LR(1) Parsers

Copyright 2010, Keith D. Cooper \& Linda Torczon, all rights reserved. Faculty from other educational institutions may use these materials for nonprofit educational purposes, provided this copyright notice is preserved.

Building LR(1) Tables

How do we build the parse tables for an LR(1) grammar?

- Encode actions \& transitions into the ACTION \& GOTO tables
- If construction succeeds, the grammar is LR(1)
- "Succeeds" means defines each table entry uniquely

The Big Picture

- Model the state of the parser with "LR(1) items"
- The states will be set of $L R(1)$ items
- Use two functions goto(s, X) and closure(s)
- goto() tells which state you reach
- closure() adds information to round out a state
- Build up the states (sets of LR(1) items) and transitions
- Use this information to fill in the ACTION and GOTO tables

LR(1) Items
We represent a valid configuration of an LR(1) parser with a data structure called an LR(1) item

An $\operatorname{LR}(1)$ item is a pair $[P, \delta]$, where P is a production $A \rightarrow \beta$ with a at some position in the rhs δ is a lookahead string of length ≤ 1 (word or EOF)

The - in an item indicates which portion of the righthandside of the production we have seen on the top of the stack

Meaning of an LR(1) Item

$[A \rightarrow \cdot \beta \gamma, \underline{a}]$ means that the input seen so far is consistent with the use of
$A \rightarrow \beta y$ immediately after the symbol on top of the stack
"possibility"
$[A \rightarrow \beta \cdot \gamma, \underline{a}]$ means that the input sees so far is consistent with the use of
$A \rightarrow \beta y$ at this point in the parse, and that the parser has already recognized β (that is, β is on top of the stack)
"partially complete"
$\left[A \rightarrow \beta \gamma^{\cdot}, \underline{a}\right]$ means that the parser has seen $\beta \gamma$, and that a lookahead symbol of \underline{a} is consistent with reducing to A

LR(1) Items

The production $A \rightarrow \beta$, where $\beta=B_{1} B_{2} B_{3}$ with lookahead \underline{a}, can give rise to 4 items

$$
\left[A \rightarrow \cdot B_{1} B_{2} B_{3}, q\right],\left[A \rightarrow B_{1} \cdot B_{2} B_{3}, \underline{q}\right],\left[A \rightarrow B_{1} B_{2} \cdot B_{3}, q\right], \&\left[A \rightarrow B_{1} B_{2} B_{3} \cdot, \underline{q}\right]
$$

The set of $L R(1)$ items for a grammar is finite

What's the point of all these lookahead symbols?

- Carry them along to help choose the correct reduction
- Lookahead are bookkeeping, unless item has - at right end
- Has no direct use in [$A \rightarrow \beta \cdot \gamma, \underline{a}$]
- In $[A \rightarrow \beta \cdot, \underline{a}$, a lookahead of \underline{a} implies a reduction by $A \rightarrow \beta$
- For a parser state modelled with items $\{[A \rightarrow \beta \cdot, \underline{a}],[B \rightarrow \gamma \cdot \delta, \underline{b}]\}$, lookahead of $\underline{a} \Rightarrow$ reduce to A; lookahead in FIRST $(\delta) \Rightarrow$ shif \dagger
\Rightarrow Limited right context is enough to pick the actions

LR(1) Table Construction

High-level overview
1 Build the canonical collection of sets of LR(1) Items
a Start with an appropriate initial sate s_{0}

- [S' $\rightarrow \cdot$ SEOF], along with any equivalent item
- Derive equivalent items as closure (s_{0})
b Repeatedly compute, for each s_{k}, and each symbol X, goto $\left(s_{k}, X\right)$
- If the set is not already in the collection, add it
- Record all the transitions created by goto()

This eventually reaches a fixed point

Computing Closures

Closure(s) adds all the items implied by the items already in s

- Item $[A \rightarrow \beta \cdot C \delta, a]$ in s implies $[C \rightarrow \bullet \tau, x]$ for each production with C on the Ihs, and each $x \in \operatorname{FIRST}(\delta a)$
- Since $\beta C \delta$ is a valid rewriting, any way to derive $\beta C \delta$ is a valid rewritting, too
The algorithm

```
Closure(s )
    while ( }s\mathrm{ is still changing )
```



```
    \forallproductions C }->\tau\in
    \forall\underline{x}\in\operatorname{FIRST}(\delta\underline{a}) // \deltamight be \varepsilon
        if [C->\cdot\tau,\underline{x}]\not\ins
        then }s\leftarrows\cup{[C->\cdot\tau,\underline{x}]
```

- Classic fixed-point method
- Halts because s \subset Items
- Closure "fills out" a state

Example From SheepNoise

Goal	\rightarrow	SheepNoise
SheepNoise	\rightarrow	SheepNoise baa
	1	$\underline{\text { baa }}$

Initial step builds the item [Goal \rightarrow •SheepNoise,EOF] and takes its closure()

Closure $([$ Goal \rightarrow •SheepNoise,EOF])

\#	Item	Derived from ...
1	[Goal \rightarrow • SheepNoise,EOF]	Original item
2	[SheepNoise \rightarrow • SheepNoise baa, EOF]	$1, \delta \underline{a}$ is EOF
3	[SheepNoise \rightarrow - baa, EOF]	$1, \delta \underline{a}$ is EOF
4	[SheepNoise \rightarrow • SheepNoise baa, baa]	$2, \delta \underline{\text { is baa }}$
5	[SheepNoise \rightarrow • baa, baa]	$2, \delta \underline{\text { is baa }}$
	stop!	$4 \delta \alpha$ is baa b

S_{0} (the first state) is
$\{[$ Goal \rightarrow • SheepNoise, EOF], [SheepNoise \rightarrow • SheepNoise baa, EOF],
[SheepNoise $\rightarrow \cdot$ baa, EOF], [SheepNoise $\rightarrow \cdot$ SheepNoise baa,baa],
[SheepNoise \rightarrow • baa, baa] \}

Computing Gotos

Goto(s, x) computes the state that the parser would reach if it recognized an x while in state s

- Goto($\{[A \rightarrow \beta \bullet X \delta, \underline{a}]\}, X)$ produces $[A \rightarrow \beta X \bullet \delta, \underline{a}] \quad$ (obviously)
- It finds all such items \& uses closure() to fill out the state

The algorithm

```
Goto(s,X)
    new <\varnothing
    \forall items [A->\beta\cdotX\delta,q] Gs
        new }\leftarrow\mathrm{ new }\cup{[A->\betaX\cdot\delta,q]
    return closure(new)
```

- Not a fixed-point method!
- Straightforward computation
- Uses closure()

Example from SheepNoise

0	Goal	\rightarrow
SheepNoise		
1	SheepNoise	\rightarrow
2	SheepNoise baa	
2	baa	

S_{0} is $\{[G o a l \rightarrow \cdot$ SheepNoise, EOF], [SheepNoise \rightarrow • SheepNoise baa, EOF], [SheepNoise \rightarrow •baa, EOF], [SheepNoise \rightarrow • SheepNoise baa, baa], [SheepNoise \rightarrow •baa,baa] \}

Goto(S_{0}, baa)

- Loop produces

Item	Source
[SheepNoise $\rightarrow \underline{\text { baa }} \bullet$, EOF $]$	Item 3 in s_{0}
[SheepNoise \rightarrow baa \bullet, baa]	Item 5 in s_{0}

- Closure adds nothing since - is at end of rhs in each item

Building the Canonical Collection: The algorithm

```
so}\leftarrowclosure ([S'->.cS,EOF]
S}\leftarrow{\mp@subsup{s}{0}{}
k}\leftarrow
while ( }S\mathrm{ is still changing)
    \forall\mp@subsup{s}{j}{}\inS and }\forallx\in(T\cupNT
        t}\leftarrow\mathrm{ goto(s (s,x)
        if t }\not\inS\mathrm{ then
        name clousure(t) as sk
        S\leftarrowS \cup{ Sk
        record sj }->\mp@subsup{s}{k}{}\mathrm{ on x
        k}\leftarrow\textrm{k}+
        else
        t is }\mp@subsup{s}{m}{}\in
        record sj }->\mp@subsup{S}{m}{}\mathrm{ on x
```

Start from $s_{0}=$ closure $\left(\left[S^{\prime} \rightarrow \cdot S, E O F\right]\right)$
Repeatedly construct new states, until all are found

- Fixed-point computation
- Loop adds to S
- $S \subseteq 2$ ITEMS, so S is finite

Example from SheepNoise

0	Goal	\rightarrow
SheepNoise		
1	SheepNoise	\rightarrow
SheepNoise $\underline{\text { baa }}$		
2		$\underline{\text { baa }}$

Starts with S_{0}
$S_{0}:\{[$ Goal \rightarrow • SheepNoise, EOF], [SheepNoise \rightarrow • SheepNoise baa, EOF],
[SheepNoise \rightarrow •baa, EOF], [SheepNoise \rightarrow • SheepNoise baa, baa],
[SheepNoise \rightarrow • baa, baa] \}
Iteration 1 computes
$\mathrm{S}_{1}=\operatorname{Goto}\left(\mathrm{S}_{0}\right.$, SheepNoise $)=$
$\{$ [Goal \rightarrow SheepNoise • , EOF], [SheepNoise \rightarrow SheepNoise • baa, EOF],
[SheepNoise \rightarrow SheepNoise - baa, baa] $\} \quad$ No more for closure!
$S_{2}=\operatorname{Goto}\left(S_{0}, \underline{\text { baa }}\right)=\{[$ SheepNoise $\rightarrow \underline{\text { baa } \cdot} \cdot \underline{\text { EOF }}]$,
[SheepNoise \rightarrow baa \cdot, baa] $\}$
Iteration 2 computes

$$
\begin{aligned}
S_{3}=\operatorname{Goto}\left(S_{1}, \underline{\text { baa }}\right)=\{ & {[\text { SheepNoise } \rightarrow \text { SheepNoise } \underline{\text { baa }} \cdot, \underline{\text { EOF }}], } \\
& {[\text { SheepNoise } \rightarrow \text { SheepNoise } \underline{\text { baa }} \cdot, \underline{\text { baa }]\}}\} }
\end{aligned}
$$

Example from SheepNoise

0	Goal	\rightarrow
SheepNoise		
1	SheepNoise	\rightarrow
2	SheepNoise baa	
2		baa

$S_{0}:\{[$ Goal \rightarrow • SheepNoise, EOF], [SheepNoise \rightarrow • SheepNoise baa, EOF], [SheepNoise \rightarrow • baa, EOF], [SheepNoise \rightarrow • SheepNoise baa, baa], [SheepNoise \rightarrow • baa, baa] \}
$S_{1}=\operatorname{Goto}\left(S_{0}\right.$, SheepNoise $)=$
$\{$ [Goal \rightarrow SheepNoise • , EOF], [SheepNoise \rightarrow SheepNoise • baa, EOF],
[SheepNoise \rightarrow SheepNoise - baa, baa] \}
$S_{2}=\operatorname{Goto}\left(S_{0}, \underline{\text { baa }}\right)=\{[$ SheepNoise $\rightarrow \underline{\text { baa } \cdot} \cdot \underline{\text { EOF }}]$,
[SheepNoise \rightarrow baa \cdot, baa] $\}$
$S_{3}=\operatorname{Goto}\left(S_{1}, \underline{\text { baa }}\right)=\{[$ SheepNoise \rightarrow SheepNoise baa $\cdot, \underline{E O F}]$,
[SheepNoise \rightarrow SheepNoise baa \cdot, baa] $\}$

Filling in the ActiON and Goto Tables

The algorithm $\mid x$ is the state number

$$
\forall \text { set } S_{x} \in S
$$

\forall item $i \in S_{x}$
case $1\left\{\begin{aligned} \text { if } i \text { is }[A \rightarrow \beta \bullet \underline{a} \delta, \underline{b}] \text { and } \operatorname{goto}\left(S_{x}, \underline{a}\right)=S_{k}, \underline{a} \in T & \cdot \text { before terminal } \\ & \Rightarrow \text { shift }\end{aligned}\right.$ then $\operatorname{ACTION}[x, \underline{a}] \leftarrow$ "shift k "

$\forall n \in N T$
if $\operatorname{goto}\left(S_{x}, n\right)=S_{k}$ then GOTO $[x, n] \leftarrow k$

Example from SheepNoise

0	Goal	\rightarrow
SheepNoise		
1	SheepNoise	\rightarrow
SheepNoise baa		
2		$\underline{\text { baa }}$

$S_{0}:\{[$ Goal \rightarrow • SheepNoise, EOF], [SheepNoise \rightarrow • SheepNoise baa, EOF], [SheepNoise \rightarrow baa, EOF], [SheepNoise \rightarrow • SheepNoise baa, baa], [SheepNoise \rightarrow baa, baa] \}
$S_{1}=\operatorname{Goto}\left(S_{0}\right.$, SheepNoise $)=$
$\{$ [Goal \rightarrow SheepNoise • , EOF], [SheepNoise \rightarrow SheepNoise - baa, EOF],
[SheepNoise \rightarrow SheepNoise - baa, baa] \}
$S_{2}=\operatorname{Goto}\left(S_{0}, \underline{\text { baa }}\right)=\{[S h e e p N o i s e \rightarrow$ baa \cdot, EOF $]$,
[SheepNoise \rightarrow baa •, baa] \}
$S_{3}=\operatorname{Goto}\left(S_{1}, \underline{\text { baa }}\right)=\{[$ SheepNoise \rightarrow SheepNoise baa • EOF $]$,
[SheepNoise \rightarrow SheepNoise baa •, baa]\}

Example from SheepNoise

0	Goal	\rightarrow	SheepNoise
1	SheepNoise	\rightarrow	SheepNoise baa
2		baa	

$S_{0}:\{[G o a l \rightarrow$ •SheepNoise, EOF], [SheepNoise \rightarrow • SheepNoise baa, EOF], [SheepNoise \rightarrow • baa, EOF], [SheepNoise \rightarrow •SheepNoise baa, baa], [SheepNoise \rightarrow • baa, baa] \}
$S_{1}=\operatorname{Goto}\left(S_{0}\right.$, SheepNoise $)=$
$\{[$ Goal \rightarrow SheepNoise • , EOF], [SheepNoise \rightarrow SheepNoise baa, EOF], [SheepNoise \rightarrow SheepNoise
$S_{2}=\operatorname{Goto}\left(S_{0}, \underline{\text { baa }}\right)=\{[$ SheepNoise $\rightarrow \underline{\text { baa } \cdot \text { EOF }], ~}$ [SheepNoise \rightarrow baa • , baa] \} so, ACTION[S S_{1},baa $]$ is "shift $S_{3} "$ (case 1)
$S_{3}=\operatorname{Goto}\left(S_{1}, \underline{b a a}\right)=\{[$ SheepNoise \rightarrow SheepNoise baa •, EOF],
[SheepNoise \rightarrow SheepNoise baa • , baa] \}

Example from SheepNoise

0	Goal	\rightarrow
SheepNoise		
1	SheepNoise	\rightarrow
SheepNoise baa		
2		I baa

$S_{0}:\{[G o a l \rightarrow$ •SheepNoise, EOF], [SheepNoise \rightarrow • SheepNoise baa, EOF],
[SheepNoise \rightarrow • baa, EOF], [SheepNoise \rightarrow •SheepNoise baa, baa], [SheepNoise \rightarrow • baa, baa] \}
$S_{1}=$ Goto(S_{0}, SheepNoise $)=$
[[Goal \rightarrow SheepNoise • EOF], [SheepNoise \rightarrow SheepNoise - baa, EOF],
[SheepNoise \rightarrow SheepNoise - baa, baa]\}
so, $\operatorname{ACTION}\left[S_{1}, \mathrm{EOF}\right]$
$S_{2}=\operatorname{Goto}\left(S_{0}, \underline{\text { baa }}\right)=\{[$ SheepNoise $\rightarrow \underline{\text { baa } \cdot, ~ E O F}]$, is "accept" (case 2) [SheepNoise \rightarrow baa •, baa] \}
$S_{3}=\operatorname{Goto}\left(S_{1}, \underline{\text { baa }}\right)=\{[$ SheepNoise \rightarrow SheepNoise baa • EOF $]$,
[SheepNoise \rightarrow SheepNoise baa •, baa]\}

Example from SheepNoise

0	Goal	\rightarrow
SheepNoise		
1	SheepNoise	\rightarrow
2		SheepNoise baa
2		baa

$S_{0}:\{[$ Goal \rightarrow • SheepNoise, EOF], [SheepNoise \rightarrow • SheepNoise baa, EOF],
[SheepNoise \rightarrow • baa, EOF], [SheepNoise \rightarrow • SheepNoise baa, baa],
[SheepNoise \rightarrow • baa, baa] \}
$S_{1}=\operatorname{Goto}\left(S_{0}\right.$, SheepNoise $)=$
$\{$ [Goal \rightarrow SheepNoise • EOF], [SheepNoise \rightarrow SheepNoise - baa, EOF],

[SheepNoise \rightarrow baa • , baa] \}
$S_{3}=\operatorname{Goto}\left(S_{1}, \underline{\text { baa }}\right)=\{[$ SheepNoise \rightarrow SheepNois "reduce 2" (case 3)
[SheepNoise \rightarrow SheepNoise baa •, baa] \}

Example from SheepNoise

0	Goal	\rightarrow
SheepNoise		
1	SheepNoise	\rightarrow
2	SheepNoise baa	
2	baa	

$S_{0}:\{[G o a l \rightarrow$ •SheepNoise, EOF], [SheepNoise \rightarrow • SheepNoise baa, EOF], [SheepNoise \rightarrow • baa, EOF], [SheepNoise \rightarrow • SheepNoise baa, baa], [SheepNoise \rightarrow • baa, baa] \}

```
\(S_{1}=\) Goto( \(S_{n}\). SheedNoise) \(=\)
ACTION \(S_{3}\), EOF] is EOF], [SheepNoise \(\rightarrow\) SheepNoise - baa, EOF],
"reduce 1" (case 3) Noise • baa, baa] \}
\(S_{2}=\operatorname{Goto}\left(S_{0}, \underline{\text { baa }}\right)=\{[\) SheepNoise \(\rightarrow\) baa • EOF],
    [SheepNoise \(\rightarrow\) baa •, baa] \}
\(S_{3}=\operatorname{Goto}\left(S_{1}, \underline{\text { baa }}\right)=\{[\) SheepNoise \(\rightarrow\) SheepNoise baa • EOF \(]\),
    [SheepNoise \(\rightarrow\) SheepNoise baa •, baa]\}
\(\mathrm{ACTION}\left[\mathrm{S}_{3}\right.\),baa] is
```


Example from SheepNoise

Goal	\rightarrow SheepNoise
SheepNoise	\rightarrow SheepNoise baa
	1
	baa

The GOTO Table records Goto transitions on NTs
$s_{0}:\{[G o a l \rightarrow \cdot$ SheepNoise, EOF], [SheepNoise \rightarrow •SheepNoise baa, EOF],
[SheepNoise \rightarrow • baa, EOF], [SheepNoise \rightarrow •SheepNoise baa, baa],
[SheepNoise \rightarrow • baa, baa] \}
$s_{1}=$ Goto $\left(S_{0}\right.$, SheepNoise $)=\sim$ Puts s_{1} in GOTO [s_{0}, SheepNoise]
$\{[G o a l \rightarrow$ SheepNoise •, EOF], [SheepNoise \rightarrow SheepNoise - baa, EOF],
[SheepNoise \rightarrow SheepNoise - baa, baa] \}
$s_{2}=\operatorname{Goto}\left(S_{0}, \underline{\text { baa }}\right)=\{[$ SheepNoise $\rightarrow \underline{\text { baa }} \cdot$, EOF],
Based on T, not NT and written into the ACTION table
$s_{3}=\operatorname{Goto}\left(S_{1}, \underline{\text { baa }}\right)=\{[$ SheepNoise \rightarrow SheepNoise baa \cdot, EOF $]$,
[SheepNoise \rightarrow SheepNoise baa •, baa]\}
Only 1 transition in the entire GOTO table
Remember, we recorded these so we don't need to recompute them.

ACTION \& GOTO Tables

0	Goal
1	SheepNoise
2	SheepNoise
	\rightarrow SheepNoise baa
	\mid baa

Here are the tables for the augmented left-recursive SheepNoise grammar

The tables

ACTION TABLE		
State	EOF	baa
0	-	shift 2
1	accept	shift 3
2	reduce 2	reduce 2
3	reduce 1	reduce 1

GOTO TABLE	
State	SheepNoise
0	1
1	0
2	0
3	0

What can go wrong?

What if set s contains $[A \rightarrow \beta \cdot \underline{a} \gamma, \underline{b}]$ and $[B \rightarrow \beta \cdot, \underline{a}]$?

- First item generates "shift", second generates "reduce"
- Both define ACTION[s,a] - cannot do both actions
- This is a fundamental ambiguity, called a shift/reduce error
- Modify the grammar to eliminate it
(if-then-else)
- Shifting will often resolve it correctly

What if set s contains $\left[A \rightarrow \gamma^{\bullet}, \underline{a}\right]$ and $\left[B \rightarrow \gamma^{\bullet}, \underline{a}\right]$?

- Each generates "reduce", but with a different production
- Both define ACTION[s, $\underline{]}$] - cannot do both reductions
- This is a fundamental ambiguity, called a reduce/reduce conflict
- Modify the grammar to eliminate it

In either case, the grammar is not $L R(1)$

LR(k) versus LL(k)

Finding Reductions
$L R(k) \Rightarrow$ Each reduction in the parse is detectable with
\rightarrow the complete left context,
\rightarrow the reducible phrase, itself, and
\rightarrow the k terminal symbols to its right longer lookaheads
$L L(k) \Rightarrow$ Parser must select the reduction based on
\rightarrow The complete left context
\rightarrow The next k terminals
Thus, LR(k) examines more context

Non-LL Grammars

$$
\begin{array}{llll}
0 & B \rightarrow & R \\
1 & & \mid & (B) \\
2 & R \rightarrow E=E \\
3 & E \rightarrow & \underline{a} \\
4 & & \underline{\mathrm{~b}} \\
5 & & (E+E) \\
\hline
\end{array}
$$

Example from D.E Knuth, "Top-Down Syntactic Analysis," Acta Informatica, 1:2 (1971), pages 79-110

Example from Lewis, Rosenkrantz, \& Stearns book, "Compiler Design Theory," (1976), Figure 13.1

This grammar is actually $\operatorname{LR}(0)$

Summary

	Advantages	Disadvantages
Top-down Recursive descent, LL(1)	Good locality Simplicity Good error detection	Hand-coded
	High maintenance	
LR(1)	Fast associativity Deterministic langs. Automatable Left associativity	Large working sets Poor error messages Large table sizes

Exercise

Consider the following grammar:

Start	\rightarrow
S	\rightarrow
A	A a
A	$B C$
B	\rightarrow
C	\rightarrow
C	

a. Construct the canonical collection of sets of $\operatorname{LR}(1)$ items for this grammar.
b. Derive the Action and Goto tables.
c. Is the grammar $\operatorname{LR}(1)$?

Parse the string bcfa and the string bca

