
Extensible Objects for Database Evolution:Language Features and Implementation IssuesA. Albano, M. Diotallevi, and G. GhelliUniversit�a di Pisa, Dipartimento di Informatica, Corso Italia 40, 56125 Pisa {Italy, e-mail: albano@di.unipi.it, ghelli@di.unipi.itSummary. One of the limitations of commercially available object-oriented DBMSsis their inability to deal with objects that may change their type during their lifeand which exhibit a plurality of behaviors. Several proposals have been made toovercome this limitation. An analysis of these proposals is made to show the impactof more general modeling functionalities on the object implementation technique.1. IntroductionIn the last decade many database programming languages and database sys-tems have been de�ned which are based on the object paradigm. Some ofthese systems are based on designing from scratch an object data model, anda database programming language; for example, Gemstone, ObjectStore, On-tos, O2, and Orion. Other systems are based on the extension of the relationaldata model with object-oriented features, as in the Illustra and UniSQL sys-tems, and in the forthcoming new SQL standard, called SQL3. The success ofthe object data model is due to the high expressive power which is obtainedby combining the notions of object identity, unlimited complexity of objectstate, class inclusion, inheritance of de�nitions, and attachment of methodsto objects. However, this data model is not yet completely satisfactory whenentities need to be modeled which change the class they belong to and theirbehavior during their life, or entities which can play several roles and behaveaccording to the role being played.For example, consider a situation with persons classi�ed either as genericpersons, students or employees. This situation is modeled by three objecttypes Person, Student, and Employee, in any object system. In this situationit is important to allow an object of type Person to become a Student or anEmployee. However, this may lead to problems. Suppose that a Code �eld hasbeen de�ned for both students and employees, with a di�erent meaning andeven a di�erent type, integer and string respectively. Let a person John �rstbecome a student with code 100 and then an employee with code \ab200".At least four choices are possible:1. The new Code overrides the old one, which makes no sense.2. The situation is avoided, either statically, by preventing the declaration ofa Code �eld in two subtypes of Person, or dynamically by forbidding anyobject which already has a Code �eld to acquire a new Code �eld. Thisis unacceptable, since it creates some form of dependency between two

2 A. Albano et al.di�erent object types, Student and Employee, which are \unrelated",i.e. such that they don't inherit from each other. In any object orientedmethodology it is essential that a programmer de�ning a subtype onlyhas to know about its supertypes, and must not fall into errors, eitherstatic or dynamic, which depend on the existence of another descendentof a common ancestor.3. The situation can be prevented by stipulating that an object must alwayshave a most speci�c type, i.e. that it can acquire a new object type only ifthis new type is a subtype of its previous most speci�c type. This solutionis better than the previous one, since it does not link the possibility ofextending an object to the rather irrelevant event of a common�eld namebetween two unrelated types, but it imposes too strong a constraint onthe object extension mechanism.4. A Code message to John gets a di�erent answer depending on whetherJohn is seen as a Student or as an Employee. This is the best solution.The above problem is not just a consequence of using the same nameCode for two di�erent things, but is only one example of the fact that, whenobjects are allowed more than one most speci�c type, it is necessary to avoidinteractions between these unrelated types, which can best be obtained byallowing objects to have a \context dependent" behavior. Context dependentbehavior can be supported in two di�erent ways:1. By static binding: the meaning of a message sent to an object is deter-mined according to the type that the compiler assigns to the object, orin some other static way. This solution produces e�cient codes, since nomethod lookup is needed, but heavily a�ects the features of code exten-sibility and reusability which characterize object-oriented programmingand which are due to the combined e�ect of inheritance with dynamicbinding of methods to messages.2. By dynamic binding (also called \late binding" or \dynamic lookup"):in this case an object may have several \entry points", which we call\roles"; for example, when a Student is extended to become an Employee,it acquires a new role (or entry point) which will be used when it is seenas an Employee, without losing its old Student role. Messages are alwaysaddressed to a speci�c role of an object, and method lookup starts fromthe addressed role. An object which is always accessed through its mostspeci�c role behaves exactly like an object in a traditional object orientedlanguage.The languages proposed to deal with extensible objects may be classi�edas follows [ABGO93]:{ languages with dynamic binding and uniform behavior (e. g., Galileo[ACO85], [AGO91]);{ languages with static binding and context dependent behavior (e. g., Clovers[SZ89], Views [SS89], IRIS [FBC+87] and Aspects [RS91]);

Extensible Objects 3{ languages with both dynamic binding and context dependent behavior (e.g., Fibonacci [ABGO93]).In this paper we discuss some possible linguistic and implementative issueswhich arise when both dynamic binding and context dependent behavior aresupported. We draw on the experience gained in the design and implemen-tation of the Galileo and Fibonacci object-oriented database programminglanguages.The linguistic model we present is not essentially new, as it is based on therole mechanism of Fibonacci. The focus of the paper is not on the mechanismitself, but on its e�ect on object representation, a point which is not usuallydiscussed in the literature. In particular, we show how the various parts ofan object representation are related to the language features by showing howobject representation changes when new features are introduced after eachother.The paper is organized as follows. Section 2. gives a basic linguistic andimplementative model for an object-oriented language without extensible ob-jects. Section 3. extends the linguistic model with extensible objects withuniform behavior, and shows how extensibility a�ects the implementationmodel. Section 5. further extends the language with a role mechanism, i.e.with context dependent behavior with dynamic binding, showing the e�ectson the implementation model. Section 6. shows how the model must be fur-ther modi�ed to deal with the possibility of giving di�erent implementationsfor values of the same object type, as happens in Fibonacci. Section 7. drawssome conclusions.2. Non-extensible ObjectsIn this section we de�ne a basic object-oriented language, without extensi-bility, with the associated object representation model. To �x a notation,throughout the paper we adapt the syntax and semantics of the Galileo 95language [AAG95]. When the chosen language involves making choices whichmay have an implementative impact (e.g. single inheritance or single repre-sentation for a single object type), we also discuss the alternatives.2.1 The language2.1.1 Object Types. In Galileo 95 objects are modeled using the so-called \object as record" analogy, adopted initially in Simula, formalizedby Cardelli [Car88], and used in most object database systems: objects areessentially records that may have functional components to model methods;message passing is implemented as �eld selection. In this context, an objecttype speci�es three pieces of information:

4 A. Albano et al.{ the object type interface, i.e. (a) the set of messages which can be sent tothe object, with the parameter and result types for every message, and (b)the object instance variables, i.e. the object �elds in the object-as-recordanalogy, which can be accessed from outside the object;{ the structure of the object state, i.e. the name, type, and mutability of theinstance variables;{ the method implementation, i.e. the code that an object of that type exe-cutes when it receives a message.In other languages, such as Fibonacci, an object type only speci�es theinterface of objects of that type, while every object can have, in principle,its own implementation, i.e. its own state structure and method set. Theconsequences of this di�erent approach are discussed in Section 6..An object type is speci�ed by a set of pairs of two kinds:1. A label-type pair (Ai :Ti) represents one component of the object state(the identi�ers Ai are called attributes); the value associated with anattribute Ai of an object O is extracted with the dot expression O.Ai.2. A label-function pair (Ai := fun(: : :) : : :) represents a method, i.e. afunction shared by all instances of the object type; a method can accessthe attributes and methods of the object using the prede�ned identi�erself. A message Ai with parameters p is sent to an object O employingthe O.Ai(p) notation.The following example shows the de�nition of the object type Person,with a method Introduce:let rec typePerson =object[Name :string;BirthYear :int;Phones :[House :string];Introduce:= fun () :string isimplode({"My name is ";self.Name })];Where [House :string] is an example of a tuple type, f"a";"b"g isa sequence of string, implode concatenates a sequence of strings, and thedeclaration let type T = object [SoP], where SoP is a set of pairs as pre-viously described, introduces into the current environment a new type T andthe function mkT to construct values of type T. The input parameter of themkT constructor is a record of type [SoP'] with one �eld for each componentin the object state, i.e. SoP' is the set of SoP label-type pairs. Each appli-cation of the mkT constructor returns an object of type T with a di�erentidentity.An example of the construction of an object of type Person, and examplesof state access and message passing are:

Extensible Objects 5let John := mkPerson ([Name := "John Smith";BirthYear := 1967;Phones := [House := "06 222444"]]);john.BirthYear;john.Introduce();In general, object methods and attributes | called the properties of anobject | may be either public or private. A private property is only acces-sible from within the type de�nition, while a public property may always beaccessed. Hereafter, properties are assumed to be public, since this aspect isnot relevant for the considerations we are interested in.2.1.2 Subtyping and Inheritance. Subtyping and inheritance are two dif-ferent mechanisms which are often related in object oriented languages. Sub-typing is an order, or preorder, relation among types such that whenever T 0is a subtype of T , written T 0 � T , any operation which can be applied toany object of type T 0 can also be applied to any object of type T . Inheri-tance is a generic name which describes any situation where an object type,object interface, or object implementation, is not de�ned from scratch butis de�ned on the basis of a previously de�ned entity of the same kind. Forexample, in our situation de�ning an object type T 0 by inheritance from Tmeans de�ning T 0 by only saying how its state and method set di�er from Tstate and methods. For methodological and technical reasons, most object-oriented languages only allow strict inheritance, which means that T 0 can bede�ned from T only by:{ adding instance variables or methods to T ;{ re�ning T 's state and methods, where re�ning an instance variable meanssubstituting its type with a subtype, and re�ning a method m means sub-stituting it with a new method whose type is a subtype of the type ofm.1Whenever T 0 is de�ned by strict inheritance from T , T 0 is also a subtype ofT , since T 0 supports the whole T interface.Strict inheritance is also adopted in Galileo 95, where this is the onlyway to de�ne a subtype of an object type. To de�ne an object type T byinheritance from another object type T', we write:type T := object is T' and HH speci�es the properties (attributes and methods) to add or rede�ne inT; below is an example.let rec type Student := object is Person and[Code :string;1 In any strongly and statically typed language the type S0 ! U 0 of m0 is asubtype of the type S ! U of m when S � S0 and U 0 � U ; the inversion of thedirection of the comparison between S and S0 is explained in [Car88].

6 A. Albano et al. Faculty :string;Introduce := fun () :string isimplode({super.Introduce();" I am a student of ";self.Faculty})];It is generally possible to de�ne an object type by inheritance from severalobject types: T := object is T1, : : :, Tn and Tr (multiple inheritance).If the supertypes have a property with the same name and di�erent types, theproperty is inherited from the last (w.r.t. the T1, : : :, Tn order) supertypewhich de�nes it. In this case, strict inheritance means that every propertywhich is either rede�ned or inherited from more than one type must have atype which is a subtype of the type of the same property in all the ances-tor types T1, : : :, Tn. Not every object oriented language allows multipleinheritance; inheritance from a single supertype is the most common solution.2.1.3 Method Lookup and Semantics of Self. When a message m is sentto an object O, two problems must be solved: (a) which method is used toanswer the message, and (b) which is the semantics of the pseudo-variableself which may appear in the selected method.In traditional object-oriented languages, with objects that cannot changetheir type dynamically, the run-time type T of an object O is �xed whenthe object is created. This run-time type is generally only a subtype of thecompile-time type of any expression whose evaluation returns O. When amessage is sent to O, the method is �rst searched for in its run-time typeT. If none is found, the method is searched for up the supertype chain ofT. The search will stop, since static typechecking ensures that the methodhas been de�ned in one of the super-types. The fact that the method lookupstarts from the run-time type O, rather than from the compile-time type ofthe expression which returns O, is called dynamic binding, while the speci�calgorithm used to look for the method (depth-�rst upward search, in thiscase) is called the lookup algorithm.Consider now a self.msg(: : :) invocation found inside a method de�nedfor the messagemsg2 inside type T , and suppose that the method is executedby an object with a type T 0 inheriting from T . Two choices are possible, inprinciple, for the semantics of self.msg(: : :):{ method lookup for msg may start from the statically determined type T(static binding of self){ method lookup for msg may start from the dynamic type T 0 of the objectwhich has received the message msg2 (dynamic binding of self).The second choice is the one adopted in all object-oriented languages, andis essential in many typical object-oriented applications. Hence, when themethod where self.msg(: : :) is found is type-checked, the type checker canonly assume that self will be bound to an object whose type inherits from T .This is not a problem in languages which only allow strict inheritance, such

Extensible Objects 7as the one we are describing, and this is the main justi�cation for the strictinheritance constraint.The pseudo-variable super can also be used in a method expression. superis statically bound, i.e. the method search for a message sent to super beginswith the supertype of the type where the method is de�ned.2.2 An Implementation ModelWe now describe an implementation model for the basic language describedso far. We only focus on the information that must be present in the run-time representation of an object to support the described functionalities. Wegive a simple, not unrealistic, way of representing this information, withoutdiscussing alternative representations and optimizations.In our model, every object is represented by a reference to a representa-tion of its run-time type (the object type descriptor) plus a representationof the object's own state. The object type descriptor and the object staterepresentation are described in the following subsections.2.2.1 The Object Type Descriptor. We need to make a distinction be-tween the compile-time object type descriptor , which is used by the compilerto determine the correctness of message passing operations and of new objecttype de�nitions, and the run-time object type descriptor , which is used formethod lookup. Both structures are persistent in an object oriented databasesystem, but the �rst belongs to the schema while the second is managed bythe run-time system.A run-time object type descriptor thus only contains the method andstate lookup table for that type. This is a table which associates every mes-sage accepted by an object of that type with the code of the correspondingmethod (even if inherited), and every component of the state of the objectwith its position inside the object state representation. The second piece ofinformation is needed since the language supports multiple inheritance; whensingle inheritance alone is supported, the o�set of each state component canbe directly computed by the compiler. It would also be possible, but morecostly, to keep �eld names inside the object itself. We will also call this struc-ture extended run-time object type descriptor, to emphasize that it containsboth owned and inherited methods, while in most of the other implemen-tative models we will present the run-time object type descriptor will onlycontain information about owned (not inherited) properties.2.2.2 The Representation of the Object State. The state of each objectis simply represented as a tuple containing its non-method �elds. The run-time representation of an object is depicted in Figure 2.1.

8 A. Albano et al.
msg1

msgn

method1

methodn
fld1

fldm

offset1

offsetm

Full Object Type

Descriptor (shared):

method and attribute

tables for owned and

inherited properties

(FMT + FAT)

ObjTypDescr field1 fieldm…

object

Notation (used in all figures): object entry point: shared descriptor:Fig. 2.1. The structure of an object which does not change type.3. Extensible Objects with Uniform BehaviorIn this section we add, to the basic model, the possibility of extending objects,but without introducing the notion of a context dependent behavior. We thenshow the linguistic and implementative e�ect of this �rst extension. Thissection is based on the linguistic and implementative model which underliesthe �rst version of Galileo [ACO85].We �rst extend the basic language by stipulating that, when an objecttype T' is de�ned by inheritance from type T, two functions are automati-cally generated: mkT' to construct directly new instances of type T', and thefunction inT' to extend an instance of type T with the new type T', withouta�ecting the object identity.The function inT' has two parameters: the value of the object O to beextended and a record which gives the values of the T' attributes which arenot inherited from T.To solve the problem created by the presence of two properties, in twoindependent subtypes, with the same name but a di�erent type, the followingproperty type specialization rule is adopted: when an object O with a set ofproperties A is extended with a new type T, for every property P which isboth in A and in T, the type of P in T (the new type of P) must be a subtypeof the type of P in A (the old type of P).For example, the object john may be extended with the type Student asfollows:let rec type Student = object is Person and[Code :string;Faculty :string;Phones :[House :string; GuestHouse :string];Introduce := fun () :string isimplode({super.Introduce();" I am a student of ";self.Faculty})];let johnAsStudent := inStudent(john,[Code := "0123";Faculty := "Science";

Extensible Objects 9Phones := [House := "06 222444";GuestHouse := "552244"]]);The extension operator does not change the object identity.Suppose now that the following types are also de�ned:let rec type Athlete = object is Person and[Code:int;Sport: string;Introduce:= fun () :string isimplode({super.Introduce();" I practice ";self.Sport})];let rec type Employee = object is Person and[Code:string;Company: string;Introduce:= fun () :string isimplode({super.Introduce();" I work at ";self.Company})];An object of type Person which has never been extended to a Studentcan be extended to become an Athlete, but the property type specializationrule prevents the extension of a Student to an Athlete. However, a Studentcan be extended to an Employee.Other operators de�ned on extensible objects in this language are:{ Expr isalso T, to test whether an object denoted by the expression Expralso has the type T; for example both john isalso Student and johnAs-Student isalso Student are true.{ Expr As T, to coerce an object denoted by the expression Expr to one ofits possible types T; for example john As Student returns the object withtype Student. This operation raises a run-time failure if the object neveracquired type T, but has no other run-time e�ect in this language.3.1 Method DeterminationIn Galileo, method lookup cannot only depend on the minimal type of anobject, since, thanks to object extension, an object may have more than oneminimal type. In Galileo, method lookup depends on the whole object typehistory , which is de�ned as the ordered set of types fT1, : : :, Tng such thatT1 is the type where the object has been built, and every extension operationadds a new type at the end of the history.When an object with a type history fT1, : : :, Tng receives a message m,the method to execute is searched for in two steps:1. �rst, the method is looked for in methods that belong to (i.e. are notinherited) the last type Tn acquired; if it is not found there, the search

10 A. Albano et al.goes on in the type history, in the inverse temporal order Tn�1, Tn�2,: : :, T1;2. then, if the method is not even found in the construction type T1, thesearch goes up the supertype chain of T1 as in the basic language. Statictypechecking ensures that the search will eventually �nd the appropriatemethod.For example, an object john created with type Person, and then extendedwith the subtypes Student and Athlete, and �nally with Student subtypeGraduateStudent, will answer the message Introduce using the methodde�ned in the type GraduateStudent.3.2 Self-reference SemanticsWhen a method contains a self.msg invocation, the interpretation of theself-reference depends on how the method has been determined:{ if the method has been found in the type Ti by the search into the typehistory, the type of self is Ti, the type containing the selected method;{ if the method has been found by a search in the supertype chain, the typeof self is T1, the creation time type of the object that received the messagem.Hence, we can say that self is statically bound for methods found duringthe history search phase, while it is dynamically bound for methods foundduring the upward search phase. Performing a dynamic binding of self toT1 for a method found in type Ti during the history search phase wouldnot be sound since, when a message is compiled, self type it is assumedto be a subtype of the Ti type being de�ned, which is not true for T1. Onthe other hand, this choice does not a�ect the language's expressive powerbecause the method lookup mechanism is equivalent to the one adopted in thebasic language for non extended objects. This means that this approach canrepresent every classical object-oriented construction based on the dynamicbinding of self for non-extensible objects.As an example of the self interpretation rule, let us consider the followingde�nitions:let rec type W1 := object [s := fun():int is 3;r := fun():int is self.s()];let type W11 := object is W1 and [s := fun():int is 4];let rec type W12 := object is W1 and [s := fun():int is 5;r := fun():int is 2*self.s()];Let us construct a value v1 of type W11, and send it the message v1.r():let v1 := mkW11([]);vi.r(); returns 4

Extensible Objects 11vi.r() returns 4 because the method for r is inherited from W1; here selfis assigned type W11 (dynamic binding), hence self.s returns 4.Let us extend v1 with the type W12, and send it again the message v1.r():let v2 := inW12(v1,[]);v1.r(); returns 10This time the method for r is found in W12 by history search, hence selfis statically bound to type W12, hence self.s returns 2*5.Note that there is no modi�cation in the semantics of super.3.3 The Implementation ModelThe simplest run-time representation of objects in this language contains theobject type history, represented as a modi�able sequence of references to typedescriptors, and a modi�able sequence of label-value pairs to represent thestate. In this case a type descriptor only contains the code for its own meth-ods. Method search is executed through the two-phase algorithm describedabove, while �eld search is executed exploiting �eld labels. When an objectis extended with a new subtype, the new type is added to its history and thenew �elds are added to its state; if an attribute of the supertype is rede�ned,its value is directly replaced by the new value.More speci�cally, every method is represented as a function which re-ceives, apart from the message parameter, a self parameter which is boundto the receiving object, as happens with objects that do not change type, plusa boolean parameter which says whether the method has been found duringthe history search phase or during the upward search phase. This boolean pa-rameter is used to determine whether the history search must be used whena message is sent to self. This simple representation is shown in Figure 3.1.Note that the object is accessed indirectly to allow the object to be extendedwithout modifying its identity, i.e. preserving any external reference to theobject; any other technique to allow identity preserving extensibility (e.g.,concatenating new �eld to the object tail) would work.
msg1

msgn

method1

methodn

T1 AttrTable …field1 fieldnTD'1 TD'nName
Object Type Descr.

(shared): Local

Method Table and

pointers to the OTD’s

of the supertypes

object

… Tj
Object Type

History fldName1 pos1

posnfldNamen
Attribute

TableFig. 3.1. The structure of an extensible object.

12 A. Albano et al.3.4 An Improved Implementation ModelTo obtain a more e�cient execution of message passing, an object represen-tation can be used which closely resembles the one in Figure 2.1. In this case,each object only contains a reference to an Object Type History Descriptor(OTHD). An OTHD contains an object type history (i.e. a sequence of refer-ences to object type descriptors), a method lookup table and a �eld lookuptable, which allow one to �nd the code of every method and the position ofevery �eld for any object with the story described by the OTHD. The systemmaintains a pool of OTHD's and creates a new one only when an object iscreated whose story is di�erent from any story which is currently describedin the OTHD. This optimized representation is shown in Figure 3.2.
msg1

msgn

method1

fldName1 pos1

Full Type History Descriptor

(shared): type history

(T1,…,Tj), Full Method Table,

Full Attribute Table.

FTHD field1 …

object

fieldm

methodn

fldNamem posm

T1 … Tj

TD'1 TD'nName

Object Type Descriptors: (shared):

type name and pointers to the

OTD’s of the supertypes

TD'1 TD'nName Fig. 3.2. A better structure for extensible objects.4. Extensible and Shrinkable objectsAs a further generalization step, we now add an operator dropT(Expr) tothe language, to cancel the type T, and all its subtypes, from the objectdenoted by the expression Expr. dropT(Expr) is a function which is declaredautomatically when a subtype is de�ned, as happens with mkT and inT.In our linguistic model, object shrinkability adds a �rst kind of context-dependent behavior. Let Ide1 be an identi�er bound to an object of typeT1 (e.g., Ide1 := mkPerson(...)), and Ide2 an identi�er bound to the sameobject extended with the subtype T2 (e.g., Ide2 := inStudent(Ide1, ...)).If type T2 is removed from the object, by executing either dropT2(Ide2) ordropT2(Ide1), then:{ if the object is accessed through the identi�er Ide2, a run-time failure willarise when a message is sent it, either to execute a method or to extractthe value of an attribute, irrespective of whether the property is de�ned inT2 or is inherited from T1;{ if the object is accessed through the identi�er Ide1, a message to executea method or to extract the value of an attribute de�ned in T1 is normally

Extensible Objects 13executed. Note that, in a well typed program, it is not possible to extracta property which is only de�ned in T2 by going through Ide1.{ the isalso and As operators can still be applied to Ide2, to verify whetherthe object still belongs to some type and to send messages to the part ofthe object that is still valid.Shrinkable objects thus have a behavior which depends on the contextthey are accessed through, their role in our terminology. For this reason, theimplementative model must be extended to take into account the fact thatan object can be accessed through many di�erent roles. Every role containsthe following information: the type (e.g., Ide1 is associated with the Persontype while Ide2 is associated with the Student type), the validity (e.g., Ide1is valid while, after the dropT2 operation, Ide2 is not valid any more), anda reference to the object. The object itself must contain a reference to all ofits roles, both to implement As and isalso and to �nd every role associatedwith a subtype of T when dropT is executed.This representation is shown in Figure 4.1, where an object with two validroles and one removed role is represented. Note that the indirection level givenby roles can also be exploited to allow identity preserving modi�cations ofthe object.
R3

R1 R2

TD3 Rem. Obj

TD2 Valid Obj

R1 TD1 Valid Obj

R2

object roles

AttrTable …field1 fieldn

fldName1 pos1

posnfldNamen

Attribute
Tablemsg1

msgn

method1

methodn

TD'1 TD'nName

Object Type Descr.:

LMT and pointers to

the supertypes

Object HistoryFig. 4.1. The structure of a shrinkable object.Every reference to an object is actually a reference to one of its roles.When an object is extended a new role is added, and when an object losesthe type Ti, the following actions are executed:{ the status of the Ti role becomes removed;{ the type Ti is removed from the object type history;{ the �rst steps are repeated for every role of the object whose type is asubtype of Ti.We do not discuss, in this case, any optimized implementation.5. Extensible Objects with Context Dependent BehaviorThe most general solution to support objects which can dynamically ac-quire new types and exhibit a plurality of behaviors was �rst given in Fi-

14 A. Albano et al.bonacci [ABGO93], and then adapted to Galileo 95 [AAG95]. The proposalhas the following main features:Objects with roles An object has an immutable identity and is organized asacyclic graphs of roles. Methods and �elds are associated with the roles.Every message is addressed to a speci�c role of an object, and the answermay depend on the role addressed (context dependent behaviors);Independence of extensions An object can be extended with unrelated sub-roles without interference;Plurality of dynamic bindings A message can be sent to a role with two dif-ferent notations to request a di�erent lookup method:{ upward lookup: the message is sent with the exclamation mark no-tation, and the method is looked for in the receiving role and in itsancestors;{ double lookup: the message is sent with the dot notation, and themethod is �rst looked for in all the descendants of the receiving role,visited in reverse temporal order, then in the receiving role, and �nallyin its ancestors.Note that a traditional object oriented language can be seen as a rolelanguage where no object is ever extended and every message is alwayssent to the most speci�c role of the object. In this situation, upwardlookup and double lookup coincide, and both coincide with the standardmethod lookup technique.Role casting and role inspection Operators are provided to inspect the rolesof an object and to dynamically change the role through which an objectis accessed.Multiple implementations An object type only describes the interface of thecorresponding objects, while the implementation (i.e., method implemen-tation and state structure) is de�ned, for every object, when the objectis built.We will �rst describe the Galileo 95 model, which adopts the single im-plementation approach for objects.Let us consider again the de�nitions given above of the Person subtypesStudent and Athlete:let rectype Student := object is Person and[Code :string;Faculty :string;Introduce := fun () :string isimplode({(self As Person)!Introduce();" I am a student of ";self.Faculty})];let rec type Athlete = object is Person and[Code:int;Sport: string;

Extensible Objects 15Introduce:= fun () :string isimplode({(self As Person)!Introduce();" I practice ";self.Sport})];The semantics of the expression (self As Person)!Introduce() used inthe de�nition of the method Introduce will be explained in the next section.In this model, an object with a role john of type Person may now beextended with the types Student and Athlete as follows:let johnAsStudent := inStudent(john, [...]);let johnAsAthlete := inAthlete(john, [...]);The answer to the message Code sent to johnAsStudent is a string whilethe answer to the same message sent to johnAsAthlete is an integer. Theanswers to the message Introduce sent to johnAsStudent or to johnAs-Athlete are also di�erent. We say that john, johnAsStudent and johnAs-Athlete are three roles of the same object, of type Person, Student, andAthlete, respectively.Besides the functions mkT and inT', the following operators, similar tothose seen in the previous section, are also provided on objects and roles:{ dropT(Expr), to drop the role with type T and all its sub-roles from theobject reachable through the role Expr (hereafter \the object Expr"). Arun-time failure will arise if a message is sent to a removed role.{ Expr isalso T, to test whether an object Expr also has the role type T;for example johnAsStudent isalso Athlete is true.{ Expr As T, to retrieve the role T of the object Expr. For example, john-AsStudent As Athlete returns the role with type Athlete of the objectwhich is reached through the role johnAsStudent.{ Expr isexactly T, to test the run-time role type of the role denoted bythe expression Expr; for example, john isexactly Athlete is false whilejohnAsAthlete isexactly Athlete is true.5.1 Method DeterminationWhen a role r with run-time type Ti receives a double lookup message r.m,the corresponding method is looked for in two steps:1. �rst, the method is looked for in the object roles whose type is a subtypeof Ti, in the inverse acquisition time order;22. if the method is not found, the search proceeds in the role type Ti, and�nally goes up the supertype chain of Ti until the root type is reached.Static typechecking ensures that the search will eventually �nd the ap-propriate method.2 Note the di�erence with the corresponding rule given in the previous section:there the method was looked for in the whole object type history, here it islooked for in the subroles of the receiving role only.

16 A. Albano et al.When a role r receives an upward lookup message r!m, only step 2 isperformed.For example, the answer to the double lookup message john.Introducechanges once the object has been extended with the role type Student, andonce again after its extension with the role type Athlete. To receive alwaysthe same answer from john, irrespective of any extensions, the message mustbe sent with the john!Introduce notation.The combination of double lookup with role casting allows static binding ,and the super mechanism, to be simulated. For example, let us consider thefollowing function:let foo := fun(x:Person) :{string} is{x.Introduce;x!Introduce;(x As Person)!Introduce}Let johnAsStudent be bound to a value of type Student, which hasbeen later extended with a role of type ForeignStudent, subtype of Studentwhich rede�nes the method Introduce. The value returned by foo(johnAs-Student) is a sequence of three answers produced by the methods de�nedin type ForeignStudent (double lookup), in type Student (upward lookup),and in type Person (static binding).5.2 Self-reference SemanticsWhen the method selected by a role r to answer a message m contains a mes-sage whose receiver is self, the interpretation of the self-reference dependson how the method has been found:{ if the method has been found in the downward lookup phase, hence in atype T which is a subtype of the type of r, then self is bound to the r AsT role;{ if the method was found by a search in the supertype chain, then self isbound to the r role.The observations made in Section 3.2 apply in this case too.5.3 The Implementation ModelIn this language, methods and attributes are not associated with the objectas a whole, but each property is associated with one speci�c role. For thisreason, the simplest implementation model is obtained starting from the lastmodel presented and moving methods and state �elds from the object, whoseonly aim is now to collect the history of the roles it acquired, to the roles, asshown in Figure 5.1. A role now stores the following information:{ a reference to the role type descriptor;

Extensible Objects 17{ a status valid or removed to describe whether the object lost that type;{ a reference to the object;{ the values of the owned attributes of its role type.A new role descriptor is created when the object is created, and whenthe object is extended with a new type. Creating an object in a non-roottype is implemented in the same way as creating the object in the root typeand then extending it. Object extension is only valid if the object has all thesupertypes of the new type but does not have the type is acquiring.The object descriptor is a sequence of references to the roles of the object,kept in temporal order.
msg1

msgn

method1

method1

Object Type Descr.

(shared): owned

methods and pointers

to the OTD’s of the

supertypes …field1

R1 R2

TD3 Rem. Obj

TD2 Valid Obj

TD1 Valid Obj

R2

fieldn

…field1 fieldn

R3

R1

object role

TD'1 TD'n

Object Role
Type History

NameFig. 5.1. The structure of an object with a plurality of behaviors.This representation may easily be optimized, as will be shown in the nextsection.6. Extensibility, Roles, and Multiple ImplementationsThe �nal feature of the language is separation between role type interfacesand implementations, as in Fibonacci, where:{ a role type only speci�es the role interface but not the method implemen-tation;{ a role implementation is only given when a role is constructed, or when anobject is extended with new roles. Di�erent role implementations can begiven for the same role type;{ the state of a role is encapsulated and is accessible only through methodsof the same role; this last point is not, however, essential for our discussion.In this context, types Person and Student would be de�ned as follows:let rec type Person = object [Name :string;BirthYear :int;Phones :[House :string];Introduce: string];

18 A. Albano et al.let rec type Student = object is Persona and[Code :string;Faculty :string;Phones :[House :string; GuestHouse :string];Introduce :string];The implementation of methods is given when a role is constructed:let john = role Person withprivateMyName := "Antonio Rossi";MyBirthYear := 1950;MyPhone := [House :="565443"]methodName:= MyName;BirthYear := MyBirthYear;Phones := {MyPhone};Introduce:= implode({"My name is ";self.Name})end;A student may be built either by extending a person, or from scratch, byde�ning the owned and inherited methods together; this second possibilitya�ects the implementation model, as we will see.Method determination and self-reference semantic rules are the same asin the previous section.6.1 Implementation ModelThe implementation model is shown in Figure 6.1. The main di�erence isthat methods move from the role type descriptor to the role representation.Another di�erence arises because an object can acquire more than one roletype in a shot, both when it is created and when it is extended, hence itis not true that an object has as many role as types. For example, supposethat four types T4 � T3 � T2 � T1 are de�ned. An object may be createdin T2 and then extended in type T4. In this case the object would only havetwo roles, the �rst one returned by both obj As T1 and obj As T2, and thesecond one returned by both obj As T3 and obj As T4.3The role type descriptor (RTD) now contains the following information:{ the type name (actually, its run-time representation);{ the list of all the supertypes of the type, in inheritance order, i.e. itT1,: : :,Tn is the list of immediate supertypes of T. The list of all the su-pertypes of T contains �rst the list of all supertypes of Tn, then the list ofall the supertypes of Tn�1 which are not supertypes of Tn, and so on.{ the list of all the subtypes of the type.3 Note that this feature is orthogonal to multiple implementation; we might haveintroduced it in the previous section too.

Extensible Objects 19We may only keep immediate supertypes in the RTD, as in the previoussections. However, the increased complexity of lookup method justi�es thedecision of making this small optimization from the beginning.The role representation contains the following information:{ a reference to the most specialized type associated with the role;{ a valid or removed status;{ the role local state, shared by all role's own methods;{ a table containing names and implementations for every owned method ofthe role;{ a reference to the object descriptor.Finally, the object descriptor is a sequence, kept in temporal order, of pairs(types, role). Whenever an object acquires a new set types of types, thanks toan extension operation, a new pair types,role is added to the sequence, whererole is the newly acquired role. Associating the set of types with each rolein the object descriptor is a small optimization, which helps to implementmessage passing and the As operation.Double lookup message passing is implemented as follows:1. Downward lookup: if the object is accessed through a role Ri whose mostspeci�c type is Ti, the subtype list is obtained from the role type descrip-tor of type Ti, and the method is searched in every role R in the objectrole type history such that the most speci�c type of R is a subtype of Ti.The role type history is looked for in reverse temporal order.2. Upward lookup: if downward lookup fails, then the supertype list is ob-tained from the role type descriptor of type Ti, and the method is searchedin every role R in the object role type history such that at least one typeof R is a supertype of Ti. Roles are examined in the inheritance order, i.e.according to the order of types in the supertype list.Figure 6.1 below represents a situation where types T2 and T3 are twosubtypes of type T1, and the represented object has �rst been built fromscratch in type T2, and then has been extended to type T3.
Role Type Descr.

(shared): pointer to all

supertypes in inheritance

order and to all subtypes
…field1

T1 T2

T3 Valid Obj

T2 Valid Obj

R2

fieldn

…field1 fieldn

R1

Role reference

TD'1 TD'n

Object Role Type History

Name

TD"1 TD"m

method table

method table

R1 T3 R2Fig. 6.1. The structure of an object with a plurality of behaviors and a separatede�nition of interface and implementation.

20 A. Albano et al.Note that no name is needed in the state representation, since it is onlyaccessed by local methods, hence the position of each state component can bestatically determined. On the other hand, the method lookup algorithm takesadvantage of the fact that the method table associates names with methodimplementation.The semantics of self is the same as in the previous section, and can befully supported once the As operator is supported.6.2 An Improved Implementation ModelThe solution described so far is not realistic, since method lookup, whichis the basic operation, requires an algorithm which is too slow. Hence, inthe development of the Fibonacci system an optimization similar to the onedescribed in Section 3.4 was adopted.In Fibonacci, every role is associated with a full method lookup table, i.e.a table which associates with each owned or inherited message, that the rolecan receive, the following information:{ a reference to the method code;{ a reference (owner) to the role type where the method implementationbelongs;{ a �eld (overriden) to remember whether the method is de�ned in a sub-role;More precisely, each role contains a reference to two method lookup tables,one corresponding to double lookup and the second corresponding to upwardlookup only; the \overridden" �eld is only present in the double lookup table.The two lookup tables are built when a role is built, and in that momentthey coincide. Later, whenever a new subrole subr de�ning a method methfor msg is added to the object, the msg �eld in the double lookup table of allsuperroles of subr is updated with the triple (meth, type of subr, true). Theupward lookup table never changes. A method is a function which receivesall the message parameters plus two roles, the \state role" which must beused to retrieve state variables and the \self role" which is bound to self.To answer a message msg a role r just looks in the appropriate table to�nd the correct method meth and its owner type owner. Then, if overriddenis false or is not applicable (upward lookup), it calls meth binding \staterole" to r As owner and \self role" to r. If overridden is true, then r Asowner must be bound to \self role" too.Note that the lookup table contains the type of the role that owns the im-plementation, rather than the role itself, so that two di�erent roles with thesame message-method correspondence may share the table. Actually, the Fi-bonacci implementation contains a lookup table pool where every new lookuptable is stored, associated with the object extension history. In this contextan object extension history is not just a sequence of types since two objectsmay acquire the same type but with a di�erent implementation. The history

Extensible Objects 21is a sequence of extension functions. This is because usually there are veryfew extension functions for every type, just one for most of them, and sincealmost every object construction or extension is made through a function,indexing the table pool with function histories is almost as e�ective as usingtype history in languages with one implementation per type.The resulting situation is shown in Figure 6.2.
…field1

T1 T2

T3 Valid Obj

T2 Valid Obj

fieldn

…field1 fieldn

R1

object role

Object Role Type History
method table

R1 T3 R2

references to the
method lookup t.

msg method

Impl history

Impl history

owner bit

msg methodowner bit

Impl history

msg methodowner

Double
lookup

table
(shared)

Upward
lookup

table
(shared)

msg methodowner

R2Fig. 6.2. The Fibonacci optimized implementation of roles.7. ConclusionWe have described a sequence of object models of increasing complexity,starting with the standard model and ending with a model with the followingfeatures:{ extensible objects;{ context dependent behavior (roles);{ shrinkable objects;{ multiple implementations for the same type.Drawing on our experience in the implementation of Galileo, Galileo 95,and Fibonacci, we have presented a sequence of implementation models ofincreasing complexity, to show which implementative features are linked toevery linguistic feature, and to help to distinguish the basic run-time in-formation, which is strictly needed to implement every operation, from thestructures that are added to obtain a faster implementation of message pass-ing.Acknowledgement. This work has been supported in part by grants from the C.E.C.under ESPRIT BRA No.6309 (FIDE2: Fully Integrated Data Environment), theProgetto �nalizzato \Sistemi informatici e calcolo parallelo" of C.N.R. under grantNo. 93.001502.PF69, and by \Ministero dell'Universit�a e della Ricerca Scienti�ca eTecnologica".

22 A. Albano et al.References[AAG95] A. Albano, G. Antognoni, and G. Ghelli. View operations on objects withroles. Technical report, Universit�a di Pisa, Dipartimento di informatica,1995. (submitted).[ABGO93] A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. An object datamodel with roles. In R. Agrawal, S. Baker, and D. Bell, editors, Proc. ofthe Nineteenth Intl. Conf. on Very Large Data Bases (VLDB), Dublin,Ireland, pages 39{51, San Mateo, California, 1993. Morgan KaufmannPublishers.[ACO85] A. Albano, L. Cardelli, and R. Orsini. Galileo: A strongly typed, inter-active conceptual language. ACM Transactions on Database Systems,10(2):230{260, 1985. Also in S. B. Zdonik and D. Maier, editors, Read-ings in Object-Oriented Database Systems, Morgan Kaufmann Publish-ers, Inc., San Mateo, California, 1990.[AGO91] A. Albano, G. Ghelli, and R. Orsini. Objects for a database programminglanguage. In P. C. Kanellakis and J. W. Schmidt, editors, Proc. of theThird Intl. Workshop on Data Base Programming Languages (DBPL),Nafplion, Greece, pages 236{253, San Mateo, California, 1991. MorganKaufmann Publishers.[Car88] L. Cardelli. A semantics of multiple inheritance. Information and Com-putation, 76:138{164, 1988. A previous version can be found also inSemantics of Data Types, LNCS 173, 51{67, Springer-Verlag, 1984.[FBC+87] D. H. Fishman, D. Beech, H. P. Cate, E. C. Chow, T. Connors, J. D.Davis, N. Derrett, C. G. Hoch, W. Kent, P. Lyngbaek, B. Mahbod, M. A.Neimat, T. A. Ryan, and M. C. Shan. IRIS: An object-oriented databasemanagement system. ACM Transactions on O�ce Information Systems,5(1):48{69, 1987.[RS91] J. Richardson and P. Schwartz. Aspects: Extending objects to supportmultiple, indipendent roles. In Proceedings of the ACM SIGMOD In-ternational Conference on Management of Data, pages 298{307, Denver,CO, 1991.[SS89] J. J. Shilling and P. F. Sweeney. Three steps to view: Extending theobject-oriented paradigm. In Proceedings of the International Conferenceon Object-Oriented Programming Systems, Languages and Applications(OOPSLA), volume 10 of ACM SIGPLAN Notices, pages 353{361, 1989.[SZ89] L. A. Stein and S. B. Zdonik. Clovers: The dynamic behavior of typeand instances. Technical Report CS-89-42, Brown University TechnicalReport, 1989.

