
1

I sistemi peer to peer (P2P)
Una Introduzione

What Does Peer-to-Peer Mean?

2

  A generic name for systems in which peers
communicate directly and not through a server

  Characteristics:
  decentralized
  self-organizing
  distributed systems
  all or most communication is symmetric
  typically, large scale systems (up to millions)
  Virtual organization

2

Typical Characteristics –details

3

  Large Scale: lots of nodes (up to millions)
  Dynamicity: frequent joins, leaves, failures
  Little or no infrastructure

  No central server
  Symmetry: all nodes are “peers” – have same role

  Not always true – “all nodes are equal, but some node are equal
more”

  Communication possible between every pair of nodes
(Internet)
  Not always true – NAT, FW

P2P Applications

4

  File sharing (music, movies, …)
  Distributed computing
  VoIP - Skype
  Collaboration

3

P2P Networking

5

Focus on the apps

File Sharing Services

6

  Publish – insert a new file into the network
  Lookup – given a file name X, find the host that stores

the file
  Retrieval – get a copy of the file
  Join – join the network
  Leave – leave the network

4

The main problem - Lookup

7

  Given a data item X, stored at some set of nodes, find it
  The main challenge

  Do it in a reliable, scalable and efficient way
  Despite the dynamicity and frequent changes

Take 1 – Napster (Jan ’99)

8

  Client – Server architecture (not P2P)
  Publish – send the key (file name) to the server
  Lookup – ask the server who has the requested file. The

response contains the address of a node/nodes that hold
the file

  Retrieval – get the file directly from the holder
  Join – send you file list to the server
  Leave – cancel your file list at the server

5

Take 1 – Napster (continued)

9

  Advantages
  Low message overhead
  Minimal overhead on the clients
  100% success rate (if the file is there, it will be found)

  Disadvantages
  Single point of failure
  Not scalable (server is too busy)

10

File Sharing with Napster

www.napster.com
Main Server

File List:
UserC song.mp3

UserD another.mp3
…..

User A

2. User A
searches for
song.mp3

User C
(Song.mp3)

1. Construct Database
•  Users connect to Napster Server
•  Server builds up a list of available
songs and locations

User D
(Another.mp3)

User B
…

3. Server searches
database. Finds song
on User C’s machine

4. Server informs
User A of the location

of song.mp3

5. User A connects to
User C and downloads

song.mp3

6

11

12

ICQ: Instant Messaging

www.icq.com
Main Server
User List:

User A

2.User A
searches
ICQ for
User
B

User B

3. Server informs
User A of the user

B’s location

4. User A connects to User C
interacts and exchanges files

1. Members (user A
and user B) register

their details at the ICQ
web site

7

Naspter

13

  centralized server:
  single logical point of failure
  potential for congestion
  Napster “in control” (freedom is an illusion)

  no security:
  passwords in plain text
  no authentication
  no anonymity

Lets distribute the server

14

  Every node is connected to every node
  No scalable at all

  Every node is connected to a number of peers
  Can communicate directly with immediate neighbors
  Can communicate with other nodes through my direct neighbors
  This is called overlay

8

Overlay Networks

15

  Overlay is a virtual structure imposed over the
physical network (e.g., the Internet)
  over the Internet, there is an (IP level) unicast channel between

every pair of hosts
  an overlay uses a fixed subset of these
  nodes that have the capability to communicate directly with

each other do not use it

  Allows scalable symmetric lookup algorithms

Take 2 - Gnutella (March ’00)

16

  Build a decentralized unstructured overlay
  each node has several neighbors

  Publish – store the file locally
  Lookup – check local database. If X is known return, if not,

ask your neighbors. TTL limited.
  Retrieval – direct communication between 2 nodes
  Join – contact a list of nodes that are likely to be up,

or collect such a list from a website.
  Random, unstructured overlay

  What is the communication pattern?
flooding

9

Resolve Query by Flooding

17

2

3

S 2

3

3

4

5 2

3

4

4

5

6

6

4

X 5

3

5

5 4 4

Time-To-Live (TTL)=5 would have been enough

Take 2 – Gnutella (continued)

18

  Advantages
  Fast lookup
  Low join and leave overhead
  Popular files are replicated many times, so lookup with small TLL

will usually find the file
  Can choose to retrieve from a number of sources

  Disadvantages
  Not 100% success rate, since TTL is limited
  Very high communication overhead

  Limits scalability
  But people do not care so much about wasting bandwidth

  Uneven load distribution

10

Gnutella

19

  Le query sono trasmesse sulle con. TCP
  Network exploration: PING-PONG
  Query

  DescriptorID, PayloadID, TTL, Hops, Length, Paylod
  Query Forward: pari inoltrono i msg nella rete overlay
  QueryHit : risposta alla query lungo il cammino “inverso” della

 rete overlay
  Hits, Port, IP, Speed, ResultSet, NodeId

20

11

Gnutella

21

Query

QueryHit

Query

Query

QueryHit

Query

Query

QueryH
it

File transfer:
HTTP GET ❒ 

Gnutella: Peer joining

22

1.  Joining peer X must find some other peer in Gnutella
network: use list of candidate peers

2.  X sequentially attempts to make TCP with peers on list until
connection setup with Y

3.  X sends Ping message to Y; Y forwards Ping message.
4.  All peers receiving Ping message respond with Pong message
5.  X receives many Pong messages. It can then setup additional

TCP connections

12

Take 3 - FastTrack, KaZaA, eDonkey

23

  Improve scalability by introducing a hierarchy
  2 tier system

  super-peers: have more resources, more neighbors, know more keys
  clients: regular/slow nodes

  Client can decide if it is a super-peer when connecting
  Super-peers accept connection from clients and establish

connections to other super-peers
  Search goes through super-peers

Take 3 - FastTrack, KaZaA, eDonkey
(continued)

24

  Advantages
  More stable than Gnutella. Higher success rate
  More scalable

  Disadvantages
  Not “pure” P2P
  Still high communication overhead

13

KaZaA

  Strutturazione dei peer
  Peer = group leader o e’

associatto a un group leader.
  Peeer -- Group leader TCP Con..
  TCP cons tra coppie di group

leader.

  Group leader: sono una sorta
di directoly centralizzata per i
peer associati al gruppo.

25

KaZaA: Querying

26

  Each file has a hash and a descriptor
  Client sends keyword query to its group leader
  Group leader responds with matches:

  For each match: metadata, hash, IP address

  If group leader forwards query to other group leaders, they
respond with matches

  Client then selects files for downloading
  HTTP requests using hash as identifier sent to peers holding desired file

14

Bit Torrent

27

  New approach
  Content distribution

  Main Goal:
  Replicate file to large number of clients

  Each file is brocken into chuncks (torrent file details
metadata)
  Size chuncks
  Tracker (server which keeps track of the current acrive clients)

BitTorrent

28

Seed

Seed

1

2

5

3

4

…

…

…

…

…

…

…

…

1

3

15

How BitTorrent works

29

  Downloaders exchange blocks with each other

  Tracker keeps track of connected peers

  Salient features
  Which block to download first?

  Locally rarest block

  Which peers should I upload blocks to?
  Tit-for-tat: peers which give best download rates

Locally rarest block

30

.

.

.

Peer

Peer

Peer

HAVE <12,7,36>

HAVE <12,7,14>

HAVE <14>

14

12,7,14

12,7,36

16

Structured Lookup Overlays

31

  Structured overlay – data stored in a defined place, search
goes on a defined path

  Implement Distributed Hash Table (DHT) abstraction
  Symmetric, no hierarchy
  Decentralized self management
  Many recent academic systems –

  CAN, Chord , D2B, Kademlia, Koorde, Pastry, Tapestry,
Viceroy, OverNet (based on the Kademlia algorithm)

Reminder: Hashing

32

  Data structure supporting the operations:
  void insert(key, item)
  item search(key)

  Implementation uses hash function for mapping keys to
array cells

  Expected search time O(1)
  provided that there are few collisions

17

Distributed Hash Tables (DHTs)

33

  Nodes store table entries
  Key ->IP of the node currently responsible for this key

  lookup(key)
  returns the IP of the node responsible for the key
  key usually numeric (in some range)

  Requirements for an application being able to use DHTs:
  data identified with unique keys
  nodes can (agree to) store keys for each other

  location of object or actual object

34

18

35

36

19

Using the DHT Interface

37

  How do you publish a file?
  How do you find a file?

What Does a DHT Implementation
Need to Do?

38

  Map keys to nodes
  needs to be dynamic as nodes join and leave

  Route a request to the appropriate node
  routing on the overlay

20

Lookup Example

39

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

insert
(K1,V1)

K V (K1,V1)

lookup(K1)

Mapping Keys to Nodes

40

  Keys and nodes are mapped to the same identifier space
  NodeID=hash(node’s IP address)
  KeyID=hash(key). Key is a file name
  m-bit identifier
  Cryptographic hash function (e.g., SHA-1)

  Goal: load balancing, achieved by hashing

  Typical DHT implementation:
  map key to node whose id is “close” to the key

(need distance function).

21

Routing Issues

41

  Each node must be able to forward each lookup query to
a node closer to the destination

  Maintain routing tables adaptively
  each node knows some other nodes
  must adapt to changes (joins, leaves, failures)
  Goals

  Efficient - use as few nodes as possible on the routing path
  …

Handling Join/Leave

42

  When a node joins it needs to assume responsibility for
some keys
  In order for future lookups to succeed
  ask the application to move these keys to it
  how many keys will need to be moved?

  When a nodes fails or leaves, its keys have to be moved
to others
  what else is needed in order to implement this?

22

P2P System Interface

43

  Lookup
  Join
  Move keys

Chord
Stoica, Morris, Karger, Kaashoek, and Balakrishnan

2001

23

Chord Logical Structure

  m-bit ID space (2m IDs), usually m=160.
  Think of nodes as organized in a logical ring according to their

IDs.

45

N1
N8

N10

N14

N21

N30
N38

N42

N48

N51
N56

Assigning Keys to Nodes

  KeyID k is assigned to first node whose NodeID >= k
(clockwise from k)
  Denoted: successor(k)

46

N1
N8

N10

N14

N21

N30
N38

N42

N48

N51
N56

K54

24

Simple Routing Solutions

47

  Each node knows only its successor
  routing around the circle
  O(N) routing
  O(1) memory

  Each node knows all other nodes
  O(1) routing
  O(N) memory

Routing around the circle

48

N32

N90

N105

N60

N10
N120

K80

“Where is key 80?”

“N90 has K80”

25

Routing around the circle - code

49

Lookup(my-id, key-id)
 q = my_successor
 if my-id < key-id < q
 return my_successor // done
 else
 call Lookup(id) on q // next hop

  Correctness depends only on successors

Chord Fingers

  Each node has “fingers” to nodes ½ way around the ID
space from it, ¼ the way…

  finger[i] at p contains successor(p+2i-1)
  successor is finger[1]

50

N0
N8

N10

N14

N21

N30
N38

N42

N48

N51
N56

26

Example: Chord Fingers

51

N0
N10

N21

N30

N47

finger[1..4]

N72

N82

N90

N114

finger[5]

finger[6]

fin
ge

r[
7]

log N distinct fingers

Chord Data Structures

52

  At Each Node
  Finger table
  First finger is successor
  Predecessor

27

Forwarding Queries

53

  Query for key k is forwarded to finger with highest ID
not exceeding k

K54 Lookup(K54)
N0

N8
N10

N14

N21

N30
N38

N42

N48

N51
N56

54

Lookup(my-id, key-id)
 look in local finger table for
 highest node q s.t. my-id < q < key-id
 if q exists
 call Lookup(id) on node q // next hop
 else
 return my_successor // done

Chord Routing – the code

28

Routing Time - O(log(N)) steps

55

  maximum m steps
  Assuming uniform node distribution around the circle, the

number of nodes in the search space is halved at each
step:

  expected number of steps: log N

Joining Chord

56

  Goals?
  Steps:

  Find your successor
  Initialize finger table and predecessor
  Notify other nodes that need to change their finger table and

predecessor pointer
  O(log2n)

  Learn the keys that you are responsible for; notify others that
you assume control over them

29

Join Algorithm: Take II

57

  Observation: for correctness, successors suffice
  fingers only needed for performance

  Upon join, update successor only
  Periodically,

  check that successors and predecessors are consistent
  fix fingers

Failure Handling

  Periodically fixing fingers
  List of r successors instead of one successor
  Periodically probing predecessors

58

30

Moving Keys upon Join/Leave

59

  Left up to the application
  When a node joins, it becomes responsible for some keys

previously assigned to its successor
  local change
  how many keys should move, on average?

  And what happens when a node leaves?
  List of r successors instead of one successor
  Replicate keys:

  Store every key in r successors, instead of only one

  Or do key maintenance periodically

Summary: DHT Advantages

60

  Peer-to-peer: no centralized control or infrastructure
  Scalability: O(log N) routing, routing tables, join time
  Load-balancing
  Overlay robustness

31

DHT Disadvantages

61

  No control where data is stored
  Complex queries are not possible

Resources

62

  http://en.wikipedia.org/wiki/Peer-to-peer

