
1

1

Java Threads

2

Multitasking vs Multithreading
•  Multitasking:

–  Avere la possibilita’ di eseguire contemporamente
diverse attivita’ (job)

•  Multithreading:
–  Un thread e’ un singolo flusso di esecuzione
–  Insieme multiplo di thread all’interno di un programma

(esempio Web Browser)

2

3

Concorrenza vs. Parallelismo
CPU CPU1 CPU2

4

Thread e Processi
CPU

Process 1 Process 3 Process 2 Process 4

main

run

GC

3

5

Java Thread

•  Cosa succede quando mandiamo in
esecuzione una applicazione Java:

1.  JVM crea un oggetto Thread che corrisponde
al metodo main()

2.  JVM attiva il thread del main

3.  Il thread esegue il coprpo del main

4.  Alla fine dell’esecuzione thread restituisce il
controllo alla JVM

Java Implementations of Concurrency
Java supports both shared memory and distributed processing
implementations of concurrency:

shared memory: multiple user threads in a single Java Virtual Machine—
threads communicate by reading and writing shared memory locations;

distributed processing: via the java.net and java.rmi packages—
threads in different JVMs communicate by message passing or (remote
procedure call)

4

Runnable!

Thread lifecycle

New Thread!

Dead!

Not runnable!Running!

yield!

wait!

notify!

sleep

timeout!

blocked on I/O!

I/O completes!

start!

return!

alive!

8

Thread Multipli

•  Ogni thread ha il suo run-time stack privato

•  Se due thread invocano l’esecuzione dello stesso
metodo, ciascun thread avra’ il controllo delle
variabili locali usate dal metodo

•  Tutti I thread condividono lo heap

•  Thread possono agire concorrentemente sugli
stessi oggetti

5

9

Creating Threads

•  There are two ways to create our own
Thread object

1.  Subclassing the Thread class and instantiating
a new object of that class

2.  Implementing the Runnable interface

•  In both cases the run() method should be
implemented

10

Extending Thread
public class ThreadExample extends Thread {

 public void run () {

 for (int i = 1; i <= 100; i++) {

 System.out.println(“---”);

 }

 }

}

6

11

Thread Methods

void start()

– Creates a new thread and makes it runnable

– This method can be called only once

void run()

– The new thread begins its life inside this method

void stop() (deprecated)

– The thread is being terminated

12

Thread Methods

void yield()
– Causes the currently executing thread object to

temporarily pause and allow other threads to
execute

– Allow only threads of the same priority to run

void sleep(int m) or sleep(int m, int n)
– The thread sleeps for m milliseconds, plus n

nanoseconds

7

13

Implementing Runnable
public class RunnableExample implements Runnable {

 public void run () {

 for (int i = 1; i <= 100; i++) {

 System.out.println (“***”);

 }

 }

}

14

A Runnable Object

•  When running the Runnable object, a
Thread object is created from the Runnable
object

•  The Thread object’s run() method calls the
Runnable object’s run() method

•  Allows threads to run inside any object,
regardless of inheritance

8

15

Starting the Threads
public class ThreadsStartExample {

 public static void main (String argv[]) {

 new ThreadExample ().start ();

 new Thread(new RunnableExample ()).start ();

 }

}

16

Scheduling Threads

I/O operation completes

start()

Currently executed
thread

Ready queue

• Waiting for I/O operation to be completed
• Waiting to be notified
• Sleeping
• Waiting to enter a synchronized object

Newly created
threads

9

17

Alive

Thread State Diagram

New Thread Dead Thread

Running

Runnable

new ThreadExample();

run() method returns

while (…) { … }

Blocked
Object.wait()
Thread.sleep()
blocking IO call
waiting on a monitor

thread.start();

18

Example
public class PrintThread1 extends Thread {

 String name;

 public PrintThread1(String name) {

 this.name = name;

 }

 public void run() {

 for (int i=1; i<100 ; i++) {

 try {

 sleep((long)(Math.random() * 100));

 } catch (InterruptedException ie) { }

 System.out.print(name);

 }

}

10

19

Example (cont)

 public static void main(String args[]) {
 PrintThread1 a = new PrintThread1("*");

 PrintThread1 b = new PrintThread1("-");

 a.start();

 b.start();

 }

}

20

Thread Priority

•  Every thread has a priority

•  When a thread is created, it inherits the
priority of the thread that created it

•  The priority values range from 1 to 10,
in increasing priority

11

21

Thread Priority (cont.)

•  The priority can be adjusted subsequently using
the setPriority() method

•  The priority of a thread may be obtained using
getPriority()

•  Priority constants are defined:
–  MIN_PRIORITY=1

–  MAX_PRIORITY=10

–  NORM_PRIORITY=5

The main thread is
created with priority
NORM_PRIORITY

22

Notes

•  Thread implementation in Java is actually based on
operating system support

•  Some Windows operating systems support only 7
priority levels, so different levels in Java may
actually be mapped to the same operating system
level

•  Furthermore, The thread scheduler may choose to
run a lower priority thread to avoid starvation

12

23

Thread and the Garbage Collector

•  Can a Thread object be collected by the
garbage collector while running?
–  If not, why?

–  If yes, what happens to the execution thread?

•  When can a Thread object be collected?

24

ThreadGroup

•  The ThreadGroup class is used to create
groups of similar threads. Why is this
needed?

“Thread groups are best viewed as an
unsuccessful experiment, and you may simply
ignore their existence.”

 Joshua Bloch, software architect at Sun

13

25

Multithreading Client-Server

26

HelloServer

HelloClient

ConnectionHandler

HelloClient

ConnectionHandler …

14

27

Server
import java.net.*;import java.io.*;
class HelloServer {

 public static void main(String[] args) {
 int port = Integer.parseInt(args[0]);
 try {

 ServerSocket server =
 new ServerSocket(port);

 } catch (IOException ioe) {
 System.err.println(“Couldn't run “ +
 “server on port “ + port);
 return;

 }

28

 while(true) {
 try {
 Socket connection = server.accept();
 ConnectionHandler handler =
 new ConnectionHandler(connection);
 new Thread(handler).start();
 } catch (IOException ioe1) {
 }
}

15

29

Connection Handler

// Handles a connection of a client to an
HelloServer.

// Talks with the client in the 'hello' protocol
class ConnectionHandler implements Runnable {

 // The connection with the client
 private Socket connection;

 public ConnectionHandler(Socket connection) {
 this.connection = connection;
 }

30

public void run() {
 try {
 BufferedReader reader =
 new BufferedReader(
 new InputStreamReader(
 connection.getInputStream()));

 PrintWriter writer =
 new PrintWriter(
 new OutputStreamWriter(
 connection.getOutputStream()));

 String clientName = reader.readLine();
 writer.println(“Hello “ + clientName);
 writer.flush();
 } catch (IOException ioe) {}
 }
}

16

31

Client side
import java.net.*; import java.io.*;

// A client of an HelloServer
class HelloClient {

 public static void main(String[] args) {
 String hostname = args[0];
 int port = Integer.parseInt(args[1]);

 Socket connection = null;
 try {
 connection = new Socket(hostname, port);
 } catch (IOException ioe) {
 System.err.println("Connection failed");
 return;
 }

32

 try {
 BufferedReader reader =
 new BufferedReader(
 new InputStreamReader(
 connection.getInputStream()));
 PrintWriter writer =
 new PrintWriter(
 new OutputStreamWriter(
 connection.getOutputStream()));

 writer.println(args[2]); // client name
 String reply = reader.readLine();
 System.out.println("Server reply: "+reply);
 writer.flush();
 } catch (IOException ioe1) {
 }
} Note that the Client has not

changed from the
networking-lecture example

17

33

Concurrency

•  An object in a program can be changed by
more than one thread

•  Q: Is the order of changes that were
preformed on the object important?

34

Race Condition

•  A race condition – the outcome of a program
is affected by the order in which the
program's threads are allocated CPU time

•  Two threads are simultaneously modifying a
single object

•  Both threads “race” to store their value

18

35

Race Condition Example

Put green pieces Put red pieces How can we have
alternating colors?

36

Monitors

•  Each object has a “monitor” that is a token
used to determine which application thread
has control of a particular object instance

•  In execution of a synchronized method (or
block), access to the object monitor must be
gained before the execution

•  Access to the object monitor is queued

19

37

Monitor (cont.)

•  Entering a monitor is also referred to as
locking the monitor, or acquiring ownership
of the monitor

•  If a thread A tries to acquire ownership of a
monitor and a different thread has already
entered the monitor, the current thread (A)
must wait until the other thread leaves the
monitor

38

Example

public class BankAccount {

 private float balance;

 public synchronized void deposit(float amount){
 balance += amount;
 }

 public synchronized void withdraw(float amount){
 balance -= amount;
 }
}

20

39

Critical Sections

Bank Account

deposit()

t1 t2 t3

40

Static Synchronized Methods

•  Marking a static method as synchronized,
associates a monitor with the class itself

•  The execution of synchronized static
methods of the same class is mutually
exclusive.

21

41

Synchronized Statements

•  A monitor can be assigned to a block:
synchronized(object) { some-code }

•  It can also be used to monitor access to a data
element that is not an object, e.g., array:

void arrayShift(byte[] array, int count) {

 synchronized(array) {

 System.arraycopy (array, count, array,
 0, array.size -
count);

 }

}

42

The Followings are Equivalent
public synchronized void a() {

 //… some code …
 }

public void a() {

 synchronized (this) {

 //… some code …
 }
 }

22

43

The Followings are Equivalent
public static synchronized void a() {

 //… some code …
 }

public void a() {

 synchronized (this.getClass()) {

 //… some code …
 }
 }

44

Example
public class MyPrinter {

 public MyPrinter() {}

 public synchronized void printName(String name) {

 for (int i=1; i<100 ; i++) {

 try {

 Thread.sleep((long)(Math.random() * 100));

 } catch (InterruptedException ie) {}

 System.out.print(name);

 }

 }

}

23

45

Example
public class PrintThread2 extends Thread {

 String name;

 MyPrinter printer;

 public PrintThread2(String name, MyPrinter printer){

 this.name = name;

 this.printer = printer;

 }

 public void run() {

 printer.printName(name);

 }

}

46

Example (cont)
public class ThreadsTest2 {

 public static void main(String args[]) {

 MyPrinter myPrinter = new MyPrinter();

 PrintThread2 a = new PrintThread2("*“, printer);

 PrintThread2 b = new PrintThread2("-“, printer);

 PrintThread2 c = new PrintThread2("=“, printer);

 a.start();

 b.start();

 c.start();

 }

}
What will happen?

24

47

Deadlock Example
public class BankAccount {

 private float balance;

 public synchronized void deposit(float amount) {
 balance += amount;
 }

 public synchronized void withdraw(float amount) {
 balance -= amount;
 }

 public synchronized void transfer
 (float amount, BankAccount target) {

 withdraw(amount);
 target.deposit(amount);
 }
}

48

public class MoneyTransfer implements Runnable {

 private BankAccount from, to;
 private float amount;

 public MoneyTransfer(
 BankAccount from, BankAccount to, float amount){
 this.from = from;
 this.to = to;
 this.amount = amount;
 }

 public void run() {
 source.transfer(amount, target);
 }
}

25

49

BankAccount aliceAccount = new BankAccount();
BankAccount bobAccount = new BankAccount();
...

// At one place
Runnable transaction1 =
 new MoneyTransfer(aliceAccount, bobAccount, 1200);
Thread t1 = new Thread(transaction1);
t1.start();

// At another place
Runnable transaction2 =
 new MoneyTransfer(bobAccount, aliceAccount, 700);
Thread t2 = new Thread(transaction2);
t2.start();

50

Deadlocks

deposit()

aliceAccount bobAccount

t1 t2

deposit() ?

transfer()

withdraw()

transfer()

withdraw()

26

51

Thread Synchronization

•  We need to synchronized between
transactions, for example, the consumer-
producer scenario

52

Wait and Notify

•  Allows two threads to cooperate

•  Based on a single shared lock object
– Marge put a cookie wait and notify Homer

– Homer eat a cookie wait and notify Marge
•  Marge put a cookie wait and notify Homer

•  Homer eat a cookie wait and notify Marge

27

53

The wait() Method

•  The wait() method is part of the
java.lang.Object interface

•  It requires a lock on the object’s monitor to
execute

•  It must be called from a synchronized
method, or from a synchronized segment of
code. Why?

54

The wait() Method

•  wait() causes the current thread to wait until
another thread invokes the notify() method
or the notifyAll() method for this object

•  Upon call for wait(), the thread releases
ownership of this monitor and waits until
another thread notifies the waiting threads of
the object

28

55

The wait() Method
•  wait() is also similar to yield()

–  Both take the current thread off the execution stack and
force it to be rescheduled

•  However, wait() is not automatically put back into
the scheduler queue
–  notify() must be called in order to get a thread back into

the scheduler’s queue

–  The objects monitor must be reacquired before the
thread’s run can continue

56

Consumer

•  Consumer:

synchronized (lock) {

 while (!resourceAvailable()) {

 lock.wait();

 }

 consumeResource();

}

29

57

Producer

•  Producer:

produceResource();

synchronized (lock) {

 lock.notifyAll();

}

58

Wait/Notify Sequence

Lock Object

Consumer
Thread

Producer
Thread

1. synchronized(lock){

2. lock.wait();

3. produceResource()
4. synchronized(lock) {
5. lock.notify();
6.}

7. Reacquire lock

8.Return from wait()

9. consumeResource();
10. }

30

59

Wait/Notify Sequence

Lock Object

Consumer
Thread

Producer
Thread

1. synchronized(lock){

2. lock.wait();

3. produceResource()
4. synchronized(lock) {
5. lock.notify();
6.}

7. Reacquire lock

8. Return from wait()

9. consumeResource();
10. }

60

Wait/Notify Sequence

Lock Object

Consumer
Thread

Producer
Thread

1. synchronized(lock){

2. lock.wait();

3. produceResource()
4. synchronized(lock) {
5. lock.notify();
6.}

7. Reacquire lock

8. Return from wait()

9. consumeResource();
10. }

31

61

Wait/Notify Sequence

Lock Object

Consumer
Thread

Producer
Thread

1. synchronized(lock){

2. lock.wait();

3. produceResource()
4. synchronized(lock) {
5. lock.notify();
6.}

7. Reacquire lock

8. Return from wait()

9. consumeResource();
10. }

62

Wait/Notify Sequence

Lock Object

Consumer
Thread

Producer
Thread

1. synchronized(lock){

2. lock.wait();

3. produceResource()
4. synchronized(lock) {
5. lock.notify();
6.}

7. Reacquire lock

8. Return from wait()

9. consumeResource();
10. }

32

63

Wait/Notify Sequence

Lock Object

Consumer
Thread

Producer
Thread

1. synchronized(lock){

2. lock.wait();

3. produceResource()
4. synchronized(lock) {
5. lock.notify();
6.}

7. Reacquire lock

8. Return from wait()

9. consumeResource();
10. }

64

Wait/Notify Sequence

Lock Object

Consumer
Thread

Producer
Thread

1. synchronized(lock){

2. lock.wait();

3. produceResource()
4. synchronized(lock) {
5. lock.notify();
6.}

7. Reacquire lock

8. Return from wait()

9. consumeResource();
10. }

33

65

Wait/Notify Sequence

Lock Object

Consumer
Thread

Producer
Thread

1. synchronized(lock){

2. lock.wait();

3. produceResource()
4. synchronized(lock) {
5. lock.notify();
6.}

7. Reacquire lock

8. Return from wait()

9. consumeResource();
10. }

66

Wait/Notify Sequence

Lock Object

Consumer
Thread

Producer
Thread

1. synchronized(lock){

2. lock.wait();

3. produceResource()
4. synchronized(lock) {
5. lock.notify();
6.}

7. Reacquire lock

8. Return from wait()

9. consumeResource();
10. }

34

67

Wait/Notify Sequence

Lock Object

Consumer
Thread

Producer
Thread

1. synchronized(lock){

2. lock.wait();

3. produceResource()
4. synchronized(lock) {
5. lock.notify();
6.}

7. Reacquire lock

8. Return from wait()

9. consumeResource();
10. }

68

Wait/Notify Sequence

Lock Object

Consumer
Thread

Producer
Thread

1. synchronized(lock){

2. lock.wait();

3. produceResource()
4. synchronized(lock) {
5. lock.notify();
6.}

7. Reacquire lock
8. Return from wait()

9. consumeResource();
10. }

35

69

public class SimpsonsTest {

 public static void main(String[] args) {

 CookyJar jar = new CookyJar();

 Homer homer = new Homer(jar);
 Marge marge = new Marge(jar);

 new Thread(homer).start();
 new Thread(marge).start();
 }
}

The Simpsons Scenario:
SimpsonsTest

70

public class Homer implements Runnable {
 CookyJar jar;

 public Homer(CookyJar jar) {
 this.jar = jar;
 }

 public void eat() {
 jar.getCooky("Homer");
 try {
 Thread.sleep((int)Math.random() * 1000);
 } catch (InterruptedException ie) {}
 }

 public void run() {
 for (int i = 1 ; i <= 10 ; i++) eat();
 }
}

The Simpsons Scenario: Homer

36

71

public class Marge implements Runnable {
 CookyJar jar;

 public Marge(CookyJar jar) {
 this.jar = jar;
 }

 public void bake(int cookyNumber) {
 jar.putCooky("Marge", cookyNumber);
 try {
 Thread.sleep((int)Math.random() * 500);
 } catch (InterruptedException ie) {}
 }

 public void run() {
 for (int i = 0 ; i < 10 ; i++) bake(i);
 }
}

The Simpsons Scenario: Marge

72

public class CookyJar {
 private int contents;
 private boolean available = false;

 public synchronized void getCooky(String who) {
 while (!available) {
 try {
 wait();
 } catch (InterruptedException e) { }
 }
 available = false;
 notifyAll();
 System.out.println(who + " ate cooky " +
 contents);

 }

The Simpsons Scenario: CookieJar

37

73

public synchronized void putCooky(String who,
 int value) {

 while (available) {
 try {
 wait();
 } catch (InterruptedException e) { }
 }
 contents = value;
 available = true;
 System.out.println(who + " put cooky " +
 contents + " in the jar");

 notifyAll();
 }
}

The Simpsons Scenario: CookieJar

74

Timers and TimerTask

•  The classes Timer and TimerTask are part
of the java.util package

•  Useful for
– performing a task after a specified delay

– performing a sequence of tasks at constant time
intervals

38

75

Scheduling Timers

•  The schedule method of a timer can get as
parameters:
– Task, time

– Task, time, period

– Task, delay

– Task, delay, period

When to start What to do At which rate

76

import java.util.*;

public class CoffeeTask extends TimerTask {

 public void run() {

 System.out.println(“Time for a Coffee Break”);

 }

 public static void main(String args[]) {

 Timer timer = new Timer();

 long hour = 1000 * 60 * 60;

 timer.schedule(new CoffeeTask(), 0, 8 * hour);

 timer.scheduleAtFixedRate(new CoffeeTask(),
 new Date(), 24 *

hour);

 }

}

Timer Example

39

77

Stopping Timers

•  A Timer thread can be stopped in the
following ways:
– Apply cancel() on the timer

– Make the thread a daemon

– Remove all references to the timer after all the
TimerTask tasks have finished

– Call System.exit()

