Bottom-up Parsing

Recap of Top-down Parsing

- Top-down parsers build syntax tree from root to leaves
- Left-recursion causes non-termination in top-down parsers
- Transformation to eliminate left recursion
- Transformation to eliminate common prefixes in right recursion
- FIRST, FIRST ${ }^{+}$, \& FOLLOW sets + LL(1) condition
- LL(1) uses left-to-right scan of the input, leftmost derivation of the sentence, and 1 word lookahead
- LL(1) condition means grammar works for predictive parsing
- Given an $\operatorname{LL}(1)$ grammar, we can
- Build a recursive descent parser
- Build a table-driven LL(1) parser
- LL(1) parser doesn't explicitly build the parse tree
- Keeps lower fringe of partially complete tree on the stack

Parsing Techniques

Top-down parsers (LL(1), recursive descent)

- Start at the root of the parse tree and grow toward leaves
- Pick a production \& try to match the input
- Bad "pick" \Rightarrow may need to backtrack
- Some grammars are backtrack-free

Bottom-up parsers (LR(1), operator precedence)

- Start at the leaves and grow toward root
- As input is consumed, encode possibilities in an internal state
- Bottom-up parsers handle a large class of grammars

Bottom-up parser handle a larger class of grammars

Bottom-up Parsing

(recap of definitions)
The point of parsing is to construct a derivation
A derivation consists of a series of rewrite steps

$$
S \Rightarrow \gamma_{0} \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow \ldots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_{n} \Rightarrow \text { sentence }
$$

- Each γ_{i} is a sentential form
- If γ contains only terminal symbols, γ is a sentence in $L(G)$
- If γ contains 1 or more non-terminals, γ is a sentential form
- To get γ_{i} from γ_{i-1}, expand some NT $A \in \gamma_{i-1}$ by using $A \rightarrow \beta$
- Replace the occurrence of $A \in \gamma_{i-1}$ with β to get γ_{i}
- In a leftmost derivation, it would be the first NT $A \in \gamma_{i-1}$

A left-sentential form occurs in a leftmost derivation
A right-sentential form occurs in a rightmost derivation

Bottom-up parsers build a rightmost derivation in reverse

Bottom-up Parsing

A bottom-up parser builds a derivation by working from the input sentence back toward the start symbol S

$$
S \Rightarrow \gamma_{0} \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow \ldots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_{n} \Rightarrow \text { sentence }
$$

To reduce γ_{i} to γ_{i-1} match some rhs β against γ_{i} then replace β with its corresponding Ihs, \boldsymbol{A}. (assuming the production $A \rightarrow \beta$)

Bottom-up Parsing

In terms of the parse tree, it works from leaves to root

- Nodes with no parent in a partial tree form its upper fringe (border)

Consider the grammar
The input string abbcde

0	Goal	$\rightarrow \underline{a} A B \underline{e}$
1	A	$\rightarrow A \underline{b} \underline{c}$
2		$\mid \underline{b}$
3	B	$\rightarrow \underline{d}$

- Since each replacement of β with A shrinks the upper fringe, we call it a reduction. (remember we are constructing a rightmost derivation)

While the process of finding the next reduction appears to be almost oracular, it can be automated in an efficient way for a large class of grammars

Finding Reductions

0	Goal	$\rightarrow \underline{a} A B \underline{e}$
1	A	$\rightarrow A \underline{b} \underline{c}$
2		$\mid \underline{b}$
3	B	$\rightarrow \underline{d}$

The input string abbcde

Sentential	Reduction	
Form	Prod'n	Pos' n
$\underline{a b b c d e}$	2	2
$\underline{a} A \underline{b c d e}$	1	4
$\underline{a} A \underline{d e}$	3	3
$\underline{a A B \underline{e}}$	0	4
Goal	-	-

The trick is scanning the input and finding the next reduction The mechanism for doing this must be efficient
"Position" specifies where the right end of β occurs in the current sentential form.

Leftmost reductions for rightmost derivations

0	Goal	$\rightarrow \underline{a} A B \underline{e}$	Rightmost
1	A	$\rightarrow A \underline{b} \underline{c}$	derivation 2
	$1 \underline{b}$	\underline{d}	$\underline{a} A B \underline{e}$
$\underline{a} A \underline{d e}$			
$\underline{a} A \underline{b c d e}$			
$\underline{a b b c d e}$			

To reconstruct a Rightmost derivation bottom up we have to look for the leftmost substring that matches a right handside of a derivation!

Finding Reductions

(Handles)
The parser must find a substring β of the tree's frontier that matches some production $A \rightarrow \beta$ that occurs as one step in the rightmost derivation. We call this substring β an handle

An handle of a right-sentential form γ is a pair $\langle A \rightarrow \beta, k\rangle$ where $A \rightarrow \beta \in P$ and k is the position in γ of $\beta^{\prime} s$ rightmost symbol.
If $\langle A \rightarrow \beta, k\rangle$ is a handle, then replacing β at k with A produces the right sentential form from which γ is derived in the rightmost derivation.

For this string is	handles	A-> β	k
b not $d!$ a	$\underline{a b b c d e}$	2	2
	$\underline{a} A \underline{\text { bcde }}$	1	4
a A de	3	3	
a A B e	0	4	
	Goal	-	-

A property of handles

Because γ is a right-sentential form, the substring to the right of a handle contains only terminal symbols

handles	$A->\beta$	k
$\underline{a b b c d e}$	2	2
$\underline{a} A \underline{b c d e}$	1	4
$\underline{a} A \underline{\text { de }}$	3	3
$\underline{a A B \underline{e}}$	0	4
Goal	-	-

Example

0 Goal	\rightarrow Expr	
1	Expr	\rightarrow Expr + Term
2		\mid Expr - Term
3		Term
4	Term	\rightarrow Term * Factor
5		I Term / Factor
6		Factor
7	Factor	\rightarrow number
8		I
9		(Expr $)$

Bottom up parsers handle either left-recursive or right-recursive grammars.

A simple left-recursive form of the classic expression grammar

Example

A simple left-recursive form of the classic expression grammar

Example

Prod'n	Sentential Form
-	Goal
0	Expr
2	Expr - Term
4	Expr - Term * Factor
8	Expr - Term* <id, y>
6	Expr - Factor * <id,y>
7	Expr - <num, 2>* <id, y>
3	Term- <num, 2>*<id,y>
6	Factor - <num, ${ }^{2}$ > * <id, \boldsymbol{y} >
8	<id, $\underline{\underline{\prime}}$ - <num, $\underline{\text { < }}$ * <id, $\underline{\underline{y}}$ >
	tmost derivation of $\underline{x}=\underline{?}$

0	Goal		Expr	
1	Expr	\rightarrow	Expr + Term	
2		1	Expr - Term	
3		1	Term	
4	Term	\rightarrow	Term * Fact	
5		1	Term / Facto	
6		1	Factor	parse
7	Factor	\rightarrow	number	
8		1	id	
9		1	(Expr)	

Prod'n	Sentential Form	Handle
-	Goal	-
0	Expr	0,1
2	Expr - Term	2,3
4	Expr - Term * Factor	4,5
8	Expr - Term * <id, $y>$	8,5
6	Expr - Factor * <id, $y\rangle$	6,3
7	Expr - <num,2>* <id, $y\rangle$	7,3
3	Term-<num,2>*<id,y>	3,1
6	Factor-<num,2>* <id, $y\rangle$	6,1
8	$\langle i d, \underline{x}\rangle-\langle n u m, 2\rangle^{*}\langle i d, y\rangle$	8,1

Handles for rightmost derivation of $\underline{x}=\underline{2} * \underset{y}{*}$

Bottom-up Parsing

A bottom-up parser repeatedly finds a handle $A \rightarrow \beta$ in the current right-sentential form and replaces β with A.

To construct a rightmost derivation

$$
S \Rightarrow \gamma_{0} \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow \ldots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_{n} \Rightarrow w
$$

Apply the following conceptual algorithm
for $\mathrm{i} \leftarrow n$ to 1 by $-1 \quad$ of course, n is unknown
Find the handle $\left\langle A_{i} \rightarrow \beta_{i}, k_{i}>\right.$ in γ_{i} until the derivation is built
Replace β_{i} with A_{i} to generate γ_{i-1}
This takes 2 n steps

More on Handles

Bottom-up reduce parsers find a rightmost derivation in reverse order

- Rightmost derivation \Rightarrow rightmost NT expanded at each step in the derivation
- Processed in reverse \Rightarrow parser proceeds left to right

These statements are somewhat counter-intuitive

Handles Are Unique

Theorem:
If G is unambiguous, then every right-sentential form has a unique handle.

Sketch of Proof:
$1 G$ is unambiguous \Rightarrow rightmost derivation is unique
$2 \Rightarrow a$ unique production $A \rightarrow \beta$ applied to derive γ_{i} from γ_{i-1}
$3 \Rightarrow$ a unique position k at which $A \rightarrow \beta$ is applied
$4 \Rightarrow$ a unique handle $\langle A \rightarrow \beta, k\rangle$
This all follows from the definitions
If we can find the handles, we can build a derivation!

Shift-reduce Parsing

To implement a bottom-up parser, we adopt the shift-reduce paradigm
A shift-reduce parser is a stack automaton with four actions

- Shift - next word is shifted onto the stack (push)
- Reduce - right end of handle is at top of stack

Locate left end of handle within the stack
Pop handle off stack \& push appropriate lhs

- Accept - stop parsing \& report success
- Error - call an error reporting/recovery routine

Reduce consists in |rhs| pops \& 1 push
But how does the parser know when to shift and when to reduce?
It shifts until it has a handle at the top of the stack.

It uses a stack where we memorize terminal and nonterminal

Bottom-up Parser

What happens on an error?

A simple shift-reduce parser:

```
push $
token < next_token()
repeat until (top of stack = Goal and token = EOF)
    if the top of the stack is a handle A->\beta
        then // reduce }\beta\mathrm{ to A
        pop | }\beta|\mathrm{ symbols off the stack
        push A onto the stack
    else if (token }\not=\mathrm{ EOF)
        then // shift
        push token
        token \leftarrow next_token()
    else // need to shift, but out of input
        report an error
```

- It fails to find a handle
- Thus, it keeps shifting
- Eventually, it consumes all input

This parser reads all input before reporting an error, not a desirable property.

Error localization is an issue in the handle-finding process that affects the practicality of shift-reduce parsers...

We will fix this issue later.

Back to $\underline{x}=\underline{2}$ * y

1. Shift until the top of the

Back to $\underline{x}=2^{*}-\underline{ }$			stack is the right end of a handle 2. Find the left end of the handle and reduce			
Stack	Handle	Action				
\$ in - num * id	none	shift				
\$ id $-\underline{\text { num * id }}$	8,1	reduce 8	0	Goal	\rightarrow	Expr
\$ Factor $-\underline{n u m} * \underline{i d}$	6,1	reduce 6	1	Expr	\rightarrow	Expr + Term
\$ Term -	3,1	reduce 3	2		I	Expr - Term
\$ Expr - num * id			3		1	Term
			4	Term	\rightarrow	Term * Factor
Expr is not a handle at this point because it does not occur in this point in a rightmost derivation of id - num * id			5		1	Term / Factor
			6		1	Factor
			7	Factor		
While that statement sounds like oracular mysticism, we will see that the decision can be automated efficiently.			8			id
			9			

1. Shift until the top of the stack the right end of a handle

Stack	Input	Handle	Action
\$	id - num * id	none	shift
\$ id	- num * id	8,1	reduce 8
\$ Factor	- num * id	6,1	reduce 6
\$ Term	- num * id	3,1	reduce 3
\$ Expr	- num * id	none	shift
\$ Expr -	num * id	none	shift
\$ Expr - num	* id	7,3	reduce 7
\$ Expr - Factor	* id	6,3	reduce 6
\$ Expr - Term	* id	none	shift
\$ Expr - Term*	id	none	shift
\$ Expr - Term * id		8,5	reduce 8
\$ Expr - Term * Factor		4,5	reduce 4
\$ Expr - Term		2,3	reduce 2
\$ Expr		0,1	reduce 0
\$ Goal		none	accept

2. Find the left end of the handle and reduce

0	Goal	\rightarrow	Expr
1	Expr	\rightarrow	Expr + Term
2		\|	Expr - Term
3		\|	Term
4	Term	\rightarrow	Term * Factor
5		\|	Term / Factor
6		Factor	
7	Factor	\rightarrow	$\underline{\text { number }}$
8		I	id
9		(Expr)	

```
5 shifts +
9 reduces + 1
accept
```


Parse tree for $\underline{x}=2 * y$

Stack	Input	Action	
\$	id - num * id	shift	Goal
\$ id	- num * id	reduce 8	
\$ Factor	- num * id	reduce 6	Expr
\$ Term	- num * id	reduce 3	-
\$ Expr	- num * id	shift	Expr - Term
\$ Expr -	num * id	shift	Term Term * Fact.
\$ Expr - num	* id	reduce 7	T
\$ Expr - Factor	* id	reduce 6	Fact. Fact. <id, y>
\$ Expr - Term	* id	shift	
\$ Expr - Term*	id	shift	<id,x> <num, 2>
\$ Expr - Term * id		reduce 8	
\$ Expr - Term * Factor		reduce 4	
\$ Expr - Term		reduce 2	
\$ Expr		reduce 0	
\$ Gool		accept	

An Important Lesson about Handles

An handle must be a substring of a sentential form γ such that :

- It must match the right hand side β of some rule $A \rightarrow \beta$; and
- There must be some rightmost derivation from the goal symbol that produces the sentential form γ with $A \rightarrow \beta$ as the last production applied
- Simply looking for right hand sides that match strings is not good enough

Critical Question: How can we know when we have found an handle without generating lots of different derivations?
Answer: We use left context encoded in a "parser state" and a lookahead at the next word in the input. (Formally, 1 word beyond the handle.)

LR(1) Parsers

- LR(1) parsers use states to encode information on the left context and also use 1 word beyond the handle.
The additional left context is precisely the reason why $L R(1)$ grammars express a superset of the languages that can be expressed as $L L(1)$ grammars
- Such information is encoded in a GOTO and ACTION tables

The actions are driven by the state and the lookhaed

LR(1) Parsers

- LR(1) parsers are table-driven, shift-reduce parsers that use a limited right context (1 token) for handle recognition
- The class of grammars that these parsers recognize is called the set of LR(1) grammars
A grammar is $L R(1)$ if, given a rightmost derivation

$$
S \Rightarrow \gamma_{0} \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow \ldots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_{n} \Rightarrow \text { sentence }
$$

We can

1. isolate the handle of each right-sentential form γ_{i}, and
2. determine the production by which to reduce, going at most 1 symbol beyond the right end of the handle of γ_{i}

LR(1) means left-to-right scan of the input, rightmost derivation (in reverse), and 1 word of lookahead.

LR(1) Parsers

A table-driven $L R(1)$ parser looks like

Tables can be built by hand
However, this is a perfect task to automate

LR(1) Parsers

A table-driven LR(1) parser looks like

Tables can be built by hand
However, this is a perfect task to automate
Just like automating construction of scanners ...

LR(1) Skeleton Parser

```
stack.push($);
stack.push(so);
    // initial state
token = scanner.next_token();
loop forever {
    s = stack.top(); // reads the top of the stack
    if ( ACTION[s,token] == "reduce A->\beta" ) then {
        stack.popnum(2* }|\beta|); // pop 2* | \beta| symbol
        s = stack.top();
        stack.push(A); // push A
        stack.push(GOTO[s,A]); // push next state
    }
    else if ( ACTION[s,token] == "shift s,") then {
        stack.push(token); stack.push(si})
        token \leftarrow scanner.next_token();
    }
    else if (ACTION[s,token] == "accept"
        & token == EOF )
        then break;
    else throw a syntax error;
}
report success;
```

The skeleton parser

- relies on a stack \& a scanner
- uses two tables, called ACTION \& GOTO

ACTION: state \times word \rightarrow action
GOTO: state \times NT \rightarrow state

- detects errors by failure of the other three cases

LR(1) Parsers

To make a parser for $L(G)$, need the ACTION and GOTO tables
The grammar

1 Goal	\rightarrow SheepNoise
2	SheepNoise
3	\rightarrow SheepNoise baa
	\mid baa

For now assume we have the tables

ACTION Table			GOTO Table	
State	EOF	baa	State	SheepNoise
0	-	shift 2	0	1
1	accept	shift 3	1	0
2	reduce 3	reduce 3	2	0
3	reduce 2	reduce 2	3	0

Example Parse 1

The string baa

Stack	Input	Action
$\$ s_{0}$	bad EOF	

1	Goal	\rightarrow SheepNoise
2	SheepNoise	\rightarrow SheepNoise baa
3	$\mid ~ \underline{\text { baa }}$	

GOTO Table	
State	SheepNoise
0	1
1	0
2	0
3	0

Example Parse 1

The string baa

Stack	Input	Action
$\$ s_{0}$	baa EOF	shift 2
$\$ s_{0}$ baa s_{2}	EOF	

1 Goal	\rightarrow SheepNoise
2	SheepNoise
3	\rightarrow SheepNoise baa
	$\mid \underline{\text { baa }}$

GOTO Table	
State	SheepNoise
0	1
1	0
2	0
3	0

Example Parse 1

The string baa

Stack	Input	Action
$\$ s_{0}$	baa EOF	shift 2
$\$ s_{0}$ baa s_{2}	EOF	reduce 3
$\$ s_{0} S N s_{1}$	EOF	

1 Goal	\rightarrow SheepNoise
2 SheepNoise	\rightarrow SheepNoise baa
3	
	\mid baa

GOTO Table	
State	SheepNoise
0	1
1	0
2	0
3	0

Example Parse 1

The string baa

Stack	Input	Action
$\$ s_{0}$	baa EOF	shift 2
$\$ s_{0}$ baa s_{2}	EOF	reduce 3
$\$ s_{0} S N s_{1}$	EOF	accept

1 Goal \rightarrow SheepNoise
2 SheepNoise \rightarrow SheepNoise baa
3
| baa

ACTION Table		
State	EOF	baa
0	-	shift 2
1	accept	shift 3
2	reduce 3	reduce 3
3	reduce 2	reduce 2

GOTO Table	
State	SheepNoise
0	1
1	0
2	0
3	0

Example Parse 2

The string baa baa

ACTION Table		
State	EOF	baa
0	-	shift 2
1	accept	shift 3
2	reduce 3	reduce 3
3	reduce 2	reduce 2

GOTO Table	
State	SheepNoise
0	1
1	0
2	0
3	0

Example Parse 2

The string baa baa

Stack	Input	Action	1	Goal		SheepNoise
\$ s_{0}	baa baa EOF	shift 2	2	SheepNoise	\rightarrow	SheepNoise baa
\$ s_{0} baa s_{2}	baa EOF		3		\|	baa

ACTION Table		
State	EOF	baa
0	-	shift 2
1	accept	shift 3
2	reduce 3	reduce 3
3	reduce 2	reduce 2

GOTO Table	
State	SheepNoise
0	1
1	0
2	0
3	0

Example Parse 2

The string baa baa

Stack		Input	Action	1			SheepNoise
$\$ s_{0}$	baa baa EOF		shift 2	3	SheepNoise		SheepNoise baa baa
\$ $s_{0} \underline{\text { baa }} s_{2}$		baa EOF	reduce 3				
$\$ s_{0} S N$		baafor		$\begin{aligned} & \text { Last e } \\ & \text { accep } \end{aligned}$	example, we pted. With		EOF and we we shift ...
	CTION Ta				GOTO Tabl		
State	EOF	baa		State	e SheepN	Noise	
0	-	shift 2		0	1		
1	accept	shift 3		1	0		
2	reduce 3	reduce 3		2	0		
3	reduce 2	reduce 2		3	0		

Example Parse 2

The string baa baa

Stack	Input	Action	1	Goal		SheepNoise
\$ s_{0}	baa baa EOF	shift 2	2	SheepNoise		SheepNoise baa
\$ s_{0} baa s_{2}	baa EOF	reduce 3				
\$ $s_{0} \mathrm{SN} \mathrm{s} \mathrm{s}_{1}$	baa EOF	shift 3				
\$ $s_{0} \mathrm{SN} \mathrm{s}_{1}$ baa s_{3}	EOF					

ACTION Table		
State	EOF	baa
0	-	shift 2
1	accept	shift 3
2	reduce 3	reduce 3
3	reduce 2	reduce 2

GOTO Table	
State	SheepNoise
0	1
1	0
2	0
3	0

Example Parse 2

The string baa baa

Example Parse 2

The string baa baa

Stack	Input	Action
$\$ s_{0}$	baa baa EOF	shift 2
$\$ s_{0}$ baa s_{2}	baa EOF	reduce 3
$\$ s_{0} S N s_{1}$	$\underline{\text { baa EOF }}$	shift 3
$\$ s_{0} S N s_{1}$ baa s_{3}	EOF	reduce 2
$\$ s_{0} S N s_{1}$	EOF	accept \dagger

ACTION Table		
State	EOF	baa
0	-	shift 2
1	accept	shift 3
2	reduce 3	reduce 3
3	reduce 2	reduce 2

GOTO Table	
State	SheepNoise
0	1
1	0
2	0
3	0

