
Secrecy and Group Creation

Luca Cardelli1, Giorgio Ghelli2, and Andrew D. Gordon1

1 Microsoft Research
2 Pisa University

Abstract. We add an operation of group creation to the typed �-
calculus, where a group is a type for channels. Creation of fresh groups
has the e�ect of statically preventing certain communications, and can
block the accidental or malicious leakage of secrets. Intuitively, no chan-
nel belonging to a fresh group can be received by processes outside the
initial scope of the group, even if those processes are untyped. We formal-
ize this intuition by adapting a notion of secrecy introduced by Abadi,
and proving a preservation of secrecy property.

1 Introduction

Group creation is a natural extension of the sort-based type systems developed
for the �-calculus. However, group creation has an interesting and subtle connec-
tion with secrecy. We start from the untyped �-calculus, where an operation to
create fresh communication channels can be interpreted as creating fresh secrets.
Under this interpretation, though, secrets can be leaked. We then introduce the
notion of groups, which are types for channels, together with an operation for
creating fresh groups. We explain how a fresh secret belonging to a fresh group
can never be communicated to anybody who does not know the group in the
�rst place. In other words, our type system prevents secrets from being leaked.
Crucially, groups are not values, and cannot be communicated; otherwise, this
secrecy property would fail.

1.1 Leaking Secrets

Consider the following con�guration, where P is a private subsystem (a player)
running in parallel with a potentially hostile adversary O (an opponent).

O j P

Suppose that the player P wants to create a fresh secret x. For example, x
could be a private communication channel to be used only between subsystems
of P . In the �-calculus this can be done by letting P evolve into a con�guration
(�x)P 0, which means: create a new channel x to be used in the scope of P 0.

O j (�x)P 0

2

The channel x is intended to remain private to P 0. This privacy policy is going
to be violated if the system then evolves into a situation such as the following,
where p is a public channel known to the opponent (p(y) is input of y on p, and
phxi is output of x on p):

p(y):O0 j (�x)(phxi j P)

In this situation, the name x is about to be sent by the player over the pub-
lic channel p and received by the opponent. In order for this communication
to happen, the rules of the �-calculus, described in Section 2, require �rst an
enlargement (extrusion) of the scope of x (otherwise x would escape its lexical
scope). We assume that x is di�erent from p, y, and any other name in O0,
so that the enlargement of the scope of x does not cause name con
icts. After
extrusion, we have:

(�x)(p(y):O0 j phxi j P)

Now, x can be communicated over p into the variable y, while keeping x
entirely within the scope of (�x). This results in:

(�x)(O0fy xg j P)

where the opponent has acquired the secret.

1.2 Preventing Leakage

The private name x has been leaked to the opponent by a combination of two
mechanisms: the output instruction phxi, and the extrusion of (�x). Can we
prevent this kind of leakage of information? We have to consider that such a
leakage may arise simply because of a mistake in the code of the player P , or
because P decides to violate the privacy policy of x, or because a subsystem of
P acts as a spy for the opponent.

It seems that we need to restrict either communication or extrusion. Since
names are dynamic data in the �-calculus, it is not easy to say that a situation
such as phxi (sending x on a channel known to the opponent) should not arise,
because p may be dynamically obtained from some other channel, and may not
occur at all in the code of P .

The other possibility is to try to prevent extrusion, which is a necessary
step when leaking names outside their initial scope. However, extrusion is a
fundamental mechanism in the �-calculus: blocking it completely would also
block innocent communications over p. In general, attempts to limit extrusion
are problematic, unless we abandon the notion of \fresh channel" altogether.

A natural question is whether one could somehow declare x to be private,
and have this assertion statically checked so that the privacy policy of x cannot
be violated. To this end, we may consider typed versions of the �-calculus. In
these systems, we can classify channels into di�erent groups (usually called sorts
in the literature). We could have a group G for our private channels and write
(�x:G)P 0 to declare x to be of sort G. Unfortunately, in standard �-calculus type

3

systems all the groups are global, so the opponent could very well mention G in
an input instruction. Global groups do not o�er any protection, because leakage
to the opponent can be made to type-check:

p(y:G):O0 j (�x:G)(phxi j P 00)

In order to guarantee secrecy, we would want the group G itself to be secret, so
that no opponent can input names of group G, and that no part of the player
can output G information on public channels. A �rst idea is to partition groups
into public ones and secret ones, with the static constraints that members of
secret groups cannot be communicated over channels of public groups [7]. But
this would work only for systems made of two (or a �xed number of) distrustful
components; we aim to �nd a more general solution.

1.3 Group Creation

In general, we want the ability to create fresh groups on demand, and then to
create fresh elements of those groups. To this end, we extend the �-calculus with
an operator, (�G)P , to dynamically create a new group G in a scope P . This
is a dynamic operator beacause, for example, it can be used to create a fresh
group after an input:

q(y:T):(�G)P

Although group creation is dynamic, the group information can be tracked stat-
ically to ensure that names of di�erent groups are not confused. Moreover, dy-
namic group creation can be very useful: we can dynamically spawn subsystems
that have their own pool of shared resources that cannot interfere with other
subsystems (compare with applet sandboxing).

Our troublesome example can now be represented as follows, where G is a
new group, G[] is the type of channels of group G, and a fresh x is declared
to be a channel of group G (the type structure will be explained in more detail
later):

p(y:T):O0 j (�G)(�x:G[])phxi

Here an attempt is made again to send the channel x over the public channel
p. Fortunately, this process cannot be typed: the type T would have to mention
G, in order to receive a channel of group G, but this is impossible because G is
not known in the global scope where p would have to have been declared. The
construct (�G) has extrusion properties similar to (�x), which are needed to
permit legal communications over channels unrelated to G channels, but these
extrusion rules prevent G from being confused with any group mentioned in T .

1.4 Untyped Opponents

Let us now consider the case where the opponent is untyped or, equivalently, not
well-typed. This is intended to cover the situation where an opponent can execute
any instruction available in the computational model without being restricted

4

by static checks such as type-checking or bytecode veri�cation. For example, the
opponent could be running on a separate, untrusted, machine.

We �rst make explicit the type declaration of the public channel, p:U , which
has so far been omitted. The public channel must have a proper type, because
that type is used in checking the type correctness of the player, at least. This
type declaration could take the form of a channel declaration (�p:U) whose
scope encloses both the player and the opponent, or it could be part of some
declaration environment shared by the player and the opponent and provided
by a third entity in the system (for example, a name server).

Moreover, we remove the typing information from the code of the opponent,
since an opponent does not necessarily play by the rules. The opponent now
attempts to read any message transmitted over the public channel, no matter
what its type is.

(�p:U)(p(y):O0 j (�G)(�x:G[])phxi)

Will an untyped opponent, by cheating on the type of the public channel, be able
to acquire secret information? Fortunately, the answer is still no. The fact that
the player is well-typed is su�cient to ensure secrecy, even in the presence of
untyped opponents. This is because, in order for the player to leak information
over a public channel p, the output operation phxi must be well-typed. The name
x can be communicated only on channels whose type mentions G. So the output
phxi cannot be well-typed, because then the type U of p would have to mention
the group G, but U is not in the scope of G.

The �nal option to consider is whether one can trust the source of the dec-
laration p:U . This declaration could come from a trusted source distinct from
the opponent, but in general one has to mistrust this information as well. In
any case, we can assume that the player will be type-checked with respect to
this questionable information, p:U , within a trusted context. Even if U tries to
cheat by mentioning G, the typing rules will not confuse that G with the one
occurring in the player as (�G), and the output operation phxi will still fail to
type-check. The only important requirement is that the player must be type-
checked with respect to a global environment within a trusted context, which
seems reasonable. This is all our secrecy theorem (Section 3) needs to assume.

1.5 Secrecy

We have thus established, informally, that a player creating a fresh group G
can never communicate channels of group G to an opponent outside the initial
scope of G, either because a (well-typed) opponent cannot name G to receive the
message, or, in any case, because a well-typed player cannot use public channels
to communicate G information to an (untyped) opponent.

Channels of group G are forever secret outside the initial scope of (�G).

So, secrecy is reduced in a certain sense to scoping and typing restrictions.
But the situation is fairly subtle because of the extrusion rules associated with
scoping, the fact that scoping restrictions in the ordinary �-calculus do not

5

prevent leakage, and the possibility of untyped opponents. As we have seen, the
scope of channels can be extruded too far, perhaps inadvertently, and cause leak-
age, while the scope of groups o�ers protection against accidental or malicious
leakage, even though it can be extruded as well.

We organise the remainder of the paper as follows. Section 2 de�nes the syn-
tax, reduction semantics, and type system of our typed �-calculus with groups.
In Section 3 we adapt a notion of secrecy due to Abadi to the untyped �-calculus.
We also state the main technical result of the paper, Theorem 1, that a well-
typed process preserves the secrecy of a fresh name of a fresh group, even from an
untyped opponent. We outline the proof of Theorem 1 in Section 4; the main idea
of the proof is to separate trusted data (from the typed process) and untrusted
data (from the untyped opponent) using an auxiliary type system de�ned on
untyped processes. Finally, Section 5 concludes.

2 A Typed �-Calculus with Groups

We present here a typed �-calculus with groups and group creation. The earliest
type system for the �-calculus, reported in Milner's book [10] but �rst published
in 1991, is based on sorts; sorts are like groups in that each name belongs to a
sort, but Milner's system has no construct for sort creation. Moreover, his system
allows recursive de�nitions of sorts; we would need to add recursive types to our
system to mimic such de�nitions. Subsequent type systems introduced a variety
of channel type constructors and subtyping [11, 12].

2.1 Syntax and Operational Semantics

Types specify, for each channel, its group and the type of the values that can be
exchanged on that channel.

Types:

T ::= G[T1; : : : ; Tn] polyadic channel in group G

We study an asynchronous, choice-free, polyadic typed �-calculus. The calcu-
lus is de�ned as follows. We identify processes up to capture-avoiding renaming
of bound variables; we write P = Q to mean that P and Q are the same up to
capture-avoiding renaming of bound variables.

Expressions and Processes:

x; y; p; q names, variables
P;Q;R ::= process

x(y1:T1; : : : ; yk:Tk):P polyadic input
xhy1; : : : ; yki polyadic output
(�G)P group creation
(�x:T)P restriction

6

P j Q composition
!P replication
0 inactivity

In a restriction, (�x:T)P , the name x is bound in P , and in an input,
x(y1:T1; : : : ; yk:Tk):P , the names y1, . . . , yk are bound in P . In a group cre-
ation (�G)P , the group G is bound with scope P . Let fn(P) be the set the
names free in a process P , and let fg(P) and fg(T) be the sets of groups free in
a process P and a type T , respectively.

In the next two tables, we de�ne a reduction relation, P ! Q, in terms of an
auxiliary notion of structural congruence, P � Q. Structural congruence allows a
process to be re-arranged so that reduction rules may be applied. Each reduction
derives from an exchange of a tuple on a named communication channel.

Our rules for reduction and structural congruence are standard [10] apart
from the inclusion of new rules for group creation, and the exclusion of garbage
collection rules such as 0 � (�x:T)0 and x =2 fn(P)) (�x:T)P � P . Such rules
are unnecessary for calculating reduction steps. In their presence, reduction can
enlarge the set of free groups of a process. Hence, their inclusion would slightly
complicate the statement of subject reduction.

Structural Congruence: P � Q

P � P (Struct Re
)
Q � P) P � Q (Struct Symm)
P � Q;Q � R) P � R (Struct Trans)

P � Q) (�x:T)P � (�x:T)Q (Struct Res)
P � Q) (�G)P � (�G)Q (Struct GRes)
P � Q) P j R � Q j R (Struct Par)
P � Q) !P � !Q (Struct Repl)
P � Q) x(y1:T1; : : : ; yn:Tn):P � x(y1:T1; : : : ; yn:Tn):Q (Struct Input)

P j 0 � P (Struct Par Zero)
P j Q � Q j P (Struct Par Comm)
(P j Q) j R � P j (Q j R) (Struct Par Assoc)
!P � P j !P (Struct Repl Par)

x1 6= x2) (�x1:T1)(�x2:T2)P � (�x2:T2)(�x1:T1)P (Struct Res Res)
x =2 fn(P)) (�x:T)(P j Q) � P j (�x:T)Q (Struct Res Par)
(�G1)(�G2)P � (�G2)(�G1)P (Struct GRes GRes)
G =2 fg(T)) (�G)(�x:T)P � (�x:T)(�G)P (Struct GRes Res)
G =2 fg(P)) (�G)(P j Q) � P j (�G)Q (Struct GRes Par)

Reduction: P ! Q

xhy1; : : : ; yni j x(z1:T1; : : : ; zn:Tn):P ! Pfz1 y1g � � � fzn yng (Red I/O)
P ! Q) P j R! Q j R (Red Par)

7

P ! Q) (�G)P ! (�G)Q (Red GRes)
P ! Q) (�x:T)P ! (�x:T)Q (Red Res)
P 0 � P; P ! Q;Q � Q0) P 0 ! Q0 (Red �)

The new rules for group creation are the congruence rules (Struct GRes) and
(Red GRes), and the scope mobility rules (Struct GRes GRes), (Struct GRes
Res), and (Struct GRes Par). The latter rules are akin to the standard scope
mobility rules for restriction (Struct Res Res) and (Struct Res Par).

2.2 The Type System

Environments declare the names and groups in scope during type-checking; we
de�ne environments, E, by E ::= ? j E;G j E; x:T . We de�ne dom(E) by
dom(?) = ?, dom(E;G) = dom(E) [fGg, and dom(E; x:T) = dom(E) [fxg.

We de�ne four typing judgments: �rst, E ` � means that E is well-formed;
second, E ` T means that T is well-formed in E; third, E ` x : T means that
x:T is in E, and that E is well-formed; and, fourth, E ` P means that P is
well-formed in the environment E.

Typing Rules:

(Env ?)

? ` �

(Env x)
E ` T x =2 dom(E)

E; x:T ` �

(Env G)
E ` � G =2 dom(E)

E;G ` �

(Type Chan)
G 2 dom(E) E ` T1 � � � E ` Tn

E ` G[T1; : : : ; Tn]

(Exp x)
E0; x:T;E00 ` �

E0; x:T;E00 ` x : T

(Proc GRes)
E;G ` P

E ` (�G)P

(Proc Res)
E; x:T ` P

E ` (�x:T)P

(Proc Zero)
E ` �

E ` 0

(Proc Par)
E ` P E ` Q

E ` P j Q

(Proc Repl)
E ` P

E ` !P

(Proc Input)
E ` x : G[T1; : : : ; Tn] E; y1:T1; : : : ; yn:Tn ` P

E ` x(y1:T1; : : : ; yn:Tn):P

(Proc Output)
E ` x : G[T1; : : : ; Tn] E ` y1 : T1 � � � E ` yn : Tn

E ` xhy1; : : : ; yni

The rules for good environments ensure that the names and groups declared
in an environment are distinct, and that all the types mentioned in an environ-
ment are good. The rule for a good type ensures that all the groups free in a
type are declared. The rule for a good name looks up the type of a name in the

8

environment. The rules (Proc Input) and (Proc Output) for well-typed processes
ensure that names occurring in inputs and outputs are used according to their
declared types. The rules (Proc GRes) and (Proc Res) allow fresh groups and
names, respectively, to be used inside their scope but not outside. The other
rules (Proc Zero), (Proc Par), and (Proc Repl) de�ne a composite process to be
well-typed provided its components, if any, are themselves well-typed.

2.3 Subject Reduction

Subject reduction is a property stating that well-typed processes reduce neces-
sarily to well-typed processes, thus implying that \type errors" are not generated
during reduction. As part of establishing this property, we need to establish a
subject congruence property, stating that well-typing is preserved by congru-
ence. Subject congruence is essential for a type system based on the �-calculus:
two congruent processes are meant to represent the same computation so they
should have the same typing properties.

As we shall see shortly, a consequence of our typing discipline is the ability
to preserve secrets. In particular, the subject reduction property, together with
the proper application of extrusion rules, has the e�ect of preventing certain
communications that would leak secrets. For example, consider the discussion in
Section 1.3, regarding a process of the form:

p(y:T):O0 j (�G)(�x:G[])P

In order to communicate the name x (the secret) on the public channel p,
we would need to reduce the initial process to a con�guration containing the
following:

p(y:T):O00 j phxi

If subject reduction holds then this reduced term has to be well-typed, which
is true only if p : H [T] for some H , and T = G[]. However, in order to get to
the point of bringing the input operation of the opponent next to an output
operation of the player, we must have extruded the (�G) and (�x:G[]) binders
outward. The rule (Struct GRes Par), used to extrude (�G) past p(y:T):O00,
requires that G =2 fg(T). This contradicts the requirement that T = G[]. If that
extrusion were allowed, that is, if we failed to prevent name clashes on group
names, then the player could communicate with the opponent in a well-typed
way, and secrecy would fail.

Lemma 1 (Subject Congruence). If E ` P and P � Q then E ` Q.

Proposition 1 (Subject Reduction). If E ` P and P ! Q then E ` Q.

Subject reduction allows us to prove secrecy properties like the following one.

Proposition 2. Let the process P = p(y:T):O0 j (�G)(�x:G[T1; : : : ; Tn])P
0. If

E ` P , for some E, then no process deriving from P includes a communication

of x along p. Formally, there are no processes P 00 and P 000 and a context C[]
such that P � (�G)(�x:G[T1; : : : ; Tn])P

00, P 00 ! P 000, P 000 � C[phxi], where p
and x are not bound by C[].

9

Proof. Assume that P 00 and P 000 exist. Subject reduction implies the judgment
E;G; x:G[T1; : : : ; Tn] ` P

000, which implies that E;G; x:G[T1; : : : ; Tn]; E
0 ` phxi

for some E0. Hence, p has a type H [G[T1; : : : ; Tn]]. But this is impossible, since
p is de�ned in E, hence out of the scope of G. ut

In the following section we generalize this result, and extend it to a situation
where the opponent is not necessarily well-typed.

3 Secrecy in the Context of an Untyped Opponent

We formalize the idea that in the process (�G)(�x:G[T1; : : : ; Tn])P , the name x
of the new group G is known only within P (the scope of G) and hence is kept
secret from any opponent able to communicate with the process (whether or not
the opponent respects our type system). We give a precise de�nition of when
an untyped process (�x)P preserves the secrecy of a restricted name x from an
opponent (the external process with which it interacts). Then we show that the
untyped process obtained by erasing type annotations and group restrictions
from a well-typed process (�G)(�x:G[T1; : : : ; Tn])P preserves the secrecy of the
name x.

3.1 Review: The Untyped �-Calculus

In this section, we describe the syntax and semantics of an untyped calculus
that corresponds to the typed calculus of Section 2. The process syntax is the
same as for the typed calculus, except that we drop type annotations and the
new-group construct.

Processes:

x; y; p; q names, variables
P;Q;R ::= process

x(y1; : : : ; yn):P polyadic input
xhy1; : : : ; yni polyadic output
(�x)P restriction
P j Q composition
!P replication
0 inactivity

As in the typed calculus, the names y1, . . . , yn are bound in an input
x(y1; : : : ; yn):P with scope P , and the name x is bound in (�x)P with scope
P . We identify processes up to capture-avoiding renaming of bound names. We
let fn(P) be the set of names free in P .

Every typed process has a corresponding untyped process obtained by erasing
type annotations and group creation operators.We confer reduction, P ! Q, and
structural congruence, P � Q, relations on untyped processes corresponding to
the typed reduction and structural congruence relations. We omit the standard

10

rules, which are obtained from the rules of the typed calculus by erasing type
annotations and deleting rules that mention the new-group construct.

Erasures of type annotations and group restrictions:

erase((�G)P)
�

= erase(P) erase((�x:T)P)
�

= (�x)erase(P)

erase(0)
�

= 0 erase(P j Q)
�

= erase(P) j erase(Q)

erase(!P)
�

= !erase(P) erase(xhy1; : : : ; yni)
�

= xhy1; : : : ; yni

erase(x(y1:T1; : : : ; yn:Tn):P)
�

= x(y1; : : : ; yn):erase(P)

Proposition 3 (Erasure). For all typed processes P and Q, and untyped pro-

cesses R, P ! Q implies erase(P)! erase(Q) and erase(P)! R implies there

is a typed process Q such that P ! Q and R � erase(Q).

Finally, we de�ne input and output transitions to describe the interactions
between an untyped process and an untyped opponent running alongside in
parallel. An input transition P

x
�! (y1; : : : ; yn)Q means that P is ready to

receive an input tuple on the channel x in the variables y1, . . . , yn, and then
continue as Q. The variables y1, . . . , yn are bound with scope Q. An output

transition P
x
�! (�z1; : : : ; zm)hy1; : : : ; yniQ means that P is ready to transmit

an output tuple hy1; : : : ; yni on the channel x, and then continue as Q. The
set fz1; : : : ; zmg � fy1; : : : ; yng consists of freshly generated names whose scope
includes both the tuple hy1; : : : ; yni and the process Q. The names z1, . . . , zn
are unknown to the opponent beforehand, but are revealed by the interaction.

Labelled transitions such as these are most commonly de�ned inductively by
a structural operational semantics; for the sake of brevity, the following de�ni-
tions are in terms of structural congruence.

{ Let P
x
�! (y1; : : : ; yn)Q if and only if the names y1, . . . , yn are pairwise

distinct, and there are processes P1 and P2 and pairwise distinct names
z1, . . . , zm such that P � (�z1; : : : ; zm)(x(y1; : : : ; yn):P1 j P2) and Q �
(�z1; : : : ; zm)(P1 j P2) where x =2 fz1; : : : ; zmg, and fy1; : : : ; yng \ (fz1; : : :,
zmg [fn(P2)) = ?.

{ Let P
x
�! (�z1; : : : ; zm)hy1; : : : ; yniQ if and only if the names z1, . . . , zm are

pairwise distinct, and we have P � (�z1; : : : ; zm)(xhy1; : : : ; yni j Q) where
x =2 fz1; : : : ; zmg and fz1; : : : ; zmg � fy1; : : : ; yng.

3.2 A Secrecy Theorem

The following de�nition is inspired by Abadi's de�nition of secrecy [2] for the un-
typed spi calculus [3]. Abadi attributes the underlying idea to Dolev and Yao [8]:
that a name is kept secret from an opponent if after no series of interactions is
the name transmitted to the opponent. (In the presence of encryption, the de�-
nition is rather more subtle than this.) An alternative we do not pursue here is
to formulate secrecy using testing equivalence [1, 3].

11

We model the external opponent simply by the �nite set of names S known
to it. We inductively de�ne a relation (P0; S0) R (P; S) to mean that starting
from a process P0 and an opponent knowing S0, we may reach a state in which
P0 has evolved into P , and the opponent now knows S.

(1) (P0; S0) R (P0; S0)

(2) If (P0; S0) R (P; S) and P ! Q then (P0; S0) R (Q;S).

(3) If (P0; S0) R (P; S), P
x
�! (y1; : : : ; yn)Q, x 2 S, and (fz1; : : : ; zng � S) \

fn(P0) = ? then (P0; S0) R (Qfy1 z1; : : : ; yn zng; S [fz1; : : : ; zng).

(4) If (P0; S0) R (P; S), P
x
�! (�z1; : : : ; zm)hy1; : : : ; yniQ and x 2 S and

fz1; : : : ; zmg \ (S [fn(P0)) = ? then (P0; S0) R (Q;S [fy1; : : : ; yng).

Clause (1) says that (P0; S0) is reachable from itself. Clause (2) allows the
process component to evolve on its own. Clause (3) allows the process to input
the tuple hz1; : : : ; zni from the opponent, provided the channel x is known to
the opponent. The names fz1; : : : ; zng � S are freshly created by the opponent;
the condition (fz1; : : : ; zng � S) \ fn(P0) = ? ensures these fresh names are
not confused with names initially known by P0. Clause (4) allows the process
to output the tuple hy1; : : : ; yni to the opponent, who then knows the names
S [fy1; : : : ; yng, provided the channel x is known to the opponent. The names
fz1; : : : ; zng (included in fy1; : : : ; yng) are freshly created by the process; the
condition fz1; : : : ; zmg \ (S [fn(P0)) = ? ensures these fresh names are not
confused with names currently known by the opponent or initially known by P0.

Next, we give de�nitions of when a name is revealed to an opponent, and
formalize the secrecy property of group creation discussed in Section 1.

Revealing Names, Preserving their Secrecy:

Suppose S is a set of names and P is a process.

Then P may reveal x to S if and only if there are P 0 and S0 such that
(P; S) R (P 0; S0) and x 2 S0; otherwise, P preserves the secrecy of x from S.

Moreover, (�x)P may reveal the restricted name x to S if and only if there is
a name y =2 S [fn(P) such that Pfx yg may reveal y to S;
otherwise (�x)P preserves the secrecy of the restricted name x from S.

Theorem 1 (Secrecy). Suppose that E ` (�G)(�x:T)P where G 2 fg(T).
Let S be the names occurring in dom(E). Then the erasure (�x)erase(P) of

(�G)(�x:T)P preserves the secrecy of the restricted name x from S.

We sketch a proof in the next section. The group restriction (�G) is essential.
A typing E ` (�x:T)P does not in general imply that the erasure (�x)erase(P)
preserves the secrecy of the restricted name from a set S. For example, consider
the typing ?; G; x:G[G[]] ` (�y:G[])xhyi. Then the erasure (�y)xhyi reveals the
restricted name to any set S such that x 2 S.

12

4 Proof of Secrecy

The proof of the secrecy theorem is based on an auxiliary type system that
partitions channels into untrusted channels, with type Un, and trusted ones,
with type Ch [T1; : : : ; Tn], where each Ti is either a trusted or untrusted type.
The type system insists that names are bound to variables with the same trust
level (that is, the same type), and that no trusted name is ever transmitted on an
untrusted channel. Hence an opponent knowing only untrusted channel names
will never receive any trusted name.

Types:

T ::= channel type
Ch [T1; : : : ; Tn] trusted polyadic channel
Un untrusted name

For any group G, we can translate group-based types into the auxiliary type
system as follows: any type that does not contain G free becomes Un, while a
type H [T1; : : : ; Tn] that contains G free is mapped onto Ch [[[T1]]G; : : : ; [[Tn]]G].
This translation is proved to preserve typability. This implies that an opponent
knowing only names whose type does not contain G free, will never be able to
learn any name whose type contains G free. This is the key step in proving the
secrecy theorem.

Next, we de�ne the three judgments of the auxiliary type system: �rst, E ` �
means that E is well-formed; second, E ` x : T means that x:T is in E, and
that E is well-formed; and, third, E ` P means that P is well-formed in the
environment E.

Typing Rules:

? ` �

E ` � x =2 dom(E)

E; x:T ` �

E0; x:T;E00 ` �

E0; x:T;E00 ` x : T

E; x:T ` P

E ` (�x)P

E ` �

E ` 0

E ` P E ` Q

E ` P j Q

E ` P

E ` !P

E ` x : Ch [T1; : : : ; Tn] E; y1:T1; : : : ; yn:Tn ` P

E ` x(y1; : : : ; yn):P

E ` x : Ch [T1; : : : ; Tn] E ` y1 : T1 � � � E ` yn : Tn

E ` xhy1; : : : ; yni

E ` x : Un E; y1:Un; : : : ; yn:Un ` P

E ` x(y1; : : : ; yn):P

E ` x : Un E ` y1 : Un � � � E ` yn : Un

E ` xhy1; : : : ; yni

13

The auxiliary type system is de�ned on untyped processes. Any untrusted
opponent may be type-checked, as follows. This property makes the type system
suitable for reasoning about processes containing both trusted and untrusted
subprocesses.

Lemma 2. For all P , if fn(P) = fx1; : : : ; xng then ?; x1:Un; : : : ; xn:Un ` P .

Structural congruence and reduction preserve typings.

Lemma 3. If E ` P and either P � Q or P ! Q then E ` Q.

The following fact is the crux of the proof of Theorem 1: an opponent who
knows only untrusted names cannot learn any trusted one.

Proposition 4. Suppose that ?; y1:Un; : : : ; yn:Un; x:T ` P where T 6= Un.

Then the process P preserves the secrecy of the name x from S = fy1; : : : ; yng.

Next, we translate the types and environments of the �-calculus with groups
into our auxiliary system, and state that erasure preserves typing.

Translations of types and environments:

[[H [T1; : : : ; Tn]]]G
�

=

�
Ch [[[T1]]G; : : : ; [[Tn]]G] if G 2 fg(H [T1; : : : ; Tn])
Un otherwise

[[?]]G
�

= ? [[E;H]]G
�

= [[E]]G [[E; x:T]]G
�

= [[E]]G; x:[[T]]G

Lemma 4. If E ` P then [[E]]G ` erase(P).

Finally, we outline the proof of Theorem 1.

Lemma 5. If E; x:T;E0 ` P and E ` y : T then E;E0 ` Pfx yg.

Lemma 6. Let S be a �nite set of names and P a process. Then P preserves

the secrecy of x from S if and only if for all P 0, S0, (P; S) R (P 0; S0) implies that

x =2 S0. Moreover, (�x)P preserves the secrecy of the restricted name x from S
if and only if for all y =2 fn(P) [S, Pfx yg preserves the secrecy of y from S.

Proof of Theorem 1 Suppose that E ` (�G)(�x:T)P where G 2 fg(T).
Let S be the names occurring in dom(E). Then the erasure (�x)erase(P) of

(�G)(�x:T)P preserves the secrecy of the restricted name x from S.

Proof. Since the name x is bound, we may assume that x =2 S. Consider any name
y =2 fn(P) [S. By Lemma 6, it is su�cient to show that erase(P)fx yg pre-
serves the secrecy of y from S. Since E ` (�G)(�x:T)P must have been derived
using (Proc GRes) and (Proc Res), we have E;G; x:T ` P , with G =2 dom(E).
Hence, [[E]]G = ?; z1:Un; : : : ; zn:Un where S = fz1; : : : ; zng. Lemma 4 implies
that ?; z1:Un; : : : ; zn:Un; x:[[T]]G ` erase(P). Since G 2 fg(T), [[T]]G 6= Un.
So Proposition 4 implies that erase(P) preserves the secrecy of x from S. If
x = y we are done, since in that case erase(P)fx yg = erase(P). Otherwise,
suppose x 6= y. Since y =2 fz1; : : : ; zng we can derive ?; z1:Un, . . . , zn:Un,

14

y:[[T]]G; x:[[T]]G ` erase(P) using a weakening lemma, and also derive ?; z1:Un,
. . . , zn:Un; y:[[T]]G ` y : [[T]]G. By the substitution lemma, Lemma 5, these two
judgments imply ?; z1:Un; : : : ; zn:Un; y:[[T]]G ` erase(P)fx yg. Hence, Propo-
sition 4 implies that erase(P)fx yg preserves the secrecy of the name y from
S = fz1; : : : ; zng. ut

5 Conclusion

We proposed a typed �-calculus in which each name belongs to a group, and in
which groups may be created dynamically by a group creation operator. Typing
rules bound the communication of names of dynamically created groups, hence
preventing the accidental or malicious revelation of secrets. We explained these
ideas informally, proposed a formalization based on Abadi's notion of name
secrecy, and explained the ideas underlying the proof.

The idea of name groups and a group creation operator arose in our recent
work on type systems for regulating mobile computation in the ambient calcu-
lus [5]. The new contributions of the present paper are to recast the idea in
the simple setting of the �-calculus and to explain, formalize, and prove the
secrecy properties induced by group creation. Another paper [6] extends the
typed �-calculus of Section 2 with an e�ect system. That paper establishes a
formal connection between group creation and the letregion construct of Tofte
and Talpin's region-based memory management [15]. That paper generalizes our
subject congruence, subject reduction, and erasure results (Lemma 1, Proposi-
tions 1 and 3) to the system of types and e�ects for the �-calculus. We conjecture
that the main secrecy result of this paper, Theorem 1, would hold also for the
extended system, but we have not studied the details.

The idea of proving a secrecy property for a type system by translation
into a mixed trusted and untrusted type system appears to be new. Our work
develops the idea of a type system for the �-calculus that mixes trusted and
untrusted data, and the idea that every opponent should be typable in the sense
of Lemma 2. These ideas �rst arose in Abadi's type system for the spi calculus [1].
In that system, each name belongs to a global security level, such as Public or
Secret, but there is no level creation construct akin to group creation.

A related paper [4] presents a control
ow analysis for the �-calculus that
can also establish secrecy properties of names. There is an intriguing connection,
that deserves further study, between the groups of our system, and the channels
and binders of the
ow analysis. One di�erence between the studies is that the

ow analysis has no counterpart of the group creation operator of this paper.
Another is that an algorithm is known for computing
ow analyses for the �-
calculus, but we have not investigated algorithmic aspects of our type system.
It would be interesting to consider whether algorithms for Milner's sort systems
[9, 16] extend to our calculus.

Other related work on the �-calculus includes type systems for guaranteeing
locality properties [13, 14]. These systems can enforce by type-checking that a
name cannot be leaked outside a particular locality.

15

In summary, group creation is a powerful new construct for process calculi.
Its study is just beginning; we expect that its secrecy guarantees will help with
the design and semantics of new programming language features, and with the
analysis of security properties of individual programs.

Acknowledgements We thank Rocco de Nicola, Roberto Gorrieri, Tony Hoare,
and the anonymous referees for useful suggestions. Giorgio Ghelli was supported
by Microsoft Research, and by \Ministero dell'Universit�a e della Ricerca Scien-
ti�ca e Tecnologica", project DATA-X.

References

1. M. Abadi. Secrecy by typing in security protocols. Journal of the ACM, 46(5):749{
786, September 1999.

2. M. Abadi. Security protocols and speci�cations. In Proceedings FOSSACS'99,
volume 1578 of LNCS, pages 1{13. Springer, 1999.

3. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. Information and Computation, 148:1{70, 1999.

4. C. Bodei, P. Degano, F. Nielson, and H. Nielson. Control
ow analysis for the �-
calculus. In Proceedings Concur'98, volume 1466 of LNCS, pages 84{98. Springer,
1998.

5. L. Cardelli, G. Ghelli, and A. D. Gordon. Ambient groups and mobility types. In
Proceedings TCS2000, LNCS. Springer, 2000. To appear.

6. S. Dal Zilio and A. D. Gordon. Region analysis and a �-calculus with groups. In
Proceedings MFCS2000, LNCS. Springer, 2000. To appear.

7. D. Denning. A lattice model of secure information
ow. Communications of the

ACM, 19(5):236{242, 1976.
8. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions

on Information Theory, IC{29(12):198{208, 1983.
9. S. J. Gay. A sort inference algorithm for the polyadic pi-calculus. In Proceedings

POPL'93. ACM, 1993.
10. R. Milner. Communicating and Mobile Systems: the �-Calculus. CUP, 1999.
11. M. Odersky. Polarized name passing. In Proc. FST & TCS, LNCS. Springer,

December 1995.
12. B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Mathe-

matical Structures in Computer Science, 6(5):409{454, 1996.
13. J. Riely and M. Hennessy. A typed language for distributed mobile processes. In

Proceedings POPL'98, pages 378{390. ACM, 1998.
14. P. Sewell. Global/local subtyping and capability inference for a distributed �-

calculus. In Proceedings ICALP'98, volume 1443 of LNCS, pages 695{706. Springer,
1998.

15. M. Tofte and J.-P. Talpin. Region-based memory management. Information and

Computation, 132(2):109{176, 1997.
16. V. T. Vasconcelos and K. Honda. Principal typing-schemes in a polyadic �-calculus.

In Proceedings Concur'93, volume 715 of LNCS, pages 524{538. Springer, 1993.

