
The Procedure Abstraction



Where are we?

The latter half of a compiler contains more open problems,  
more challenges, and more gray areas than the front half 

• This is “compilation,” as opposed to “parsing” or “translation”
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Conceptual Overview

The compiler must provide, for each programming language 
construct, an implementation (or at least a strategy). 

Those constructs fall into two major categories 
•Individual statements (code shape) 
•Procedures  
We will look at procedures first, since they provide the surrounding 
context needed to implement statements 

Object-oriented languages add some peculiar twists 



Conceptual Overview
Procedures provide the central abstractions that make 

programming practical & large software systems possible 

• Information hiding  
• Distinct and separable name spaces 

• Uniform interfaces 

Hardware does little to support these abstractions 

• Part of the compiler’s job is to implement them 
— Compiler makes good on lies that we tell programmers 

• Part of the compiler’s job is to make it efficient 
— Role of code optimization



Practical Overview
The compiler must decide almost everything 

• Location for each value (named and unnamed) 
• Method for computing each result 

— For example, how should be translated  a case statement? 

• Compile-time versus runtime behaviour 
input(x); 

if x>3 

then foo(x); 

else fee(x); 

All of these issues come to the forefront when we consider  the 
implementation of procedures 



The Procedure Abstraction

Most of the tricky issues arise in implementing “procedures” 

Issues 
•Compile-time versus run-time behavior 
•Assign storage for everything & map names to addresses 
•Generate code to address any value 

— Compiler knows where some of them are 
— Compiler cannot know where others are 

•Interfaces with other programs, other languages, & the OS 

•Efficiency of implementation



The Procedure & Its Three Abstractions

The compiler produces code for each procedure 

The individual code bodies must fit together to form a working 
program

Compiled Code

Procedure



The Procedure & Its Three Abstractions

Each procedure inherits a set of names  

⇒ Variables, values, procedures, objects, locations, … 

⇒ Clean slate for new names, “scoping” can hide other names

“Naming” includes 
the ability to find 
and access objects in 
memory

Naming Environment

Compiled Code

Procedure



Each procedure inherits a control history  

⇒ Chain of calls that led to its invocation 

⇒ Mechanism to return control to caller

The Procedure & Its Three Abstractions

Naming Environment Control History

Compiled Code

Procedure



Each procedure has access to external interfaces 
⇒ Access by name, with parameters   
⇒ Protection for both sides of the interface 

The Procedure & Its Three Abstractions

Naming Environment Control History

System Services 
(allocation, communication, 

I/O, control, naming, …)
Compiled Code

Procedure



The Procedure: Three Abstractions
• Control Abstraction 

— Well defined entries & exits  
— Mechanism to return control to caller 
— Some  notion of parameterization (formal and actual parameters) 

• Clean Name Space 
— Clean slate for writing locally visible names 
— Local names may obscure identical, non-local names 
— Local names cannot be seen outside 

• External Interface 
— Access is by procedure name & parameters 
— Clear protection for both caller & callee 
— Invoked procedure can ignore calling context 

Procedures permit a critical separation of concerns



The Procedure                            
Procedures allow us to use separate compilation 

• Separate compilation allows us to build non-trivial programs 

• Keeps compile times reasonable 

• Lets multiple programmers collaborate 

• Requires independent procedures 

Without separate compilation, we would not build large systems 

The procedure linkage convention (agreement that defines the actions to take to call a procedure) 

• Ensures that each procedure inherits a valid run-time environment 
and that the callers environment is restored on return 

— The compiler must generate code to ensure this happens according to 
conventions established by the system



The Procedure                     (More Abstract View)

A procedure is an abstract structure constructed via software 

Underlying hardware directly supports little of the abstraction—it 
understands bits, bytes, integers, reals, & addresses, but not: 

• Entries and exits 
• Interfaces  
• Call and return mechanisms  

— Typical machine supports the transfer of control (call and return) but 
not the rest of the calling sequence     (e.g., preserving context)  

• Name space  
• Nested scopes  

All these are established by carefully-crafted mechanisms provided by 
compiler, run-time system, linker, loader, and OS;



Run Time versus Compile Time

These concepts are often confusing 

• Linkages (and code for procedure body) execute at run time 

• Code for the linkage is emitted at compile time 

• The linkage is designed long before either of these 



The Procedure as a Control Abstraction

Procedures have well-defined control-flow 

Invoked at a call site, with some set of actual parameters  
• Control returns to call site, immediately after invocation 

• Most languages allow recursion

int p(int a,b,c) 
{ 
   int   d; 
   d = q(c,b); 
   … 

}

int q(int x,int y) 
{ 
    if  ( … ) 
       x = q(x-1,y); 
    return x + y; 

}

… 
s = 
p(10,11,12); 
…



The Procedure as a Control Abstraction
Implementing procedures with this behavior 

• Requires code to save and restore a “return address” 

• Must map actual parameters to formal parameters     (c→x, b→y) 

• Must create storage for local variables   

• p needs space for d   

• where does this space go in recursive invocations? 

Compiler emits code that causes all this to happen at run time 

int p(int a,b,c) 
 { 
   int   d; 
   d = q(c,b); 
   ... 

}

int q(int x,y) 
{ 
    if  ( … ) 
       x = q(x-1,y); 
    return x + y; 

}

… 
s = 
p(10,11,12); 
…



The Procedure as a Control Abstraction
Implementing procedures with this behavior 

• Must preserve p’s state while q executes 
— recursion causes the real problem here 

• Strategy: Create unique location for each procedure activation 
— In simple situations, can use a “stack” of memory blocks to hold local 

storage and return addresses       closures (procedure+runtime context) ⇒ 

heap allocate 

Compiler emits code that causes all this to happen at run time 

int p(int a,b,c) 
{ 
   int   d; 
   d = q(c,b); 
   ... 

}

int q(int x,y) 
{ 
    if  ( … ) 
       x = q(x-1,y); 
    return x + y; 

}

… 
s = 
p(10,11,12); 
…



In essence, the procedure linkage wraps around the unique 
code of each procedure to give it a uniform interface 

Similar to building a brick wall rather than a rock wall

The Procedure as a Control Abstraction
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The Procedure as a Name Space

Each procedure creates its own name space 

• Any name can be declared locally 

• Local names obscure identical non-local names 

• Local names cannot be seen outside the procedure 
— Nested procedures are “inside” by definition 

• We call this set of rules & conventions “lexical scoping” 

Examples 

• C has global, static, local, and block scopes        (Fortran-like) 
— Blocks can be nested, procedures cannot 

• Scheme has global, procedure-wide, and nested scopes   (let)



The Procedure as a Name Space
Why introduce lexical scoping?  
• Provides a compile-time mechanism for binding “free” variables 
• Simplifies rules for naming & resolves conflicts 
• Lets the programmer introduce “local” names with impunity 
How can the compiler keep track of all those names? 

The Problem 
• At point p, which declaration of x is current? 
• At run-time, where is the value of x that can be used? 
• As parser goes in & out of scopes, how does it delete x? 

The Answer 
• The compiler must model the name space 
• Lexically scoped symbol tables                    



• Lexical scoping: each free variable is bound to the declaration for  
its name that is lexically closest to the use 

-The declaration always come from a scope that encloses the 
reference.  

• Dynamic scoping: a free variable is bound to the variable by that 
name that was most recently created at runtime. Example LISP or 
as possibility Common LISP  

Lexical vs Dynamical scoping



Example with lexical scoping

procedure p {
int a, b, c
procedure q {

int v, b, x, w
procedure  r {

int x, y, z
….

}
procedure s {

int x, a, v
…

}
… r … s

}
… q …

}

B0: {
int a, b, c

B1:  {
int v, b, x, w

B2: {
int x, y, z
….

}
B3: {

int x, a, v
…

}
… r … s

}
… q …

}



Where Do All These Variables Go?

Automatic & Local 
• Keep them in the procedure activation record or  in a register 
• Automatic ⇒ lifetime matches procedure’s lifetime 

Static  
• Procedure scope ⇒ storage area affixed with procedure name 

• File scope ⇒ storage area affixed with file name 
• Lifetime is entire execution 

Global 
• One or more named global data areas 
• Lifetime is entire execution



Placing Run-time Data Structures

Classic Organization 

•  Code, static, & global data have known size 
— Use symbolic labels in the code 

•  Heap & stack both grow & shrink over time 

•  This is a virtual  address space 

• Better utilization if  stack 
& heap grow toward each 
other  



How Does This Really Work?

The Big Picture

...
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How Does This Really Work?
Of course, the “Hardware view” is no longer that simple

...

0 high
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Code Data Code Data

Cache structure matters for performance, not correctness



Where Do Local Variables Live?

A Simplistic model 
• Allocate a data area for each distinct scope 

What about recursion? 
• Need a data area per invocation (or activation) of a scope 
• We call this the scope’s activation record 
• The compiler can also store control information there ! 

More complex scheme 
• One activation record (AR) per procedure instance 
• All the procedure’s scopes share a single AR (may share space) 

• Static relationship between scopes in single procedure 

Used this way, “static” means knowable at 
compile time  (and, therefore, fixed).



Translating Local Names 
How does the compiler represent a specific instance of x ? 

• Name is translated into a static coordinate 
— < level,offset > pair 
— “level” is lexical nesting level of the procedure 
— “offset” is unique within that scope 

• Subsequent code will use the static coordinate to generate 
addresses and references 

• “level” is a function of the table in which x is found 
— Stored in the entry for each x 

• “offset” must be assigned and stored in the symbol table 
— Assigned at compile time 
— Known at compile time 
— Used to generate code that executes at run-time



Storage for Blocks within a Single Procedure

Fixed length data can always be at a 
constant offset from the beginning of a 
procedure 
— In our example, the a declared at level 0 will 

always be the first data element, stored at 
byte 0 in the fixed-length data area 

— The x declared at level 1 will always be the 
sixth data item, stored at byte 20 in the fixed 
data area 

— The x declared at level 2 will always be the 
eighth data item, stored at byte 28 in the 
fixed data area 

— But what about the a declared in the second 
block at level 2?

B0: {
int a, b, c

B1: {
int v, b, x, w

B2: {
int x, y, z
…

}
B3: {

int x, a, v
…

}
…

}
…

}

Storage in block  B2

a b c v b x w x y z
L1 L2L0
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Storage in block  B2

a b c v b x w x y z
L1 L2L0

High-level idea 
• Create a new table for 

each scope 
• Chain them together for 

lookup

Lexically-scoped Symbol Tables



Variable-length Data

Arrays 
→ If size is fixed at compile time, store in fixed-

length data area 
→ If size is variable, store descriptor in fixed 

length area, with pointer to variable length area 
→ Variable-length data area is assigned at the end 

of the fixed length area for the block in which 
it is allocated (including all contained blocks)

B0: { int a, b
…
assign value to a
…

B1: { int v(a), b, x
…

B2: { int x, y(8)
…

}
}

}

a b v b x x y(8) v(a)

Variable-length data
Includes data for all fixed length 

objects in all blocks



Activation Record Basics

parameters

register  
save area

return value

return address

access links

caller’s ARP

local  
variables

ARP

Space for parameters to 
the current routine
Saved register contents

If function, space for 
return value

Address to pass control

Help with non-local access

To restore caller’s AR on a  
return

Space for local values & 
variables (including spills)

One AR for each invocation of a procedure

ARP ≈ Activation Record Pointer

in ILOC rarp



Activation Record Details
How does the compiler find the variables? 
• They are at known offsets from the AR pointer  

• The static coordinate leads to a “loadAI” operation 
— Level specifies an ARP, offset is the constant 

Variable-length data 
• If AR can be extended, put it above local variables 
• Leave a pointer at a known offset from ARP 
• Otherwise, put variable-length data on the heap 

Initializing local variables 
• Must generate explicit code to store the values 
• Among the procedure’s first actions 



Activation Record Details

Where do activation records live? 
• If lifetime of AR matches lifetime of invocation, AND 

• If code normally executes a “return” 
⇒ Keep ARs on a stack 

• If a procedure can outlive its caller, OR 
• If it can return an object that can reference its execution 

state 
⇒ ARs must be kept in the heap 

• If a procedure makes no calls 
⇒ AR can be allocated statically 
Efficiency prefers static, stack, then heap
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Recap
Where do variables live? 
• Local & automatic ⇒ in procedure’s activation record (AR) 

• Static (@ any scope) ⇒ in a named static data area 

• Dynamic (@ any scope) ⇒ on the heap 

Variable length items? 
• Put a descriptor in the “natural” location 
• Allocate item at end of AR or in the heap 

Represent variables by their static coordinates, <level,offset> 
• Must map, at runtime, level into a data-area base address 
• Must emit, at compile time, code to perform that mapping



 Must find the right AR 

 Need links to nameable ARs 

Use static 
coordinates

Establishing Addressability 

Must compute base addresses for each kind of data area 

• Local variables 
— Convert to static data coordinate and use ARP + offset 

• Local variables of other procedures 
— Convert to static coordinates 
— Find appropriate ARP 
— Use that ARP + offset 

• Global & static variables

<l.o>



Establishing Addressability 

Two different ways: 

• Using  a Address link technique 

• Using a Display technique



Some setup 
cost 

on each call

Establishing Addressability
Using Access Links to Find an ARP for a Non-Local Variable 

• Each AR has a pointer to AR of lexical ancestor 

• Lexical ancestor need not be the caller 

• Reference to <p,16> runs up access link chain to p 

• Cost of access is proportional to lexical distance



Assume 
•Current lexical level is 2 
•Access link is at ARP – 4 
•ARP is in r0 SC Generated Code

<2,8> loadAI r0,8 ⇒ r10

<1,12> loadAI r0,-4 ⇒ r1

loadAI r1,12 ⇒ r10

<0,16> loadAI r0,-4 ⇒ r1

loadAI r1,-4 ⇒ r1

loadAI r1,16 ⇒ r10

Establishing Addressability
Using Access Links 

Access cost varies with level 

All accesses are relative to ARP  (r0)



Maintain access links

The compiler must add code to each procedure call that finds the 
appropriate  ARP  and stores in the activation record of the 
callee (at the  position reserved for the  access link) 



Cost of maintenance is proportional to lexical distance 

Maintaining access link

For a caller at level p and a callee is defined at level q 
• q=p+1 the callee is nested inside the caller 

→ Callee use the current ARP as link 

•q=p   
→ Callee copy the access link of the caller 

•q<p 
→ Find ARP for level q –1 
→ Use that ARP as link



procedure main {
procedure p1 { … }
procedure p2 {

procedure q1 { … }
procedure q2 {

procedure r1 { … }
procedure r2 {

call p1; … // call up from level 3 to level 1 
} // end of  r2
call r2;  // call down from level 2 to level 3

}  //end of  q2
call q2; // call down from level 1 to level 2

}    //end of  p2
call p2; // call down from level 0 to level 1

}   // end of main 

The static and call 
chain do not coincide!

Main

p2

q2

r2

p1

Call History

ARP p2ARP Main ARP q2 ARP r2

ARP p1 ARP q1 ARP r1



Some setup 
cost 

on each call

ARP

parameters

register  
save area

return value

return address

saved ptr.

caller’s ARP

local  
variables

parameters

register  
save area

return value

return address

saved ptr.

caller’s ARP

local  
variables

level 0
level 1
level 2
level 3

Display

parameters

register  
save area

return value

return address

saved ptr.

caller’s ARP

local  
variables

Establishing Addressability

Using a Display to Find an ARP for a Non-Local Variable 
• Global array of pointer to nameable ARs  
• Needed ARP is an array access away 

• Reference to <p,16> looks up p’s ARP in display & adds 16 
• Cost of access is constant                              (ARP + offset)



Assume 
• Current lexical level is 2 
• Display is at label _disp

SC Generated Code

<2,8> loadAI r0,8 ⇒ r10

<1,12> loadI _disp ⇒ r1

loadAI r1,4 ⇒ r1

loadAI r1,12 ⇒ r10

<0,16> loadI _disp ⇒ r1

loadAI r1,0 ⇒ r1

loadAI r1,16 ⇒ r10

Establishing Addressability

Using a Display 

Access costs are fixed 
Address of display may consume a register

Desired AR is at _disp + 4 x level



Maintaining access links 
• On entry to level j  
→ Save level j  entry into    

AR (saved ptr field) 
→ Store ARP in level j slot 
• On exit from level j 
→ Restore old level j entry

ARP

level 0
level 1
level 2
level 3

Display

parameters

register  
save area

return value

return address

saved ptr.

caller’s ARP

local  
variables

parameters

register  
save area

return value

return address

saved ptr.

caller’s ARP

local  
variables

parameters

register  
save area

return value

return address

saved ptr.

caller’s ARP

local  
variables

Maintaining Display



procedure main {
procedure p1 { … }
procedure p2 {

procedure q1 { … }
procedure q2 {

procedure r1 { … }
procedure r2 {

call p1; … // call up from level 3 to level 1 
} // end of  r2
call r2;  // call down from level 2 to level 3

}  //end of  q2
call q2; // call down from level 1 to level 2

}    //end of  p2
call p2; // call down from level 0 to level 1

}   // end of main 

0 ARP main

1 ARP q2

2 ARP p2

3 ARP r2

0 ARP main

1 ARP p1



0 ARP main

1 ARP q2

2 ARP p2

3 ARP r2

0 ARP main

1 ARP p1
procedure main {

procedure p1 { … }
procedure p2 {

procedure q1 { … }
procedure q2 {

procedure r1 { … }
procedure r2 {

call p1; … // call up from level 3 to level 1 
} // end of  r2
call r2;  // call down from level 2 to level 3

}  //end of  q2
call q2; // call down from level 1 to level 2

}    //end of  p2
call p2; // call down from level 0 to level 1

}   // end of main 



Establishing Addressability

Access Links Versus Display 
• Each adds some overhead to each call 
• Access links costs vary with level of reference 

— Overhead only incurred on references & calls 
— If ARs outlive the procedure, access links still work 

• Display costs are fixed for all references 
— References & calls must load display address 

— Typically, this requires a register                  

— Depends on ratio of non-local accesses to calls 

For either scheme to work, the compiler must 
insert code into each procedure call & return



Creating and Destroying Activation Records

All three parts of the procedure abstraction leave state  
in the activation record 

•How are ARs created and destroyed 
— Procedure call  must allocate & initialize    (preserve caller’s world) 
— Return must dismantle environment       (and restore caller’s world) 

•Caller & callee must collaborate on the problem 
— Caller alone knows some of the necessary state 

→Return address, parameter values, access to other scopes 
— Callee alone knows the rest 

→Size of local data area, registers it will use 

Their collaboration takes the form of a linkage convention



Procedure Linkages

How do procedure calls actually work? 

At compile time, callee may not be available for inspection 
• Different calls may be in different compilation units 
• All calls must use the same protocol 

Compiler must use a standard sequence of operations 
• Enforces control & data abstractions 
• Divides responsibility between caller & callee 

Usually a system-wide agreement, to allow interoperability



Saving Registers

Who saves the registers? Caller or callee? 
• Arguments for saving on each side of the call 

— Caller knows which values are LIVE across the call 
— Callee knows which registers it will use 

• Conventional wisdom: divide registers into three sets 
— Caller saves registers 

→Caller targets values that short-LIVED value across the call  
— Callee saves registers 

→Callee only uses these AFTER filling caller saved registers 
— Registers reserved for the linkage convention 

→ARP, return address (if in a register), … 

Where are they stored?  In one of the ARs …



procedure p
prolog

epilog

pre-call 

post-return 

procedure q

prolog

epilog

Procedure has 
• standard prolog 
• standard epilog 
Each call involves a 
• pre-call sequence 
• post-return sequence 
These are completely 

predictable from the 
call site ⇒ depend on 
the number & type of 
the actual parameters

Procedure Linkages

Standard Procedure Linkage



Procedure Linkages
Pre-call Sequence 
• Starts setting up callee’s basic environment 
• Evaluates formal parameters 

The Details 
• Allocate space for the callee’s AR  
• Evaluates each parameter & stores value or address 
• Saves return address: caller’s ARP into callee’s AR 
• If access links are used 

— Find appropriate lexical ancestor & copy into callee’s AR 
• Save any caller-save registers 

— Save into space in caller’s AR 
• Jump to address of callee’s prolog code



Procedure Linkages

Post-return Sequence 

• Undo the actions of the precall sequence   

• Place any value back where it belongs 

The Details 

• Free the callee’s AR 

• Restore any caller-saved registers 

• Restore any call-by-reference parameters to registers, if needed 
— Also copy back call-by-value/result parameters 

• Continue execution after the call



Procedure Linkages
Prolog Code 
• Finish setting up callee’s environment 
• Preserve parts of caller’s environment that will be disturbed 

The Details 
• Preserve any callee-saved registers 
• If display is being used 

— Save display entry for current lexical level 
— Store current ARP into display for current lexical level 

• Allocate space for local data 
• Handle any local variable initializations



Procedure Linkages

Epilog Code 
• Wind up the business of the callee 
• Start restoring the caller’s environment 

The Details 
• Store return value 
• Restore callee-saved registers 
• Free space for local data, if necessary 
• Load return address from AR 

• Restore caller’s ARP 

• Jump to the return address



Algol-60 rules

ML rules

Fortran 66 & 77

How is it  realised? It depends on where the AR are…

If activation records are stored on the stack 

• Easy to extend — simply bump top of stack pointer 

• Caller & callee share responsibility 
— Caller can push parameters, space for registers, return value slot, return 

address, addressability info, & its own ARP 
— Callee can push space for local variables (fixed & variable size) 

If activation records are stored on the heap 

• Hard to extend 

• Several options 
— Caller passes everything in registers; callee allocates & fills AR  
— Store parameters, return address, etc., in caller’s AR ! 
— Store callee’s AR size in a defined static constant  

Without recursion, activation records can be static



call 
fee(x,x,x);

Communicating Between Procedures

Most languages provide a parameter passing mechanism 

⇒ Expression used at “call site” becomes variable in callee 

Two common binding mechanisms 

• Call-by-reference passes a pointer to actual parameter 
— Requires slot in the AR (for address of parameter) 
— Multiple names with the same address 

• Call-by-value passes a copy of its value at time of call 
— Requires slot in the AR 
— Each name gets a unique location               (may have same value) 
— Arrays are mostly passed by reference, not value



ARP ≈ Activation Record Pointer

parameters

register  
save area

return value

return address

addressability

caller’s ARP

local  
variables

ARP

Space for parameters 
to the current routine
Saved register 
contents
If  function, space for 
return value

Address to resume 
caller
Help with non-local 
access
To restore caller’s AR on 
a  
return
Space for local values 
& variables (including 
spills)

Remember This Drawing?


