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Part of the compiler’s back end


Critical properties

• Produce correct code that uses no more than k registers

• Minimize added work from loads and stores that spill values

• Minimize space used to hold spilled values

• Operate efficiently 


O(n), O(n log2n), maybe O(n2), but not O(2n)

Notation: The literature on register 
allocation consistently uses k as the 
number of registers available on the 
target system.
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Consider a fragment of assembly code (or ILOC)

	 loadI 	 2 	 ⇒ r1	 // r1 ← 2

	 loadAI	 r0, @b 	⇒ r2	 // r2 ← b

	 mult 	 r1, r2 	 ⇒ r3	 // r3 ← 2 · b

	 loadAI	 r0, @a ⇒ r4	 // r4 ← a

	 sub  	 r4, r3 	 ⇒ r5	 // r5 ← a – (2 · b)


The Problem

• At each instruction, decide which values  to keep in registers


— Note: each pseudo-register in the example is a value

• Simple if  |values| ≤ |registers|

• Harder if |values| > |registers|

• The compiler must automate this process

From the allocation 
perspective, these 
registers are virtual 
or pseudo-registers

r0 holds base address for local variables

@x is constant offset of x from r0Register Allocation



The Task

• At each point in the code, pick the values to keep in registers

• Insert code to move values between registers & memory


— No transformations (leave that to optimization & scheduling)


• Minimize inserted code — both dynamic & static measures

• Make good use of any extra registers  


Allocation versus assignment

• Allocation is deciding which values to keep in registers

• Assignment is choosing specific registers for values

• This distinction is often lost in the literature 


The compiler must perform both allocation & assignment

Register Allocation



Background issues

• The register allocator  takes as input a code that is almost completely 
compiled


• It has been scanned, parsed, checked, analysed, optimised, rewritten 
as target machine code, and, perhaps, scheduled 


• Many previously made decisions influence the task of the allocator:

• Memory-to-memory  versus register-to- register  memory model


Additional complexity:

• Allocation vs Assignment


• Register Classes 



Values that can be kept in registers: Unambiguous values

• A value that can be accessed with just one name is unambiguous


• Only unambiguous value can be kept registers


int first, second, *p, *q;
...
first = *p; // store the value from the variable referred to by p in first
*q = 3;     // assign to the variable referred to by q
second = *p;     // store the value from the variable referred to by p in second

• After the assignment of first the compiler can keep the value of 
*p in a register only if it is sure that q and p points to different 
memory locations

Alias analysis 



Register-to -register vs. memory-to-memory

• With a register-to -register earlier phases in the compiler 
directly encode the knowledge about ambiguous  memory 
references: with this model unambiguous values are kept into 
virtual registers


• In a register-to -register the code produced by the previous step 
is not legal


• In a memory-to-memory model, the code is legal before allocation;

   allocation improve performance 


• In a memory-to-memory model the allocator does not have any 
knowledge and this can limit its ability



Allocation 

Allocation  is an hard problem that in its general formulation is NP-
complete.


The allocation of a single basic block with one size data value can be 
done in polynomial time under strong hypothesis:


-each value have to be stored to memory at the end of its lifetime (no 
constant,…)

-the spilling of value has uniform cost


any additional complexity makes the problem NP-complete



Allocation vs. Assignment

• Once we have reduced the demand for registers,

the assignment can be done in polynomial time for a machine with 
one kind of registers




Register Classes

• General purpose registers

• Integer values and memory addresses

• Floating-point registers (single and double precision)

• On some architectures also condition code, predicate registers 

or branch target registers


• If the compiler uses different kind of registers for different kinds 
of data, it can allocate each class independently: the problem can be 
simplified


• If the different kinds of data overlap, the compiler must allocate 
them together: the allocation can become more complex (single and 
double precision registers for floating-point )




Definition

— A basic block is a maximal length segment of straight-line 	

(i.e., branch free) code


Importance  	 	 	 

• Strongest facts are provable for branch-free code

• If any statement executes, they all execute 

• Execution is totally ordered 


Role of Basic Blocks in Optimization

• Many techniques for improving basic blocks

• Simplest problems

• Strongest methods

Ignore, for the 
moment, exceptions

Basic Blocks in Assembly Code (or ILOC)



• What is “local” ?                (different from “regional” or “global”)

— A local transformation operates on basic blocks

— Many optimizations are done on a local scale or scope


• Does local allocation solve the problem?

— It produces good register use inside a block

— Inefficiencies can arise at boundaries between blocks


• How many passes can the allocator make?

— This is an off-line problem

— As many passes as it takes, within reason


→ You can do a fine job in a couple of passes

Local Register Allocation



Optimal register allocation is hard


Real compilers face real problems

Local Allocation

• Simplified cases  ⇒ O(n)

• Real cases ⇒ NP-Complete


Global Allocation

• NP-Complete for 1 register

• NP-Complete for k registers

 (most sub-problems are NPC, too)

Local Assignment

• Single size, no spilling ⇒ O(n)

• Two sizes ⇒ NP-Complete


Global Assignment

• NP-Complete

Register Allocation



• Pseudo-code for a simple, abstracted RISC machine

— generated by the instruction selection process


• Simple, compact data structures

Nearly assembly code

• simple three-address code

• RISC-like addressing modes

   → I, AI, AO

• unlimited virtual registers 

(register-to-register   vs

 memory-to-memory)

loadI 2 ⇒ r1

loadAI r0, @b ⇒ r2

mult r1, r2 ⇒ r3

loadAI r0, @a ⇒ r4

sub r4, r3 ⇒ r5

a – 2 x b

ILOC



• Pseudo-code for a simple, abstracted RISC machine

— generated by the instruction selection process


• Simple, compact data structures

Quadruples:

• table of k x 4 small integers

• simple record structure

• easy to reorder

• all names are explicit

loadI 2 r1

loadAI r0 @b r2

add r1 r2 r3

loadAI r0 @a r4

sub r4 r3 r5

a – 2 x b

ILOC



The Register Allocator does not need to “understand” the code

• It needs to distinguish definitions from uses


— Definitions might need to store a spilled value

— Uses might need to load a spilled value


• ILOC makes definitions and uses pretty clear

— The assignment arrow, ⇒, separates uses from definitions


→ Except on the store operation, which uses all its register operands

store	 r8	 ⇒ r1	 // MEM(r1) ←r8


— That is the point of the arrow!


• Your allocator needs to know, by opcode, how many definitions and 
how many uses it should see


— Beyond that, the meaning of the ILOC is somewhat irrelevant to the 
allocator

Observations



A value is live between its definition and its uses

• Find definitions (x ← …) and uses (y ← … x ...)

• From definition to last use is its live range


— How does a second definition affect this?


• Can represent live range as an interval [i,j]   (in block)


Let MAXLIVE be the maximum, over each instruction i in the block, of 
the number of values (pseudo-registers) live at i. 


• If MAXLIVE ≤ k, allocation should be easy:                             	 	
no need to reserve F registers for spilling


• If MAXLIVE > k, some values must be spilled to memory:                             
	 	 need to reserve F registers for spilling


Finding live ranges is harder in the global case

Observations



Sample code sequence


	 loadI 	 1028 	 ⇒ r1	 // r1 ← 1028  

	 load	 r1 	 ⇒ r2	 // r2 ← MEM(r1) 

	 mult 	 r1, r2 	 ⇒ r3	 // r3 ← 1028 · y

	 load	 x 	 ⇒ r4	 // r4 ← x

	 sub  	 r4, r2 	 ⇒ r5	 // r5 ← x – y

	 load	 z 	 ⇒ r6	 // r6 ← z

	 mult 	 r5, r6 	 ⇒ r7	 // r7 ← z · (x – y)

	 sub  	 r7, r3 	 ⇒ r8	 // r8 ← z · (x – y) – (1028 · y)

	 store	 r8	 ⇒ r1	 // MEM(r1) ← z · (x – y) – (1028 · y)

The code uses 1028 as both an address and as a constant in the computation.  


The intent is to create a long live range for pedagogical purposes. Remember, the 
allocator does not need to understand the computation. It just needs to preserve 
the computation.

Store uses this register & 
defines a memory location.

Concrete Example of MAXLIVE



Live ranges in the example


	 loadI 	 1028	 ⇒ r1	 // r1

	 load	 r1 	 ⇒ r2	 // r1 r2 

	 mult 	 r1, r2 	 ⇒ r3	 // r1 r2 	r3

	 load	 x 	 ⇒ r4	 // r1 r2 	r3 r4

	 sub  	 r4, r2 	 ⇒ r5	 // r1	 r3      r5

	 load	 z 	 ⇒ r6	 // r1	 r3      r5 r6

	 mult 	 r5, r6 	 ⇒ r7	 // r1	 r3                r7

	 sub  	 r7, r3 	 ⇒ r8	 // r1                               r8

	 store	 r8	 ⇒ r1	 //

A pseudo-register is live 
after an operation if it has 
been defined & has a use in 
the future

Concrete Example of MAXLIVE

Remember, r1 is a use, 
not a definition 



Live ranges in the example


	 loadI 	 1028	 ⇒ r1	 // r1

	 load	 r1 	 ⇒ r2	 // r1 r2 

	 mult 	 r1, r2 	 ⇒ r3	 // r1 r2 	r3

	 load	 x 	 ⇒ r4	 // r1 r2 	r3 r4

	 sub  	 r4, r2 	 ⇒ r5	 // r1	 r3      r5

	 load	 z 	 ⇒ r6	 // r1	 r3      r5 r6

	 mult 	 r5, r6 	 ⇒ r7	 // r1	 r3                r7

	 sub  	 r7, r3 	 ⇒ r8	 // r1                               r8

	 store	 r8	 ⇒ r1	 //

Compute these “live” sets in a backward 
pass over the code.

Start with live as the empty set.

At each op, remove target & add operands

MAXLIVE is 4

Remember, r1 is a use, 
not a definition 

Concrete Example of MAXLIVE



Top-down allocator

• Work from external notion of what is important

• Assign registers in priority order

• Save some registers for the values relegated to memory


Bottom-up allocator

• Work from detailed knowledge about problem instance

• Incorporate knowledge of partial solution at each step

• Handle all values uniformly

Local Allocation:Top-down Versus Bottom-up 



The idea

• The most heavily used values should reside in a register 

• Reserve registers for use in spills, say r registers


Algorithm

• Count  the  number of occurrences of each virtual register in 

the block (from 2 to maxlenght(block))

• Sort the registers according to the previous info

• Allocate first k – r  values to registers

• Rewrite code to reflect these choices


Programmers applied this idea by hand in  the 70’s & early 80’s

Move values with no 
register into memory


(add LOADs & STOREs)

Top-down Allocator



How many registers must the allocator reserve?

• Need registers to compute spill addresses & load values

• Number depends on target architecture


— Typically, must be able to load 2 values


• Reserve these registers for spilling


What if  k – r  <  |values|  <  k ?

• Remember that the underlying problem is NP-Complete

• The allocator can either 


— Check for this situation

— Adopt a more complex strategy                            

— Accept the fact that the technique is an approximation

Top-down Allocator



Top down (3 registers)


	 loadI 	 1028 	 ⇒ r1	 // r1

	 load	 r1 	 ⇒ r2	 // r1 r2 

	 mult 	 r1, r2 	 ⇒ r3	 // r1 r2 	r3

	 load	 x 	 ⇒ r4	 // r1 r2 	r3 r4

	 sub  	 r4, r2 	 ⇒ r5	 // r1	 r3      r5

	 load	 z 	 ⇒ r6	 // r1	 r3      r5 r6

	 mult 	 r5, r6 	 ⇒ r7	 // r1	 r3                r7

	 sub  	 r7, r3 	 ⇒ r8	 // r1                               r8

	 store	 r8	 ⇒ r1	 //

Note that this assumes that no extra register is needed for spilling

r1 is used more 
often than r3

Back to the Example



Top down (3 registers, need 2 for operands)


	 loadI 	 1028 	 ⇒ r1	 // r1

	 load	 r1 	 ⇒ r2	 // r1 r2 

	 mult 	 r1, r2 	 ⇒ r3	 // r1 r2 	r3


	 load	 x 	 ⇒ r4	 // r1 r2 	r3 r4 

	 sub  	 r4, r2 	 ⇒ r5	 // r1	 r3      r5

	 load	 z 	 ⇒ r6	 // r1	 r3      r5 r6

	 mult 	 r5, r6 	 ⇒ r7	 // r1	 r3                r7


	 sub  	 r7, r3 	 ⇒ r8	 // r1                               r8

	 store	 r8	 ⇒ r1	 //

restore r3

Note that this assumes that no extra register is needed for spilling 

restore r3

r1 is used more 
often than r3

Back to the Example

      spill r3 

restore r3



Top down (3 registers, need 2 for operands)


	 loadI 	 1028 	 ⇒ r1	 // r1

	 load	 r1 	 ⇒ r2	 // r1 r2 

	 mult 	 r1, r2 	 ⇒ r3	 // r1 r2 	r3

      store          r3      	 ⇒ 16     // r1 r2

	 load	 x 	 ⇒ r4	 // r1 r2 	     r4

	 sub  	 r4, r2 	 ⇒ r5	 // r1	           r5

	 load	 z 	 ⇒ r6	 // r1	           r5 r6

	 mult 	 r5, r6 	 ⇒ r7	 // r1	                     r7

      load    16	              ⇒ r3     // r1       r3               r7

	 sub  	 r7, r3 	 ⇒ r8	 // r1                               r8

	 store	 r8	 ⇒ r1	 //

r3 becomes two 
minimal live ranges …

“spill” and “restore” become stores and loads

An Example



Top down (3 registers)


	 loadI 	 1028 	 ⇒ r1	 // r1

	 load	 r1 	 ⇒ r2	 // r1 r2 

	 mult 	 r1, r2 	 ⇒ r3	 // r1 r2 	r3

      store          r3     	⇒ 16     // r1 r2

	 load	 x 	 ⇒ r4	 // r1 r2 	     r4

	 sub  	 r4, r2 	 ⇒ r5	 // r1	           r5

	 load	 z 	 ⇒ r6	 // r1	           r5 r6

	 mult 	 r5, r6 	 ⇒ r7	 // r1	                     r7

      load        16	 ⇒ r3     // r1       r3               r7

	 sub  	 r7, r3 	 ⇒ r8	 // r1                               r8

	 store	 r8	 ⇒ r1	 //

The two short versions of r3 each overlap with fewer values, which 
simplifies the allocation problem.  Such “spilling” will (eventually) 
create a code where the allocator can succeed.

r3 becomes two 
minimal live ranges …

At most 3 
values live at 

each point

An Example



Top down (3 registers)


	 loadI 	 1028 	 ⇒ r1	 // r1

	 load	 r1 	 ⇒ r2	 // r1 r2 

	 mult 	 r1, r2 	 ⇒ r3	 // r1 r2 	r3

      store         r3      	⇒ 16     // r1 r2

	 loadI	 x 	 ⇒ r4	 // r1 r2 	     r4

	 sub  	 r4, r2 	 ⇒ r5	 // r1	           r5

	 loadI	 z 	 ⇒ r6	 // r1	           r5 r6

	 mult 	 r5, r6 	 ⇒ r7	 // r1	                     r7

      load    16	⇒ r3     // r1       r3               r7

	 sub  	 r7, r3 	 ⇒ r8	 // r1                               r8

	 store	 r8	 ⇒ r1	 //

This code is slower than the original, but it works correctly on a target 
machine with only three (available) registers.

Correctness is a virtue.

possible delay

An Example



Weakness of the top down approach to allocation

• A physical register is dedicated to a virtual register for an entire 
block



The idea:

• Focus on replacement rather than allocation

• Keep values used “soon” in registers


Algorithm (not optimal!):

• Start with empty register set

• Load on demand

• When no register is available, free one


Replacement:

• Spill the value whose next use is farthest in the future

• Prefer clean values (not to be stored that are constant or values 

already in memory) to dirty values (that need to be stored).

Bottom-up Allocator



Bottom up (3 registers)


	 loadI 	 1028 	 ⇒ r1	 // r1

	 load	 r1 	 ⇒ r2	 // r1 r2 

	 mult 	 r1, r2 	 ⇒ r3	 // r1 r2	r3

	 loadI	 x 	 ⇒ r4	 // r1 r2 	r3 r4

	 sub  	 r4, r2 	 ⇒ r5	 // r1 	 r3      r5

	 loadI	 z 	 ⇒ r6	 // r1	 r3      r5 r6

	 mult 	 r5, r6 	 ⇒ r7	 // r1	 r3                r7

	 sub  	 r7, r3 	 ⇒ r8	 // r1                               r8

	 store	 r8	 ⇒ r1	 //

Note that this assumes that no extra register is needed for spilling

All registers are used 
at this point

An Example



Bottom up (3 registers; need 2 for operands)


	 loadI 	 1028 	 ⇒ r1	 // r1

	 load	 r1 	 ⇒ r2	 // r1 r2 

	 mult 	 r1, r2 	 ⇒ r3	 // r1 r2	r3

	 loadI	 x 	 ⇒ r4	 // r1 r2 	r3 r4

	 sub  	 r4, r2 	 ⇒ r5	 // r1 	 r3      r5

	 loadI	 z 	 ⇒ r6	 // r1	 r3      r5 r6

	 mult 	 r5, r6 	 ⇒ r7	 // r1	 r3                r7

	 sub  	 r7, r3 	 ⇒ r8	 // r1                               r8

	 store	 r8	 ⇒ r1	 //

Note that this assumes that no extra register is needed for spilling

An Example

 store r1

restore r1



Bottom up (3 registers; need 2 for operands)


	 loadI 	 1028 	 ⇒ r1	 // r1

	 load	 r1 	 ⇒ r2	 // r1 r2 

	 mult 	 r1, r2 	 ⇒ r3	 // r1 r2	r3

      store	 r1	 ⇒ 20     //     r2 r3

	 loadI	 x 	 ⇒ r4	 //     r2 	r3 r4

	 sub  	 r4, r2 	 ⇒ r5	 //  	 r3      r5

	 loadI	 z 	 ⇒ r6	 // 	 r3      r5 r6

	 mult 	 r5, r6 	 ⇒ r7	 //    	 r3                r7

	 sub  	 r7, r3 	 ⇒ r8	 //                                  r8

      load    20	 ⇒ r1	 // r1                              r8

	 store	 r8	 ⇒ r1	 //

At most 3 
values live at 

each point

The two short versions of r1 each overlap with fewer values, which 
simplifies the allocation problem.  Such “spilling” will (eventually) 
create a code where the allocator can succeed.

An Example



From local algorithms to regional algorithms

• Extending local algorithms to regional ones can be difficult


• the only solution is to store back in memory the value of x at the 
end of B1 and B2 


• while we could add register to register operation for blue arrow no

possibility exists for the red arrow 

r4<-r3

r2<-r1


