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Chapter 9

Linked Lists: the Role of
Locking

9.1 Introduction

In Chapter 7 we saw how to build scalable spin locks that provide mutual
exclusion efficiently even when they are heavily used. You might think that
it is now a simple matter to construct scalable concurrent data structures:
simply take a sequential implementation of the class, add a scalable lock
field, and ensure that each method call acquires and releases that lock. We
call this approach coarse-grained synchronization.

Often, coarse-grained synchronization works well, but there are impor-
tant cases where it doesn’t. The problem is that a class that uses a single
lock to mediate all of its method calls is not always scalable, even if the lock
itself is scalable. Coarse-grained synchronization works well when levels of
concurrency are low, but if too many threads try to access the object at the
same time, then the object becomes a sequential bottleneck, forcing threads
to wait in line for access.

This chapter introduces several useful techniques that go beyond coarse-
grained locking to allow multiple threads to access a single object at the
same time.

• Fine-grained synchronization: Instead of using a single lock to syn-
chronize every access to an object, we split the object into independently-
synchronized components, ensuring that method calls interfere only
when trying to access the same component at the same time.

• Optimistic synchronization: Many objects, such as trees or lists, con-
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sist of multiple components linked together by references. Some meth-
ods search for a particular component (for example, a list or tree node
containing a particular key). One way to reduce the cost of fine-
grained locking is to search without acquiring any locks at all. If the
method finds the sought-after component, it locks that component,
and then checks that the component has not changed in the interval
between when it was inspected and when it was locked. This technique
is worthwhile only if it succeeds more often than not, which is why we
call it optimistic.

• Lazy synchronization: Sometimes it makes sense to postpone hard
work. For example, the task of removing a component from a data
structure can be split into two phases: the component is logically re-
moved simply by setting a tag bit, and later, the component can be
physically removed by unlinking it from the rest of the data structure.

• Non-Blocking Synchronization: Sometimes we can eliminate locks en-
tirely, relying on built-in atomic operations such as compareAndSet()
for synchronization.

Each of these techniques can be applied (with appropriate customization)
to a variety of common data structures. In this chapter we consider how to
use linked lists to implement a set, a collection of items that contains no
duplicate elements.

For our purposes, a Set provides the following three methods:

• The add(x) method adds x to the set, returning true if and only if x
was not already there.

• The remove(x) method removes x from the set, returning true if and
only if x was there.

• The contains(x) returns true if and only if the set contains x.

For each method, we say that a call is successful if it returns true, and
unsuccessful otherwise. It is typical that in applications using sets, there
are significantly more contains() method calls than add() or remove() calls.

9.2 List-based Sets

This chapter presents a range of concurrent set algorithms, all based on the
same basic idea. A set is implemented as a linked list of nodes. As shown
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1 public interface Set<T> {
2 boolean add(T x);
3 boolean remove(T x);
4 boolean contains(T x);
5 }

Figure 9.1: The Set interface: add() adds an item to the set (no effect if that
item is already present), remove() removes it (if present), and contains() returns a
Boolean indicating whether the item is present.

1 private class Node {
2 T item;
3 int key;
4 Node next;
5 }

Figure 9.2: The Node<T> class: this internal class keeps track of the item, the
item’s key, and the next node in the list. Some algorithms require technical changes
to this class.

in Figure 9.2, the Node<T> class has three fields. The item field is the
actual item of interest. The key field is the items’s hash code. Nodes are
sorted in key order, providing an efficient way to detect when an item is
absent. The next field is a reference to the next node in the list. (Some of
the algorithms we consider require technical changes to this class, such as
adding new fields, or changing the types of existing fields.) For simplicity,
we assume that each item’s hash code is unique (relaxing this assumption
is left as an exercise). We associate an item with the same node and key
throughout any given example, which allows us to abuse notation and use
the same symbol to refer to a node, its key, and its item. That is, node a
may have key a and item a, and so on.

The list has two kinds of nodes. In addition to regular nodes that hold
items in the set, we use two sentinel nodes, called head and tail , as the first
and last list elements. Sentinel nodes are never added, removed, or searched
for, and their keys are the minimum and maximum integer values.1 Ignoring
synchronization for the moment, the top part of Figure 9.3 shows a schematic

1All algorithms presented here work for any any ordered set of keys that have maximum
and minimum values and that are well-founded, that is, there are only finitely many keys
smaller than any given key. For simplicity, we assume here that keys are integers.
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description how an item is added to the set. Each thread A has two local
variables used to traverse the list: currA is the current node and predA is
its predecessor. To add an item to the set, A sets local variables predA and
currA to head, and moves down the list, comparing currA’s key to the key
of the item being added. If they match, the item is already present in the
set, so the call returns false. If predA precedes currA in the list, then predA’s
key is lower than that of the inserted item, and currA’s key is higher, so the
item is not present in the list. The method creates a new node b to hold the
item, sets b’s nextA field to currA, then sets predA to b. Removing an item
from the set works in a similar way.

9.3 Concurrent Reasoning

Reasoning about concurrent data structures may seem impossibly difficult,
but it is a skill that can be learned. Often the key to understanding a
concurrent data structure is to understand its invariants: properties that
always hold. We can show that a property is invariant by showing that:

1. The property holds when the object is created, and

2. Once the property holds, then no thread can take a step that makes
the property false.

Most interesting invariants hold trivially when the list is created, so it makes
sense to focus on how invariants, once established, are preserved.

Specifically, we can check that each invariant is preserved by each invo-
cation of insert (), remove(), and contains() methods. This approach works
only if we can assume that these methods are the only ones that modify
nodes, a property sometimes called freedom from interference. In the list
algorithms considered here, nodes are internal to the list implementation,
so freedom from interference is guaranteed because users of the list have no
opportunity to modify its internal nodes.

We require freedom from interference even for nodes that have been
removed from the list, since some of our algorithms permit a thread to unlink
a node while it is being traversed by others. Fortunately, we do not attempt
to reuse list nodes that have been removed from the list, relying instead
on a garbage collector to recycle that memory. The algorithms described
here work in languages without garbage collection, but sometimes require
non-trivial modifications beyond the scope of this chapter.
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When reasoning about concurrent object implementations, it is impor-
tant to understand the distinction between an object’s abstract value (here,
a set of items), and its concrete representation (here, a list of nodes).

Not every list of nodes is a meaningful representation for a set. An algo-
rithm’s representation invariant characterizes which representations make
sense as abstract values. If a and b are nodes, we say that a points to b if a’s
next field is a reference to b. We say that b is reachable if there is a sequence
of nodes, starting at head, and ending at b, where each node in the sequence
points to its successor.

The set algorithms in this chapter require the following invariants (some
require more, as explained later). First, sentinels are neither added nor
removed. Second, nodes are sorted by key, and keys are unique.

a b

remove b

head tail
c

pred curr

a

badd b

head tail

c

pred curr

Figure 9.3: A seqential Set implementation: adding and removing nodes. To
insert a node b, a thread uses two variables: curr is the current node, and pred is
its predecessor. Move down the list comparing the keys for curr and b. If a match
is found, the item is already present, so return false. If curr reaches an node with
a higher key, the item is not present Set b’s next field to curr , and pred’s next field
to b. To delete curr , set pred’s next field to curr ’s next field.

Think of the representation invariant as a contract among the object’s
methods. Each method call preserves the invariant, and relies on the other
methods also to preserve the invariant. In this way, we can reason about
each method in isolation, without having to consider all the possible ways
they might interact.

Given a list satisfying the representation invariant, which set does it
represent? The meaning of such a list is given by an abstraction map carrying
lists that satisfy the representation invariant to sets. Here, the abstraction
map is simple: an item is in the set if and only if it is reachable from head.
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What safety and liveness properties do we need? Our safety property
is linearizability. As we saw in Chapter 3, to show that a concurrent data
structure is a linearizable implementation of a sequentially specified object,
it is enough to identify a linearization point, a single atomic step where the
method call “takes effect”. This step can be a read, a write, or a more
complex atomic operation. Looking at any execution history of a list-based
set, it must be the case that if the abstraction map is applied to the rep-
resentation at the linearization points, the resulting sequence of states and
method calls defines a valid sequential set execution. Here, add(a) adds a to
the abstract set, remove(a) removes a from the abstract set, and contains(a)
returns true or false depending on whether a was already in the set.

Different list algorithms make different progress guarantees. Some use
locks, and care is required to ensure they are deadlock and starvation-free.
Some non-blocking list algorithms do not use locks at all, while others restrict
locking to certain methods. Here is a brief summary, from Chapter 3, of the
non-blocking properties we use2:

• A method is wait-free if it guarantees that every call finishes in a finite
number of steps.

• A method is lock-free if it guarantees that some call always finishes in
a finite number of steps.

We are now ready to consider a range of list-based set algorithms. We
start with algorithms that use coarse-grained synchronization, and succes-
sively refine them to reduce granularity of locking. Formal proofs of cor-
rectness lie beyond the scope of this book. Instead, we focus on informal
reasoning useful in everyday problem-solving.

As mentioned, in each of these algorithms, methods scan through the list
using two local variables: curr is the current node and pred is its predecessor.
These variables are thread-local3, so we use predA and currA to denote the
instances used by thread A.

9.4 Coarse-Grained Synchronization

We start with a simple algorithm using coarse-grained synchronization. Fig-
ures 9.4 and 9.5 show the add() and remove() methods for this coarse-grained

2Chapter 3 introduces an even weaker non-blocking property called obstruction-
freedom.

3Appendix A describes how thread-local variables work in Java.
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1 public class CoarseList<T> {
2 private Node head;
3 private Lock lock = new ReentrantLock();
4 public CoarseList () {
5 head = new Node(Integer.MIN VALUE);
6 head.next = new Node(Integer.MAX VALUE);
7 }
8 public boolean add(T item) {
9 Node pred, curr ;

10 int key = item.hashCode();
11 lock . lock ();
12 try {
13 pred = head;
14 curr = pred.next;
15 while (curr .key < key) {
16 pred = curr;
17 curr = curr.next;
18 }
19 if (key == curr.key) {
20 return false ;
21 } else {
22 Node node = new Node(item);
23 node.next = curr;
24 pred.next = node;
25 return true;
26 }
27 } finally {
28 lock .unlock();
29 }
30 }

Figure 9.4: The CoarseList class: the add() method.

algorithm. (The contains() method works in much the same way, and is left
as an exercise.) The list itself has a single lock which every method call
must acquire. The principal advantage of this algorithm, which should not
be discounted, is that it is obviously correct. All methods act on the list only
while holding the lock, so the execution is essentially sequential. To simplify
matters, we follow the convention (for now) that the linearization point for
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31 public boolean remove(T item) {
32 Node pred, curr ;
33 int key = item.hashCode();
34 lock . lock ();
35 try {
36 pred = head;
37 curr = pred.next;
38 while (curr .key < key) {
39 pred = curr;
40 curr = curr.next;
41 }
42 if (key == curr.key) {
43 pred.next = curr.next;
44 return true;
45 } else {
46 return false ;
47 }
48 } finally {
49 lock .unlock ();
50 }
51 }

Figure 9.5: The CoarseList class: the remove() method: all methods acquire a
single lock, which is released on exit by the finally block.

any method call that acquires a lock is the instant the lock is acquired.
The CoarseList class satisfies the same progress condition as its lock: if

the Lock is starvation-free, so is our implementation. If contention is very
low, this algorithm is an excellent way to implement a list. If, however, there
is contention, then even if the lock itself performs well, threads will still be
delayed waiting for one another.

9.5 Fine-Grained Synchronization

We can improve concurrency by locking individual nodes, rather than locking
the list as a whole. Instead of placing a lock on the entire list, let us add
a Lock to each node, along with lock() and unlock() methods. As a thread
traverses the list, it locks each node when it first visits, and sometime later
releases it. Such fine-grained locking permits concurrent threads to traverse
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1 public boolean add(T item) {
2 int key = item.hashCode();
3 head.lock ();
4 Node pred = head;
5 try {
6 Node curr = pred.next;
7 curr . lock ();
8 try {
9 while (curr .key < key) {

10 pred.unlock ();
11 pred = curr;
12 curr = curr.next;
13 curr . lock ();
14 }
15 if (curr .key == key) {
16 return false ;
17 }
18 Node newNode = new Node(item);
19 newNode.next = curr;
20 pred.next = newNode;
21 return true;
22 } finally {
23 curr .unlock();
24 }
25 } finally {
26 pred.unlock();
27 }
28 }

Figure 9.6: The FineList class: the add() method uses hand-over-hand locking to
traverse the list. The finally blocks release locks before returning.

the list together in a pipelined fashion.
Consider two nodes a and b where a points to b. It is not safe to unlock

a before locking b because another thread could remove b from the list in
the interval between unlocking a and locking b. Instead, a Thread A must
acquire locks in a kind of “hand-over-hand” order: except for the initial
head sentinel node, acquire the lock for currA only while holding the lock
for predA. This locking protocol is sometimes called lock coupling. (No-
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29 public boolean remove(T item) {
30 Node pred = null, curr = null;
31 int key = item.hashCode();
32 head.lock ();
33 try {
34 pred = head;
35 curr = pred.next;
36 curr . lock ();
37 try {
38 while (curr .key < key) {
39 pred.unlock();
40 pred = curr;
41 curr = curr.next;
42 curr . lock ();
43 }
44 if (curr .key == key) {
45 pred.next = curr.next;
46 return true;
47 }
48 return false ;
49 } finally {
50 curr .unlock ();
51 }
52 } finally {
53 pred.unlock ();
54 }
55 }

Figure 9.7: The FineList class: the remove() method locks both the node to be
removed and its predecessor before removing that node.

tice that there is no obvious way to implement lock coupling using Java’s
synchronized methods.)

Figure 9.7 shows the FineList algorithm’s remove() method. Just as in
the coarse-grained list, remove() makes currA unreachable by setting predA’s
next field to currA’s successor. To be safe, remove() must lock both predA and
currA. To see why, consider the following scenario, illustrated in Figure 9.5.
Thread A is about to remove node a, the first node in the list, while Thread
B is about to remove node b, where a points to b. Suppose A locks head,
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a b

remove b

head tail

c

remove a

Figure 9.8: The FineList class: why remove() must acquire two locks. Thread A
is about to remove a, the first node in the list, while Thread B is about to remove
b, where a points to b. Suppose A locks head, and B locks a. Thread A then sets
head.next to b, while B sets a’s next field to c. The net effect is to remove a, but
not b.

and B locks a. A then sets head.next to b, while B sets a.next to c. The
net effect is to remove a, but not b. The problem is that there is no overlap
between the locks held by the two remove() calls.

a b

remove b

head tail

c

remove a

Figure 9.9: The FineList class: Hand-over-hand locking ensures that if concurrent
remove() calls try to remove adjacent nodes, then they acquire conflicting locks.
Thread A is about to remove node a, the first node in the list, while Thread B is
about to remove node b, where a points to b. Because A must lock both head and
A and B must lock both a and b, they are guaranteed to conflict on a, forcing one
call to wait for the other.

To guarantee progress, it is important that all methods acquire locks in
the same order, starting at head and following next references toward the
tail . As Figure 9.10 shows, a deadlock could occur if different method calls
were to acquire locks in different orders. In this example, thread A, trying
to add a, has locked b and is attempting to lock head, while B, trying to
remove b, has locked b and is trying to lock head. Clearly, these method
calls will never finish. Avoiding deadlocks is one of the principal challenges
of programming with locks.
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The FineList algorithm maintains the representation invariant: sentinels
are never added or removed, and nodes are sorted by key value without
duplicates. The abstraction map is the same as for the course-grained list:
an item is in the set if and only if its node is reachable.

The linearization point for an add(a) call depends on whether the call
was successful (that is, whether a was already present). A successful call (a
absent) is linearized when the node containing a is locked (either Line 7 or
13).

The same distinctions apply to remove(a) calls. A successful call (a
present) is linearized when the predecessor node is locked (Lines 36 or 42.
A successful call (a absent) is linearized when the node containing the next
higher key is locked (Lines 36 or 42. An unsuccessful call (a present) is
linearized when the node containing a is locked.

Determining linearization points for contains() is left as an exercise.

b c

remove badd a

a

..

head tail

Figure 9.10: The FineList class: a deadlock can occur if, for example, remove()
and add() calls acquire locks in opposite order. Thread A is about to insert a by
locking first b and then head, and Thread B is about to remove node b by locking
first head and then b. Each thread holds the lock the other is waiting to acquire,
so neither makes progress.

The FineList algorithm is starvation-free, but arguing this property is
harder than in the course-grained case. We assume that all individual locks
are starvation-free. Because all methods acquire locks in the same down-
the-list order, deadlock is impossible. If Thread A attempts to lock head,
eventually it succeeds. From that point on, because there are no deadlocks,
eventually all locks held by threads ahead of A in the list will be released,
and A will succeed in locking predA and currA.
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1 private boolean validate(Node pred, Node curr) {
2 Node node = head;
3 while (node.key <= pred.key) {
4 if (node == pred)
5 return pred.next == curr;
6 node = node.next;
7 }
8 return false ;
9 }

Figure 9.11: The OptimisticList : validation checks that predA points to currA and
is reachable from head.

9.6 Optimistic Synchronization

Although fine-grained locking is an improvement over a single, coarse-grained
lock, it still imposes a potentially long sequence of lock acquisitions and re-
leases. Moreover, threads accessing disjoint parts of the list may still block
one another. For example, a thread removing the second item in the list
blocks all concurrent threads searching for later nodes.

One way to reduce synchronization costs is to take a chance: search with-
out acquiring locks, lock the nodes found, and then confirm that the locked
nodes are correct. If a synchronization conflict caused the wrong nodes to be
locked, then release the locks and start over. Normally, this kind of conflict
is rare, which is why we call this technique optimistic synchronization.

In Figure 9.12, thread A makes an optimistic add(a). It traverses the
list without acquiring any locks (Lines 15 through 17). In fact, it ignores
the locks completely. It stops the traversal when currA’s key is greater than
or equal to a’s. It then locks predA and currA, and calls validate () to check
that predA is reachable and its next field still refers to currA. If validation
succeeds, then A proceeds as before: if currA’s key is greater than a, A adds a
new node with item a between predA and currA, and returns true. Otherwise
it returns false. The remove() and contains() methods (Figures 9.13 and
9.14) operate similarly, traversing the list without locking, then locking the
target nodes and validating they are still in the list. The following story
illustrates the nature of optimistic traversal.

A tourist takes a taxi in a foreign town. The taxi driver
speeds through a red light. The tourist, frightened, asks “What
are you are doing?” The driver answers: “Don’t worry, I am
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10 public boolean add(T item) {
11 int key = item.hashCode();
12 while (true) {
13 Node pred = head;
14 Node curr = pred.next;
15 while (curr .key <= key) {
16 pred = curr; curr = curr.next;
17 }
18 pred. lock (); curr . lock ();
19 try {
20 if ( validate (pred, curr )) {
21 if (curr .key == key) {
22 return false ;
23 } else {
24 Node node = new Node(item);
25 node.next = curr;
26 pred.next = node;
27 return true;
28 }
29 }
30 } finally {
31 pred.unlock(); curr .unlock();
32 }
33 }
34 }

Figure 9.12: The OptimisticList class: the add() method traverses the list ignoring
locks, acquires locks, and validates before adding the new node.

an expert.” He speeds through more red lights, and the tourist,
on the verge of hysteria, complains again, more urgently. The
driver replies, “Relax, relax, you are in the hands of an expert.”
Suddenly, the light turns green, the driver slams on the brakes,
and the taxi skids to a halt. The tourist, picks himself off the
floor of the taxi and asks “For crying out loud, why stop now that
the light is finally green?” The driver answers “Too dangerous,
could be another expert coming”.

Traversing any dynamically-changing lock-based data structure while ig-
noring locks requires careful thought (there are other expert threads out
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35 public boolean remove(T item) {
36 int key = item.hashCode();
37 while (true) {
38 Node pred = head;
39 Node curr = pred.next;
40 while (curr .key < key) {
41 pred = curr; curr = curr.next;
42 }
43 pred. lock (); curr . lock ();
44 try {
45 if ( validate (pred, curr )) {
46 if (curr .key == key) {
47 pred.next = curr.next;
48 return true;
49 } else {
50 return false ;
51 }
52 }
53 } finally {
54 pred.unlock(); curr .unlock ();
55 }
56 }
57 }

Figure 9.13: The OptimisticList class: the remove() method traverses ignoring
locks, acquires locks, and validates before removing the node.

there). We must make sure to use some form of validation and guarantee
freedom from interference.

As Figure 9.15 shows, validation is necessary because the trail of ref-
erences leading to predA or the reference from predA to currA could have
changed between when they were last read by A and when A acquired the
locks. In particular, a thread could be traversing parts of the list that have
already been removed. For example, the node currA and all nodes between
currA and a (including a) may be removed while A is still traversing currA.
Thread A discovers that currA points to a, and, without validation, “suc-
cessfully” removes a, even though a is no longer in the list. A validate () call
detects that a is no longer in the list, and the caller restarts the method.

Because we are ignoring the locks that protect concurrent modifications,
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58 public boolean contains(T item) {
59 int key = item.hashCode();
60 while (true) {
61 Entry pred = this.head; // sentinel node;
62 Entry curr = pred.next;
63 while (curr .key < key) {
64 pred = curr; curr = curr.next;
65 }
66 try {
67 pred. lock (); curr . lock ();
68 if ( validate (pred, curr )) {
69 return (curr .key == key);
70 }
71 } finally { // always unlock
72 pred.unlock(); curr .unlock();
73 }
74 }
75 }

Figure 9.14: The OptimisticList class: the contains() method searches, ignoring
locks, then it acquires locks, and validates to determine if the node is in the list.

head tail

predA

currA

a

Figure 9.15: The OptimisticList class: why validation is needed. Thread A is
attempting to remove a node a. While traversing the list, currA and all nodes
between currA and a (including a) might be removed (denoted by a lighter node
color). In such a case, thread A would proceed to the point where currA points to
a, and, without validation, would successfully remove a, even though it is no longer
in the list. Validation is required to determine that a is no longer reachable from
head.
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each of the method calls may traverse nodes that have been removed from
the list. Nevertheless, absence of interference implies that once a node has
been unlinked from the list, the value of its next field does not change, so
following a sequence of such links eventually leads back to the list. Absence
of interference, in turn, relies on garbage collection to ensure that no node
is recycled while it is being traversed.

The OptimisticList algorithm is not starvation-free even if all node locks
are individually starvation-free. A thread might be delayed forever if new
nodes are repeatedly added and removed (see Exercise 107). Nevertheless,
we would expect this algorithm to do well in practice, since starvation is
rare.

9.7 Lazy Synchronization

1 private boolean validate(Node pred, Node curr) {
2 return !pred.marked && !curr.marked && pred.next == curr;
3 }

Figure 9.16: The LazyList class: validation checks that neither the pred nor the
curr nodes has been logically deleted, and that pred points to curr .

The OptimisticList implementation works best if the cost of traversing
the list twice without locking is significantly less than the cost of traversing
the list once with locking. One drawback of this particular algorithm is
that contains() acquires locks, which is unattractive since contains() calls
are likely to be much more common than calls to other methods.

The next step is to refine this algorithm so that contains() calls are wait-
free, and add() and remove() methods, while still blocking, traverse the list
only once (in the absence of contention). We add to each node a Boolean
marked field indicating whether that node is in the set. Now, traversals
do not need to lock the target node, and there is no need to validate that
the node is reachable by retraversing the whole list. Instead, the algorithm
maintains the invariant that every unmarked node is reachable. If a travers-
ing thread does not find a node, or finds it marked, then the that item is
not in the set. As a result, contains() needs only one wait-free traversal.
To add an element to the list, add() traverses the list, locks the target’s
predecessor, and inserts the node. The remove() method is lazy, taking two
steps: first, mark the target node, logically removing it, and second, redirect
its predecessor’s next field, physically removing it.
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1 public boolean add(T item) {
2 int key = item.hashCode();
3 while (true) {
4 Node pred = head;
5 Node curr = head.next;
6 while (curr .key < key) {
7 pred = curr; curr = curr.next;
8 }
9 pred. lock ();

10 try {
11 curr . lock ();
12 try {
13 if ( validate (pred, curr )) {
14 if (curr .key == key) {
15 return false ;
16 } else {
17 Node node = new Node(item);
18 node.next = curr;
19 pred.next = node;
20 return true;
21 }
22 }
23 } finally {
24 curr .unlock();
25 }
26 } finally {
27 pred.unlock();
28 }
29 }
30 }

Figure 9.17: The LazyList class: add() method.

In more detail, all methods traverse the list (possibly traversing logically
and physically removed nodes) ignoring the locks. The add() and remove()
methods lock the predA and currA nodes as before (Figures 9.17 and 9.18),
but validation does not retraverse the entire list (Figure 9.16) to determine
whether a node is in the set. Instead, because a node must be marked
before being physically removed, validation need only check that currA has
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1 public boolean remove(T item) {
2 int key = item.hashCode();
3 while (true) {
4 Node pred = head;
5 Node curr = head.next;
6 while (curr .key < key) {
7 pred = curr; curr = curr.next;
8 }
9 pred. lock ();

10 try {
11 curr . lock ();
12 try {
13 if ( validate (pred, curr )) {
14 if (curr .key != key) {
15 return false ;
16 } else {
17 curr .marked = true;
18 pred.next = curr.next;
19 return true;
20 }
21 }
22 } finally {
23 curr .unlock ();
24 }
25 } finally {
26 pred.unlock();
27 }
28 }
29 }

Figure 9.18: The LazyList class: the remove() method removes nodes in two steps,
logical and physical.

not been marked. However, as Figure 9.20 shows, for insertion and deletion,
since predA is the one being modified, one must also check that predA itself
is not marked, and that that it points to currA. Logical removals requires
a small change to the abstraction map: an item is in the set if and only
if it is referred to by an unmarked reachable node. Notice that the path
along which the node is reachable may contain marked nodes. The reader
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1 public boolean contains(T item) {
2 int key = item.hashCode();
3 Node curr = head;
4 while (curr .key < key)
5 curr = curr.next;
6 return curr .key == key && !curr.marked;
7 }

Figure 9.19: The LazyList class: the contains() method

0

0

head tail

predA

0 010 a

currA

head tail

predA

0 00 a

currA

Figure 9.20: The LazyList class: why validation is needed. In the top part of the
figure, thread A is attempting to remove node a. After it reaches the point where
predA refers to currA, and before it acquires locks on these nodes, the node predA is
logically and physically removed. After A acquires the locks, validation will detect
the problem. In the bottom part of the figure, A is attempting to remove node a.
After it reaches the point where predA equals currA, and before it acquires locks
on these nodes, a new node is added between predA and currA. After A acquires
the locks, even though neither predA or currA are marked, validation detects that
predA is not the same as currA, and A’s call to remove() will be restarted

should check that any unmarked reachable node remains reachable even if
its predecessor is logically or physically deleted. As in the OptimisticList
algorithm, add() and remove() are not starvation-free, because list traversals
may be arbitrarily delayed by ongoing modifications.

The contains() method (Figure 9.19) traverses the list once ignoring locks
and returns true if the node it was searching for is present and unmarked,
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and false otherwise. It is thus is wait-free.4 A marked node’s value is
ignored. This method is wait-free. Each time the traversal moves to a new
node, the new node has a larger key than the previous one, even if the node
is logically deleted.

Logical removal require a small change to the abstraction map: an item
is in the set if and only if it is referred to by an unmarked reachable node.
Notice that the path along which the node is reachable may contain marked
nodes. Physical list modifications and traversals occur exactly as in the
OptimisticList class, and the reader should check that any unmarked reach-
able node remains reachable even if its predecessor are logically or physically
deleted.

The linearization points for LazyList add() and unsuccessful remove()
calls are the same as for OptimisticList . A successful remove() call is lin-
earized when the mark is set (Line 17), and a successful contains() call is
linearized when an unmarked matching node is found.

To understand how to linearize an unsuccessful contains(), consider the
scenario depicted in Figure 9.21. In part (a), node a is marked as removed
(its marked field is set) and Thread A is attempting to find the node matching
a’s key. While A is traversing the list, currA and all nodes between currA and
a including a are removed, both logically and physically. Thread A would
still proceed to the point where currA points to a, and would detect that a
is marked and no longer in the abstract set. The call could be linearized at
this point.

Now consider the scenario depicted in part (b). While A is traversing the
removed section of the list leading to a, and before it reaches the removed
node a, another thread adds a new node with a key a to the reachable part of
the list. Linearizing Thread A’s unsuccessful contains() method at the point
it found the marked node a would be wrong, since this point occurs after
the insertion of the new node with key a to the list. We therefore linearize
an unsuccessful contains() method call within its execution interval at the
earlier of the following points: (1) the point where a removed matching
node, or a node with a key greater than the one being searched for, is found,
and (2) the point immediately before a new matching node is added to
the list. Notice that the second is guaranteed to be within the execution
interval because the insertion of the new node with the same key must have
happened after the start of the contains() method, or the contains() method
would have found that item. As can be seen, the linearization point of

4Notice that the list ahead of a given traversing thread cannot grow forever due to
newly inserted keys since key size is finite.
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Head Tail
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currA
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0 00 b0

pred

Head Tail
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Figure 9.21: The LazyList class: linearizing an unsuccessful contains() call. Dark
nodes are physically in the list and white nodes are physically removed. In part
(a), while thread A is traversing the list, a concurrent remove() call disconnects the
sublist referred to by curr . Notice that nodes with items a and b are still reachable,
so whether an item is actually in the list depends only on whether it is marked.
A’s call is linearized at the point when it sees that a is marked and is no longer in
the abstract set. Alternatively consider the scenario depicted in part (b). While
A is traversing the list leading to marked node a, another thread adds a new node
with key a. It would be wrong to linearize A’s unsuccessful contains() call to when
it found the marked node a, since this point occurs after the insertion of the new
node with key a to the list.

the unsuccessful contains() is determined by the ordering of events in the
execution, and is not a predetermined point in the method’s code.

One benefit of lazy synchronization is that we can separate unobtrusive
logical steps, such as setting a flag, from disruptive physical changes to the
structure, such as physically removing a node. The example presented here is
simple because we physically remove one node at a time. In general, however,
delayed operations can be batched and performed lazily at a convenient time,
reducing the overall disruptiveness of physical modifications to the structure.

The principal disadvantage of the LazyList algorithm is that add() and
remove() calls are blocking: if one thread is delayed, then others may also
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be delayed.

9.8 A Lock-Free List

a b

remove b

head tail

c

remove a

a

b
add b

head tail
c

remove a

Figure 9.22: The LazyList class: why mark and reference fields must be modified
atomically. In the upper part of the figure, Thread A is about to remove a, the first
node in the list, while B is about to add b. Suppose A applies compareAndSet()
to head.next, while B applies compareAndSet() to a.next. The net effect is that a
is correctly deleted but b is not added to the list. In the lower part of the figure,
thread A is about to remove a, the first node in the list, while B is about to remove
b, where a points to b. Suppose A applies compareAndSet() to head.next, while B
applies compareAndSet() to a.next. The net effect is to remove a, but not b.

We have seen that it is sometimes a good idea to mark nodes as logically
removed before physically removing them from the list. We now show how
to extend this idea to eliminate locks altogether, allowing all three methods,
add(), remove(), and contains(), to be non-blocking. (The first two methods
are lock-free and the last wait-free). A näıive approach would be to use
compareAndSet() to change the next fields. Unfortunately, this idea does
not work. The bottom part of Figure 9.22 shows a Thread A attempting to
add node a between nodes predA and currA. It sets a’s next field to currA,
and then calls compareAndSet() to set predA’s next field to a. If B wants
to remove currB from the list, it might call compareAndSet() to set predB’s
next field to currB ’s successor. It not hard to see that if these two threads
try to remove these adjacent nodes concurrently, the list would end up with
b not being removed. A similar situation for a pair of concurrent add() and
remove() methods is depicted in the upper part of Figure 9.22.



DRAFT C
OPY

268 CHAPTER 9. LINKED LISTS: THE ROLE OF LOCKING

Clearly, we need a way to ensure that a node’s fields cannot be updated
after that node has been logically or physically removed from the list. Our
approach is to treat the node’s next and marked fields as a single atomic
unit: any attempt to update the next field when the marked field is true will
fail.

Pragma 9.8.1. An AtomicMarkableReference<T> object, from java.util.concurrent.atomic,
encapsulates both a reference to an object of type T and a Boolean mark.
These fields can be updated atomically, either together or individually. For
example, the compareAndSet() method tests the expected reference and mark
values, and if both tests succeed, replaces them with updated reference and
mark values. As shorthand, the attemptMark() method tests an expected
reference value and if the test succeeds, replaces it with a new mark value.
The get() method has an unusual interface: it returns the object’s reference
value and stores the mark value in a Boolean array argument. Figure 9.23
illustrates the interfaces of these methods.

In C or C++, one could provide this functionality efficiently by “steal-
ing” a bit from a pointer, using bit-wise operators to extract the mark and
the pointer from a single word. In Java, of course, one cannot manipulate
pointers directly, so this functionality must be provided by a library.

1 public boolean compareAndSet(T expectedReference,
2 T newReference,
3 boolean expectedMark,
4 boolean newMark);
5 public boolean attemptMark(T expectedReference,
6 boolean newMark);
7 public T get(boolean[] marked);

Figure 9.23: Some AtomicMarkableReference<T> methods: the compareAndSet()
method tests and updates both the mark and reference fields, while the
attemptMark() method updates the mark if the reference field has the expected
value. The get() method returns the encapsulated reference and stores the mark at
position 0 in the argument array.

As described in detail in Pragma 9.8.1, an AtomicMarkableReference<<>T¿
object encapsulates both a reference to an object of type T and a Boolean
mark. These fields can be atomically updated either together or individually.

We make each node’s next field an AtomicMarkableReference<Node>.
Thread A logically removes currA by setting the mark bit in the node’s next
field, and shares the physical removal with other threads performing add() or
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remove(): as each thread traverses the list, it cleans up the list by physically
removing (using compareAndSet()) any marked nodes it encounters. In other
words, threads performing add() and remove() do not traverse marked nodes,
they remove them before continuing. The contains() method remains the
same as in the LazyList algorithm, traversing all nodes whether they are
marked or not, and testing if an item is in the list based on its key and
mark.

It is worth pausing to consider a design decision that differentiates the
LockFreeList algorithm from the LazyList algorithm. Why do threads that
add or remove nodes never traverse marked nodes, and instead physically
remove all marked nodes they encounter? Suppose that Thread A were to
traverse marked nodes without physically removing them, and after logi-
cally removing currA, were to attempt to physically remove it as well. It
could do so by calling compareAndSet() to try to redirect predA’s next field,
simultaneously verifying that predA is not marked and that it that it refers
to currA. The difficulty is that because A is not holding locks on predA

and currA, other threads could insert new nodes or remove predA before the
compareAndSet() call.

Consider a scenario in which another thread marks predA. As illustrated
in Figure 9.22, we cannot safely redirect the next field of a marked node, so
A would have to restart the physical removal by retraversing the list. This
time, however, A would have to physically remove predA before it could
remove currA. Even worse, if there is a sequence of logically removed nodes
leading to predA, A must remove them all, one after the other, before it can
remove currA itself.

This example illustrates why add() and remove() calls do not traverse
marked nodes: when they arrive at the node to be modified, they may be
forced to retraverse the list to remove previous marked nodes. Instead,
we choose to have both add() and remove() physically remove any marked
nodes on the path to their target node. The contains() method, by contrast,
performs no modification, and therefore need not participate in the cleanup
of logically removed nodes, allowing it, as in the LazyList, to traverse both
marked and unmarked nodes.

In presenting our LockFreeList algorithm, we factor out functionality
common to the add() and remove() methods by creating an inner Window
class to help navigation. As shown in Figure 9.24, a Window object is a
structure with pred and curr fields. The Window class’s find() method takes
a head node and a key a, and traverses the list, seeking to set pred to the
node with the largest key less than a, and curr to the node with the least
key greater than or equal to a. As Thread A traverses the list, each time it
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1 class Window {
2 public Node pred, curr ;
3 Window(Node myPred, Node myCurr) {
4 pred = myPred; curr = myCurr;
5 }
6 }
7 public Window find(Node head, int key) {
8 Node pred = null, curr = null, succ = null;
9 boolean[] marked = {false};

10 boolean snip;
11 retry : while (true) {
12 pred = head;
13 curr = pred.next.getReference ();
14 while (true) {
15 succ = curr.next.get(marked);
16 while (marked[0]) {
17 snip = pred.next.compareAndSet(curr, succ, false , false );
18 if (! snip) continue retry ;
19 curr = succ;
20 succ = curr.next.get(marked);
21 }
22 if (curr .key >= key)
23 return new Window(pred, curr);
24 pred = curr;
25 curr = succ;
26 }
27 }
28 }

Figure 9.24: The Window class: the find() method returns a structure containing
the nodes on either side of the key. It removes marked nodes when it encounters
them.

advances currA, it checks whether that node is marked (Line 16). If so, it
calls compareAndSet() to attempt to physically remove the node by setting
predA’s next to currA’s next field. This call tests both the field’s reference
and Boolean mark values, and fails if either value has changed. A concurrent
thread could change the mark value by logically removing predA, or it could
change the reference value by physically removing currA. If the call fails, A
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restarts the traversal from the head of the list, and otherwise the traversal
continues.

The LockFreeList algorithm uses the same abstraction map as the LazyList
algorithm: an item is in the set if and only if it is in an unmarked reachable
node. The compareAndSet() call at Line 17 of the find() method is an exam-
ple of a benevolent side-effect : it changes the concrete list without changing
the abstract set, because removing a marked node does not change the value
of the abstraction map.

Figure 9.25 shows the LockFreeList classm’s add() method. Suppose
Thread A calls add(a). A uses find () to locate predA and currA. If currA’s
key is equal to a’s, the call returns false. Otherwise, add() initializes a new
node a to hold a, and sets a to refer to currA. It then calls compareAndSet()
(Line 10) to set predA to a. Because the compareAndSet() tests both the
mark and the reference, it succeeds only if predA is unmarked and refers to
currA. If the compareAndSet() is successful, the method returns true, and
otherwise it starts over.

1 public boolean add(T item) {
2 int key = item.hashCode();
3 while (true) {
4 Window window = find(head, key);
5 Node pred = window.pred, curr = window.curr;
6 if (curr .key == key) {
7 return false ;
8 } else {
9 Node node = new Node(item);

10 node.next = new AtomicMarkableReference(curr, false);
11 if (pred.next.compareAndSet(curr, node, false , false )) {
12 return true;
13 }
14 }
15 }
16 }

Figure 9.25: The LockFreeList class: the add() method calls find() to locate predA

and currA. It adds a new node only if predA is unmarked and refers to currA.

Figure 9.26 shows the LockFreeList algorithm’s remove() method. When
A calls remove() to remove item a, it uses find() to locate predA and currA.
If currA’s key fails to match a’s, the call returns false. Otherwise, remove()
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17 public boolean remove(T item) {
18 int key = item.hashCode();
19 boolean snip;
20 while (true) {
21 Window window = find(head, key);
22 Node pred = window.pred, curr = window.curr;
23 if (curr .key != key) {
24 return false ;
25 } else {
26 Node succ = curr.next.getReference ();
27 snip = curr.next.attemptMark(succ, true);
28 if (! snip)
29 continue;
30 pred.next.compareAndSet(curr, succ, false , false );
31 return true;
32 }
33 }
34 }

Figure 9.26: The LockFreeList class: the remove() method calls find() to locate
predA and currA, and atomically marks the node for removal.

calls attemptMark() to mark currA as logically removed (Line 27). This call
succeeds only if no other thread has set the mark first. If it succeeds, the
call returns true. A single attempt is made to physically remove the node,
but there is no need to try again because the node will be removed by the
next thread to traverse that region of the list. If the attemptMark() call fails,
remove() starts over.

The LockFreeList algorithm’s contains() method is virtually the same as
that of the LazyList (Figure 9.27). There is one small change: to test if curr
is marked we must apply curr .next.get(marked) and check that marked[0] is
true.

9.9 Discussion

We have seen a progression of list-based lock implementations in which
the granularity and frequency of locking was gradually reduced, eventually
reaching a fully non-blocking list. The final transition from the LazyList to
the LockFreeList exposes some of the design decisions that face concurrent
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35 public boolean contains(T item) {
36 boolean[] marked = false{};
37 int key = item.hashCode();
38 Node curr = head;
39 while (curr .key < key) {
40 curr = curr.next;
41 Node succ = curr.next.get(marked);
42 }
43 return (curr .key == key && !marked[0])
44 }

Figure 9.27: The LockFreeList class: the wait-free contains() method is the al-
most the same as in the LazyList class. There is one small difference: it calls
curr .next.get(marked) to test whether curr is marked.

programmers.
On the one hand, the LockFreeList algorithm guarantees progress in the

face of arbitrary delays. However, there is a price for this strong progress
guarantee:

• The need to support atomic modification of a reference and a Boolean
mark has an added performance cost.5

• As add() and remove() traverse the list, they must engage in concurrent
cleanup of removed nodes, introducing the possibility of contention
among threads, sometimes forcing threads to restart traversals, even
if there was no change near the node each was trying to modify.

On the other hand, the lazy lock-based list does not guarantee progress
in the face of arbitrary delays: its add() and remove() methods are blocking.
However, unlike the lock-free algorithm, it does not require each node to
include an atomically markable reference. It also does not require traversals
to clean up logically removed nodes; they progress down the list, ignoring
marked nodes.

Which approach is preferable depends on the application. In the end,
the balance of factors such as the potential for arbitrary thread delays, the
relative frequency of calls to the add() and remove() methods, the overhead
of implementing an atomically markable reference, and so on, determine the
choice of whether to lock, and if so at what granularity.

5In the Java Concurrency Package, for example, this cost is reduced somewhat by using
a reference to an intermediate dummy node to signify that the marked bit is set.
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9.10 Chapter Notes

Lock coupling was invented by Rudolf Bayer and Mario Schkolnick [17]. The
first designs of lock-free linked-list algorithms are due to John Valois [142].
The Lock-free list implementation shown here is a variation on the lists of
Maged Michael [112], who based his work on earlier linked-list algorithms by
Tim Harris [50]. Michael’s algorithm is the one used in the Java Concurrency
Package. The OptimisticList algorithm was invented for this chapter, and
the lazy algorithm is due to Heller et al. [52].

9.11 Exercises

Exercise 103. Describe how to modify each of the linked list algorithms if
object hash codes are not guaranteed to be unique. 9.5
Exercise 104. Explain why the fine-grained locking algorithm is not subject
to deadlock.
Exercise 105. Explain why the fine-grained list’s add() method is lineariz-
able.
Exercise 106. Explain why the optimistic and lazy locking algorithms are
not subject to deadlock.
Exercise 107. Show a scenario in the optimistic algorithm where a thread
is forever attempting to delete an node. Hint : since we assume that all the
individual node locks are starvation-free, the livelock is not on any individual
lock, and a bad execution must repeatedly add and remove nodes from the
list.
Exercise 108. Provide the code for the contains() method missing from the
fine-grained algorithm. Explain why your implementation is correct.
Exercise 109. Is the optimistic list implementation still correct if we switch
the order in which add() locks the pred and curr entries?
Exercise 110. Show that in the optimistic list algorithm, if predA is not null ,
then tail is reachable from predA, even if predA itself is not reachable.
Exercise 111. Show that in the optimistic algorithm, the add() method needs
to lock only pred.
Exercise 112. In the optimistic algorithm, the contains() method locks two
entries before deciding whether a key is present. Suppose, instead, it locks
no entries, returning true if it observes the value, and false otherwise.

Either explain why this alternative is linearizable, or give a counterex-
ample showing it is not.
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Exercise 113. Would the lazy algorithm still work if we marked a node as
removed simply by setting its next field to null? Why or why not? What
about the lock-free algorithm?

Exercise 114. In the lazy algorithm, can predA ever be unreachable? Justify
your answer.

Exercise 115. Your new employee claims that the lazy list’s validation method
(Figure 9.16) can be simplified by dropping the check that pred.next is equal
to curr . After all, the code always sets pred to the old value of curr , and
before pred.next can be changed, the new value of curr must be marked,
causing the validation to fail. Explain the error in this reasoning.

Exercise 116. Can you modify the lazy algorithm’s remove() so it locks only
one node?

Exercise 117. In the lock-free algorithm, argue the benefits and drawbacks
of having the contains() method help in the cleanup of logically removed
entries.

Exercise 118. In the lock-free algorithm, if an add() method call fails because
pred does not point to curr , but pred is not marked, do we need to traverse
the list again from head in order to attempt to complete the call.

Exercise 119. Would the contains() method of the lazy and lock-free algo-
rithms still be correct if logically removed entries were not guaranteed to be
sorted?

Exercise 120. The add() method of the lock-free algorithm never finds a
marked node with the same key. Can one modify the algorithm so that it
will simply insert its new added object into the existing marked node with
same key if such an node exists in the list, thus saving the need to insert a
new node?

Exercise 121. Explain why it cannot happen in the LockFreeList algorithm
that a node with item x will be logically but not yet physically removed by
some thread, then the same item x will be added into the list by another
thread, and finally a contains() call by a third thread will traverse the list,
finding the logically removed node, and returning false, even though the
linearization order of the remove() and add() implies that x is in the set.



DRAFT C
OPY

Appendix

559



DRAFT C
OPY

Bibliography

[1] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consis-
tency models: A tutorial. Computer, 29(12):66–76, 1996.

[2] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt,
and Nir Shavit. Atomic snapshots of shared memory. Journal of the
ACM (JACM), 40(4):873–890, 1993.

[3] Yehuda Afek, Dalia Dauber, and Dan Touitou. Wait-free made fast. In
STOC ’95: Proceedings of the twenty-seventh annual ACM symposium
on Theory of computing, pages 538–547, New York, NY, USA, 1995.
ACM Press.

[4] Yehuda Afek, Gideon Stupp, and Dan Touitou. Long-lived and adap-
tive atomic snapshot and immediate snapshot (extended abstract).
In Symposium on Principles of Distributed Computing, pages 71–80,
2000.

[5] Yehuda Afek, Eytan Weisberger, and Hanan Weisman. A completeness
theorem for a class of synchronization objects. In PODC ’93: Proceed-
ings of the twelfth annual ACM symposium on Principles of distributed
computing, pages 159–170, New York, NY, USA, 1993. ACM Press.

[6] A. Agarwal and M. Cherian. Adaptive backoff synchronization tech-
niques. In Proceedings of the 16th International Symposium on Com-
puter Architecture, pages 396–406, May 1989.

[7] Ole Agesen, David Detlefs, Alex Garthwaite, Ross Knippel, Y. S. Ra-
makrishna, and Derek White. An efficient meta-lock for implementing
ubiquitous synchronization. ACM SIGPLAN Notices, 34(10):207–222,
1999.

[8] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n) sorting network.
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