
F
0018-9162/98/$10.00 © 1998 IEEE March 1998 23

Scripting: Higher-
Level Programming
for the 21st Century

or the past 15 years, a fundamental change has been
occurring in the way people write computer programs.
The change is a transition from system programming
languages such as C or C++ to scripting languages such
as Perl or Tcl. Although many people are participat-
ing in the change, few realize that the change is occur-
ring and even fewer know why it is happening. This
article explains why scripting languages will handle
many of the programming tasks in the next century
better than system programming languages.

Scripting languages are designed for different tasks
than are system programming languages, and this
leads to fundamental differences in the languages.
System programming languages were designed for
building data structures and algorithms from scratch,
starting from the most primitive computer elements
such as words of memory. In contrast, scripting lan-
guages are designed for gluing: They assume the exis-
tence of a set of powerful components and are
intended primarily for connecting components. System
programming languages are strongly typed to help
manage complexity, while scripting languages are type-
less to simplify connections among components and
provide rapid application development.

Scripting languages and system programming lan-
guages are complementary, and most major comput-
ing platforms since the 1960s have included both kinds
of languages. The languages are typically used together
in component frameworks, where components are cre-

ated with system programming languages and glued
together with scripting languages. However, several
recent trends, such as faster machines, better script-
ing languages, the increasing importance of graphical
user interfaces (GUIs) and component architectures,
and the growth of the Internet, have greatly expanded
the applicability of scripting languages. These trends
will continue over the next decade, with more and
more new applications written entirely in scripting
languages and system programming languages used
primarily for creating components.

SYSTEM PROGRAMMING LANGUAGES
To understand the differences between scripting lan-

guages and system programming languages, it is
important to understand how system programming
languages evolved. System programming languages
were introduced as an alternative to assembly lan-
guages. In assembly languages, virtually every aspect
of the machine is reflected in the program. Each state-
ment represents a single machine instruction and pro-
grammers must deal with low-level details such as
register allocation and procedure-calling sequences.
As a result, it is difficult to write and maintain large
programs in assembly languages.

By the late 1950s, higher-level languages such as
Lisp, Fortran, and Algol began to appear. In these lan-
guages, statements no longer correspond exactly to
machine instructions; a compiler translates each state-

Cy
be

rs
qu

ar
e

Increases in computer speed and changes in the
application mix are making scripting languages

more and more important for the applications of the
future. Scripting languages differ from system

programming languages in that they are designed for
“gluing” applications together. They use typeless

approaches to achieve a higher level of programming
and more rapid application development than

system programming languages.

John K. Ousterhout
Sun Microsystems Laboratories

.

24 Computer

ment in the source program into a sequence of
binary instructions. Over time a series of sys-
tem programming languages evolved from
Algol, including PL/1, Pascal, C, C++, and Java.
System programming languages are less efficient
than assembly languages but they allow appli-
cations to be developed much more quickly. As
a result, system programming languages have
almost completely replaced assembly languages
for the development of large applications.

Higher-level languages
System programming languages differ from

assembly languages in two ways: they are higher
level and they are strongly typed. The term
“higher level” means that many details are han-
dled automatically, so programmers can write

less code to get the same job done. For example:

• Register allocation is handled by the compiler so
that programmers need not write code to move
information between registers and memory.

• Procedure calling sequences are generated auto-
matically; programmers need not worry about
moving arguments to and from the call stack.

• Programmers can use simple keywords such as
while and if for control structures; the com-
piler generates all the detailed instructions to
implement the control structures.

On average, each line of code in a system pro-
gramming language translates to about five machine
instructions, compared with one instruction per line in
an assembly program. (In an informal analysis of eight
C files written by five different people, I found that the
ratio ranged from three to seven instructions per line;1

in a study of numerous languages, Capers Jones found
that, for a given task, assembly languages require three
to six times as many lines of code as system program-
ming languages.2) Programmers can write roughly the
same number of lines of code per year regardless of
language,3 so system programming languages allow
applications to be written much more quickly than
assembly languages.

Typing
The second difference between assembly languages

and system programming languages is typing. I use
the term typing to refer to the degree to which the
meaning of information is specified in advance of its
use. In a strongly typed language, the programmer
declares how each piece of information will be used,
and the language prevents the information from being
used in any other way. In a weakly typed language,
there are no a priori restrictions on how information
can be used; the meaning of information is determined

solely by the way it is used, not by any initial promises.
Modern computers are fundamentally typeless. Any

word in memory can hold any kind of value, such as
an integer, a floating-point number, a pointer, or an
instruction. The meaning of a value is determined by
how it is used. If the program counter points at a word
of memory then it is treated as an instruction; if a word
is referenced by an integer add instruction, then it is
treated as an integer; and so on. The same word can
be used in different ways at different times.

In contrast, today’s system programming languages
are strongly typed. For example:

• Each variable in a system programming language
must be declared with a particular type such as
integer or pointer to string, and it must be used
in ways that are appropriate for the type.

• Data and code are segregated; it is difficult if not
impossible to create new code on the fly.

• Variables can be collected into structures or
objects with well-defined substructure and pro-
cedures or methods to manipulate them. An
object of one type cannot be used where an object
of a different type is expected.

Typing has several advantages. First, it makes large
programs more manageable by clarifying how things
are used and differentiating among things that must be
treated differently. Second, compilers use type infor-
mation to detect certain kinds of errors, such as an
attempt to use a floating-point value as a pointer.
Third, typing improves performance by allowing com-
pilers to generate specialized code. For example, if a
compiler knows that a variable always holds an inte-
ger value, then it can generate integer instructions to
manipulate the variable; if the compiler does not know
the type of a variable, then it must generate additional
instructions to check the variable’s type at runtime.

Figure 1 compares a variety of languages on the
basis of their level of programming and strength of
typing.

SCRIPTING LANGUAGES
Scripting languages such as Perl,4 Python,5 Rexx,6

Tcl,7 Visual Basic, and the Unix shells represent a very
different style of programming than do system pro-
gramming languages. Scripting languages assume that
a collection of useful components already exist in other
languages. They are intended not for writing applica-
tions from scratch but rather for combining compo-
nents. For example, Tcl and Visual Basic can be used
to arrange collections of user interface controls on the
screen, and Unix shell scripts are used to assemble fil-
ter programs into pipelines. Scripting languages are
often used to extend the features of components; how-
ever, they are rarely used for complex algorithms and

Scripting languages
assume that a

collection of useful
components already

exist in other
languages. They are

intended not for
writing applications

from scratch but
rather for combining

components.

.

data structures, which are usually provided by the com-
ponents. Scripting languages are sometimes referred to
as glue languages or system integration languages.

Scripting languages are generally typeless
To simplify the task of connecting components,

scripting languages tend to be typeless. All things look
and behave the same so that they are interchangeable.
For example, in Tcl or Visual Basic a variable can hold
a string one moment and an integer the next. Code
and data are often interchangeable, so that a program
can write another program and then execute it on the
fly. Scripting languages are often string-oriented, as
this provides a uniform representation for many dif-
ferent things.

A typeless language makes it much easier to hook
together components. There are no a priori restrictions
on how things can be used, and all components and
values are represented in a uniform fashion. Thus any
component or value can be used in any situation; com-
ponents designed for one purpose can be used for
totally different purposes never foreseen by the
designer. For example, in the Unix shells all filter pro-
grams read a stream of bytes from an input and write
a stream of bytes to an output. Any two programs can
be connected by attaching the output of one program
to the input of the other. The following shell command
stacks three filters together to count the number of lines
in the selection that contain the word “scripting”:

select | grep scripting | wc

The select program reads the text that is currently
selected on the display and prints the text on its out-
put; the grep program reads its input and prints on
its output the lines containing “scripting”; the wc pro-
gram counts the number of lines on its input. Each of
these programs can be used in numerous other situa-
tions to perform different tasks.

The strongly typed nature of system programming
languages discourages reuse. It encourages program-
mers to create a variety of incompatible interfaces, each
of which requires objects of specific types. The com-
piler prevents any other types of objects from being
used with the interface, even if that would be useful. So
to use a new object with an existing interface, the pro-
grammer must write conversion code to translate
between the type of the object and the type expected by
the interface. This in turn requires recompiling part or
all of the application; many applications today are dis-
tributed in binary form so this is not possible.

To appreciate the advantages of a typeless language,
consider the following Tcl command:

button .b -text Hello! -font {Times
16} -command {puts hello}

This command creates a new button control that dis-
plays a text string in a 16-point Times font and prints
a short message when the user clicks on the control.
The command mixes six different types of things in a
single statement: a command name (button), a but-
ton control (.b), property names (-text, -font, and
-command), simple strings (Hello! and hello), a
font name (Times 16) that includes a typeface name
(Times) and a size in points (16), and a Tcl script
(puts hello). Tcl represents all of these things uni-
formly with strings. In this example, the properties
can be specified in any order and unspecified proper-
ties are given default values; more than 20 properties
were left unspecified in the example.

The same example requires seven lines of code in
two methods when implemented in Java. With C++
and Microsoft Foundation Classes (MFC), it requires
about 25 lines of code in three procedures.1 Just set-
ting the font requires several lines of code in MFC:

CFont *fontPtr = new CFont();
fontPtr->CreateFont(16, 0, 0, 0, 700,

0, 0, 0, ANSI_CHARSET,
OUT_DEFAULT_PRECIS,
CLIP_DEFAULT_PRECIS,
DEFAULT_QUALITY,
DEFAULT_PITCH|FF_DONTCARE,
“Times New Roman”);

buttonPtr->SetFont(fontPtr);

Much of this code is a consequence of the strong typ-
ing. To set the font of a button, its SetFont method
must be invoked, but this method must be passed a
pointer to a CFont object. This in turn requires a new
object to be declared and initialized. To initialize the
CFont object its CreateFont method must be

March 1998 25

Tcl/Perl

Visual Basic

Scripting

C

C++
Java

System programming

Strong
Degree of typing

None

Assembly

In
st

ru
ct

io
n/

st
at

em
en

t

1,000

100

10

1

Figure 1. A compari-
son of various
programming
languages based on
their level (higher-
level languages exe-
cute more machine
instructions for each
language statement)
and their degree of
typing. System pro-
gramming languages
such as C tend to be
strongly typed and
medium level (five to
10 instructions per
statement). Scripting
languages such as Tcl
tend to be weakly
typed and very high
level (100 to1,000
instructions per state-
ment).

.

26 Computer

invoked, but CreateFont has a rigid interface
that requires 14 different arguments to be spec-
ified. In Tcl, the essential characteristics of the
font (typeface Times, size 16 points) can be used
immediately with no declarations or conversions.
Furthermore, Tcl allows the button’s behavior
to be included directly in the command that cre-
ates the button, while C++ and Java require it to
be placed in a separately declared method.
(In practice, a trivial example like this would

probably be handled with a graphical develop-
ment environment that hides the complexity of
the underlying language. The user enters prop-
erty values in a form and the development envi-
ronment outputs the code. However, in more
complex situations, such as conditional assign-

ment of property values or interfaces generated pro-
grammatically, the developer must write code in the
underlying language.)

It might seem that the typeless nature of scripting lan-
guages could allow errors to go undetected, but in prac-
tice scripting languages are just as safe as system
programming languages. For example, an error will
occur if the font size specified for the button example
above is a noninteger string such as xyz. Scripting lan-
guages do their error checking at the last possible
moment, when a value is used. Strong typing allows
errors to be detected at compile time, so the cost of run-
time checks is avoided. However, the price to be paid
for efficiency is restrictions on how information can be
used; this results in more code and less flexible programs.

Scripting languages are interpreted
Another key difference between scripting languages

and system programming languages is that scripting lan-
guages are usually interpreted, whereas system pro-
gramming languages are usually compiled. Interpreted
languages provide rapid turnaround during development
by eliminating compile times. Interpreters also make
applications more flexible by allowing users to program
the applications at runtime. For example, many synthe-
sis and analysis tools for integrated circuits include a Tcl
interpreter; users of the programs write Tcl scripts to
specify their designs and control the operation of the
tools. Interpreters also allow powerful effects to be
achieved by generating code on the fly. For example, a
Tcl-based Web browser can parse a Web page by trans-
lating the HTML for the page into a Tcl script using a
few regular expression substitutions. It then executes the
Tcl script to render the page on the screen.

Scripting languages are less efficient than system pro-
gramming languages, in part because they use inter-
preters instead of compilers but also because their basic
components are chosen for power and ease of use rather
than an efficient mapping onto the underlying hardware.
For example, scripting languages often use variable-

length strings in situations where a system programming
language would use a binary value that fits in a single
machine word, and they use hash tables where system
programming languages use indexed arrays.

Fortunately, the performance of a scripting language
is not usually a major issue. Applications for scripting
languages are generally smaller than applications for
system programming languages, and the performance
of a scripting application tends to be dominated by the
performance of the components, which are typically
implemented in a system programming language.

Scripting languages are higher level than system pro-
gramming languages in the sense that a single state-
ment does more work on average. A typical statement
in a scripting language executes hundreds or thou-
sands of machine instructions, whereas a typical state-
ment in a system programming language executes
about five machine instructions (as Figure 1 illus-
trates). Part of this difference is because scripting lan-
guages use interpreters, but much of the difference is
because the primitive operations in scripting languages
have greater functionality. For example, in Perl it is
about as easy to invoke a regular expression substitu-
tion as it is to invoke an integer addition. In Tcl, a
variable can have traces associated with it so that set-
ting the variable causes side effects; for example, a
trace might be used to keep the variable’s value
updated continuously on the screen.

Scripting languages allow rapid development of glu-
ing-oriented applications. Table 1 provides anecdotal
support for this claim. It describes several applications
that were implemented in a system programming lan-
guage and then reimplemented in a scripting language
or vice versa. In every case, the scripting version
required less code and development time than the sys-
tem programming version; the difference varied from
a factor of two to a factor of 60. Scripting languages
provided less benefit when they were used for the first
implementation; this suggests that any reimplementa-
tion benefits substantially from the experiences of the
first implementation and that the true difference
between scripting and system programming is more
like a factor of five to 10, rather than the extreme
points of the table. The benefits of scripting also
depend on the application. In the last example in Table
1, the GUI part of the application is gluing-oriented
but the simulator part is not; this might explain why
the application benefited less from scripting than other
applications.

The information in the table was provided by vari-
ous Tcl developers in response to an article posted on
the comp.lang.tcl newsgroup.1

DIFFERENT TOOLS FOR DIFFERENT TASKS
A scripting language is not a replacement for a sys-

tem programming language or vice versa. Each is

It might seem that
the typeless nature of
scripting languages
could allow errors to

go undetected, but in
practice scripting

languages are just as
safe as system
programming

languages.

.

suited to a different set of tasks. For gluing and system
integration, applications can be developed five to 10
times faster with a scripting language; system pro-
gramming languages require large amounts of boiler-
plate and conversion code to connect the pieces,
whereas this can be done directly with a scripting lan-
guage. For complex algorithms and data structures,
the strong typing of a system programming language
makes programs easier to manage. Where execution
speed is key, a system programming language can
often run 10 to 20 times faster than a scripting lan-
guage because it makes fewer runtime checks.

In deciding whether to use a scripting language or
a system programming language for a particular task,
consider the following questions:

• Is the application’s main task to connect preex-
isting components?

• Will the application manipulate a variety of dif-
ferent things?

• Does the application include a GUI?
• Does the application do a lot of string manipulation?
• Will the application’s functions evolve rapidly

over time?
• Does the application need to be extensible?

Affirmative answers to these questions suggest that
a scripting language will work well for the applica-

tion. On the other hand, affirmative answers to the
following questions suggest that an application is bet-
ter suited to a system programming language:

• Does the application implement complex algo-
rithms or data structures?

• Does the application manipulate large datasets,
for example, all the pixels in an image, such that
execution speed is critical?

• Are the application’s functions well defined and
slow to change?

Most of the major computing platforms over the
past 30 years have provided both system program-
ming and scripting languages. For example, one of the
first scripting languages, albeit a crude one, was Job
Control Language (JCL), which was used to sequence
job steps in OS/360. The individual job steps were
written in PL/1, Fortran, or assembler languages,
which were the system programming languages of the
day. In the Unix machines of the 1980s, C was used for
system programming and shell programs such as sh
and csh for scripting. In the PC world of the 1990s,
C and C++ are used for system programming and
Visual Basic for scripting. In the Internet world that is
taking shape now, Java is used for system program-
ming and languages such as JavaScript, Perl, and Tcl
are used for scripting.

March 1998 27

Table 1. Comparing applications implemented in both system programming languages and scripting languages.

Application (contributor) Comparison Code ratio* Effort ratio** Comments

Database application C++ version: 2 months 60 C++ version
(Ken Corey) Tcl version: 1 day implemented first; Tcl version

had more functionality
Computer system test and installation C test application: 47 22 C version implemented first;
(Andy Belsey) 272,000 lines, 120 months Tcl/Perl version replaced both

C FIS application: 90,000 lines, C applications
60 months

Tcl/Perl version: 7,700 lines,
8 months

Database library C++ version: 2-3 months 8-12 C++ version implemented first
(Ken Corey) Tcl version: 1 week
Security scanner C version: 3,000 lines 10 C version implemented first;
(Jim Graham) Tcl version: 300 lines Tcl version had more functionality
Display oil well production curves C version: 3 months 6 Tcl version implemented first
(Dan Schenck) Tcl version: 2 weeks
Query dispatcher C version: 1,200 lines, 4-8 weeks 2.5 4-8 C version implemented first,
(Paul Healy) Tcl version: 500 lines, 1 week uncommented; Tcl version had

comments, more functionality
Spreadsheet tool C version: 1,460 lines 4 Tcl version implemented first

Tcl version: 380 lines
Simulator and GUI Java version: 3,400 lines, 3-4 weeks 2 3-4 Tcl version had 10 to 20 percent
(Randy Wang) Tcl version: 1,600 lines, <1 week more functionality and was

implemented first

* Code ratio is the ratio of lines of code for the two implementations (<1 means the system programming language required more lines).
** Effort ratio is the ratio of development times. In most cases the two versions were implemented by different people.

.

28 Computer

Scripting and system programming are sym-
biotic. Used together, they produce program-
ming environments of exceptional power.
System programming languages are used to cre-
ate exciting components that can then be assem-
bled using scripting languages. For example,
much of the attraction of Visual Basic is that
system programmers can write ActiveX com-
ponents in C and less sophisticated program-
mers can then use the components in Visual
Basic applications. In Unix it is easy to write
shell scripts that invoke applications written in
C. One of the reasons for the popularity of Tcl

is the ability to extend the language by writing C code
that implements new commands.

SCRIPTING IS ON THE RISE
Scripting languages have existed for a long time, but

in recent years several factors have combined to
increase their importance. The most important factor
is a shift in the application mix toward gluing appli-
cations. Three examples of this shift are GUIs, the
Internet, and component frameworks.

Graphical user interfaces
GUIs first appeared in the early 1980s and became

widespread by the end of the decade; GUIs now
account for half or more of the total effort in many
programming projects. GUIs are fundamentally gluing
applications. The goal is not to create new function-
ality but to make connections between a collection of
graphical controls and the internal functions of the
application.

I am not aware of any rapid-development environ-
ments for GUIs based on a system programming lan-
guage. Whether the environment is Windows, Mac-
intosh Toolbox, or Unix Motif, GUI toolkits based on
languages such as C or C++ have proven hard to learn,
clumsy to use, and inflexible in the results they produce.
Some of these systems have nice graphical tools for
designing screen layouts that hide the underlying lan-
guage, but things become difficult as soon as the designer
has to write code, for example, to provide the behav-
iors for the interface elements. All of the best rapid-devel-
opment GUI environments are based on scripting
languages: Visual Basic, HyperCard, and Tcl/Tk.

Internet
The growth of the Internet has also popularized

scripting languages. The Internet is nothing more than
a gluing tool. It does not create any new computations
or data; it simply makes a huge number of existing
things easily accessible. The ideal language for most
Internet programming tasks is one that makes it pos-
sible for all the connected components to work
together; that is, a scripting language. For example,

Perl has become popular for writing CGI scripts and
JavaScript is popular for scripting in Web pages.

Component frameworks
The third example of scripting-oriented applications

is component frameworks such as ActiveX and Java-
Beans. Although system programming languages
work well for creating components, the task of assem-
bling components into applications is better suited to
scripting. Without a good scripting language to
manipulate the components, much of the power of a
component framework is lost. This might explain in
part why component frameworks have been more suc-
cessful on PCs, where Visual Basic provides a conve-
nient scripting tool, than on other platforms such as
Unix/CORBA, where scripting is not included in the
component framework.

Better scripting technology
Another reason for the increasing popularity of

scripting languages is improvements in scripting tech-
nology. Modern scripting languages such as Tcl and
Perl are a far cry from early scripting languages such as
JCL. For example, JCL did not even provide basic iter-
ation and early Unix shells did not support procedures.
Scripting technology is still relatively immature even
today. For example, Visual Basic is not really a script-
ing language; it was originally implemented as a simple
system programming language, then modified to make
it more suitable for scripting. Future scripting languages
will be even better than those available today.

Scripting technology has also benefited from the
everincreasing speed of computer hardware. It used
to be that the only way to get acceptable performance
in an application of any complexity was to use a sys-
tem programming language. In some cases, even sys-
tem programming languages were not efficient
enough, so the applications had to be written in assem-
bler. However, machines today are 100 to 500 times
faster than the machines of 1980, and performance
doubles every 18 months. Today, many applications
can be implemented in an interpreted language and
still have excellent performance. For example, a Tcl
script can manipulate collections with several thou-
sand objects and still provide good interactive
response. As computers get faster, scripting will
become attractive for larger and larger applications.

Casual programmers
One final reason for the increasing use of scripting

languages is a change in the programmer community.
Twenty years ago, most programmers were sophisti-
cated programmers working on large projects. Pro-
grammers of that era expected to spend several
months to master a language and its programming
environment, and system programming languages

Scripting and system
programming are
symbiotic. Used

together, they
produce

programming
environments of

exceptional power.

.

were designed for such programmers. However, since
the arrival of the PC more and more casual program-
mers have joined the programmer community. For
these people, programming is not their main job func-
tion; it is a tool they use occasionally to help with their
main job. Examples of casual programming are sim-
ple database queries or macros for a spreadsheet.

Casual programmers are unwilling to spend months
learning a system programming language, but they can
often learn enough about a scripting language in a few
hours to write useful programs. Scripting languages
are easier to learn because they have simpler syntax
than system programming languages and they omit
complex features like objects and threads. For exam-
ple, compare Visual Basic with Visual C++; few casual
programmers would attempt to use Visual C++, but
many have built useful applications with Visual Basic.
Even today, the number of applications written in

scripting languages is much greater than the number
of applications written in system programming lan-
guages. On Unix systems, there are many more shell
scripts than C programs, and under Windows there
are many more Visual Basic programs and applica-
tions than C or C++. Of course, most of the largest
and most widely used applications are written in sys-
tem programming languages, so a comparison on the
basis of total lines of code or number of installed
copies might still favor system programming lan-
guages. Nonetheless, scripting languages are already
a major force in application development and their
market share will increase in the future.

THE ROLE OF OBJECTS
Scripting languages have been mostly overlooked

by experts in programming languages and software
engineering. Instead, the experts have focused their
attention on object-oriented system programming lan-
guages such as C++ and Java. Object-oriented (OO)
programming is widely believed to represent the next
major step in the evolution of programming lan-
guages. OO features such as strong typing and inher-
itance are often claimed to reduce development time,
increase software reuse, and solve many other prob-
lems including those addressed by scripting languages.

How much benefit has OO programming actually
provided? Unfortunately I have not seen enough quan-
titative data to answer this question definitively. In my
opinion, objects provide only a modest benefit: perhaps
a 20 to 30 percent improvement in productivity but cer-
tainly not a factor of two, let alone a factor of 10. C++
now seems to be reviled as much as it is loved, and some
language experts are beginning to speak out against
OO programming.8 Objects do not improve produc-
tivity in the dramatic way that scripting does, and the
benefits of OO programming can be achieved in script-
ing languages.

OO programming does not provide a large
improvement in productivity because it neither
raises the level of programming nor encourages
reuse. In an OO language such as C++, pro-
grammers still work with small basic units that
must be described and manipulated in great
detail. In principle, powerful library packages
could be developed, and if these libraries were
used extensively they could raise the level of pro-
gramming. However, few such libraries exist.
The strong typing of most OO languages encour-
ages narrowly defined packages that are hard to
reuse. Each package requires objects of a specific
type; if two packages are to work together, con-
version code must be written to translate
between the types required by the packages.

Another problem with OO languages is their
emphasis on inheritance. Implementation inher-
itance, in which one class borrows code that was writ-
ten for another class, is a bad idea that makes software
harder to manage and reuse. It binds the implementa-
tions of classes together so that neither class can be
understood without the other. A subclass cannot be
understood without knowing how the inherited meth-
ods are implemented in its superclass, and a superclass
cannot be understood without knowing how its meth-
ods are inherited in subclasses. In a complex class hier-
archy, no individual class can be understood without
understanding all the other classes in the hierarchy. Even
worse, a class cannot be separated from its hierarchy
for reuse. Multiple inheritance makes these problems
even worse. Implementation inheritance causes the same
intertwining and brittleness that have been observed
when goto statements are overused. As a result, OO
systems often suffer from complexity and lack of reuse.

Scripting languages, on the other hand, have actu-
ally generated significant software reuse. The model
they follow is one in which interesting components
are built in a system programming language and then
glued together into applications with a scripting lan-
guage. This division of labor provides a natural frame-
work for reusability. Components are designed to be
reusable, and there are well-defined interfaces between
components and scripts that make it easy to use com-
ponents. For example, in Tcl the components are cus-
tom commands implemented in C; they look just like
the built-in commands so they are easy to invoke in
Tcl scripts. In Visual Basic, the components are
ActiveX extensions, which can be used by dragging
them from a palette onto a form.

Nonetheless, OO programming does provide at least
two useful features. The first is encapsulation: objects
combine data and code in a way that hides implemen-
tation details. This makes it easier to manage large sys-
tems. The second useful feature is interface inheritance,
where classes provide the same methods and applica-

March 1998 29

Implementation
inheritance causes

the same
intertwining and

brittleness that have
been observed when
goto statements are

overused. As a
result, OO systems
often suffer from

complexity and lack
of reuse.

.

30 Computer

tion programming interfaces (APIs) even though
they have different implementations. This makes
the classes interchangeable and encourages reuse.

Fortunately, the benefits of objects can be
achieved in scripting languages as well as sys-
tem programming languages, and virtually all
scripting languages have some support for OO
programming. For example, Python is an OO
scripting language; Perl v5 includes support for
objects; Object Rexx is an OO version of Rexx;
and Incr Tcl is an OO extension to Tcl. One
difference is that objects in scripting languages
tend to be typeless, while objects in system pro-
gramming languages tend to be strongly typed.

OTHER LANGUAGES
This article is not intended as a complete

characterization of all programming languages.
There are many other attributes of programming lan-
guages besides strength of typing and the level of pro-
gramming, and there are many interesting languages
that cannot be characterized cleanly as a system pro-
gramming language or a scripting language. For exam-
ple, the Lisp family of languages lies somewhere
between scripting and system programming, with
some of the attributes of each. Lisp pioneered con-
cepts such as interpretation and dynamic typing that
are now common in scripting languages, as well as
automatic storage management and integrated devel-
opment environments, which are now used in both
scripting and system programming languages.

S cripting languages represent a different set of
trade-offs than system programming languages.
They give up execution speed and strength of typ-

ing relative to system programming languages but pro-
vide significantly higher programmer productivity and
software reuse. This trade-off makes more and more
sense as computers become faster and cheaper in com-
parison to programmers. System programming lan-
guages are well suited to building components where
the complexity is in the data structures and algorithms,
while scripting languages are well suited for gluing
applications where the complexity is in the connec-
tions. Gluing tasks are becoming more and more
prevalent, so scripting will become an increasingly
important programming paradigm in the next century.

I hope this article will impact the computing com-
munity in three ways. First, I hope programmers will
consider the differences between scripting and system
programming when starting new projects and choose
the most powerful tool for each task. Second, I hope
designers of component frameworks will recognize the
importance of scripting and ensure that their frame-
works include not only facilities for creating compo-
nents but also facilities for gluing them together. Finally,

I hope the programming language research community
will shift some of its attention to scripting languages and
help develop even more powerful scripting languages.
Raising the level of programming should be the single
most important goal for language designers, as it has
the greatest effect on programmer productivity. It is not
clear that strong typing contributes to this goal. ❖

Acknowledgments

This article has benefited from many people’s com-
ments, including Joel Bartlett, Bill Eldridge, Jeffrey
Haemer, Mark Harrison, Paul McJones, David
Patterson, Stephen Uhler, Hank Walker, Chris Wright,
the Computer referees, and dozens of others who par-
ticipated in a heated net-news discussion of an early
draft. Colin Stevens wrote the MFC version of the but-
ton example and Stephen Uhler wrote the Java version.

References

1. J. Ousterhout, “Additional Information for Scripting
White Paper,” http://www.scriptics.com/people/john.
ousterhout/scriptextra.html.

2. C. Jones, “Programming Languages Table, Release 8.2,”
Mar. 1996, http://www.spr.com/library/0langtbl.htm.

3. B. Boehm, Software Engineering Economics, Prentice
Hall, Englewood Cliffs, N.J., 1981.

4. L. Wall, T. Christiansen, and R. Schwartz, Programming Perl,
2nd ed., O’Reilly & Associates, Sebastopol, Calif., 1996.

5. M. Lutz, Programming Python, O’Reilly & Associates,
Sebastopol, Calif., 1996.

6. R. O’Hara and D. Gomberg, Modern Programming
Using REXX,Prentice Hall, Englewood Cliffs, N.J., 1988.

7. J. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley,
Reading, Mass., 1994.

8. S. Johnson, “Objecting To Objects,” Invited Talk, Usenix
Technical Conf., San Francisco, Jan. 1994.

John K. Ousterhout is the CEO of Scriptics Corp. He
was previously a Distinguished Engineer at Sun
Microsystems Inc., where the work for this article
was carried out. His interests include scripting lan-
guages, Internet programming, user interfaces, and
operating systems. He created the Tcl scripting lan-
guage and the Tk toolkit. He received a BS in physics
from Yale University and a PhD in computer science
from Carnegie Mellon University. Ousterhout is a fel-
low of the Association for Computing Machinery and
has received many awards, including the ACM Grace
Murray Hopper Award, the US National Science
Foundation Presidential Young Investigator Award,
and the University of California at Berkeley
Distinguished Teaching Award.

Contact Ousterhout at ouster@scriptics.com.

Raising the level of
programming should

be the single most
important goal for

language designers,
as it has the

greatest effect on
programmer

productivity. It is
not clear that strong

typing contributes
to this goal.

.

