

When the method selected by a role r to answer a message m contains a mes-
sage whose receiver is self, the interpretation of the self-reference depends
on how the method has been found:

— if the method has been found in the downward lookup phase, hence in a
type T which is a subtype of the type of r, then self is bound to the r As
T role;

— if the method was found by a search in the supertype chain, then self is
bound to the r role.

The observations made in Section 3.2 apply in this case too.

5.3 The Implementation Model

In this language, methods and attributes are not associated with the object
as a whole, but each property is associated with one specific role. For this
reason, the simplest implementation model is obtained starting from the last
model presented and moving methods and state fields from the object, whose
only aim is now to collect the history of the roles it acquired, to the roles, as
shown in Figure 5.1. A role now stores the following information:

— a reference to the role type descriptor;

Extensible Objects 17

— a status valid or removed to describe whether the object lost that type;
— a reference to the object;
— the values of the owned attributes of its role type.

A new role descriptor is created when the object is created, and when
the object is extended with a new type. Creating an object in a non-root
type is implemented in the same way as creating the object in the root type
and then extending it. Object extension is only valid if the object has all the
supertypes of the new type but does not have the type is acquiring.

The object descriptor is a sequence of references to the roles of the object,
kept in temporal order.

bject rol
opjectrole Ra[TD3] Rem.] Objl—

|
Ro{TDy] Valid [Objl—

Object Type DescriNamgTD'y| |TD'y

(shared): owned | mS@L]_method fieldy [... fieldn
methods and pointer v |
to the OTD's of thef MSth | method Ry [TD4] Valid [obj}— Ry [Ry |
supertypes field;[...[fieldy| Object Role

Type History
Fig. 5.1. The structure of an object with a plurality of behaviors.

This representation may easily be optimized, as will be shown in the next
section.

6. Extensibility, Roles, and Multiple Implementations

The final feature of the language is separation between role type interfaces
and implementations, as in Fibonacci, where:

— a role type only specifies the role interface but not the method implemen-
tation;

— a role implementation is only given when a role is constructed, or when an
object is extended with new roles. Different role implementations can be
given for the same role type;

— the state of a role is encapsulated and 1s accessible only through methods
of the same role; this last point is not, however, essential for our discussion.

In this context, types Person and Student would be defined as follows:

let rec type Person = object [Name :string;
BirthYear :int;
Phones :[House :stringl;
Introduce: string];

18

A. Albano et al.

let rec type Student = object is Persona and
[Code :string;
Faculty :string;
Phones :[House :string; GuestHouse :string];
Introduce :string J;

The implementation of methods is given when a role is constructed:

let john = role Person with
private
MyName := "Antonio Rossi';
MyBirthYear := 1950;
MyPhone := [House :="565443"]
method
Name:= MyName;
BirthYear := MyBirthYear;
Phones := {MyPhone};
Introduce:= implode({"My name is '";self.Name})
end;

A student may be built either by extending a person, or from scratch, by

defining the owned and inherited methods together; this second possibility
affects the implementation model, as we will see.

n

6.

Method determination and self-reference semantic rules are the same as
the previous section.

1 Implementation Model

The implementation model is shown in Figure 6.1. The main difference is
that methods move from the role type descriptor to the role representation.
Another difference arises because an object can acquire more than one role
type in a shot, both when it is created and when it is extended, hence it

1s

not true that an object has as many role as types. For example, suppose

that four types T4 € Tz C T, C T are defined. An object may be created

n

T, and then extended in type T4. In this case the object would only have

two roles, the first one returned by both obj As T; and obj As T», and the

se

cond one returned by both obj As Tz and obj As T4.3
The role type descriptor (RTD) now contains the following information:

the type name (actually, its run-time representation);

the list of all the supertypes of the type, in inheritance order, i.e. it
Ty,...,T, is the list of immediate supertypes of T. The list of all the su-
pertypes of T contains first the list of all supertypes of T,,, then the list of
all the supertypes of T,_; which are not supertypes of T,, and so on.

the list of all the subtypes of the type.

® Note that this feature is orthogonal to multiple implementation; we might have

introduced it in the previous section too.

Extensible Objects 19

We may only keep immediate supertypes in the RTD, as in the previous
sections. However, the increased complexity of lookup method justifies the
decision of making this small optimization from the beginning.

The role representation contains the following information:

a reference to the most specialized type associated with the role;

— a valid or removed status;

— the role local state, shared by all role’s own methods;

— a table containing names and implementations for every owned method of
the role;

— a reference to the object descriptor.

Finally, the object descriptor is a sequence, kept in temporal order, of pairs
(types, role). Whenever an object acquires a new set types of types, thanks to
an extension operation, a new pair types,role is added to the sequence, where
role 13 the newly acquired role. Associating the set of types with each role
in the object descriptor is a small optimization, which helps to implement
message passing and the As operation.

Double lookup message passing is implemented as follows:

1. Downward lookup: if the object is accessed through a role R; whose most
specific type is T;, the subtype list is obtained from the role type descrip-
tor of type T;, and the method is searched in every role R in the object
role type history such that the most specific type of R is a subtype of T;.
The role type history is looked for in reverse temporal order.

2. Upward lookup: if downward lookup fails, then the supertype list 1s ob-
tained from the role type descriptor of type T;, and the method is searched
in every role R in the object role type history such that at least one type
of R is a supertype of T;. Roles are examined in the inheritance order, i.e.
according to the order of types in the supertype list.

Figure 6.1 below represents a situation where types T» and Tz are two
subtypes of type Ty, and the represented object has first been built from
scratch in type Ts, and then has been extended to type Ts.

Role reference \
R2{T3 [valid [objl—

L [felda]Jiieldy

method table

N
Rl

Role T)_/pe Descr, R
(shared): p.0|.nter t_o all o4 o
supertypes in inheritanc ICENE
order and to all subtype! R1

\ A \
Tp [Valid]| Obj Ty To| R | T3 R |
field1| | fieldp Object Role Type History

method table

Fig. 6.1. The structure of an object with a plurality of behaviors and a separate
definition of interface and implementation.

20 A. Albano et al.

Note that no name is needed in the state representation, since it is only
accessed by local methods, hence the position of each state component can be
statically determined. On the other hand, the method lookup algorithm takes
advantage of the fact that the method table associates names with method
implementation.

The semantics of self is the same as in the previous section, and can be
fully supported once the As operator is supported.

6.2 An Improved Implementation Model

The solution described so far is not realistic, since method lookup, which
is the basic operation, requires an algorithm which is too slow. Hence, in
the development of the Fibonacci system an optimization similar to the one
described in Section 3.4 was adopted.

In Fibonacci, every role is associated with a full method lookup table, i.e.
a table which associates with each owned or inherited message, that the role
can receive, the following information:

— a reference to the method code;

— a reference (owner) to the role type where the method implementation
belongs;

— a field (overriden) to remember whether the method is defined in a sub-
role;

More precisely, each role contains a reference to two method lookup tables,
one corresponding to double lookup and the second corresponding to upward
lookup only; the “overridden” field 1s only present in the double lookup table.

The two lookup tables are built when a role is built, and in that moment
they coincide. Later, whenever a new subrole subr defining a method meth
for msg is added to the object, the msg field in the double lookup table of all
superroles of subr is updated with the triple (meth, type of subr, true). The
upward lookup table never changes. A method is a function which receives
all the message parameters plus two roles, the “state role” which must be
used to retrieve state variables and the “self role” which is bound to self.

To answer a message msg a role r just looks in the appropriate table to
find the correct method meth and its owner type owner. Then, if overridden
is false or is not applicable (upward lookup), it calls meth binding “state
role” to r As owner and “self role” to r. If overridden is true, then r As
owner must be bound to “self role” too.

Note that the lookup table contains the type of the role that owns the im-
plementation, rather than the role itself, so that two different roles with the
same message-method correspondence may share the table. Actually, the Fi-
bonacci implementation contains a lookup table pool where every new lookup
table is stored, associated with the object extension history. In this context
an object extension history is not just a sequence of types since two objects
may acquire the same type but with a different implementation. The history

Extensible Objects 21

i1s a sequence of extension functions. This is because usually there are very
few extension functions for every type, just one for most of them, and since
almost every object construction or extension is made through a function,
indexing the table pool with function histories is almost as effective as using
type history in languages with one implementation per type.

The resulting situation is shown in Figure 6.2.

object role
, 3
Doublef ___'Mp! history T3 | valid] Objl—
Io?;l),llg msg| owner bit[metho Ro|fieldy] .| fieldy
references to the
(shared) msg| ownerbit| methog method lookup {.
Impl history \ \ J
Upward - - .
lookup § msg[ownefmetho Ry [T2_| Valid] Obj T1| T2 [Ra| T3 | Rp [Impl history
table fieldy[..[fieldy| Object Role Type History
(shared) msg|owne{metho method table

Fig. 6.2. The Fibonacci optimized implementation of roles.

7. Conclusion

We have described a sequence of object models of increasing complexity,
starting with the standard model and ending with a model with the following
features:

extensible objects;

— context dependent behavior (roles);

— shrinkable objects;

multiple implementations for the same type.

Drawing on our experience in the implementation of Galileo, Galileo 95,
and Fibonacci, we have presented a sequence of implementation models of
increasing complexity, to show which implementative features are linked to
every linguistic feature, and to help to distinguish the basic run-time in-
formation, which is strictly needed to implement every operation, from the
structures that are added to obtain a faster implementation of message pass-
ing.

Acknowledgement. This work has been supported in part by grants from the C.E.C.
under ESPRIT BRA No.6309 (FIDE2: Fully Integrated Data Environment), the
Progetto finalizzato “Sistemi informatici e calcolo parallelo” of C.N.R. under grant
No. 93.001502.PF69, and by “Ministero dell’Universita e della Ricerca Scientifica e
Tecnologica”.

22 A. Albano et al.

References

[AAGY5]

A. Albano, G. Antognoni, and G. Ghelli. View operations on objects with
roles. Technical report, Universita di Pisa, Dipartimento di informatica,
1995. (submitted).

[ABGO93] A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. An object data

[ACOS85]

[AGO91]

[Car83]

model with roles. In R. Agrawal, S. Baker, and D. Bell, editors, Proc. of
the Nineteenth Intl. Conf. on Very Large Data Bases (VLDB), Dublin,
Ireland, pages 39-51, San Mateo, California, 1993. Morgan Kaufmann
Publishers.

A. Albano, L. Cardelli, and R. Orsini. Galileo: A strongly typed, inter-
active conceptual language. ACM Transactions on Database Systems,
10(2):230-260, 1985. Also in S. B. Zdonik and D. Maier, editors, Read-
ings in Object-Oriented Database Systems, Morgan Kaufmann Publish-
ers, Inc., San Mateo, California, 1990.

A. Albano, G. Ghelli, and R. Orsini. Objects for a database programming
language. In P. C. Kanellakis and J. W. Schmidt, editors, Proc. of the
Third Intl. Workshop on Data Base Programming Languages (DBPL),
Nafplion, Greece, pages 236-253, San Mateo, California, 1991. Morgan
Kaufmann Publishers.

L. Cardelli. A semantics of multiple inheritance. Information and Com-
putation, 76:138-164, 1988. A previous version can be found also in
Semantics of Data Types, LNCS 173, 51-67, Springer-Verlag, 1984.

[FBCt87] D. H. Fishman, D. Beech, H. P. Cate, E. C. Chow, T. Connors, J. D.

[RS91]

[S889]

[5Z89]

Davis, N. Derrett, C. G. Hoch, W. Kent, P. Lyngbaek, B. Mahbod, M. A.
Neimat, T. A. Ryan, and M. C. Shan. IRIS: An object-oriented database
management system. ACM Transactions on Office Information Systems,
5(1):48-69, 1987.

J. Richardson and P. Schwartz. Aspects: Extending objects to support
multiple, indipendent roles. In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, pages 298-307, Denver,
CO, 1991.

J. J. Shilling and P. F. Sweeney. Three steps to view: Extending the
object-oriented paradigm. In Proceedings of the International Conference
on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA), volume 10 of ACM SIGPLAN Notices, pages 353—-361, 1989.
L. A. Stein and S. B. Zdonik. Clovers: The dynamic behavior of type
and instances. Technical Report CS-89-42, Brown University Technical
Report, 1989.

