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Via Buonarroti,2 – 25100 Pisa – Italy

Abstract

This paper is an overview of our results on the application of abstract interpre-
tation concepts to various problems related to the verification of logic programs.
These include the systematic design of semantics modeling various proof methods
and the characterization of assertions as abstract domains. We derive an assertion
based verification method and we show two instances based on different assertion
languages: a decidable assertion language and CLP used as an assertion language.

1 Abstract Interpretation

Abstract interpretation [1,2] is a general theory for approximating the seman-
tics of discrete dynamic systems, originally developed by Patrick and Radhia
Cousot, in the late 70’s, as a unifying framework for specifying and validat-
ing static program analyses. The abstract semantics is an approximation of
the concrete one, where exact (concrete) properties are replaced by approxi-
mated properties, modeled by an abstract domain. The framework of abstract
interpretation can be useful to study hierarchies of semantics and to recon-
struct data-flow analysis methods and type systems. It can be used to prove
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the safety of an analysis algorithm. However, it can also be used to system-
atically derive “optimal” abstract semantics from the abstract domain. The
systematic design aspect can be pushed forward, by using suitable abstract
domain design methodologies (e.g. domain refinements) [3,4,5], which allow us
to systematically improve the precision of the domain.

From the very beginning, abstract interpretation was shown to be useful for
the automatic generation of program invariants. Even more recently [6,7,8],
it was shown to be very useful to understand, organize and synthesize proof
methods for program verification. In particular, we are interested in one specific
approach to the generation of abstract interpretation-based partial correctness
conditions [9,10], which is used also in abstract debugging [11,12,13].

2 Verification and Abstract Interpretation

The aim of verification is to define conditions which allow us to formally prove
that a program behaves as expected, i.e., that the program is correct w.r.t. a
given specification, a description of the program’s expected behavior.

In order to formally prove that a program behaves as expected, we can use a
semantic approach based on abstract interpretation techniques. This approach
allows us to derive in a uniform way sufficient conditions for proving partial
correctness w.r.t. different properties.

Assume we have a semantic evaluation function TP on a concrete domain
(C,v), whose least fixpoint lfpC(TP) is the semantics of the program P. The
ideas behind this approach are the following.

• As in standard abstract interpretation based program analysis, the class of
properties we want to verify is formalized as an abstract domain (A,≤),
related to (C,v) by the usual Galois connection α : C → A and γ : A →
C (abstraction and concretization functions). The corresponding abstract
semantic evaluation function Tα

P is systematically derived from TP, α and
γ. The resulting abstract semantics lfpA(Tα

P ) is a correct approximation of
the concrete semantics by construction, i.e., α(lfpC(TP)) ≤ lfpA(Tα

P ), and no
additional “correctness” theorems need to be proved.

• An element Sα of the domain (A,≤) is the specification, i.e., the abstraction
of the intended concrete semantics.

• The partial correctness of a program P w.r.t. a specification Sα can be ex-
pressed as

α(lfpC(TP)) ≤ Sα. (1)
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• A sufficient condition 1 for partial correctness is

Tα
P (Sα) ≤ Sα. (2)

Following the above approach, we can define a verification framework para-
metric with respect to the (abstract) property we want to model. Given a
specific property, the corresponding verification conditions are systematically
derived from the framework and guaranteed to be indeed sufficient partial
correctness conditions.

An important result is that, following our abstract interpretation approach,
the issue of completeness of a verification method can be addressed in terms
of properties of the chosen abstract interpretation. In general, in fact, given an
inductive proof method, if a program is correct with respect to a specification
S (i.e., if (1) is satisfied) the sufficient condition might not hold for S. However,
if the method is complete, then when the program is correct with respect to
S, there exists a property X, stronger than S, which verifies the sufficient
condition. We have proved in [9,10] that the method is complete if and only if
the abstraction is precise with respect to TP, that is if α(lfpC(TP)) = lfpA(Tα

P ).
This approach allows us to use some standard methods (see for example [14]),
which permit to systematically enrich a domain of properties so as to obtain
an abstraction which is fully precise (α ◦ F = Fα ◦ α) w.r.t. a given function
F. Since full precision w.r.t. the semantic function TP implies precision with
respect to TP, these methods can be viewed as the basis for the systematic
development of complete proof methods.

Moreover, abstract interpretation theory can be used to devise suitable ab-
stract domains which lead to effectively checkable (sufficient) verification con-
ditions. It is worth noting that in order to obtain effective verification methods,
the conditions on the abstract domain are much weaker than the ones required
in the case of static analysis. Indeed, since in static analysis we need to com-
pute an abstract fixpoint semantics, in order to obtain effective analyses, we
need to work with Noetherian abstract domains or to use widening operators
to ensure the termination of the computation of the abstract fixpoint seman-
tics. On the contrary, the inductive verification method based on (sufficient)
condition (2) does not require to compute fixpoints. Therefore, in order to
derive effective verification methods we need to choose an abstract domain
(A,≤) where

• the intended abstract behavior (specification) Sα ∈ A has a finite represen-
tation;

• ≤ is a decidable relation.

1 In fact Tα
P (Sα) ≤ Sα implies lfpA(Tα

P ) ≤ Sα since the specification Sα is a pre-fixpoint
of the abstract semantic evaluation function Tα

P . Since, by correctness, α(lfpC(TP)) ≤
lfpA(Tα

P ), the condition α(lfpC(TP)) ≤ Sα can be derived.
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This allows us to use, in addition to all the Noetherian abstract domains used
in static analysis, non-Noetherian domains (such as polymorphic type domains
for functional languages), which lead to finite abstract semantics, and finite
representations of properties (as, for example, in the domain of assertions).

In program verification one can be interested in different kinds of proper-
ties, e.g. properties of the final computation state, properties which relate the
initial and the final state, and, more in general, properties relating specific
intermediate computation states, such as procedure calls and successes. The
above choice is related to the choice of the semantics, which must be concrete
enough to observe the property we want to verify, and abstract enough to
avoid unnecessary details.

The choice of an adequate semantics (called optimal in [15]) is a typical ex-
ercise in the application of abstract interpretation to comparative semantics,
where the aim is to systematically derive from the most concrete semantics
(often a trace semantics) a complete (fully abstract) semantics modelling the
observable property we are interested in. As we will show in Section 3, in
the case of logic programs, all the existing verification methods can be recon-
structed as instances of condition (2), for suitable choices of the semantics.
The choice of the “right” semantics (and of the corresponding proof method)
is then the first abstraction step.

The second abstraction step (Section 4) is needed to turn condition (2) into
an effectively checkable condition, i.e., to obtain a finite specification and a
decidable ≤ relation. As we already mentioned, we can choose Noetherian
domains developed for static analysis. An example is the type domain consid-
ered in Subsection 4.1. A more flexible choice, typical of program verification,
is the one of assertions in suitable specification languages, which do define
abstract domains. The corresponding verification conditions will be discussed
in Section 5. It is worth noting that the same abstract domain in the second
abstraction step, can be used with any semantics resulting from the first ab-
straction step. For example, the property modelled by the specification can
be “types of computed answers” or “types of input and output substitutions
computed by procedure calls”. In other words, the abstract domain and its
abstraction function considered in condition (2) are the results of the compo-
sition of two separate abstraction steps.

3 The first abstraction step: how to derive the proof method

As already mentioned, condition (2) (in the case of logic programs) was ini-
tially used in abstract diagnosis [12,16], a technique which extends declarative
debugging [17,18] to a debugging framework parametric w.r.t. abstraction.
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Abstract diagnosis considers properties which are abstractions of computed
answers.

More general specifications (including pre and post conditions) are considered
in [9,10], which define a verification framework, where well known verifica-
tion methods can be reconstructed, by simply choosing different abstractions.
It is worth noting that the existing verification methods for logic programs
were defined by using ad-hoc constructions. Their reconstruction in terms of
abstract interpretation allows us to compare the different techniques and to
show the essential differences.

As already mentioned, we are concerned with two steps of abstraction, both
modeled by abstract interpretation. The first step is the derivation (by ab-
straction of the most concrete semantics) of the right semantics which models
a specific aspect of the computation. Each semantics corresponds to a differ-
ent notion of partial correctness and leads to a different proof method. The
following notions of partial correctness have been considered in [9,10]:

Success-correctness. Specification of post conditions only. The right seman-
tics models computed answers.

In the case of properties closed under instantiation, we reconstruct the
methods defined by Clark [19] and by Deransart [20].

I/O correctness. Specifications are pairs of pre and post conditions. We
prove that the post condition holds whenever the pre condition is satisfied.
The right semantics models the functional dependencies between the initial
and the final bindings for the variables of the goal.

I/O and call correctness. Specifications are still pairs of pre-post condi-
tions. However, we prove also that the pre conditions are satisfied by all
the procedure calls. The right semantics models the functional dependen-
cies between the initial and the resulting bindings for the variables of the
goal plus information on call patterns. The verification conditions, obtained
from condition (2) are a slight generalization of the ones defined by the
Drabent-Maluszynski method [21].

In the case of properties closed under instantiation, we reconstruct the
Bossi-Cocco conditions [22], and, by further abstraction (modes, types, etc.),
the hierarchy of verification conditions in [23].

4 The second abstraction step: how to make the method effective

As already mentioned, the second abstraction step is concerned with the choice
of an abstract domain to approximate the relevant properties. Here we can
make available to program verification all the abstract domains designed for
static analysis such as modes, types, groundness dependencies, etc. The rea-
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soning on the domain of properties is performed by efficient abstract compu-
tation steps and the sufficient conditions can simply be proved by using the
operations on the abstract CPO. As is the case for static analysis, in general
we lose the precision. However we succeed in getting finite specifications. In
the next section we will show an example of some of the proof methods of
Section 3, combined with a second abstraction step, using an abstract domain
of types.

4.1 The domain of types

As a case study, we will show now in more detail an abstract domain which
leads to finite specifications, the domain of types (Dτ,�) introduced in [24].
This domain will be used to instantiate some of the proofs methods of Sec-
tion 3.

In order to formally introduce this domain, we have first to define the abstrac-
tion from concrete terms to type terms τ : T → T τ. Type terms in this domain
are associative, commutative and idempotent terms. They are built using a
binary set constructor + and a collection of monomorphic and polymorphic
description symbols. The monomorphic symbols are constants (e.g. num/0,
nil/0) and the polymorphic symbols are unary (e.g. list/1, tree/1). Intuitively,
the description symbols represent sets of function symbols in the corresponding
concrete alphabet. For example, the description symbol list might be defined
to represent the cons/2 symbol in the concrete alphabet and the description
of the constant num might represent symbols 0, 1, etc.

The abstraction function is defined by induction on terms:

τ(t) :=



X if t is the variable X

num if t is a number

nil if t = [ ]

list(τ(t1)) + τ(t2) if t = [t1|t2]

void if t = void

tree(τ(t1)) + τ(t2) + τ(t3) if t = tree(t1, t2, t3)

other otherwise

Thus, the abstractions of terms [−3, 0, 7], [X, Y], [X|Y] and tree(2, void, void)

are list(num) + nil , 2 , list(X) + list(Y) + nil list(X) + Y and tree(num) + void
respectively.

2 τ([−3, 0, 7]) = list(τ(−3)) + τ([0, 7]) = list(num) + list(τ(0)) + τ([7]) = list(num) +

list(num) + list(τ(7)) + τ([]) = list(num) + list(num) + list(num) + nil = list(num) +

nil
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Abstract atoms are simply built with abstract terms, and τ(p(t1, . . . , tn)) :=

p(τ(t1), . . . , τ(tn)). The types domain Dτ is the power-set of abstract atoms
ordered by set inclusion.

In our framework, specifications (also called A-interpretations) are formalized
as partial functions from GAtoms (the set of all generic atoms) to the domain
D under consideration (and denoted by [GAtoms ⇀ D]). Thus the specifica-
tions for the types domain belong to Aτ := [GAtoms ⇀ Dτ], ordered by v, the
pointwise extension of ⊆ on Aτ.

If we consider the success correctness method over the type domain, the re-
sulting observable is the success type observable τ : C → Aτ, where C is the
domain of sets of computed answers. The corresponding abstract semantic
function is

Tτ
P(X) = λp(x). {p(τ(t))µ | p(t)← p1(t1), . . . , pn(tn) ∈ P,

Ti ∈ X(pi(xi)), xi are new variables,

µ ∈ cU ACI((τ(t1), . . . , τ(tn)), (T1, . . . , Tn))}

where cU ACI(t1, t2) is the ACI-unification procedure of [24], which, given two
type terms t1 and t2, computes a minimal set of type substitutions unifying
them.

From condition (2) we can derive sufficient conditions for success correctness
of a program w.r.t. type specifications. Given a specification Sτ, which is a
function associating a set of types to each generic atom (i.e., to each predicate),
we can prove the partial correctness of a program P w.r.t. Sτ by showing that,
for each clause c ∈ P, Tτ

{c}(Sτ) ⊆ Sτ. Moreover, if this condition is not verified,
we have often a hint for detecting a possible error in the clause c.

We have developed a prototype of a verifier tool which is able to test our
verification conditions on the types domain. It is worth to point out that
the realization of our verifier is (obviously) based on the existing abstract
operations defined in the implementation of Lagoon [25]. All the examples
presented in this section, as we will show in detail, are obtained by running
our prototype verifier.

Example 1 Let us consider the following program which is a wrong version of
a program computing the Fibonacci function, where we have written fib(X2,N)

in the haed of the clause c3 instead of fib(X2,N2).

c1: fib(0,0).

c2: fib(1,1).

c3: fib(X2,N) :- X1 is X2-1, fib(X1,N1), X0 is X2-2,

fib(X0,N0), N2 is N1+N0.

7



The intended specification w.r.t. the type observable is

Sτ := fib(X, Y) 7→ {fib(num,num)}.

To perform the success verification, we apply the predicate verifySuccess/2

to the clause to be verified and to the program specification (given as a list of
type atoms).

The verification of clauses c1 and c2 gives

| ?- verifySuccess(fib(0,0), [fib(num,num)]).

Clause is OK.

| ?- verifySuccess(fib(1,1), [fib(num,num)]).

Clause is OK.

In the case of clause c2, we obtain a warning message,

| ?- verifySuccess( (fib(X2,N):- X1 is X2-1,fib(X1,N1),

X0 is X2-2,fib(X0,N0),N2 is N1+N0), [fib(num,num)]).

Clause may be wrong because success fib(num,U) (of the head)

is not in the succ-specification.

Thus, because of clause c2, we cannot guarantee the partial correctness of the
program. Moreover this information can be used to locate those pieces of the
code which may be responsible for the misbehavior (of the program) w.r.t. the
specification. This is actually the goal of abstract diagnosis [12,16]. Namely,
we have fib(num, U) ∈ Tτ

{c3}
(Sτ) and fib(num, U) 6∈ Sτ. This shows that c3 may

be incorrect, since it derives a wrong type for the intended semantics.

Once clause c3 has been fixed, it can be verified.

| ?- verifySuccess( (fib(X2,N2) :- X1 is X2-1,fib(X1,N1),

X0 is X2-1,fib(X0,N0),N2 is N1+N0), [fib(num,num)]).

Clause is OK.

Thus we can guarantee the partial correctness of the program.

Consider now the I/O method over the type domain. The resulting observable
is the I/O type observable τio : C → Aτ × Aτ and a specification is a pair of
Aτ-interpretations (SI

τ, S
O
τ ).

We need some notation. We denote by Substτ the set of abstract substitutions
V → T τ. Moreover, for each A ∈ Atoms , Θ ⊆ Substτ, AΘ := {Aϑ | ϑ ∈ Θ}.
Note that in the following we implicitly rename SI

τ(p(x)) and SO
τ (p(x)) in all

the expressions to match the variable names and to avoid name clashes.
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By instantiating condition (2) with the optimal abstract immediate conse-
quence operator, we obtain the following sufficient conditions for I/O cor-
rectness of a program w.r.t. I/O type specifications. For all c = p(t) ←
p1(t1), . . . , pn(tn) ∈ P,{

p(τ(t))µ | Aj ∈ Tj, A ∈ p(x)Θ,µ ∈ cU ACI

(
(A,A1, . . . , An),

(p(τ(t)), p1(τ(t1)), . . . , pn(τ(tn)))
)}

⊆ SO
τ (p(x)),

(3)

where Θ := {µ | A ∈ SI
τ(p(x)), µ ∈ cU ACI(A,p(τ(t)))} and

Tj :=

{
SO

τ (pj(xj)) if pj(xj)Θ ⊆ SI
τ(pj(xj))

> otherwise

Example 2 I/O correctness is obviously stronger than success-correctness,
mostly because it tackles the common case where a program is intended to be
correct only for inputs of a given type.

Let us consider the append program

c1: append([], Xs, Xs).

c2: append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

and the corresponding intended specification for the post conditions w.r.t. do-
main of types.

SO
τ := append(X, Y, Z) 7→

{
append(nil ,nil + list(T),nil + list(T)),

append(nil + list(T),nil + list(T),nil + list(T))
}
.

In presence of post conditions only, the clause c2 cannot be proved to be correct,
since the variable Xs can unify with any term and thus is not guaranteed to be
a list. This is shown by the following session printout.

| ?- verifySuccess( append([],X,X),

[append(nil+list(T),nil+list(T),nil+list(T)),

append(nil,nil+list(T),nil+list(T))]).

Clause may be wrong because success append(nil,U,U) (of the head)

is not in the succ-specification.

This does not hold in presence of a pre condition stating that the first and
second argument of append/3 should be lists.

SI
τ := append(X, Y, Z) 7→

{
append(nil ,nil + list(T), U),

append(nil + list(T),nil + list(T), U)
}

In this case, in fact, using the I/O correctness method we are able to prove
that the post conditions hold. To perform the I/O correctness verification, we
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apply the predicate verifyIO/3 to the clause to be verified and to the pre and
post program specifications (both given as lists of type atoms). Note that in the
following, for the sake of readability, we have chosen to skip the specification
arguments in the calls to the tool (except for the first).

The verification of clauses c1 and c2 (w.r.t. the specification SI
τ and SO

τ ) gives

| ?- verifyIO( append([],X,X),

[append(nil+list(T),nil+list(T),U),

append(nil,nil+list(T),U)],

[append(nil+list(T),nil+list(T),nil+list(T)),

append(nil,nil+list(T),nil+list(T))]).

Clause is OK.

| ?- verifyIO( (append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs)),

[...], [...]).

Clause is OK.

Hence the I/O correctness method is able to verify the correctness of the pro-
gram.

Let us now consider the following program which is a wrong version of a pro-
gram computing the subset relation between sets represented as lists. In this
program we have written subset(X,Ys) in the body of clause c3 instead of
subset(Xs,Ys).

c1: member(X,[X|Xs]).

c2: member(X,[Y|Xs]) :- member(X,Xs).

c3: subset([],Ys).

c4: subset([X|Xs],Ys) :- member(X,Ys), subset(X,Ys).

The intended specification w.r.t. the I/O type observable is

SI
τ :=

{
member(X, Y) 7→

{
member(U,nil + list(T)),member(U,nil)

}
subset(X, Y) 7→

{
subset(V,nil + list(T))

}
SO

τ :=


member(X, Y) 7→

{
member(T,nil + list(T))

}
subset(X, Y) 7→

{
subset(nil ,nil + list(T)),

subset(nil + list(T),nil + list(T))

}
Our method shows that clauses c1, c2 and c3 are correct.

| ?- verifyIO( member(X,[X|Xs]),

[member(U,nil+list(T)), member(U,nil),

subset(V, nil+list(T))],

[member(T,nil+list(T)),
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subset(nil+list(T),nil+list(T)),

subset(nil,nil+list(T))]).

Clause is OK.

| ?- verifyIO( (member(X,[Y|Xs]) :- member(X,Xs)), [...], [...]).

Clause is OK.

| ?- verifyIO( subset([],Ys), [...], [...]).

Clause is OK.

As for clause c4, we obtain,

| ?- verifyIO((subset([X|Xs],Ys) :- member(X,Ys), subset(X,Ys)),

[...], [...]).

Clause may be wrong because success subset(list(nil)+U,nil+list(nil))

(of the head) is not in the succ-specification.

Once we have fixed the bug in clause c4, we can easily verify the program.

| ?- verifyIO((subset([X|Xs],Ys) :- member(X,Ys), subset(Xs,Ys)),

[...], [...]).

Clause is OK.

Finally, let us consider the I/O and call correctness method over the type
domain. The resulting observable is the I/O type and call pattern observable
τio

c : C → Aτ × Aτ. For this observable we obtain the following verification
conditions, again by instantiating condition (2) with the optimal abstract
immediate consequence operator. For all c = p(t)←p1(t1), . . . , pn(tn) ∈ P and
each j ≤ n,{

pj(τ(tj))µ | Ak ∈ SO
τ (pk(xk)), A ∈ p(x)Θ,µ ∈ cU ACI

(
(A,A1, . . . , Aj−1),

(p(τ(t)), p1(τ(t1)), . . . , pj−1(τ(tj−1)))
)}

⊆ SI
τ(pj(xj)),

and {
p(τ(t))µ | Aj ∈ SO

τ (pj(xj)), A ∈ p(x)Θ,µ ∈ cU ACI

(
(A,A1, . . . , An),

(p(τ(t)), p1(τ(t1)), . . . , pn(τ(tn)))
)}

⊆ SO
τ (p(x)),

where Θ := {µ | A ∈ SI
τ(p(x)), µ ∈ cU ACI(A,p(τ(t)))}.

Example 3 I/O and call correctness is stronger than I/O correctness.

Let us consider the queens program of Figure 1 and the following intended
specification w.r.t. the type domain.
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c1: queens(X,Y) :- perm(X,Y), safe(Y).

c2: perm([],[]).

c3: perm([X|Y],[V|Res]) :- delete(V,[X|Y],Rest), perm(Rest,Res).

c4: delete(X,[X|Y],Y).

c5: delete(X,[F|T],[F|R]) :- delete(X,T,R).

c6: safe([]).

c7: safe([X|Y]) :- noattack(X,Y,1), safe(Y).

c8: noattack(X,[],N).

c9: noattack(X,[F|T],N) :- X =\= F, X =\= F + N, F =\= X + N,

N1 is N + 1, noattack(X,T,N1).

Figure 1. The queens program

SI
τ :=



queens(X, Y) 7→
{
queens(nil + list(num), T), queens(nil , T)

}
perm(X, Y) 7→

{
perm(nil + list(num), T), perm(nil , T)

}
delete(X, Y) 7→

{
delete(T,nil + list(num), U), delete(T,nil , U)

}
safe(X, Y) 7→

{
safe(nil + list(num)), safe(nil)

}
noattack(X, Y, Z) 7→

{
noattack(num,nil ,num),

noattack(num,nil + list(num),num)

}

SO
τ :=



queens(X, Y) 7→
{

queens(nil ,nil),
queens(nil + list(num),nil + list(num))

}
perm(X, Y) 7→

{
perm(nil ,nil),
perm(nil + list(num),nil + list(num))

}
delete(X, Y) 7→

{
delete(num,nil + list(num),nil),
delete(num,nil + list(num),nil + list(num))

}
safe(X, Y) 7→

{
safe(nil + list(num)), safe(nil)

}
noattack(X, Y, Z) 7→

{
noattack(num,nil ,num),

noattack(num,nil + list(num),num)

}
It is worth noting that the correctness of the program cannot be proved by using
I/O correctness conditions only. The reason is that we need a method which
takes into account the sequential order of procedure calls in the computation
(the atoms in clause bodies). The I/O correctness method is too weak for this
purpose. For example, we can not prove that clause c3 is correct, because when
calling queens/2 we cannot ensure “a priori” that safe/1 will be called with a
list of integers until the call to perm/2 is ended.

| ?- verifyIO( (perm([X|Y],[V|Res]) :-

delete(V,[X|Y],Rest), perm(Rest,Res)),

[queens(nil+list(num),U), queens(nil,U),
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perm(nil+list(num),U), perm(nil,U),

delete(T,nil+list(num),U), delete(T,nil,U),

safe(nil+list(num)), safe(nil),

noattack(num,nil,num), noattack(num,nil+list(num),num)],

[queens(nil+list(num),nil+list(num)), queens(nil,nil),

perm(nil+list(num),nil+list(num)), perm(nil,nil),

delete(num,nil+list(num),nil+list(num)),

delete(num,nil+list(num),nil),

safe(nil+list(num)), safe(nil),

noattack(num,nil,num), noattack(num,nil+list(num),num)]).

Clause may be wrong because success perm(list(num)+nil,U+list(num))

(of the head) is not in the succ-specification.

To perform the I/O and call correctness verification, we apply verifyIOcall/3
to the clause to be verified and to the pre and post program specifications (both
given as lists of type atoms). We can now prove that the queens program is
correct w.r.t. the I/O and call correctness conditions.

| ?- verifyIOcall( (queens(X,Y) :- perm(X,Y), safe(Y)),

[...], [...]).

Clause is OK.

|?- verifyIOcall((perm([],[])), [...], [...]).

Clause is OK.

| ?- verifyIOcall((delete(X,[X|Y],Y)), [...], [...]).

Clause is OK.

| ?- verifyIOcall((delete(X,[F|T],[F|R]) :- delete(X,T,R)),

[...], [...]).

Clause is OK.

| ?- verifyIOcall((safe([X|Y]) :- noattack(X,Y,1), safe(Y)),

[...], [...]).

Clause is OK.

| ?- verifyIOcall( (noattack(X,[F|T],N) :- X =\= F, X =\= F+N,

F =\= X+N, N1 is N+1, noattack(X,T,N1)), [...], [...]).

Clause is OK.

Note that if we change the order of the atoms in the body of clause c1 we
obtain the clause

c1’: queens(X,Y) :- safe(Y), perm(X,Y)
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which can no longer be proved correct w.r.t. the considered specification. In-
deed, now Y in the call safe(Y) is not assured to be a list of numbers. The tool
detects that there is something potentially wrong

| ?- verifyIOcall((queens(X,Y):-safe(Y),perm(X,Y)), [...],[...]).

Clause may be wrong because call safe(U) (atom number 1 of body)

is not in the call-specification.

4.2 From extensional to intensional specifications

A further step w.r.t. the methods defined in the previous sections consists in
specifying properties as assertions in a suitable specification language.

Indeed, there are essentially two ways to represent the expected behavior of a
program. We can represent the behavior of a program extensionally, i.e., by
listing all the results, or intensionally, i.e., by means of a property which must
be satisfied by the computation results.

In order to express properties of programs, assertions — formulas in a suitable
assertion language — are commonly used. A formula in an assertion language
represents all the results which satisfy the property expressed by the formula.
This allows us to express sets of results by means of a single formula.

In order to define an assertion based verification method, the key idea is that
formulas of an assertion language can be viewed as abstract domains. Then
a new verification method based on assertions can be derived. Of course the
sufficient conditions which we obtain are parametric w.r.t. the specific asser-
tion language. Therefore, depending on the choice of the assertion language,
we define different verification methods able to prove different properties.

It is worth noting that, if the entailment relation in the assertion language is
decidable, then the partial correctness conditions that we derive are effectively
provable.

Section 5 introduces the abstract domain of assertions and their corresponding
proof methods. In Subsection 5.1, we first present a verification method based
on a simple assertion language, which is able to express properties of terms,
including types and other properties relevant to static analysis. The language
is decidable. However, the properties which can be specified are given once for
all.

As a further step, in Subsection 5.2, we propose a verification method based
on an assertion language where properties can be defined through a CLP
program (specification program in the following). This yields a very powerful
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and expressive assertion language.

However, in general there exists no effective method to decide whether the
resulting conditions are verified. We will show that such conditions can often
be proved by using well-known program transformation techniques. Program
transformation rules (such as fold and unfold) allow one to syntactically trans-
form formulas while preserving their semantics. In our case, we prove the suf-
ficient correctness conditions by means of transformations in the specification
language.

5 Assertions and specification languages

In this section we show that assertions do define an abstract domain (as shown
by the Cousot’s in the early papers on abstract interpretation).

For simplicity we will consider the case of success-correctness and call-correctness
w.r.t. monotone properties 3 only, where the concrete domain C consists of sets
of substitutions. Similar constructions can be given for the other notions of
correctness. Let us consider a first order language L. We assume the signature
of L to include functions, constants and variables of the programs we want
to verify. Let F be a set of formulas (assertions) of L, expressing properties
of the arguments of predicates. We choose an interpretation I to define the
semantics of the formulas of F. The validity of a formula Φ in I under the
valuation σ, written I |=σ Φ, is defined as usual. Notice that substitutions can
naturally be viewed as valuations.

A natural pre-order is induced on F by implication under the interpretation
I, i.e., Ψ � Φ if and only if I |= Ψ ⇒ Φ. Our idea is to use formulas of F
as abstract values to describe sets of substitutions. Basically we consider the
following concretization from assertions to substitutions:

γF(Φ) := {σ ∈ Subst | I |=σ Φ}.

If F is a complete lattice, closed under arbitrary conjunctions, the function γF
is meet-additive. Then, by standard abstract interpretation results, it induces
a Galois connection between (F,�) and the power-set of sets of substitutions
ordered by set inclusion. We can exploit this relation to provide assertional
versions of the verification conditions for various proof methods.

Definition 4 The assertion Φ is monotonic if for each σ such that I |=σ Φ,
whenever η ≥ σ then I |=η Φ.

3 closed under instantiation properties.
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By using monotonic assertions, we can derive the verification conditions of the
methods of [19,22,20]. In order to prove I/O (and call) correctness, we deal
with pre-post specifications SI

F, SO
F , functions which associate to each pure atom

p(x) an assertion Φ, with free variables in {x}.

I/O correctness The sufficient verification conditions obtained from condi-
tion (2) in the case of I/O correctness are the following.

For each clause c := p(t)← p1(t1), . . . , pn(tn) ∈ P,

I |= SI
F(p(x))[x/t] ∧ Φ1 ∧ · · ·∧ Φn ⇒ SO

F (p(x))[x/t], (c)

where

Φj :=

{
SO

F (pj(xj))[xj/tj] if I |= SI
F(p(x))[x/t]⇒ SI

F(pj(xj))[xj/tj]

TRUE otherwise

I/O and call correctness The sufficient verification conditions obtained from
condition (2) in the case of I/O and call correctness are the following.

For each clause c := p(t)← p1(t1), . . . , pn(tn) ∈ P and each k ≤ n,

I |= SI
F(p(x))[x/t] ∧ SO

F (p1(x1))[x1/t1] ∧ · · ·∧
SO

F (pk−1(xk−1))[xk−1/tk−1]⇒ SI
F(pk(xk))[xk/tk],

(cI)

and

I |= SI
F(p(x))[x/t] ∧ SO

F (p1(x1))[x1/t1] ∧ · · ·∧
SO

F (pn(xn))[xn/tn]⇒ SO
F (p(x))[x/t].

(cO)

It is worth noting that whenever the relation |= is decidable, we have an
effective way to check the conditions. In the next section, as an example, we
take the language of properties in [26], which allows us to express the first
order theory of types, groundness, freeness and sharing properties of terms.
The language extends the language of [27,28], by providing also an effective
procedure to decide the validity of formulas.

5.1 A simple assertion language

Consider the first order language obtained by closing with the usual first order
connectives the predicates ground(X) and list(X), specifying ground terms and
lists respectively. Informally they are defined as

I |=σ ground(X) if and only if σ(X) contains no variables.

and

I |=σ list(X) if and only if σ(X) is a list
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In [26] these and other properties have been considered and defined in detail.
For example, the class of type properties (like list(X)) has been formally de-
fined using regular term grammars. We refer to that paper for the decision
procedure.

Example 5 Let us consider the following naive sort.

c1: sort(Xs,Ys) :- perm(Xs,Ys), ord(Ys).

c2: ord([]).

c3: ord([X,Y|Zs]) :- leq(X, Y), ord([Y|Zs]).

The procedures leq and perm (not shown) are assumed to have the following
properties: leq(X,Y) is successful if X and Y are numbers and X ≤ Y, and
perm(Xs,Ys) returns in Ys a permutation of the list Xs.

We can apply the I/O correctness proof method to show that the program is
correct w.r.t. the following specification.

SI
F :=


sort(X, Y) 7→ list(X) ∧ ground(X)

perm(X, Y) 7→ list(X) ∧ ground(X)

ord(X) 7→ list(X) ∧ ground(X)

leq(X, Y) 7→ ground(X) ∧ ground(Y)

SO
F :=


sort(X, Y) 7→ list(Y) ∧ ground(Y)

perm(X, Y) 7→ list(Y) ∧ ground(Y)

ord(X) 7→ TRUE

leq(X, Y) 7→ TRUE

We can show that, for example, the clause c1 is correct by showing the validity
of the following formulas (which is straightforward).

list(Xs) ∧ ground(Xs)⇒ list(Xs) ∧ ground(Xs)

list(Xs) ∧ ground(Xs) ∧ list(Ys) ∧ ground(Ys)⇒ list(Ys) ∧ ground(Ys)

list(Xs) ∧ ground(Xs) ∧ list(Ys) ∧ ground(Ys) ∧ TRUE ⇒ list(Ys) ∧ ground(Ys)

As already noted in Subsection 4.1, we can perform a kind of error diagnosis.
In fact, let us consider a small change in the program, obtained by inverting
the order of the predicates in the body of the clause c1, thus obtaining

c1’: sort(Xs,Ys) :- ord(Ys), perm(Xs,Ys).

In this case the predicate ord/1 may be called with a non ground argument,
even if the predicate sort/2 is called correctly w.r.t. its pre condition. This
possibly wrong situation is detected by observing that the verification condition
list(Xs) ∧ ground(Xs) ⇒ list(Ys) ∧ ground(Ys) associated to clause c1’ is
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false. In other terms, a failure in proving one of the verification conditions
allows us to detect possibly wrong clauses.

5.2 CLP programs as specifications

The specification language considered in Subsection 5.1 is decidable. However,
the properties which can be used in a specification are given once for all. A
more interesting case would be to let the user to define its own properties, by
means of a CLP program.

In our specification language, assertions are formulas built on user defined
predicates. The meaning of such predicates is specified by some user defined
CLP program. Once the verification conditions are derived, they can be proved
by using the specification program and transformation techniques similar to
the ones described in [29]. Proving that the verification condition holds boils
down to proving a semantic inclusion of two different programs obtained from
the verification conditions and the user defined CLP program. Transforma-
tion techniques allow us to simplify the programs while preserving the chosen
semantics, so that the test of the semantic inclusion (of the two different pro-
grams) can be reduced to a syntactic test on the transformed programs.

Depending on the property we want to verify, different versions of these tech-
niques can be used. For example, if we want to prove the partial correctness
of a program w.r.t. computed answers we should be careful to use transfor-
mations preserving the computed answers semantics.

Here the idea is to use some of the functionalities of the tool for logic program
transformation MAP [30] in order to prove our verification conditions. To use
such a tool, given a verification condition of the form F =⇒ G, we build two
programs P1 : {prem(x)← F} and P2 : {concl(x)← G}, where x is the set of
non existentially quantified variables of F and G. If the (chosen) semantics
of prem(x) is included in the semantics of concl(x) then F =⇒ G is verified.
By using program transformation techniques we can easily derive a sufficient
condition for the semantic inclusion: we apply the transformation techniques
in order to obtain variants P ′1, P

′
2 of P1, P2 such that

∀prem(x)←B ∈ P ′1.∃concl(x)←C ∈ P ′2.C ⊆a B, (4)

where the meaning of the test C ⊆a B depends on the chosen semantics. If, for
example, we want to verify correct answers ⊆a is set inclusion, while in order
to verify computed answers ⊆a has to be multiset inclusion.

In the next sections we present some examples which show how our verifica-
tion method works. As we will show, our verification conditions will often be
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proved simply by using unfolding steps. In more complex examples, we need
to prove some intermediate lemmata by using the goal replacement rule [29],
which allows us to replace a goal with an equivalent one (w.r.t. the chosen
semantics). However, in our examples we will show that also the generation
of such intermediate lemmata can often be obtained by using an unfold/fold
proof method, as already stated in [31].

Note that the tool MAP [30] was defined in order to apply transformation
techniques to logic programs. We plan to extend the existing tool in order to
be able to implement transformation strategies to work directly on assertions
and constraints. This would probably be an extension of recent work of [32,33].

5.2.1 Verification of properties of a reactive system

We consider the logic program of Figure 2 intended to model the behavior of
a simple coffee machine which accepts 10 cents of Euro coins and gives back
water for 10 cents and coffee for 20. The water is given immediately when
requested, while the coffee can take a while to be served since the machine has
to warm up. Streams (possibly infinite lists) of pairs (input,output) are used
to model sequences of machine actions. The possible inputs are ‘no actions’,
‘a 10 cents coin’, ‘the water request button’ and ‘the coffee request button’.
The outputs are ‘no actions’, ‘an error beep’, ‘a water cup’ and ‘a coffee cup’.

The right semantics needs to model (partial) answers in order to cope with the
infinite behavior. However, condition (2) on the assertion domain boils down
to the same sufficient conditions presented on Page 16.

The property we want to prove is that if we insert 20 cents and press the coffee
request button, the coffee cup eventually comes. The specification is then

SI
F :=



e00 (X) 7→ sublist([(10, ), (10, ), (coffee, )], X)

e10 (X) 7→ sublistX([(10, ), (coffee, )], X)

e20 (X) 7→ sublistX([(coffee, )], X)

warm(X) 7→ TRUE

warm1 (X) 7→ TRUE

SO
F :=



e00 (X) 7→ match([(10, ), (10, ), (coffee, )], ( , coffee), X)

e10 (X) 7→ matchX([(10, ), (coffee, )], ( , coffee), X)

e20 (X) 7→ matchX([(coffee, )], ( , coffee), X)

warm(X) 7→ matchX([ ], ( , coffee), X)

warm1 (X) 7→ matchX([ ], ( , coffee), X)

where the user defined predicates are given in Figure 3. Since the property
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c1: e00( [ (null, null) | X] ) :- e00( X ).

c2: e00( [ (10, null) | X] ) :- e10( X ).

c3: e00( [ (water, beep) | X] ) :- e00( X ).

c4: e00( [ (coffee, beep) | X] ) :- e00( X ).

c5: e10( [ (null, null) | X] ) :- e10( X ).

c6: e10( [ (10, null) | X] ) :- e20( X ).

c7: e10( [ (water, water) | X] ) :- e00( X ).

c8: e10( [ (coffee, beep) | X] ) :- e10( X ).

c9: e20( [ (null, null) | X] ) :- e20( X ).

cA: e20( [ (water, water) | X] ) :- e10( X ).

cB: e20( [ (coffee, coffee) | X] ) :- e00( X ).

cC: e20( [ (coffee, null) | X] ) :- warm( X ).

cD: warm( [ (null, null) | X] ) :- warm1( X ).

cE: warm( [ (null, coffee) | X] ) :- e00( X ).

cF: warm1( [ (null, coffee) | X] ) :- e00( X ).

Figure 2. The vending machine program coffee machine

sublist(Xs, Ys) :- sublistX(Xs,Ys).

sublist(Xs, [Y|Ys]) :- sublist(Xs,Ys).

sublistX([], Xs).

sublistX([Y|Xs],[Y|Ys]) :- sublistX(Xs,Ys).

match(Xs,X,Ys) :- matchX(Xs,X,Ys).

match(Xs,X,[Y|Ys]) :- match(Xs,X,Ys).

matchX([],X,[X|_]).

matchX([],X,[Y|Ys]) :- matchX([],X,Ys).

matchX([Y|Xs],X,[Y|Ys]) :- matchX(Xs,X,Ys).

Figure 3. The user defined predicates for the program of Figure 2

expressed by the precondition does not need to be definitely verified by all the
traces of the system, we are not concerned with call correctness. Therefore we
use the I/O correctness schema which leads to the following conditions.

clause c1 First we have to prove that I |= SI
F(e00(Y))[Y/[(null, null)|X]] ⇒
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SI
F(e00(Z))[Z/X], i.e.,

sublist([(10, ), (10, ), (coffee, )], [(null, null)|X]) =⇒
sublist([(10, ), (10, ), (coffee, )], X)

(5)

We now show how the proof of the previous condition can be obtained by
using the tool MAP [30]. We first load the user clauses, which define the
meaning of the predicates sublist/2, sublistX/2, match/3 and matchX/3

used in the specification (Figure 3).
P1: Progs/coffee_machine

1. sublist(A,B) :- sublistX(A,B).

2. sublist(A,[B|C]) :- sublist(A,C).

3. sublistX([],A).

4. sublistX([A|B],[A|C]) :- sublistX(B,C).

5. match(A,B,C) :- matchX(A,B,C).

6. match(A,B,[C|D]) :- match(A,B,D).

7. matchX([],A,[A|B]).

8. matchX([],A,[B|C]) :- matchX([],A,C).

9. matchX([A|B],C,[A|D]) :- matchX(B,C,D).

Then, in order to prove the verification condition (5) we define the clauses
prem(X)←sublist([(10, ), (10, ), (coffee, )], [(null, null)|X]) and concl(X)←
sublist([(10, ), (10, ), (coffee, )], X).
P2: by adding def 10 to P1

10. prem(A) :-

sublist([(10,B),(10,C),(coffee,D)],[(null,null)|A]).

P3: by adding def 11 to P2

11. concl(A):- sublist([(10,B),(10,C),(coffee,D)],A).

Then, we unfold the first atom in the body of the clause 10 obtaining two
new clauses defining the predicate prem/1.
P4: by unfolding cl 10 in P2 wrt atom 1 using P1

11. concl(A):- sublist([(10,B),(10,C),(coffee,D)],A).

12. prem(A) :-

sublistX([(10,B),(10,C),(coffee,D)],[(null,null)|A]).

13. prem(A) :- sublist([(10,B),(10,C),(coffee,D)],A).

By unfolding the predicate sublistX/2 in (the body of) clause 12, we obtain
P5: by unfolding cl 12 in P2 wrt atom 1 using P1

11. concl(A):- sublist([(10,B),(10,C),(coffee,D)],A).
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13. prem(A) :- sublist([(10,B),(10,C),(coffee,D)],A).

Note that now, by (4), the condition (5) is verified. Then the resulting
verification condition c1O that we have to prove is

I |=SI
F(e00(Y))[Y/[(null, null)|X]] ∧ SO

F (e00(Z))[Z/X]⇒
SO

F (e00(Y))[Y/[(null, null)|X]],

i.e.,

sublist([(10, ), (10, ), (coffee, )], [(null, null)|X]))∧

match([(10, ), (10, ), (coffee, )], ( , coffee), X) =⇒
match([(10, ), (10, ), (coffee, )], ( , coffee), [(null, null)|X]).

As in the first step we define the clauses for prem/1 and concl/1 which allow
us to prove the new verification condition.
P2: by adding def 10 to P1

10. prem(A) :-

sublist([(10,B),(10,C),(coffee,D)],[(null,null)|A]),

match([(10,B),(10,C),(coffee,D)],(E,coffee),A).

P3: by adding def 11 to P2

11. concl(A):-

match([(10,B),(10,C),(coffee,D)],(E,coffee),[(null,null)|A]).

Then, we unfold the first atom in (the body of) the clause 11 obtaining two
new clauses defining the predicate concl/1.
P4: by unfolding cl 11 in P3 wrt atom 1 using P1

10. prem(A) :-

sublist([(10,B),(10,C),(coffee,D)],[(null,null)|A]),

match([(10,B),(10,C),(coffee,D)],(E,coffee),A).

12. concl(A) :-

matchX([(10,B),(10,C),(coffee,D)],(E,coffee),[(null,null)|A]).

13. concl(A) :-

match([(10,B),(10,C),(coffee,D)],(E,coffee),A).

Since the body of clause 13 is contained into the body of clause 10, by (4),
the verification condition holds.

Clauses c3 and c4 are analogous.
We will omit the details in the following. Note, however, that all the

proofs have been done by using the tool MAP.

22



clause c2 By using some unfolding steps in the premise we can prove that

sublist([(10, ), (10, ), (coffee, )], [(10, null)|X]) =⇒
sublistX([(10, ), (coffee, )], X).

Then we prove the verification condition

sublist([(10, ), (10, ), (coffee, )], [(10, null)|X])∧

matchX([(10, ), (coffee, )], ( , coffee), X) =⇒
match([(10, ), (10, ), (coffee, )], ( , coffee), [(10, null)|X]).

Clause c6 is analogous.
clause c5 By using an unfolding step in the premise we have to prove that

sublistX([(10, ), (coffee, )], [(null, null)|X]) =⇒
sublistX([(10, ), (coffee, ), ], X)

which is verified since by unfolding sublistX/3 we obtain no defining clauses
for prem/1, then (4) is vacuously verified. Then the resulting verification
condition that can be easily proved is

sublistX([(10, ), (coffee, )], [(null, null)|X])∧

matchX([(10, ), (coffee, )], ( , coffee), X) =⇒
matchX([(10, ), (coffee, )], ( , coffee), [(null, null)|X]).

Clauses c8 and c9 are analogous.
clause c7 By using an unfolding step in the premise we have to prove that

sublistX([(10, ), (coffee, )], [(water, water)|X]) =⇒
sublist([(10, ), (10, ), (coffee, )], X),

which is verified since by unfolding sublistX/3 we obtain no defining clauses
for prem/1, then (4) is vacuously verified. Then the resulting verification
condition that can be easily proved is

sublistX([(10, ), (coffee, )], [(water, water)|X])∧

match([(10, ), (10, ), (coffee, )], ( , coffee), X) =⇒
matchX([(10, ), (coffee, )], ( , coffee), [(water, water)|X]).

Clause cA is analogous.
clause cB By using an unfolding step in the premise we can prove that

sublistX([(coffee, )], [(coffee, coffee)|X]) 6=⇒
sublist([(10, ), (10, ), (coffee, )], X),

since for this verification condition we obtain the clause prem(X)← true
while this is not the case for concl/1. Then, (4) is not verified. Thus the
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resulting verification condition that can be easily proved is

sublistX([(coffee, )], [(coffee, coffee)|X]) ∧ TRUE =⇒
matchX([(coffee, )], ( , coffee), [(coffee, coffee)|X]).

clause cC By using an unfolding step in the premise of

sublistX([(coffee, )], [(coffee, null)|X]) =⇒ TRUE

we obtain that both prem(X) and concl(X) are true with empty bodies.
This verifies (4). Then the resulting verification condition that can be easily
proved is

sublistX([(coffee, )], [(coffee, null)|X])∧

matchX([ ], ( , coffee), X) =⇒
matchX([(coffee, )], ( , coffee), [(coffee, null)|X]).

clause cD Since TRUE =⇒ TRUE we can prove the verification condition

TRUE ∧ matchX([ ], ( , coffee), X) =⇒
matchX([ ], ( , coffee), [(null, null)|X])

clause cE By using an unfolding step in the premise we can prove that

TRUE 6=⇒ sublist([(10, ), (10, ), (coffee, )], X)

since prem/1 is true with an empty body while concl/1 is not. Then the
resulting verification condition that can be easily proved is

TRUE =⇒ matchX([ ], ( , coffee), [(null, coffee)|X]).

Clause cF is analogous.

We conclude that the program is partially correct w.r.t. the specification.
Note that if we use a stronger notion of partial correctness (including call
correctness), we do not succeed in proving it, because we have no guarantee
that every procedure call verifies the preconditions.

5.2.2 A simple property of append

In the next example we prove a property of append. The specification is given
as a CLP program. Even if the existing tool MAP [30] is defined for applying
transformation techniques using logic programs rather than CLP programs,
this extension is rather straightforward and is already being studied in [32,33].
In the next example, then, we use the tool MAP for applying the transfor-
mation technique to the verification conditions using the CLP specification,
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where we assume to be able to call the suitable constraint solver to simplify
the constraint which are generated during this transformation process, every
time is needed.

We consider now the append program

c1: append([], Ys, Ys).

c2: append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

We want to prove that the expected relation among the list lengths holds.
Thus the specification is

SI
F := append(X, Y, Z) 7→list(X) ∧ list(Y)

SO
F := append(X, Y, Z) 7→list(Z) ∧ length(Z,K) ∧ length(X,N)∧

length(Y,M) ∧ K = N + M

where the user defined predicates are the following

list([]).

list([X|Xs]) :- list(Xs).

length([],0).

length([X|Xs],Lx) :- length(Xs, Lxs), Lx = Lxs + 1.

The property expressed by the precondition has now to be definitely verified
by all the inputs. Therefore we use the I/O and call correctness schema which
leads to the following conditions.

clause c1O The condition is

list([ ]) ∧ list(Ys) =⇒ list(Ys) ∧ length(Ys, K)∧

length([ ],N) ∧ length(Ys,M) ∧ K = N + M.

By unfolding length([ ],N) and list([ ]) we obtain

list(Ys) =⇒ list(Ys) ∧ length(Ys, K) ∧ length(Ys,M)∧

K = 0 + M.

The previous condition can be proved by first proving the functionality of
length/2 (i.e., length(Xs,N)∧length(Xs, K)⇐⇒ length(Xs,N)∧N = K)
and then applying a goal replacement rule. Thus we obtain

list(Ys) =⇒ list(Ys) ∧ length(Ys, K) ∧ K = M ∧ K = 0 + M

Now this condition can be proved by first proving the lemma length(Ys, K)↔
list(Ys) and then applying, first, a goal replacement rule and, second, a
simplification.
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It is worth noting that both the previous lemmata used in the appli-
cation of the goal replacement rule can also be obtained by using the
fold/unfold proof techniques. For example, in order to prove the functional-
ity of length/2 we define two new clauses new1 (Xs,N,K)←length(Xs,N), length(Xs, K)

and new2 (Xs,N,K)←length(Xs,N),N = K. We then apply the fold/unfold
rules until the program defining new1 is equal to the program defining new2
up to the renaming of new2 by new1 .

We now show how it is possible to prove the previous lemma using MAP
[30]. We first load the definition of length.
P1: Progs/length

1. length([],0).

2. length([A|B],C) :- length(B,D), plus(D,1,C).

Then we define the predicate new1/3.
P2: by adding def 3 to P1

3. new1(A,B,C) :- length(A,B), length(A,C).

We then perform few unfolding steps.
P3: by unfolding cl 3 in P2 wrt atom 1 using P1

4. new1([],0,A) :- length([],A).

5. new1([A|B],C,D) :- length(B,E), plus(E,1,C),

length([A|B],D).

P4: by unfolding cl 4 in P3 wrt atom 1 using P1

6. new1([],0,0).

5. new1([A|B],C,D) :- length(B,E), plus(E,1,C),

length([A|B],D).

P5: by unfolding cl 5 in P4 wrt atom 3 using P1

6. new1([],0,0).

7. new1([A|B],C,D) :- length(B,E), plus(E,1,C),

length(B,F), plus(F,1,D).

We now perform a folding step in (the body of) clause 7 using clause 3.
P6: by folding cl 7 in P5 w.r.t atoms [1,3] using 3

6. new1([],0,0).

8. new1([A|B],C,D) :- new1(B,E,F), plus(E,1,C), plus(F,1,D).
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We now introduce the definition of new2/3.
P7: by adding def 9 to P6

6. new1([],0,0).

8. new1([A|B],C,D) :- new1(B,E,F), plus(E,1,C), plus(F,1,D).

9. new2(A,B,C) :- length(A,B), C=B.

We then perform few unfolding steps.
P8: by unfolding cl 9 in P7 wrt atom 1 using P1

6. new1([],0,0).

8. new1([A|B],C,D) :- new1(B,E,F), plus(E,1,C), plus(F,1,D).

10. new2([],0,A) :- A=0.

11. new2([A|B],C,D) :- length(B,E), plus(E,1,C), D=C.

P9: by unfolding cl 10 in P8 wrt atom 1 using P1

6. new1([],0,0).

8. new1([A|B],C,D) :- new1(B,E,F), plus(E,1,C), plus(F,1,D).

12. new2([],0,0).

11. new2([A|B],C,D) :- length(B,E), plus(E,1,C), D=C.

Next step can be obtained by first proving the functionality of plus/3,
i.e., plus(A,B,C), C = D ↔ plus(A,B,C), plus(A,B,D), and apply a goal
replacement rule.
P10: by replacing atoms [2,3] in cl 11 in P9 using law 1

6. new1([],0,0).

8. new1([A|B],C,D) :- new1(B,E,F), plus(E,1,C), plus(F,1,D).

12. new2([],0,0).

13. new2([A|B],C,D) :- length(B,E), plus(E,1,C), plus(E,1,D).

where law 1 is plus(A,B,C), C = D→ plus(A,B,C), plus(A,B,D).
We now perform a goal replacement with law 2 := plus(E, 1,D)→ plus(F, 1,D), F =

D. This law can be proved simply by the generalization + equality intro-
duction rule [31], which allows us to replace a goal of the form A(X,Z) with
A(X, Y), Y = Z.
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P11: by replacing atoms [3] in cl 13 in P10 using law 2

6. new1([],0,0).

8. new1([A|B],C,D) :- new1(B,E,F), plus(E,1,C), plus(F,1,D).

12. new2([],0,0).

14. new2([A|B],C,D) :- length(B,E), plus(E,1,C), F=E, plus(F,1,D).

Finally we perform a folding step in (the body of) clause 14 using clause 9.
P12: by folding cl 14 in P11 w.r.t atoms [1,3] using 9

6. new1([],0,0).

8. new1([A|B],C,D) :- new1(B,E,F), plus(E,1,C), plus(F,1,D).

12. new2([],0,0).

15. new2([A|B],C,D) :- new2(B,E,F), plus(E,1,C), plus(F,1,D).

We now have obtained that the definitions of predicates new1/3 and new2/3

are equivalent up to renaming of new2/3 with new1/3, as requested for
proving the lemma.

clause c2I The condition is

list([X|Xs]) ∧ list(Ys) =⇒ list(Xs) ∧ list(Ys)

which can be proved by one step of unfolding in the premise.
clause c2O The condition is

list([X|Xs]) ∧ list(Ys) ∧ list(Zs) ∧ length(Xs,N)∧

length(Ys,M) ∧ length(Zs, K) ∧ K = N + M =⇒
list([X|Zs]) ∧ length([X|Xs],N1) ∧ length(Ys,M)∧

length([X|Zs], K1) ∧ K1 = N1 + M

which (by unfolding and functionality of length) becomes

list(Xs) ∧ list(Ys) ∧ list(Zs) ∧ length(Xs,N)∧

length(Ys,M) ∧ length(Zs, K) ∧ K = N + M =⇒
list(Zs) ∧ length(Xs,N) ∧ N1 = N + 1 ∧ length(Ys,M)∧

length(Zs, K) ∧ K1 = K + 1 ∧ K1 = N1 + M

where the arithmetic constraint can be simplified calling the underlaying
constraint solver.

We conclude that the program is partially correct w.r.t. the specification.
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5.2.3 Specifications and algorithms

In this example we want to prove that a (quite) clever implementation of the
sorting algorithm (the insertion sort of Figure 4) is correct w.r.t. a specification
given by a declarative (inefficient) implementation. Thus the specification is

SI
F :=

{
isort(X, Y) 7→ intlist(X)

insert(X, Y, Z) 7→ int(X) ∧ intlist(Y) ∧ ord(Y)

SO
F :=

{
isort(X, Y) 7→ intlist(Y) ∧ sort(X, Y)

insert(X, Y, Z) 7→ intlist(Z) ∧ sort([X|Y], Z)

where the user defined predicates are given in Figure 5. We assume the fol-
lowing specification for the built-ins.

SI
F :=


X=<Y 7→ int(X) ∧ int(Y)

X>Y 7→ int(X) ∧ int(Y)

integer(X) 7→ TRUE

SO
F :=


X=<Y 7→ X ≤ Y

X>Y 7→ X > Y

integer(X) 7→ int(X)

Since the property in the precondition has to be definitely verified by all the
inputs, we use the I/O and call correctness schema, which leads to the following
partial correctness conditions.

clause c1O The condition is intlist([ ]) =⇒ intlist([ ])∧sort([ ], [ ]) which
can be proved by few unfolding steps.

clause c2I The conditions are intlist([X|Xs]) =⇒ intlist(Xs) and

intlist([X|Xs]) ∧ intlist(Zs) ∧ sort(Xs, Zs) =⇒
int(X) ∧ intlist(Zs) ∧ ord(Zs).

Both can be proved by a few unfolding steps in the premises.
clause c2O The condition is

intlist([X|Xs]) ∧ intlist(Zs) ∧ sort(Xs, Zs) ∧ intlist(Ys)∧

sort([X|Zs], Ys) =⇒ intlist(Ys) ∧ sort([X|Xs], Ys).

We show how this condition can be proved using the tool MAP [30]. We
first load the user clauses which define the meaning of the predicates in the
specification of the program isort.
P1: Progs/isort

1. intlist([]).
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c1: isort([], []).

c2: isort([X|Xs], Ys) :- isort(Xs, Zs), insert(X, Zs, Ys).

c3: insert(X, [], [X]).

c4: insert(X, [Y|Ys], [Y|Zs]) :- X > Y, insert(X, Ys, Zs).

c5: insert(X, [Y|Ys], [X, Y|Ys]) :- X =< Y.

Figure 4. The insertion sort program isort

intlist([]).

intlist([X|Xs]) :- integer(X), intlist(Xs).

sort(Xs, Ys) :- perm(Xs, Ys), ord(Ys).

ord([]).

ord([X]).

ord([X,Y|Xs]) :- X =< Y, ord([Y|Xs]).

perm(Xs, [Z|Zs]) :- select(Z, Xs, Ys), perm(Ys, Zs).

perm([], []).

select(X, [X|Xs], Xs).

select(X, [Y|Xs], [Y|Zs]) :- select(X, Xs, Zs).

Figure 5. The user defined predicates for the program of Figure 4

2. intlist([A|B]) :- integer(A), intlist(B).

3. sort(A,B) :- perm(A,B), ord(B).

4. ord([]).

5. ord([A]).

6. ord([A,B|C]) :- A=<B, ord([B|C]).

7. perm(A,[B|C]) :- select(B,A,D), perm(D,C).

8. perm([],[]).

9. select(A,[A|B],B).

10. select(A,[B|C],[B|D]) :- select(A,C,D).

We first define the clauses for predicates prem/4 and concl/4 which allow
us to prove the verification condition c2O.
P2: by adding def 11 to P1

11. prem(A,B,C,D) :- intlist([A|B]), intlist(D),

sort(B,D), intlist(C), sort([A|D],C).

P3: by adding def 12 to P2
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12. concl(A,B,C,D) :- intlist(C), sort([A|B],C).

We now perform one unfolding step on clause 11.
P4: by unfolding cl 11 in P2 wrt atom 3 using P1

12. concl(A,B,C,D) :- intlist(C), sort([A|B],C).

13. prem(A,B,C,D) :- intlist([A|B]), intlist(D),

perm(B,D), ord(D), intlist(C), sort([A|D],C).

We then perform one unfolding step on clause 13.
P5: by unfolding cl 13 in P4 wrt atom 6 using P1

12. concl(A,B,C,D) :- intlist(C), sort([A|B],C).

13. prem(A,B,C,D) :- intlist([A|B]), intlist(D),

perm(B,D), ord(D), intlist(C), perm([A|D],C), ord(C).

Next step can be obtained by first proving a property of perm/2, i.e.,
perm(Xs, Zs)∧perm([X|Zs], Ys)⇐⇒ perm([X|Xs], Ys), and then using the goal
replacement rule. For this purpose, we define law 1 := perm(A,B), perm([C|B], D)→
perm([C|A], D), and then perform a goal replacement step.
P6: by replacing atoms [3,6] in cl 12 in P5 using law 1

11. concl(A,B,C,D):- intlist(C), sort([A|B],C).

14. prem(A,B,C,D) :- intlist([A|B]), intlist(D),

perm([A|B],C), ord(D), intlist(C), ord(C).

Last step consists in unfolding clause 11.
P7: by unfolding cl 11 in P6 wrt atom 2 using P1

14. prem(A,B,C,D) :- intlist([A|B]), intlist(D),

perm([A|B],C), ord(D), intlist(C), ord(C).

15. concl(A,B,C,D) :- intlist(C), perm([A|B],C),

ord(C).

clause c3O The condition is

int(X) ∧ intlist([ ]) ∧ ord([ ]) =⇒ intlist([X]) ∧ sort([X], [X]),

which can be proved by few unfolding steps.
clause c4I The conditions are

int(X) ∧ intlist([Y|Ys]) ∧ ord([Y|Ys]) =⇒ int(X) ∧ int(Y)

and

int(X) ∧ intlist([Y|Ys]) ∧ ord([Y|Ys]) ∧ X > Y =⇒
int(X) ∧ int(Y) ∧ ord(Ys).
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Both the above conditions can be proved by a few unfolding steps in the
premises.

clause c4O The condition is

int(X) ∧ intlist([Y|Ys]) ∧ ord([Y|Ys]) ∧ X > Y ∧ intlist(Zs)∧

sort([X|Ys], Zs) =⇒ intlist([Y|Zs]) ∧ sort([X, Y|Ys], [Y|Zs]).

We show how this condition can be proved using the tool MAP. After the
user predicates for the specification of the program isort have being loaded,
we define the new clauses for predicates prem/4 and concl/4.
P2: by adding def 11 to P1

11. prem(A,B,C,D) :- integer(A), intlist([B|C]),

ord([B|C]), gt(A,B), intlist(D), sort([A|C],D).

P3: by adding def 12 to P2

12. concl(A,B,C,D) :- intlist([B|D]),

sort([A,B|C],[B|D]).

Next step can be proved by first proving a property of sort/2, i.e., sort([X|Ys], Zs)∧

ord([Y|Ys]) ∧ X > Y ⇐⇒ sort([X, Y|Ys], [Y|Zs]) and then using the goal
replacement rule. For this purpose, we define law 2 := sort([X|Ys], Zs) ∧

ord([Y|Ys]) ∧ X > Y → sort([X, Y|Ys], [Y|Zs]), and then perform a goal re-
placement step.
P4: by replacing atoms [3,4,6] in cl 11 in P2 using law 2

12. concl(A,B,C,D) :- intlist([B|D]),

sort([A,B|C],[B|D]).

13. prem(A,B,C,D) :- integer(A), intlist([B|C]),

sort([A,B|C],[B|D]), intlist(D).

We now unfold clause 13.
P5: by unfolding cl 13 in P4 wrt atom 2 using P1

12. concl(A,B,C,D) :- intlist([B|D]),

sort([A,B|C],[B|D]).

14. prem(A,B,C,D) :- integer(A), integer(B), intlist(C),

sort([A,B|C],[B|D]), intlist(D).

Last step consists in unfolding clause 12.
P6: by unfolding cl 12 in P5 wrt atom 1 using P1

14. prem(A,B,C,D) :- integer(A), integer(B), intlist(C),

sort([A,B|C],[B|D]), intlist(D).
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15. concl(A,B,C,D) :- integer(B), intlist(D),

sort([A,B|C],[B|D]).

clause c5I The condition is

int(X) ∧ intlist([Y|Ys]) ∧ ord([Y|Ys]) =⇒ int(X) ∧ int(Y)

which can be proved by an unfolding step.
clause c5O The condition is

int(X) ∧ intlist([Y|Ys]) ∧ ord([Y|Ys]) ∧ X ≤ Y =⇒
intlist([X, Y|Ys]) ∧ sort([X, Y|Ys], [X, Y|Ys])

It can be proved by first proving a property of perm, i.e., intlist(Xs)⇐⇒
perm(Xs, Xs), and then by a few unfolding steps in the premises.

We conclude that the program is partially correct w.r.t. the specification.

6 Related Work

As already mentioned, there exist several methods for the verification of logic
programs [19,20,21,22,34]. All the above methods have been developed by us-
ing ad-hoc constructions, without an explicit reference semantics and without
using a notion of abstraction. Our reconstruction based on abstract interpre-
tation techniques allows us to easily show that the methods are indeed correct
and to compare them in terms of precision and expressive power.

The approach which is more similar to ours is the one described in [13], where
different approximations (modeled by abstract interpretation) can be used in
the semantics and in the specification. The emphasis in this approach is on
program diagnosis rather than on modelling different verification techniques.
Hence it can be viewed as a variation of the abstract debugging idea [12].

There exist other approaches to verification of logic programs, which make
use of abstract interpretation techniques. [35,36] define a verification method
for Prolog, which applies to specifications related to properties such as termi-
nation, and size-cardinality relations between inputs and outputs. The role of
abstract interpretation is restricted to modeling specific properties.

Finally, on the side of specification languages, it is worth noting that logic pro-
grams have already been used as specifications in the literature [37,38,13,39,40].
In particular, in [39] assertions associated to program points are verified at
run time by evaluating the logic programs on the actual run time values.
[38] proposes a new language to let the user communicate with the debugger.
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In this language specifications are logic programs and assertions are used to
interactively diagnose errors.

In all these approaches the role of the specification programs is to allow to
extensionally derive information on the intended behavior, i.e., the specifica-
tion. They are in fact used to evaluate the assertion on run time values and
therefore to check that each program answer does indeed satisfy the assertion.
Hence the logic implementation of the specification language is used to check
by evaluation that each result of the actual program verifies the specification.
Here, we propose a different approach, where the same specification programs
are used to intensionally derive information on the intended behavior, i.e.,
the specification programs are used to syntactically prove sufficient conditions
for partial correctness. This is obtained by syntactic program transformation
techniques, which often allow us to prove the verification conditions.

7 Conclusion

We have shown how abstract interpretation can be very useful to understand,
organize and synthesize proof methods for program verification. In particular,
we provide one specific approach to the generation of abstract interpretation-
based partial correctness conditions.

Verification techniques inherit the nice features of abstract interpretation.
Namely, the resulting verification framework is parametric with respect to
the (abstract) property we want to model. Given a specific property, the cor-
responding verification conditions are systematically derived from the frame-
work and guaranteed to be indeed sufficient partial correctness conditions. By
choosing a suitable domain, which leads to finite specifications, these sufficient
conditions are effectively computable.

We have shown the reconstruction of well-known methods, using extensional
semantics w.r.t. pre-post conditions. The approach can be explained in terms
of two steps of abstraction. The first step is concerned with the derivation
of the semantics which models the proof method. The second step performs
the abstraction needed to model a specific class of properties (so as to lead
to a finite specification). The methods which are reconstructed are success-
correctness [19,20], I/O correctness [34] and I/O and call correctness [21,22,23].

The verification framework can be instantiated to specifications given in terms
of assertions (which can be viewed as an intensional semantics). We have shown
that assertions can indeed be handled as abstract domains and have shown
two applications with different specification languages.

34



The first one is a simple decidable assertion language, which is able to express
properties of terms, including types and other properties relevant to static
analysis. An open interesting issue is the definition of more expressive (still
decidable) specification languages.

The second one allows the user to specify properties to be used in the asser-
tions by means of CLP programs. We have shown, through some examples,
how the resulting sufficient verification conditions can be derived and proved
by using program transformations techniques. Most of the verification con-
ditions can very easily be proven by using a few unfolding steps, while other
transformation techniques, such as goal replacement, are needed to prove more
complex properties. As we have shown in the examples, the generation of the
intermediate lemmata needed for goal replacement can often be obtained by
using an unfold/fold proof method, as stated in [31]. Our examples together
with these considerations suggest that the process of proving verification con-
ditions can easily be semi-automatized by using, for example, the tool MAP
[30] as we showed in our examples.

As a final remark, we want to point out that our approach can be generalized
to other paradigms. We just need to define a fixpoint semantics on the concrete
domain. By using the approach of Subsection 5.2, constraint logic programs
are used for specification only, thus exploiting their declarative nature.
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J. Maluszyński, G. Puebla, On the Role of Semantic Approximations in
Validation and Diagnosis of Constraint Logic Programs, in: M. Kamkar (Ed.),
Proceedings of the AADEBUG’97 (The Third International Workshop on
Automated Debugging), University of Linköping Press, Linköping, Sweden,
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