## Introduction to Parsing

[^0]
## The Front End



Parser

- Checks the stream of words and their parts of speech (produced by the scanner) for grammatical correctness
- Determines if the input is syntactically well formed
- Guides checking at deeper levels than syntax
- Builds an IR representation of the code


## The Study of Parsing

The process of discovering a derivation for some sentence

- Need a mathematical model of syntax - a grammar $G$
- Need an algorithm for testing membership in L(G)

Roadmap for our study of parsing
1 Context-free grammars and derivations
2 Top-down parsing

- Generated LL(1) parsers \& hand-coded recursive descent parsers
3 Bottom-up parsing
- Generated LR(1) parsers


## Why Not Use Regular Languages \& DFAs?

Not all languages are regular
(RL's $\subset C F L$ 's $\subset C S L$ 's)
You cannot construct DFA's to recognize these languages

- $L=\left\{p^{k} q^{k}\right\}$
(correspondence between declarations and variables)
- $L=\left\{w c w^{r} \mid w \in \Sigma^{\star}\right\} \quad$ (parenthesis languages)

Neither of these is a regular language
To recognize these features requires an arbitrary amount of context (left or right ...)
But, this issue is somewhat subtle. You can construct DFA's for

- Strings with alternating 0's and 1's
( $\varepsilon \mid 1$ ) ( 01$)^{*}(\varepsilon \mid 0)$
- Strings with an even number of O's and 1's

RE's can count bounded sets and bounded differences
$\Rightarrow$ Cannot add parenthesis, brackets, begin-end pairs, ...

## A More Useful Grammar Than Sheep Noise

To explore the uses of CFGs, we need a more complex grammar

|  |  |  |  | Rule | Sentential Form |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | Expr | $\rightarrow$ | Expr Op Expr | - | Expr |
| 1 |  | 1 | num | 0 | Expr Op Expr |
| 2 |  | 1 | id | 2 | <id, $x$ 〉 Op Expr |
| 3 | Op | $\rightarrow$ | + | 4 | <id, $\underline{\text { ¢ }}$ - Expr |
| 4 |  | 1 | - | 0 | <id, $\underline{\chi}$ >-Expr Op Expr |
| 5 |  | \| | * | 1 | <id, $\underline{\text { < }}$ - <num, 2 > Op Expr |
| 6 |  | 1 | / | 5 | <id, ¢ > - <num, < $^{\text {< }}$ * Expr |
|  |  |  |  | 2 | $\langle i d, \underline{x}\rangle-\langle n u m, \underline{2}\rangle *\langle i d, y\rangle$ |

- Such a sequence of rewrites is called a derivation
- Process of discovering a derivation is called parsing
for the sequence of tokens $\langle i d, x\rangle\langle o p,-\rangle\langle n u m, 2\rangle\langle o p, *\rangle\langle i d, y\rangle$


## Derivations

## The goal of parsing is to construct a derivation

- At each step, we choose a nonterminal to replace
- Different choices can lead to different derivations

Two kind of derivations are of interest

- Leftmost derivation - replace leftmost NT at each step
- Rightmost derivation - replace rightmost NT at each step

These are the two systematic derivations
(We don't care about randomly-ordered derivations!)
The example on the preceding slide was a leftmost derivation

- Of course, there is also a rightmost derivation
- Interestingly, it turns out to be different


## The rightmost derivation of id - num *id

|  |  |  | Rule | Sentential Form |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | Expr | $\rightarrow$ Expr Op Expr | - | Expr Rightmost |  |  |
| 1 |  | 1 num | 0 | Expr Op Expr |  |  |
| 2 |  | 1 id | 2 | <id, ¢ > Op Expr | Rule | Sentential Form |
| 3 | Op | $\rightarrow+$ | 4 | <id, $\underline{\text { x }}$ - Expr | - | Expr Leftmost |
| 4 |  | 1 - | 0 | <id, x 〉-Expr Op Expr | 0 | Expr Op Expr |
| 5 |  | \| * | 1 | <id, $\underline{\underline{\prime}}$ > - <num, ${ }^{\text {2 }}$ > Op Expr | 2 | Expr Op <id, y > |
| 6 |  | $1 /$ |  |  | 5 | Expr * <id, $\mathrm{y}^{\text {s }}$ |
|  |  |  | 5 | <id, $\underline{\underline{x}}$ >- <num, ${ }^{2}$ < * Expr | 0 | Expr Op Expr * <id, y> |
|  |  |  | 2 | <id, $\underline{x}\rangle$ - <num, ${ }^{\text {c }}$ > * $\langle i d, y\rangle$ | 1 | Expr Op <num, ${ }^{\text {< }}$ * <id, $\mathbf{y}$ > |
|  |  |  |  | They are different! | 4 | Expr - <num, $\underline{L}^{\text {¢ }}$ * $\langle i d, y\rangle$ |
|  |  |  |  |  | 2 | <id, $\underline{\underline{\prime}}$ - <num, $\underline{\underline{\prime}}$ * * id, $\underline{\chi}\rangle$ |

## Derivations

## The goal of parsing is to construct a derivation

A derivation consists of a series of rewrite steps

$$
S \Rightarrow \gamma_{0} \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow \ldots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_{n} \Rightarrow \text { sentence }
$$

- Each $\gamma_{i}$ is a sentential form
- If $\gamma$ contains only terminal symbols, $\gamma$ is a sentence in $L(G)$
- If $\gamma$ contains 1 or more non-terminals, $\gamma$ is a sentential form
- To get $\gamma_{i}$ from $\gamma_{i-1}$, expand some NT $A \in \gamma_{i-1}$ by using $A \rightarrow \beta$
- Replace the occurrence of $A \in \gamma_{i-1}$ with $\beta$ to get $\gamma_{i}$
- In a leftmost derivation, it would be the first NT $A \in \gamma_{i-1}$

A left-sentential form occurs in a leftmost derivation
A right-sentential form occurs in a rightmost derivation

## The Two Derivations for $\underline{x}-\underline{2}^{*} \underline{y}$

| Rule | Sentential Form |  |
| :---: | :--- | :--- |
| - | Expr | Leftmost |
| 0 | Expr Op Expr |  |
| 2 | derivation |  |
| 4 | $\langle i d, \underline{x}\rangle$ Op Expr |  |
| 0 | $\langle i d, \underline{x}\rangle-$ Expr |  |
| 1 | $\langle i d, \underline{x}\rangle-$ Expr Op Expr |  |
| 5 | $\langle i d, \underline{x}\rangle-\langle n u m, \underline{2}\rangle$ Op Expr |  |
| 2 | $\langle i d, \underline{x}\rangle-\langle n u m, \underline{2}\rangle *\langle i d, \underline{y}\rangle$ |  |


| Rule | Sentential Form |
| :---: | :---: |
| - | ExprRightmost <br> derivation |
| 0 | Expr Op Expr |
| 2 | Expr Op <id, y > |
| 5 | Expr * <id, $\mathrm{y}^{\text {¢ }}$ > |
| 0 | Expr Op Expr * <id, $\mathbf{y}^{\text {s }}$ |
| 1 |  |
| 4 |  |
| 2 | <id, $\underline{x}\rangle-\langle n u m, \underline{2}\rangle$ * $\langle i d, y\rangle$ |

In both cases, Expr $\Rightarrow$ id - num * id

- The two derivations produce different parse trees
- The parse trees imply different evaluation orders!


## Derivations and Parse Trees

## Leftmost derivation

| Rule | Sentential Form |
| :---: | :--- |
| - | Expr |
| 0 | Expr Op Expr |
| 2 | $\langle i d, \underline{x}\rangle$ Op Expr |
| 4 | $\langle i d, \underline{x}\rangle-$ Expr |
| 0 | $\langle i d, \underline{x}\rangle-$ Expr Op Expr |
| 1 | $\langle i d, \underline{x}\rangle-\langle n u m, \underline{2}\rangle$ Op Expr |
| 5 | $\langle i d, \underline{x}\rangle-\langle n u m, \underline{2}\rangle$ Expr |
| 2 | $\langle i d, \underline{x}\rangle-\langle n u m, \underline{2}\rangle^{*}\langle i d, \underline{y}\rangle$ |



This evaluates as $\underline{x}-\left(\underline{2}^{*} \underline{y}\right)$

## Derivations and Parse Trees

| Rule | Sentential Form |
| :---: | :---: |
| - | Expr |
| 0 | Expr Op Expr |
| 2 | Expr Op <id, y> |
| 5 | Expr * <id, $\mathbf{y}^{\text {¢ }}$ |
| 0 | Expr Op Expr * <id, y > |
| 1 | Expr Op <num, 2 ¢ * <id, $\mathbf{y}^{\text {¢ }}$ > |
| 4 |  |
| 2 | $\langle i d, \underline{x}\rangle-\langle n u m, \underline{\underline{\prime}}$ > * $\langle i d, \underline{y}\rangle$ |

This evaluates as $(\underline{x}-\underline{2})^{*} \underline{y}$


This ambiguity is NOT good

## Derivations and Precedence

These two derivations point out a problem with the grammar:
It has no notion of precedence, or implied order of evaluation
To add precedence

- Create a nonterminal for each level of precedence
- Isolate the corresponding part of the grammar
- Force the parser to recognize high precedence subexpressions first

For algebraic expressions

- Parentheses first
(level 1 )
- Multiplication and division, next
(level 2)
- Subtraction and addition, las $\dagger$


## Derivations and Precedence

Adding the standard algebraic precedence produces:



Its parse tree
Both the leftmost and rightmost derivations give the same parse tree, because the grammar explicitly encodes the desired precedence.

## Ambiguous Grammars

Let's leap back to our original expression grammar.

It had other problems.


| Rule | Sentential Form |
| :---: | :--- |
| - | Expr |
| 0 | Expr Op Expr |
| 2 | $\langle i d, \underline{x}\rangle$ Op Expr |
| 4 | $\langle i d, \underline{x}\rangle-$ Expr |
| 0 | $\langle i d, \underline{x}\rangle-$ Expr Op Expr |
| 1 | $\langle i d, x\rangle-\langle n u m, \underline{2}\rangle$ Op Expr |
| 5 | $\langle i d, \underline{x}\rangle-\langle n u m, \underline{2}\rangle$ Expr |
| 2 | $\langle i d, \underline{x}\rangle-\langle n u m, \underline{2}\rangle *\langle i d, \underline{y}\rangle$ |

- This grammar allows multiple leftmost derivations for $\underline{x}-\underline{2}$ * $\mathbb{Z}$
- Hard to automate derivation if $>1$ choice


## Two Leftmost Derivations for $x-2^{*} y$

The Difference:

- Different productions chosen on the second step

| Rule | Sentential Form |
| :---: | :--- |
| - | Expr Original choice |
| 0 | Expr Op Expr |
| 2 | $\langle i d, \underline{x}\rangle$ Op Expr |
| 4 | $\langle i d, \underline{x}\rangle-$ Expr |
| 0 | $\langle i d, \underline{x}\rangle-$ Expr Op Expr |
| 1 | $\langle i d, \underline{x}\rangle-\langle n u m, \underline{\underline{2}}\rangle$ Op Expr |
| 5 | $\langle i d, \underline{x}\rangle-\langle n u m, \underline{\underline{2}}\rangle$ Expr |
| 1 | $\langle i d, \underline{x}\rangle-\langle n u m, \underline{\underline{2}}\rangle *\langle i d, \underline{y}\rangle$ |


| Rule | Sentential Form |
| :---: | :--- |
| - | Expr $\quad$ New choice |
| 0 | Expr Op Expr |
| (0) | Expr Op Expr Op Expr |
| 2 | $\langle i d, \underline{x}\rangle$ Op Expr Op Expr |
| 4 | $\langle i d, \underline{x}\rangle-$ Expr Op Expr |
| 1 | $\langle i d, \underline{x}\rangle-\langle n u m, \underline{2}\rangle$ Op Expr |
| 5 | $\langle i d, \underline{x}\rangle-\langle n u m, \underline{\underline{2}}$ * Expr |
| 2 | $\langle i d, \underline{x}\rangle-\langle n u m, \underline{2}\rangle *\langle i d, \underline{y}\rangle$ |

- Both derivations succeed in producing $x-2^{*} y$


## Two Leftmost Derivations for $x-2$ * $y$

The Difference:

- Different productions chosen on the second step

| Rule | Sentential Form | Rule | Sentential Form |
| :---: | :---: | :---: | :---: |
| - | Expr | - | Expr |
| 0 | Expr Op Expr | 0 | Expr Op Expr |
| 2 | <id, $\underline{\text { ¢ }}$ Op Expr | ) | Expr Op Expr Op Expr |
| 4 | <id, $\underline{\chi}$ > - Expr | 2 | <id, $\underline{\text { < }}$ Op Expr Op Expr |
| 0 | <id, $\underline{\text { ¢ }}$ - Expr Op Expr | 4 | <id, $\underline{\chi}$ 〉- Expr Op Expr |
| 1 | <id, $\underline{\underline{\prime}}$ > - <num, $\underline{\text { < }}$ > Op Expr | 1 | <id, $\underline{\text { < }}$ - <num, $\underline{\text { < }}$ > Op Expr |
| 5 | <id, $\underline{\chi}\rangle-<n u m, \underline{\text { ¢ }}$ * Expr | 5 | <id, $\underline{\text { x }}$ - <num, $\underline{\text { < }}$ * Expr |
| 2 | $\langle i d, \underline{x}\rangle-\langle n u m, \underline{2}\rangle *\langle i d, \underline{x}\rangle$ | 2 |  |

We are in the same situation! A different choice is possible!

## Ambiguous Grammars

Definitions

- If a grammar has more than one leftmost derivation for a single sentential form, the grammar is ambiguous
- If a grammar has more than one rightmost derivation for a single sentential form, the grammar is ambiguous
- The leftmost and rightmost derivations for a sentential form may differ, even in an unambiguous grammar
- However, they must have the same parse tree!

Classic example - the if-then-else problem
Stmt $\rightarrow$ if Expr then Stmt
| if Expr then Stmt else Stmt
| ... other stmts ...
This ambiguity is inherent in the grammar

## Ambigous grammar

I if Expr then Stmt else Stmt
if $E_{1}$ then if $E_{2}$ then $S_{1}$ else $S_{2}$ has two different parse trees


The problem is that the structure built by the parser will determine the interpretation of the code, and these two forms have different meanings!

## Ambiguity

Removing the ambiguity

- Must rewrite the grammar to avoid generating the problem
- Match each else to innermost unmatched if (common sense rule)


With this grammar, the example has only one rightmost derivation
Intuition: once into WithElse, we cannot generate an unmatched else
... an if without an else can only come through rule 0...

## Ambiguity

if $E_{1}$ then if $E_{2}$ then $S_{1}$ else $S_{2}$
Rule Sentential Form

- Stmt

0 if Expr then Stmt
1 if Expr then if Expr then WithElse else Stmt
2 if Expr then if Expr then WithElse else $S_{2}$
4 if Expr then if Expr then $S_{1}$ else $S_{2}$
if Expr then if $E_{2}$ then $S_{1}$ else $S_{2}$
if $E_{1}$ then if $E_{2}$ then $S_{1}$ else $S_{2}$
Other productions to derive Exprs
This grammar has only one rightmost derivation for the example

## Deeper Ambiguity

Ambiguity usually refers to confusion in the CFG
Overloading can create deeper ambiguity
$a=f(17)$
In many Algol-like languages, $f$ could be either a function or a subscripted variable

Disambiguating this one requires context

- Need values of declarations
- Really an issue of type, not context-free syntax
- Requires an extra-grammatical solution (not in CFG)
- Must handle these with a different mechanism
- Step outside grammar rather than use a more complex grammar


## Ambiguity - the Final Word

Ambiguity arises from two distinct sources

- Confusion in the context-free syntax
- Confusion that requires context to resolve
(if-then-else)
(overloading)

Resolving ambiguity

- To remove context-free ambiguity, rewrite the grammar
- To handle context-sensitive ambiguity takes cooperation
- Knowledge of declarations, types, ...
- Accept a superset of $L(G)$ \& check it by other means (Context Sensitive analysis)
- This is a language design problem

Sometimes, the compiler writer accepts an ambiguous grammar

- Parsing techniques that "do the right thing"
- i.e., always select the same derivation


## Exercises

Say if the following grammars are ambiguous:
$A \rightarrow A b A \mid c$

S : : = a | SS
$\mathrm{S}::=()|(\mathrm{S})| \mathrm{S}$ S
S ::= $\quad$ | $\mathrm{a} \mid \mathrm{aR}$
R ::= b | bS
and propose equivalent non ambiguous grammars

## Parsing Techniques

Top-down parsers (LL(1), recursive descent)

- Start at the root of the parse tree and grow toward leaves
- Pick a production \& try to match the input
- Bad "pick" $\Rightarrow$ may need to backtrack
- Some grammars are backtrack-free

Bottom-up parsers (LR(1), operator precedence)

- Start at the leaves and grow toward root
- As input is consumed, encode possibilities in an internal state
- Start in a state valid for legal first tokens
- Bottom-up parsers handle a large class of grammars


## Top-down Parsing

A top-down parser starts with the root of the parse tree
The root node is labeled with the goal symbol of the grammar
Top-down parsing algorithm:
Construct the root node of the parse tree Repeat until lower fringe of the parse tree matches the input string
1 At a node labeled $A$, select a production with $A$ on its Ihs and, for each symbol on its rhs, construct the appropriate child
2 When a terminal symbol is added to the border and it doesn't match the border, backtrack
3 Find the next node to be expanded
The key is picking the right production in step 1

- That choice should be guided by the input string

Remember the expression grammar?
We will call this version "the classic expression grammar"

```
O Goal }->\mathrm{ Expr
Expr }->\mathrm{ Expr + Term
2 | Expr-Term
3 | Term
And the input x- 2**
Term Term* Factor
| Term/Factor
| Factor
Factor }->\mathrm{ (Expr)
| number
9 | id
```


## Example

Let's try $\underline{x}-\underline{2}$ * $\underline{:}$

$\uparrow$ is the position in the input buffer


This worked well, except that "-" doesn't match "+"
The parser must backtrack to here

## Example

Continuing with $\underline{x}-\underline{2}^{*} \underline{y}$ :



## Example

Trying to match the " 2 " in $\underline{x}-\underline{2}^{*} \underline{y}$ :

| Rule | Sentential Form | Input |
| :---: | :--- | :--- |
| $\rightarrow$ | $\langle i d, \underline{x}\rangle-$ Term | $\underline{x}-\uparrow \underline{2}^{*} \underline{y}$ |
| 6 | $\langle i d, \underline{x}\rangle-$ Factor | $\underline{x}-\uparrow \underline{2}^{*} \underline{y}$ |
| 8 | $\langle i d, \underline{x}\rangle-\langle n u m, \underline{\underline{x}}\rangle$ | $\underline{x}-\uparrow \underline{2}^{*} \underline{y}$ |
| $\rightarrow$ | $\langle i d, \underline{x}\rangle-\langle n u m, \underline{\underline{2}}\rangle$ | $\underline{x}-\underline{2} \uparrow^{*} \underline{y}$ |

Where are we?

- "2" matches "2"

- We have more input, but no NTs left to expand
- The expansion terminated too soon
$\Rightarrow$ Need to backtrack

The Point:The parser must make the right choice when it expands a NT. Wrong choices lead to wasted effort.

Trying again with "2" in $\underline{x}-\underline{2}^{*} \underline{y}$ :

| Rule | Sentential Form | Input |
| :---: | :---: | :---: |
| $\rightarrow$ | <id, $\underline{\text { < }}$ - Term | $\underline{x}-\uparrow \underline{2} * \underline{1}$ |
| 4 | 〈id, $\underline{\chi}$ 〉- Term * Factor | $\underline{x}-\uparrow \underline{2}^{*} \underline{z}$ |
| 6 | <id, $\underline{x}\rangle$ - Factor * Factor | $\underline{x}-\uparrow \underline{2} * \underline{y}$ |
| 8 | <id, $\underline{\underline{\prime}}$ - <num, 2> * Factor | $\underline{x}-\uparrow \underline{2}{ }^{*} \underline{y}$ |
| $\rightarrow$ | $\langle i d, \underline{x}\rangle-\langle n u m, \underline{2}\rangle$ * Factor | $\underline{x}-\underline{2} \uparrow^{\star} \underline{1}$ |
| $\rightarrow$ | <id, $\underline{\underline{\prime}}$ - <num, ${ }^{\text {c }}$ > * Factor | $\underline{x}-\underline{2}$ * $\uparrow \underline{y}$ |
| 9 | $\langle i d, \underline{x}\rangle-\langle n u m, \underline{\underline{\prime}}\rangle^{*}\langle i d, \underline{y}$ | $\underline{x}-\underline{2}$ * $\uparrow \underline{y}$ |
| $\rightarrow$ | $\langle i d, \underline{x}\rangle-\langle n u m, \underline{\underline{2}}\rangle^{*}\langle i d, \underline{y}$ | $\underline{x}-\underline{2} * \underline{1}$ |



## Another possible parse

Other choices for expansion are possible

| Rule | Sentential Form | Input |
| :---: | :---: | :---: |
| - | Goal | $\uparrow \underline{x}-\underline{2}^{*} y$ |
| 0 | Expr | $\sqrt{\underline{x}}-\underline{2 *}$ |
| 1 | Expr + Term | $\uparrow \underline{x}$ - ${ }^{\text {* }}$ |
| 1 | Expr + Term + Term | $\underline{x}-\underline{2}$ * |
| 1 | Expr + Term + Term + Term | 1x-2* |
| 1 | And so on .... | $\uparrow \underline{x}-\underline{2}^{*} \underline{y}$ |

This expansion doesn't terminate

- Wrong choice of expansion leads to non-termination
- Non-termination is a bad property for a parser to have
- Parser must make the right choice


## The property that we just saw: Left Recursion

Top-down parsers cannot handle left-recursive grammars

Formally,
A grammar is left recursive if $\exists A \in N T$ such that
$\exists$ a derivation $A \Rightarrow^{+} A \alpha$, for some string $\alpha \in(N T \cup T)+$
Our classic expression grammar is left recursive

- This can lead to non-termination in a top-down parser
- In a top-down parser, any recursion must be right recursion
- We would like to convert the left recursion to right recursion

| 0 | Goal | $\rightarrow$ Expr |
| :--- | :--- | :--- |
| 1 | Expr | $\rightarrow$ Expr + Term |
| 2 |  | I Expr - Term |
| 3 |  | I Term |
| 4 | Term | $\rightarrow$ Term * Factor |
| 5 |  | \| Term / Factor |
| 6 |  | I Factor |
| 7 | Factor | (Expr ) |
| 8 |  | I number |
| 9 |  | I id |

Non-termination is always a bad property in a compiler

## Eliminating Left Recursion

To remove left recursion, we can transform the grammar
Consider a grammar fragment of the form
Fee $\rightarrow$ Fee $\alpha$
where $\beta$ does not start with Fee

We can rewrite this fragment as
Fee $\rightarrow \beta$ Fie
Fie $\rightarrow \alpha$ Fie
| $\varepsilon$
where Fie is a new non-terminal

The new grammar defines the same language as the old grammar, using only right recursion.

Added a reference to the empty string

## Eliminating Left Recursion

The expression grammar contains two cases of left recursion

| Expr | $\rightarrow$ Expr + Term | Term |
| ---: | :--- | ---: |
| \| Expr - Term |  | Term * Factor |
| \| Term |  | Term Factor |
|  | Factor |  |

Applying the transformation yields

| Expr | $\rightarrow$ Term Expr' | Term | $\rightarrow$ Factor Term |
| :--- | :--- | :--- | :--- |
| Expr' | $\rightarrow+$ Term Expr' | Term | $\rightarrow$ * Factor Term |
|  | $\mid-$ Term Expr' |  | $\mid /$ Factor Term |
|  | $\mid \varepsilon$ |  | $\mid$ |

These fragments use only right recursion
Right recursion often means right associativity. In this case, the grammar does not display any particular associative bias.

## Eliminating Left Recursion

Substituting them back into the grammar yields

| 0 | Goal |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Expr |  | Term Expr' | - This grammar is correct, but somewhat non-intuitive. |
| 2 | Expr' |  | + Term Expr' | - It is left associative, as was |
| 3 |  | \| | - Term Expr' | the original |
| 4 |  | 1 | $\varepsilon$ | $\Rightarrow$ The naïve transformation |
| 5 | Term |  | Factor Term' | yields a right recursive |
| 6 | Term' | $\rightarrow$ | * Factor Term' | grammar, which changes the |
| 7 |  | । | / Factor Term' | implicit associativity |
| 8 |  | 1 | $\varepsilon$ | - A top-down parser will |
| 9 | Factor |  | (Expr) | terminate using it. |
| 10 |  | \| | number | - even if it may still need to |
| 11 |  |  | id | backtrack with it. |

## Eliminating Left Recursion

The transformation eliminates immediate left recursion
What about more general, indirect left recursion?
The general algorithm:
arrange the NTs into some order $A_{1}, A_{2}, \ldots, A_{n}$
for $\mathrm{i} \leftarrow 1$ to n
for $s \leftarrow 1$ to $i-1$
replace each production $A_{i} \rightarrow A_{s} \gamma$ with $A_{i} \rightarrow \delta_{1 \gamma} \gamma\left|\delta_{2} \gamma\right| \ldots \mid \delta_{k} \gamma$,
where $A_{s} \rightarrow \delta_{1}\left|\delta_{2}\right| \ldots \mid \delta_{k}$ are all the current productions for $A_{s}$
eliminate any immediate left recursion on $A_{i}$ using the direct transformation

This assumes that the initial grammar has no cycles $\left(A_{i} \Rightarrow^{+} A_{i}\right)$, and no epsilon productions

## Eliminating Left Recursion

How does this algorithm work?

1. Impose arbitrary order on the non-terminals
2. Outer loop cycles through NT in order
3. Inner loop ensures that a production expanding $A_{i}$ has no nonterminal $A_{s}$ in its rhs, for $s$ < $i$
4. Last step in outer loop converts any direct recursion on $A_{i}$ to right recursion using the transformation showed earlier
5. New non-terminals are added at the end of the order \& have no left recursion

At the start of the $i^{\text {th }}$ outer loop iteration
For all $k$ < $i$, no production that expands $A_{k}$ contains a non-terminal $A_{s}$ in its rhs, for $s<k$

Fee $\rightarrow$ Fee $\alpha$
$\mathrm{Fee} \rightarrow \beta$ Fie

## Example

 $\mid \beta \xrightarrow{\text { rec elim }}$Fie $\rightarrow \alpha$ Fie $\varepsilon$

- Order of symbols: G, E, T



## Exercises

Eliminate left recursion from the following grammars:
grammatica I

S-->Aalb
A--> Ac ISdIe;
grammatica II
A $->$ Aal AAblc

## Picking the "Right" Production

If it picks the wrong production, a top-down parser may backtrack
Alternative is to look ahead in input \& use context to pick correctly
How much lookahead is needed?

- In general, an arbitrarily large amount

Fortunately,

- Large subclasses of CFGs can be parsed with limited lookahead
- Most programming language constructs fall in those subclasses

Among the interesting subclasses are $\operatorname{LL}(1)$ and $\operatorname{LR}(1)$ grammars
We start with LL(1) grammars \& predictive parsing

## LL(k) grammars

## Predictive Parsing

Basic idea
Given $A \rightarrow \alpha \mid \beta$, the parser should be able to choose (between $\alpha \& \beta$ ) the right production to expand A in the parser tree at each step

How can it do it?

Guided by the input string!

## LL(k) grammars

- An $L L(k)$ grammar is a context-free grammar that can be parsed by predictive parser (no backtracking) which reads the input Left to right and construct a Leftmost derivation looking to $k$ symbols in the input string
- A language that has a $L L(k)$ grammar is said an $L L(k)$ language
- $L L(k)$ is a grammar that can predict the right production to apply with lookhead of most $k$ symbols

$$
L L(0) \subset L L(1) \subset L L(2) \subset \ldots \subset L L(*)
$$

## Predictive Parsing

Basic idea
Given $A \rightarrow a \mid \beta$, the parser should be able to choose between $\alpha \& \beta$

The parser will decide what to choose on the base of the input and of the following sets:

- The FIRST set: $\operatorname{FIRST}(a)$ with $a \in(T \cup N T) *$
- The FOLLOW set: $\operatorname{FOLLOW}(A)$ with $A \in N T$


## The FIRST set

## FIRST sets

For some rhs $\alpha \in G$, define $\operatorname{FIRST}(\alpha)$ as the set of tokens that appear as the first symbol in some string that derives from $\alpha$
That is, $\underline{x} \in \operatorname{FIRST}(\alpha)$ iff $\alpha \Rightarrow^{*} \underline{x} \gamma$, for some $\gamma \quad$ We will learn how to compute it!

The LL(1) Property
If $A \rightarrow \alpha$ and $A \rightarrow \beta$ both appear in the grammar, we would like


This would allow the parser to make a correct choice with a lookahead of exactly one symbol!

## Example

| 0 1 | Goal <br> Expr |  | Expr <br> Term Expr' |  |
| :---: | :---: | :---: | :---: | :---: |
| 2 | Expr' | $\rightarrow$ | + Term Expr' |  |
| 3 |  | 1 | - Term Expr' | first(Expr') $=\{+,-, \varepsilon\}$ |
| 4 |  | 1 | $\varepsilon$ |  |
| 5 | Term | $\rightarrow$ | Factor Term' | But what else I need to consider? |
| 6 | Term' | $\rightarrow$ | * Factor Term ${ }^{\prime}$ | $\{$ eof, ) \} |
| 7 |  | 1 | / Factor Term' |  |
| 8 |  | \| | $\varepsilon$ |  |
| 9 | Factor | $\rightarrow$ | (Expr) |  |
| 10 |  | 1 | number |  |
| 11 |  |  | id |  |

## Predictive Parsing

What about $\varepsilon$-productions?
$\Rightarrow$ They complicate the definition of $\operatorname{LL}(1)$
If $A \rightarrow \alpha$ and $A \rightarrow \beta$ and $\varepsilon \in \operatorname{FIRST}(\alpha)$, then we need to ensure that FIRST( $\beta$ ) is disjoint from FOLLOW(A), too, where
Follow $(A)$ = the set of terminal symbols that can immediately follow $A$ in a sentential form

Define FIRST ${ }^{+}(A \rightarrow \alpha)$ as

Later we will learn how to compute them!

- FIRst $(\alpha) \cup$ Follow $(A)$, if $\varepsilon \in \operatorname{FIRST}(\alpha)$
- First( $\alpha$ ), otherwise

Then, a grammar is LL(1) iff $A \rightarrow \alpha$ and $A \rightarrow \beta$ implies

$$
\operatorname{FIRST} T^{+}(A \rightarrow \alpha) \cap \operatorname{FIRST} T^{+}(A \rightarrow \beta)=\varnothing
$$

## Predictive Parsing

Given a grammar that has the LL(1) property

- Can write a simple routine to recognize each Ihs
- Code is both simple \& fast

Consider $A \rightarrow \beta_{1}\left|\beta_{2}\right| \beta_{3}$, with

One kind of predictive parser is the recursive descent parser.
$\operatorname{FIRST}^{+}\left(A \rightarrow \beta_{\mathrm{i}}\right) \cap$ FIRST $^{+}\left(A \rightarrow \beta_{\mathrm{j}}\right)=\varnothing$ if $\mathrm{i} \neq \mathrm{j}$
/* find an $A$ */
if (current_word $\in$ FIRST+ $\left(A \rightarrow \beta_{1}\right)$ )
recognise a $\beta_{1}$ and return true
else if (current_word $\in \operatorname{FIRST}+\left(A \rightarrow \beta_{2}\right)$ )
recognise a $\beta_{2}$ and return true
else if (current_word $\in \operatorname{FIRST}+\left(A \rightarrow \beta_{3}\right)$ )
recognise a $\beta_{3}$ and return true
else
report an error and return false

Of course, there is more detail to " recognize a $\beta_{i}$ " a procedure for each nonterminal

## Recursive Descent Parsing

Recall the expression grammar, after transformation

| 0 | Goal |  | Expr |
| :---: | :---: | :---: | :---: |
| 1 | Expr | $\rightarrow$ | Term Expr' |
| 2 | Expr' | $\rightarrow$ | + Term Expr' |
| 3 |  | \| | - Term Expr' |
| 4 |  | 1 | $\varepsilon$ |
| 5 | Term | $\rightarrow$ | Factor Term' |
| 6 | Term' | $\rightarrow$ | * Factor Term' |
| 7 |  | 1 | / Factor Term' |
| 8 |  | 1 | $\varepsilon$ |
| 9 | Factor | $\rightarrow$ | (Expr) |
| 10 |  | 1 | number |
| 11 |  | 1 | id |

This produces a parser with six mutually recursive routines:

- Goal
- Expr
- EPrime
- Term
- TPrime
- Factor

Each recognizes one NT or $T$
The term descent refers to the direction in which the parse tree is built.

## Recursive Descent Parsing (Procedural)

A couple of routines from the expression parser they return a boolean

```
Goal()
    token \leftarrow next_token();
    if (Expr() = true & token = EOF)
        then next compilation step;
        else
            report syntax error;
            return false;
```

```
Expr()
    if (Term() = false)
        then return false;
        else return Eprime();
```


## Recursive Descent Parsing II

Eprime()
if (token = '+' OR token = '-‘)
then begin token $\leftarrow$ next_token( );
if Term( ) then return Eprime (); else report syntax error; end;
else if (token = ')' OR token = EOF ) then return true; else return false;

$$
\begin{array}{ccc}
2 & \text { Expr }^{\prime} \rightarrow & + \text { Term Expr' } \\
3 & & \mid- \text { Term Expr' } \\
4 & & \mid \varepsilon
\end{array}
$$

Term, \& Tprime follow the same basic lines

## Recursive Descent Parsing III



## Roadmap (Where are we?)

We set out to study parsing

- Specifying syntax
- Context-free grammars
- Top-down parsers
- Algorithm \& its problem with left recursion $\checkmark$
- Ambiguity $\sqrt{ }$
- Left-recursion removal $\checkmark$
- Predictive top-down parsing
- The LL(1) condition $\checkmark$
- Simple recursive descent parsers $\checkmark$
- Transforming a grammar to be LL(1)
- First and Follow sets
- Table-driven LL(1) parsers


## What If My Grammar Is Not LL(1)?

Can we transform a non-LL(1) grammar into an $\operatorname{LL}(1)$ grammar?

- In general, the answer is no, however, sometime it is yes

Assume a grammar $G$ with productions $A \rightarrow \alpha \beta_{1}$ and $A \rightarrow \alpha \beta_{2}$

- If $\alpha$ derives anything other than $\varepsilon$, then

$$
\text { FIRST+ }\left(A \rightarrow \alpha \beta_{1}\right) \cap \operatorname{FIRST}\left(A \rightarrow \alpha \beta_{2}\right) \neq \varnothing
$$

- And the grammar is not $\operatorname{LL}(1)$
- If we pull the common prefix, $\alpha$, into a separate production, we may make the grammar $\operatorname{LL}(1)$.

$$
A \rightarrow \alpha A^{\prime}, A^{\prime} \rightarrow \beta_{1} \text { and } A^{\prime} \rightarrow \beta_{2}
$$

Now, if FIRST $+\left(A^{\prime} \rightarrow \beta_{1}\right) \cap$ FIRST $+\left(A^{\prime} \rightarrow \beta_{2}\right)=\varnothing, G$ may be $\operatorname{LL}(1)$

## What If My Grammar Is Not LL(1)?

Left Factoring
For each nonterminal A
find the longest prefix a common to 2 or more alternatives for A

$$
\text { if } \alpha \neq \varepsilon \text { then }
$$

replace all of the productions

$$
\begin{aligned}
& A \rightarrow \alpha \beta_{1}\left|\alpha \beta_{2}\right| \alpha \beta_{3}|\ldots| \alpha \beta_{n} \mid \gamma \\
& \text { with } \\
& A \rightarrow \alpha A^{\prime} \mid \gamma \\
& A^{\prime} \rightarrow \beta_{1}\left|\beta_{2}\right| \beta_{3}|\ldots| \beta_{n}
\end{aligned}
$$

Repeat until no nonterminal has alternative rhs' with a common prefix

This transformation makes some grammars into LL(1) grammars
There are languages for which no LL(1) grammar exists

## Left Factoring Example

Consider a simple right-recursive expression grammar

| 0 | Goal | $\rightarrow$ | Expr |
| :---: | :---: | :---: | :---: |
| 1 | Expr | $\rightarrow$ | Term + Expr |
| 2 |  | 1 | Term-Expr |
| 3 |  | 1 | Term |
| 4 | Term | $\rightarrow$ | Factor * Term |
| 5 |  | \| | Factor / Term |
| 6 |  | \| | Factor |
| 7 | Factor | $\rightarrow$ | number |
| 8 |  | 1 | id |

To choose between 1, 2, \& 3, an $\operatorname{LL}(1)$ parser must look past the number or id to see the operator.
$\operatorname{FIRST}^{+}(1)=\operatorname{FIRST}^{+}(2)=\operatorname{FIRST}^{+}(3)$ and
$\operatorname{FIRST}^{+}(4)=\operatorname{FIRST}^{+}(5)=\operatorname{FIRST}^{+}(6)$
Let's left factor this grammar.

## Left Factoring Example

After Left Factoring, we have

| 0 | Goal | $\rightarrow$ | Expr |
| :--- | :--- | :--- | :--- |
| 1 | Expr | $\rightarrow$ | Term Expr' |
| 2 | Expr' | $\rightarrow$ | + Expr |
| 3 |  | $\mid$ | - Expr |
| 4 |  | $\mid$ | $\varepsilon$ |
| 5 | Term | $\rightarrow$ | Factor Term |
| 6 | Term' | $\rightarrow$ | * Term |
| 7 |  | $\mid$ | $/$ Term |
| 8 |  | $\mid$ | $\varepsilon$ |
| 9 | Factor | $\rightarrow$ | number |
| 10 |  | $\mid$ | id |

Clearly,

## FIRST+(2), FIRST+(3), \& FIRST+(4)

are disjoint, as are
FIRST ${ }^{+}(6), \operatorname{FIRST}^{+}(7), \&$ FIRST $^{+}(8)$
The grammar now has the $\operatorname{LL}(1)$ property

## First and Follow Sets

FIRST( $\alpha$ )
For some $\alpha \in(T \cup N T)^{*}$, define $\operatorname{FIRST}(\alpha)$ as the set of symbols that appear as the first one in some string that derives from $\alpha$
That is, $\underline{x} \in \operatorname{FIRST}(\alpha)$ iff $\alpha \Rightarrow^{*} \underline{x} \gamma$, for some $\gamma$
Follow(A)
For some $A \in N T$, define Follow $(A)$ as the set of symbols that can occur immediately after $A$ in a valid sentential form
FOLLOW(S) $=\{$ EOF\}, where $S$ is the starting symbol
To build Follow sets, we need FIRst sets ...

## Computing FIRST Sets

For a grammar symbol $X, \operatorname{FIRST}(X)$ is defined as follows.

- For every terminal $X, \operatorname{FIRST}(X)=\{X\}$.
- For every nonterminal $X$, if $X \rightarrow Y_{1} Y_{2} \ldots Y_{n}$ is a production, then
- $\operatorname{FIRST}\left(Y_{1}\right) \subseteq$ FIRST $(X)$.
- Furthermore, if $Y_{1}, Y_{2}, \ldots, Y_{k}$ are nullable $\left(Y_{i}{ }^{*}>\varepsilon\right)$ then $\operatorname{FIRST}\left(\mathrm{Y}_{\mathrm{k}+1}\right) \subseteq \operatorname{FIRST}(\mathrm{X})$.


## FIRST

- We are concerned with FIRST $(X)$ only for the nonterminals of the grammar
- FIRST(X) for terminals is trivial
- According to the definition, to determine FIRST(A), we mus $\dagger$ inspect all productions that have $A$ on the left


## FIRST Example

Let the grammar be

## Find FIRST(E)

$$
\begin{aligned}
& E \rightarrow \mathrm{~T}^{\prime} \\
& \mathrm{E}^{\prime} \rightarrow+\mathrm{T}^{\prime} \mid \varepsilon \\
& \mathrm{T} \rightarrow \mathrm{~F} \mathrm{~T}^{\prime} \\
& \mathrm{T}^{\prime} \rightarrow{ }^{\star} \mathrm{F} \mathrm{~T}^{\prime} \mid \varepsilon \\
& \mathrm{F} \rightarrow(\mathrm{E}) \mid \text { id } \mid \text { num }
\end{aligned}
$$

- E occurs on the left in only one production

$$
E \rightarrow T E^{\prime}
$$

- Therefore, $\operatorname{FIRST}(T) \subseteq \operatorname{FIRST}(E)$
- Furthermore, $T$ is not nullable

Therefore, $\operatorname{FIRST}(E)=\operatorname{FIRST}(T)$

- We have yet to determine FIRST(T)

FIRST Example

| Let the grammar be | Find FIRST(T) |
| :--- | :---: |
| $E \rightarrow T E^{\prime}$ | Toccurs on the left in only |
| one production |  |
| $E^{\prime} \rightarrow+T E^{\prime} \mid \varepsilon$ | $T \rightarrow F T^{\prime}$ |
| $T \rightarrow F T^{\prime}$ |  |
| $T^{\prime} \rightarrow{ }^{*} F T^{\prime} \mid \varepsilon$ | Therefore, $\operatorname{FIRST}(F) \subseteq \operatorname{FIRST}(T)$ |
| $F \rightarrow(E) \mid$ id $\mid$ num |  |

Find FIRST(T)

$$
E \rightarrow T E^{\prime}
$$

one production

$$
\mathrm{T} \rightarrow \mathrm{~F}^{\prime}
$$

- Therefore, $\operatorname{FIRST}(F) \subseteq \operatorname{FIRST}(T)$
- Furthermore, $F$ is not nullable
- Therefore, $\operatorname{FIRST}(T)=\operatorname{FIRST}(F)$
- We have yet to determine FIRST(F)

FIRST Example

Let the grammar be

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T} \mathrm{E}^{\prime} \\
& \mathrm{E}^{\prime} \rightarrow+\mathrm{T} \mathrm{E}^{\prime} \mid \varepsilon \\
& \mathrm{T} \rightarrow \mathrm{~F} \mathrm{~T}^{\prime} \\
& \mathrm{T}^{\prime} \rightarrow \star \mathrm{F} \mathrm{~T}^{\prime} \mid \varepsilon \\
& \mathrm{F} \rightarrow(\mathrm{E}) \mid \text { id } \mid \text { num }
\end{aligned}
$$

- Find FIRST(F).

FIRST(F) $=\{($, id, num $\}$

- Therefore,
- $\operatorname{FIRST}(E)=\{($, id, num $\}$
- $\operatorname{FIRST}(T)=\{($, id, num $\}$
- Find FIRST(E')
- $\operatorname{FIRST}\left(E^{\prime}\right)=\{+\}$
- Find FIRST( $\mathrm{T}^{\prime}$ )
- $\operatorname{FIRST}\left(T^{\prime}\right)=\{\star\}$


## Computing FOLLOW Sets

For a grammar symbol $X, F O L L O W(X)$ is defined as follows

- If $S$ is the start symbol, then EOF $\in$ FOLLOW(S)
- If $A \rightarrow a B \beta$ is a production, then $\operatorname{FIRST}(\beta) \subseteq \operatorname{FOLLOW}(B)$
- If $A \rightarrow a B$ is a production, or $A \rightarrow a B B$ is a production and $\beta$ is nullable, then $\operatorname{FOLLOW}(A) \subseteq$ FOLLOW $(B)$


## FOLLOW

- We are concerned about FOLLOW $(X)$ only for the nonterminals of the grammar.
- According to the definition, to determine FOLLOW(A), we must inspect all productions that have $A$ on the right.


## FOLLOW Example

Let the grammar be

$$
\begin{aligned}
& E \rightarrow \mathrm{~T}^{\prime} \\
& \mathrm{E}^{\prime} \rightarrow+\mathrm{T}^{\prime} \mid \varepsilon \\
& \mathrm{T} \rightarrow \mathrm{~F} \mathrm{~T}^{\prime} \\
& \mathrm{T}^{\prime} \rightarrow{ }^{\star} \mathrm{F} \mathrm{~T}^{\prime} \mid \varepsilon \\
& \mathrm{F} \rightarrow(\mathrm{E}) \mid \text { id } \mid \text { num }
\end{aligned}
$$

Find FOLLOW(E).

- $E$ is the start symbol, therefore EOF $\in \operatorname{FOLLOW}(E)$.
- E occurs on the right in only one production.

$$
F \rightarrow(E) .
$$

- Therefore FOLLOW(E) = \{EOF, )


## FOLLOW Example

Let the grammar be

$$
\begin{aligned}
& E \rightarrow \mathrm{~T}^{\prime} \\
& \mathrm{E}^{\prime} \rightarrow+\mathrm{T} \mathrm{E}^{\prime} \mid \varepsilon \\
& \mathrm{T} \rightarrow \mathrm{~F} \mathrm{~T}^{\prime} \\
& \mathrm{T}^{\prime} \rightarrow{ }^{\star} \mathrm{F} \mathrm{~T}^{\prime} \mid \varepsilon \\
& \mathrm{F} \rightarrow(\mathrm{E}) \mid \text { id } \mid \text { num }
\end{aligned}
$$

## Find FOLLOW(E').

$E^{\prime}$ occurs on the right in two productions.

$$
\begin{aligned}
& E \rightarrow T E^{\prime} \\
& E^{\prime} \rightarrow+T E^{\prime}
\end{aligned}
$$

Therefore,
FOLLOW(E') = FOLLOW(E) = \{EOF, ) \}

## FOLLOW Example

Let the grammar be

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T} \mathrm{E}^{\prime} \\
& \mathrm{E}^{\prime} \rightarrow+\mathrm{T} \mathrm{E}^{\prime} \mid \varepsilon . \\
& \mathrm{T} \rightarrow \mathrm{~F} \mathrm{~T}^{\prime} \\
& \mathrm{T}^{\prime} \rightarrow{ }^{\star} \mathrm{F} \mathrm{~T}^{\prime} \mid \varepsilon . \\
& \mathrm{F} \rightarrow(\mathrm{E}) \mid \text { id } \mid \text { num }
\end{aligned}
$$

## Find FOLLOW(T)

- Toccurs on the right in two productions

$$
\begin{aligned}
& E \rightarrow T E^{\prime} \\
& E^{\prime} \rightarrow+T E^{\prime}
\end{aligned}
$$

- Therefore, FOLLOW(T) contains FIRST(E') $=\{+\}$
- However, $\mathrm{E}^{\prime}$ is nullable, therefore it also contains

$$
\begin{aligned}
& \text { FOLLOW }(E)=\{E O F,)\} \text { and } \\
& \text { FOLLOW } \left.\left(E^{\prime}\right)=\{E O F,)\right\}
\end{aligned}
$$

- Therefore, $\operatorname{FOLLOW}(T)=\{+, E O F)$,


## FOLLOW Example

Let the grammar be

$$
\begin{aligned}
& E \rightarrow \mathrm{~T}^{\prime} \\
& \mathrm{E}^{\prime} \rightarrow+\mathrm{T} \mathrm{E}^{\prime} \mid \varepsilon . \\
& \mathrm{T} \rightarrow \mathrm{~F} \mathrm{~T}^{\prime} \\
& \mathrm{T}^{\prime} \rightarrow{ }^{\star} \mathrm{F} \mathrm{~T}^{\prime} \mid \varepsilon . \\
& \mathrm{F} \rightarrow(\mathrm{E}) \mid \text { id } \mid \text { num }
\end{aligned}
$$

## Find FOLLOW(T')

- $T^{\prime}$ occurs on the right in two productions.

$$
\begin{aligned}
& \mathrm{T} \rightarrow \mathrm{~F} \mathrm{~T}^{\prime} \\
& \mathrm{T}^{\prime} \rightarrow \mathrm{F}^{\prime}
\end{aligned}
$$

- Therefore,
$\operatorname{FOLLOW}\left(T^{\prime}\right)=\operatorname{FOLLOW}(T)=\{E O F$,$) ,$
+\}.


## FOLLOW Example

## Find FOLLOW(F)

Let the grammar be

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T} \mathrm{E}^{\prime} \\
& \mathrm{E}^{\prime} \rightarrow+\mathrm{T} E^{\prime} \mid \varepsilon \\
& \mathrm{T} \rightarrow \mathrm{~F} \mathrm{~T}^{\prime} \\
& \mathrm{T}^{\prime} \rightarrow{ }^{\star} \mathrm{F} \mathrm{~T}^{\prime} \mid \varepsilon \\
& \mathrm{F} \rightarrow(\mathrm{E}) \mid \text { id } \mid \text { num }
\end{aligned}
$$

- Foccurs on the right in two productions.

$$
\begin{aligned}
& \mathrm{T} \rightarrow \mathrm{~F} \mathrm{~T}^{\prime} \\
& \mathrm{T}^{\prime} \rightarrow{ }^{*} \mathrm{~F} \mathrm{~T}^{\prime}
\end{aligned}
$$

- Therefore, FOLLOW $(F)$ contains FIRST(T') $=\{\star\}$
- However, $T^{\prime}$ is nullable, therefore it also contains
$\operatorname{FOLLOW}(T)=\{+, E O F)$,$\} and$ FOLLOW ( $T^{\prime}$ ) $=\{$ EOF, $\left.),+\right\}$
- Therefore, FOLLOW(F) $=\{*, E O F),+$,$\} .$

| Symbol | FIRST | FOLLOW |
| :---: | :---: | :---: |
| num | num | $\varnothing$ |
| id | id | $\varnothing$ |
| + | + | $\varnothing$ |
| - | - | $\varnothing$ |
| * | * | $\varnothing$ |
| / | $/$ | $\varnothing$ |
| 1 | 1 | $\varnothing$ |
| 2 | 2 | $\varnothing$ |
| eof | eof | $\varnothing$ |
| $\varepsilon$ | $\varepsilon$ | $\varnothing$ |
| Goal | (,id, num | EOF |
| Expr | (,id, num | L, EOF |
| Expr' | +, -, $\varepsilon$ | 2, EOF |
| Term | (,id, num | +,.,.), EOF |
| Term' | *, /, $\varepsilon$ | +,.,.),EOF |
| Factor | (,id, num | +,.,-*, , , , , EOF |

## Classic Expression Grammar

|  |  |  | Prod'n | FIRST+ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 0 | (,id, num | Goal ->Expr |
| Symbol | FIRST | FOLLOW | 1 | (,id, num | Expr $\rightarrow$ Term Expr' |
| Goal | (,id, num | EOF |  |  |  |
| Expr | (,id, num | 2, EOF | 2 | + | Expr'-> +Term Expr |
| Expr' | +, -, $\varepsilon$ | 2, EOF | 3 | - | Expr'-> -Term Expr' |
| Term | (,id, num | +,-, ), EOF | 4 | 2,EOF | Expr'-> $\varepsilon$ |
| Term' | *, $1, \mathrm{\varepsilon}$ | +,-, ), EOF | 5 | (,id, num | Term-> Factor Term ${ }^{\text {' }}$ |
| Factor | (,id, num | $+,-, *, /),$, EOF | 6 | * | Term'->*Factor Term ${ }^{\prime}$ |
| Define FIRST+ $(A \rightarrow \alpha)$ as |  |  | 7 | 1 | Term'>/ Factor Term' |
|  |  |  | 8 | +,-, 2, EOF | Term'-> $\varepsilon$ |
| - ${ }^{\text {a }}$ if $\varepsilon \in \operatorname{FIRST}(\alpha)$ |  |  | 9 | number | Factor-> number |
|  |  |  | 10 | id | Factor-> id |
| - FIRST $(\alpha)$, |  | otherwise | 11 | 1 | Factor-> (Expr 2 |

## Building Top-down Parsers for LL(1) Grammars

Given an LL(1) grammar, and its FIRST \& Follow sets ...

- Emit a routine for each non-terminal
- Nest of if-then-else statements to check alternate rhs's
- Each returns true on success and throws an error on false
- Simple, working (perhaps ugly) code
- This automatically constructs a recursive-descent parser

Improving matters

- Nest of if-then-else statements may be slow
- Good case statement implementation would be better
- What about a table to encode the options?
- Interpret the table with a skeleton, as we did in scanning



## Building Top-down Parsers

Building the complete table

- Need a row for every NT \& a column for every T

|  | + | - | $*$ | $/$ | Id | Num | $($ | $)$ | EOF |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Goal | - | - | - | - | 0 | 0 | 0 | - | - |
| Expr | - | - | - | - | 1 | 1 | 1 | - | - |
| Expr' | 2 | 3 | - | - | - | - | - | 4 | 4 |
| Term | - | - | - | - | 5 | 5 | 5 | - | - |
| Term' | 8 | 8 | 6 | 7 | - | - | - | 8 | 8 |
| Factor | - | - | - | - | 10 | 9 | 11 | - | - |

## Building Top-down Parsers

Building the complete table

- Need a row for every NT \& a column for every T
- Need an interpreter for the table (skeleton parser)


## LL(1) Skeleton Parser

```
word }\leftarrow\mathrm{ NextWord() // Initial conditions, including
push $ onto Stack // a stack to track the border of the parse tree
push the start symbol, S, onto Stack
TOS \leftarrow top of Stack //we read the first symbol on the top of the stack
loop forever
    if TOS = $ and word = EOF then
        break & report success // exit on success
    else if TOS is a terminal then
        if TOS matches word then
            pop Stack // recognized TOS
            word }\leftarrow\mathrm{ NextWord()
        else report error looking for TOS // error exit
    else // TOS is a non-terminal
        if TABLE[TOS,word] is A->\mp@subsup{B}{1}{}\mp@subsup{B}{2}{}...\mp@subsup{B}{k}{}}\mathrm{ then
        pop Stack // get rid of A
        push }\mp@subsup{B}{k}{},\mp@subsup{B}{k-1}{},\ldots,\mp@subsup{B}{1}{}\quad// in that order
        else break & report error expanding TOS
    TOS \leftarrowtop of Stack
```


## Building Top-down Parsers

Building the complete table

- Need a row for every NT \& a column for every T
- Need a table-driven interpreter for the table
- Need an algorithm to build the table


## Filling the table

|  | + | - | $*$ | $/$ | Id | Num | $($ | $)$ | EOF |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Goal | - | - | - | - | 0 | 0 | 0 | - | - |
| Expr | - | - | - | - | 1 | 1 | 1 | - | - |
| Expr' | 2 | 3 | - | - | - | - | - | 4 | 4 |
| Term | - | - | - | - | 5 | 5 | 5 | - | - |
| Term' | 8 | 8 | 6 | 7 | - | - | - | 8 | 8 |
| Factor | - | - | - | - | 10 | 9 | 11 | - | - |


| Prod'n | FIRST+ |  |
| :---: | :---: | :---: |
| 0 | (,id,num | Goal ->Expr |
| 1 | (,id,num | Expr $\rightarrow$ Term Expr' |
| 2 | + | Expr'->+Term Expr ${ }^{\prime}$ |
| 3 | - | Expr'->-Term Expr' |
| 4 | 2,EOF | Expr'-> $\varepsilon$ |
| 5 | (,id, num | Term-> Factor Term' |
| 6 | * | Term'->*Factor Term' |
| 7 | / | Term' $\rightarrow$ / Factor Term' |
| 8 | +,-, L, EOF | Term'> ${ }^{\text {c }}$ |
| 9 | number | Factor-> number |
| 10 | id | Factor-> id |
| 11 | 1 | Factor-> (Expr) |

Filling in TABLE[X,y], $X \in N T, y \in T$

1. write the rule $X \rightarrow \beta$, if $y \in \operatorname{FIRST}^{+}(X \rightarrow \beta)$
2. write error if rule 1 does not apply

If any entry has more than one rule, $G$ is not
$\longrightarrow$ LL(1)
We call this algorithm the $\operatorname{LL}(1)$ table construction algorithm

## Actions of the LL(1) Parser for $x+y \times z$

| Rule | Stack | Input |  | 3 |  |  |  | Expr'-> +Term Expr' <br> Expr'> - Term Expr' |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \$ Goal | $\uparrow$ name + name x name |  | 4 |  | 2,EOF |  | Expr'- |  |  |  |
| 0 | \$ Expr | $\uparrow$ name + name $\times$ name |  | 5 |  | (.id, num |  | Term- | act | Ter |  |
| 1 | \$ Expr ${ }^{\prime}$ Term | $\uparrow$ name + name $\times$ name |  | 6 |  | * |  | Term' | Fact | Ter |  |
| 5 | \$ Expr ${ }^{\prime}$ Term' Factor | $\uparrow$ name + name $\times$ name |  | 7 |  | 1 |  | Term'- | Fact | Ter |  |
| 11 | \$ Expr ${ }^{\prime}$ Term' name | $\uparrow$ name + name x name |  | 8 |  | +,-, L, EOF |  | Term' |  |  |  |
| $\rightarrow$ | \$ Expr ${ }^{\prime}$ Term ${ }^{\prime}$ | name $\uparrow+$ name $\times$ name |  | 9 |  | number |  | Factor | nur |  |  |
| 8 | \$ Expr ${ }^{\prime}$ | name $\uparrow+$ name $x$ name |  | 10 |  | id |  | Factor |  |  |  |
| 2 | \$ Expr ${ }^{\prime}$ Term + | name $\uparrow+$ name $\times$ name |  | 11 |  | 1 |  | Factor | (E |  |  |
| $\rightarrow$ | \$ Expr ${ }^{\prime}$ Term | name $+\uparrow$ name $\times$ name |  |  |  |  |  |  |  |  |  |
| 5 | \$ Expr ${ }^{\prime}$ Term' Factor | name $+\uparrow$ name $\times$ name |  |  |  |  |  |  |  |  |  |
| 11 | \$ Expr ${ }^{\prime}$ Term' name | name $+\uparrow$ name $\times$ name |  | + | - | * 1 | Id | Num | 1 | ) | EOF |
| $\rightarrow$ | \$ Expr ${ }^{\prime}$ Term' | name + name $\uparrow \times$ name |  | + | - |  |  |  |  |  |  |
| 6 | \$ Expr ${ }^{\prime}$ Term' Factor x | name + name $\uparrow \times$ name | Goal | - | - | - | 0 | 0 | 0 | - | - |
| $\rightarrow$ | \$ Expr ${ }^{\prime}$ Term' Factor | name + name x $\uparrow$ name | Expr | - | - | - - | 1 | 1 | 1 | - | - |
| 11 | \$ Expr ${ }^{\prime}$ Term' name | name + name x $\uparrow$ name | Expr' | 2 | 3 | - - | - | - | - | 4 | 4 |
| $\rightarrow$ | \$ Expr ${ }^{\prime}$ Term ${ }^{\prime}$ | name + name $\times$ name $\uparrow$ | Term | - | - | - - | 5 | 5 | 5 | - | - |
| 8 | \$ Expr ${ }^{\prime}$ | name + name x name | Term' | 8 | 8 | 67 | - | - | - | 8 | 8 |
| 4 |  | name + name $\times$ name $\uparrow$ | Factor | - | - | - - | 10 | 9 | 11 | - | - |

## Actions of the LL(1) Parser for $x+/ y$

| Rule | Stack | Input |
| :---: | :---: | :---: |
| - | \$ Goal | $\uparrow$ name $+\div$ name |
| 0 | \$ Expr | $\uparrow$ name $+\div$ name |
| 1 | \$ Expr ${ }^{\prime}$ Term | $\uparrow$ name $+\div$ name |
| 5 | \$ Expr ${ }^{\prime}$ Term' Factor | $\uparrow$ name $+\div$ name |
| 11 | \$ Expr ${ }^{\text { }}$ Term' name | $\uparrow$ name $+\div$ name |
| $\rightarrow$ | \$ Expr ${ }^{\text { }}$ Term ${ }^{\prime}$ | name $\uparrow+\div$ name |
| 8 | \$ Expr ${ }^{\prime}$ | name $\uparrow+\div$ name |
| 2 | \$ Expr ${ }^{\prime}$ Term + | name $\uparrow+\div$ name |
| $\rightarrow$ | \$ Expr ${ }^{\text {\% }}$ Term | name $+\uparrow \div$ name |



## Exercises

Let G be the following grammar:
$S::=$ prog $B$ end
$B::=L B I L$
L::=xA
$A::=a \operatorname{AlxAl}$;

- Is $G$ in $L L(1)$ ? If yes, write its parsing table. If not, explain why.

Let $G$ be the grammar below:
S::= S U I x
$\mathrm{U}::=\mathrm{x}$ U UIx z

- Is $G$ in $\operatorname{LL}(1)$ ? If yes, write its parsing table. If not, explain why

S ::=Aulbv
$A=a \mid b A v$

- G e` in $\mathrm{LL}(1)$ ? If not modify the grammar (if it is possible) to make it $\mathrm{LL}(1)$ and then write its parsing table.



[^0]:    Copyright 2010, Keith D. Cooper \& Linda Torczon, all rights reserved.
    Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.
    Faculty from other educational institutions may use these materials for nonprofit educational purposes, provided this copyright notice is preserved.

