
Local Register Allocation

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Part of the compiler’s back end

Critical properties

• Produce correct code that uses no more than k registers

• Minimize added work from loads and stores that spill values

• Minimize space used to hold spilled values

• Operate efficiently

O(n), O(n log2n), maybe O(n2), but not O(2n)

Notation: The literature on register
allocation consistently uses k as the
number of registers available on the
target system.

Register Allocation

Register

Allocation

Errors

IR Instruction

Selection

k registerInstruction

Scheduling

unlimited registers

Spill code: Loads and Stores

 inserted by the register allocator

unlimited registers

Consider a fragment of assembly code (or ILOC)

	 loadI 	 2 	 ⇒ r1	 // r1 ← 2

	 loadAI	 r0, @b 	⇒ r2	 // r2 ← b

	 mult 	 r1, r2 	 ⇒ r3	 // r3 ← 2 · b

	 loadAI	 r0, @a ⇒ r4	 // r4 ← a

	 sub 	 r4, r3 	 ⇒ r5	 // r5 ← a – (2 · b)

The Problem

• At each instruction, decide which values to keep in registers

— Note: each pseudo-register in the example is a value

• Simple if |values| ≤ |registers|

• Harder if |values| > |registers|

• The compiler must automate this process

From the allocation
perspective, these
registers are virtual
or pseudo-registers

r0 holds base address for local variables

@x is constant offset of x from r0Register Allocation

The Task

• At each point in the code, pick the values to keep in registers

• Insert code to move values between registers & memory

— No transformations (leave that to optimization & scheduling)

• Minimize inserted code — both dynamic & static measures

• Make good use of any extra registers

Allocation versus assignment

• Allocation is deciding which values to keep in registers

• Assignment is choosing specific registers for values

• This distinction is often lost in the literature

The compiler must perform both allocation & assignment

Register Allocation

Background issues

• The register allocator takes as input a code that is almost completely
compiled

• It has been scanned, parsed, checked, analysed, optimised, rewritten
as target machine code, and, perhaps, scheduled

• Many previously made decisions influence the task of the allocator:

• Memory-to-memory versus register-to- register memory model

Additional complexity:

• Allocation vs Assignment

• Register Classes

Values that can be kept in registers: Unambiguous values

• A value that can be accessed with just one name is unambiguous

• Only unambiguous value can be kept registers

int first, second, *p, *q;
...
first = *p; // store the value from the variable referred to by p in first
*q = 3; // assign to the variable referred to by q
second = *p; // store the value from the variable referred to by p in second

• After the assignment of first the compiler can keep the value of
*p in a register only if it is sure that q and p points to different
memory locations

Alias analysis

Register-to -register vs. memory-to-memory

• With a register-to -register earlier phases in the compiler
directly encode the knowledge about ambiguous memory
references: with this model unambiguous values are kept into
virtual registers

• In a register-to -register the code produced by the previous step
is not legal

• In a memory-to-memory model, the code is legal before allocation;

 allocation improve performance

• In a memory-to-memory model the allocator does not have any
knowledge and this can limit its ability

Allocation

Allocation is an hard problem that in its general formulation is NP-
complete.

The allocation of a single basic block with one size data value can be
done in polynomial time under strong hypothesis:

-each value have to be stored to memory at the end of its lifetime (no
constant,…)

-the spilling of value has uniform cost

any additional complexity makes the problem NP-complete

Allocation vs. Assignment

• Once we have reduced the demand for registers,

the assignment can be done in polynomial time for a machine with
one kind of registers

Register Classes

• General purpose registers

• Integer values and memory addresses

• Floating-point registers (single and double precision)

• On some architectures also condition code, predicate registers

or branch target registers

• If the compiler uses different kind of registers for different kinds
of data, it can allocate each class independently: the problem can be
simplified

• If the different kinds of data overlap, the compiler must allocate
them together: the allocation can become more complex (single and
double precision registers for floating-point)

Definition

— A basic block is a maximal length segment of straight-line 	

(i.e., branch free) code

Importance 	 	 	

• Strongest facts are provable for branch-free code

• If any statement executes, they all execute

• Execution is totally ordered

Role of Basic Blocks in Optimization

• Many techniques for improving basic blocks

• Simplest problems

• Strongest methods

Ignore, for the
moment, exceptions

Basic Blocks in Assembly Code (or ILOC)

• What is “local” ? (different from “regional” or “global”)

— A local transformation operates on basic blocks

— Many optimizations are done on a local scale or scope

• Does local allocation solve the problem?

— It produces good register use inside a block

— Inefficiencies can arise at boundaries between blocks

• How many passes can the allocator make?

— This is an off-line problem

— As many passes as it takes, within reason

→ You can do a fine job in a couple of passes

Local Register Allocation

Optimal register allocation is hard

Real compilers face real problems

Local Allocation

• Simplified cases ⇒ O(n)

• Real cases ⇒ NP-Complete

Global Allocation

• NP-Complete for 1 register

• NP-Complete for k registers

 (most sub-problems are NPC, too)

Local Assignment

• Single size, no spilling ⇒ O(n)

• Two sizes ⇒ NP-Complete

Global Assignment

• NP-Complete

Register Allocation

• Pseudo-code for a simple, abstracted RISC machine

— generated by the instruction selection process

• Simple, compact data structures

Nearly assembly code

• simple three-address code

• RISC-like addressing modes

 → I, AI, AO

• unlimited virtual registers

(register-to-register vs

 memory-to-memory)

loadI 2 ⇒ r1

loadAI r0, @b ⇒ r2

mult r1, r2 ⇒ r3

loadAI r0, @a ⇒ r4

sub r4, r3 ⇒ r5

a – 2 x b

ILOC

• Pseudo-code for a simple, abstracted RISC machine

— generated by the instruction selection process

• Simple, compact data structures

Quadruples:

• table of k x 4 small integers

• simple record structure

• easy to reorder

• all names are explicit

loadI 2 r1

loadAI r0 @b r2

add r1 r2 r3

loadAI r0 @a r4

sub r4 r3 r5

a – 2 x b

ILOC

The Register Allocator does not need to “understand” the code

• It needs to distinguish definitions from uses

— Definitions might need to store a spilled value

— Uses might need to load a spilled value

• ILOC makes definitions and uses pretty clear

— The assignment arrow, ⇒, separates uses from definitions

→ Except on the store operation, which uses all its register operands

store	 r8	 ⇒ r1	 // MEM(r1) ←r8

— That is the point of the arrow!

• Your allocator needs to know, by opcode, how many definitions and
how many uses it should see

— Beyond that, the meaning of the ILOC is somewhat irrelevant to the
allocator

Observations

A value is live between its definition and its uses

• Find definitions (x ← …) and uses (y ← … x ...)

• From definition to last use is its live range

— How does a second definition affect this?

• Can represent live range as an interval [i,j] (in block)

Let MAXLIVE be the maximum, over each instruction i in the block, of
the number of values (pseudo-registers) live at i.

• If MAXLIVE ≤ k, allocation should be easy: 	 	
no need to reserve F registers for spilling

• If MAXLIVE > k, some values must be spilled to memory:
	 	 need to reserve F registers for spilling

Finding live ranges is harder in the global case

Observations

Sample code sequence

	 loadI 	 1028 	 ⇒ r1	 // r1 ← 1028

	 load	 r1 	 ⇒ r2	 // r2 ← MEM(r1)

	 mult 	 r1, r2 	 ⇒ r3	 // r3 ← 1028 · y

	 load	 x 	 ⇒ r4	 // r4 ← x

	 sub 	 r4, r2 	 ⇒ r5	 // r5 ← x – y

	 load	 z 	 ⇒ r6	 // r6 ← z

	 mult 	 r5, r6 	 ⇒ r7	 // r7 ← z · (x – y)

	 sub 	 r7, r3 	 ⇒ r8	 // r8 ← z · (x – y) – (1028 · y)

	 store	 r8	 ⇒ r1	 // MEM(r1) ← z · (x – y) – (1028 · y)

The code uses 1028 as both an address and as a constant in the computation.

The intent is to create a long live range for pedagogical purposes. Remember, the
allocator does not need to understand the computation. It just needs to preserve
the computation.

Store uses this register &
defines a memory location.

Concrete Example of MAXLIVE

Live ranges in the example

	 loadI 	 1028	 ⇒ r1	 // r1

	 load	 r1 	 ⇒ r2	 // r1 r2

	 mult 	 r1, r2 	 ⇒ r3	 // r1 r2 	r3

	 load	 x 	 ⇒ r4	 // r1 r2 	r3 r4

	 sub 	 r4, r2 	 ⇒ r5	 // r1	 r3 r5

	 load	 z 	 ⇒ r6	 // r1	 r3 r5 r6

	 mult 	 r5, r6 	 ⇒ r7	 // r1	 r3 r7

	 sub 	 r7, r3 	 ⇒ r8	 // r1 r8

	 store	 r8	 ⇒ r1	 //

A pseudo-register is live
after an operation if it has
been defined & has a use in
the future

Concrete Example of MAXLIVE

Remember, r1 is a use,
not a definition

Live ranges in the example

	 loadI 	 1028	 ⇒ r1	 // r1

	 load	 r1 	 ⇒ r2	 // r1 r2

	 mult 	 r1, r2 	 ⇒ r3	 // r1 r2 	r3

	 load	 x 	 ⇒ r4	 // r1 r2 	r3 r4

	 sub 	 r4, r2 	 ⇒ r5	 // r1	 r3 r5

	 load	 z 	 ⇒ r6	 // r1	 r3 r5 r6

	 mult 	 r5, r6 	 ⇒ r7	 // r1	 r3 r7

	 sub 	 r7, r3 	 ⇒ r8	 // r1 r8

	 store	 r8	 ⇒ r1	 //

Compute these “live” sets in a backward
pass over the code.

Start with live as the empty set.

At each op, remove target & add operands

MAXLIVE is 4

Remember, r1 is a use,
not a definition

Concrete Example of MAXLIVE

Top-down allocator

• Work from external notion of what is important

• Assign registers in priority order

• Save some registers for the values relegated to memory

Bottom-up allocator

• Work from detailed knowledge about problem instance

• Incorporate knowledge of partial solution at each step

• Handle all values uniformly

Local Allocation:Top-down Versus Bottom-up

The idea

• The most heavily used values should reside in a register

• Reserve registers for use in spills, say r registers

Algorithm

• Count the number of occurrences of each virtual register in

the block (from 2 to maxlenght(block))

• Sort the registers according to the previous info

• Allocate first k – r values to registers

• Rewrite code to reflect these choices

Programmers applied this idea by hand in the 70’s & early 80’s

Move values with no
register into memory

(add LOADs & STOREs)

Top-down Allocator

How many registers must the allocator reserve?

• Need registers to compute spill addresses & load values

• Number depends on target architecture

— Typically, must be able to load 2 values

• Reserve these registers for spilling

What if k – r < |values| < k ?

• Remember that the underlying problem is NP-Complete

• The allocator can either

— Check for this situation

— Adopt a more complex strategy

— Accept the fact that the technique is an approximation

Top-down Allocator

Top down (3 registers)

	 loadI 	 1028 	 ⇒ r1	 // r1

	 load	 r1 	 ⇒ r2	 // r1 r2

	 mult 	 r1, r2 	 ⇒ r3	 // r1 r2 	r3

	 load	 x 	 ⇒ r4	 // r1 r2 	r3 r4

	 sub 	 r4, r2 	 ⇒ r5	 // r1	 r3 r5

	 load	 z 	 ⇒ r6	 // r1	 r3 r5 r6

	 mult 	 r5, r6 	 ⇒ r7	 // r1	 r3 r7

	 sub 	 r7, r3 	 ⇒ r8	 // r1 r8

	 store	 r8	 ⇒ r1	 //

Note that this assumes that no extra register is needed for spilling

r1 is used more
often than r3

Back to the Example

Top down (3 registers, need 2 for operands)

	 loadI 	 1028 	 ⇒ r1	 // r1

	 load	 r1 	 ⇒ r2	 // r1 r2

	 mult 	 r1, r2 	 ⇒ r3	 // r1 r2 	r3

	 load	 x 	 ⇒ r4	 // r1 r2 	r3 r4

	 sub 	 r4, r2 	 ⇒ r5	 // r1	 r3 r5

	 load	 z 	 ⇒ r6	 // r1	 r3 r5 r6

	 mult 	 r5, r6 	 ⇒ r7	 // r1	 r3 r7

	 sub 	 r7, r3 	 ⇒ r8	 // r1 r8

	 store	 r8	 ⇒ r1	 //

restore r3

Note that this assumes that no extra register is needed for spilling

restore r3

r1 is used more
often than r3

Back to the Example

 spill r3

restore r3

Top down (3 registers, need 2 for operands)

	 loadI 	 1028 	 ⇒ r1	 // r1

	 load	 r1 	 ⇒ r2	 // r1 r2

	 mult 	 r1, r2 	 ⇒ r3	 // r1 r2 	r3

 store r3 	 ⇒ 16 // r1 r2

	 load	 x 	 ⇒ r4	 // r1 r2 	 r4

	 sub 	 r4, r2 	 ⇒ r5	 // r1	 r5

	 load	 z 	 ⇒ r6	 // r1	 r5 r6

	 mult 	 r5, r6 	 ⇒ r7	 // r1	 r7

 load 16	 ⇒ r3 // r1 r3 r7

	 sub 	 r7, r3 	 ⇒ r8	 // r1 r8

	 store	 r8	 ⇒ r1	 //

r3 becomes two
minimal live ranges …

“spill” and “restore” become stores and loads

An Example

Top down (3 registers)

	 loadI 	 1028 	 ⇒ r1	 // r1

	 load	 r1 	 ⇒ r2	 // r1 r2

	 mult 	 r1, r2 	 ⇒ r3	 // r1 r2 	r3

 store r3 	⇒ 16 // r1 r2

	 load	 x 	 ⇒ r4	 // r1 r2 	 r4

	 sub 	 r4, r2 	 ⇒ r5	 // r1	 r5

	 load	 z 	 ⇒ r6	 // r1	 r5 r6

	 mult 	 r5, r6 	 ⇒ r7	 // r1	 r7

 load 16	 ⇒ r3 // r1 r3 r7

	 sub 	 r7, r3 	 ⇒ r8	 // r1 r8

	 store	 r8	 ⇒ r1	 //

The two short versions of r3 each overlap with fewer values, which
simplifies the allocation problem. Such “spilling” will (eventually)
create a code where the allocator can succeed.

r3 becomes two
minimal live ranges …

At most 3
values live at

each point

An Example

Top down (3 registers)

	 loadI 	 1028 	 ⇒ r1	 // r1

	 load	 r1 	 ⇒ r2	 // r1 r2

	 mult 	 r1, r2 	 ⇒ r3	 // r1 r2 	r3

 store r3 	⇒ 16 // r1 r2

	 loadI	 x 	 ⇒ r4	 // r1 r2 	 r4

	 sub 	 r4, r2 	 ⇒ r5	 // r1	 r5

	 loadI	 z 	 ⇒ r6	 // r1	 r5 r6

	 mult 	 r5, r6 	 ⇒ r7	 // r1	 r7

 load 16	⇒ r3 // r1 r3 r7

	 sub 	 r7, r3 	 ⇒ r8	 // r1 r8

	 store	 r8	 ⇒ r1	 //

This code is slower than the original, but it works correctly on a target
machine with only three (available) registers.

Correctness is a virtue.

possible delay

An Example

Weakness of the top down approach to allocation

• A physical register is dedicated to a virtual register for an entire
block

The idea:

• Focus on replacement rather than allocation

• Keep values used “soon” in registers

Algorithm (not optimal!):

• Start with empty register set

• Load on demand

• When no register is available, free one

Replacement:

• Spill the value whose next use is farthest in the future

• Prefer clean values (not to be stored that are constant or values

already in memory) to dirty values (that need to be stored).

Bottom-up Allocator

Bottom up (3 registers)

	 loadI 	 1028 	 ⇒ r1	 // r1

	 load	 r1 	 ⇒ r2	 // r1 r2

	 mult 	 r1, r2 	 ⇒ r3	 // r1 r2	r3

	 loadI	 x 	 ⇒ r4	 // r1 r2 	r3 r4

	 sub 	 r4, r2 	 ⇒ r5	 // r1 	 r3 r5

	 loadI	 z 	 ⇒ r6	 // r1	 r3 r5 r6

	 mult 	 r5, r6 	 ⇒ r7	 // r1	 r3 r7

	 sub 	 r7, r3 	 ⇒ r8	 // r1 r8

	 store	 r8	 ⇒ r1	 //

Note that this assumes that no extra register is needed for spilling

All registers are used
at this point

An Example

Bottom up (3 registers; need 2 for operands)

	 loadI 	 1028 	 ⇒ r1	 // r1

	 load	 r1 	 ⇒ r2	 // r1 r2

	 mult 	 r1, r2 	 ⇒ r3	 // r1 r2	r3

	 loadI	 x 	 ⇒ r4	 // r1 r2 	r3 r4

	 sub 	 r4, r2 	 ⇒ r5	 // r1 	 r3 r5

	 loadI	 z 	 ⇒ r6	 // r1	 r3 r5 r6

	 mult 	 r5, r6 	 ⇒ r7	 // r1	 r3 r7

	 sub 	 r7, r3 	 ⇒ r8	 // r1 r8

	 store	 r8	 ⇒ r1	 //

Note that this assumes that no extra register is needed for spilling

An Example

 store r1

restore r1

Bottom up (3 registers; need 2 for operands)

	 loadI 	 1028 	 ⇒ r1	 // r1

	 load	 r1 	 ⇒ r2	 // r1 r2

	 mult 	 r1, r2 	 ⇒ r3	 // r1 r2	r3

 store	 r1	 ⇒ 20 // r2 r3

	 loadI	 x 	 ⇒ r4	 // r2 	r3 r4

	 sub 	 r4, r2 	 ⇒ r5	 // 	 r3 r5

	 loadI	 z 	 ⇒ r6	 // 	 r3 r5 r6

	 mult 	 r5, r6 	 ⇒ r7	 // 	 r3 r7

	 sub 	 r7, r3 	 ⇒ r8	 // r8

 load 20	 ⇒ r1	 // r1 r8

	 store	 r8	 ⇒ r1	 //

At most 3
values live at

each point

The two short versions of r1 each overlap with fewer values, which
simplifies the allocation problem. Such “spilling” will (eventually)
create a code where the allocator can succeed.

An Example

From local algorithms to regional algorithms

• Extending local algorithms to regional ones can be difficult

• the only solution is to store back in memory the value of x at the
end of B1 and B2

• while we could add register to register operation for blue arrow no

possibility exists for the red arrow

r4<-r3

r2<-r1

